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Three-Phase Modulated Pole Machine Topologies
Utilizing Mutual Flux Paths

Jamie G. Washington, Glynn J. Atkinson, Nick J. Baker, Alan G. Jack, Barrie C. Mecrow, Bogi B. Jensen,
Lars-Olov Pennander, Göran L. Nord, and Lars Sjöberg

Abstract—This paper discusses three-phase topologies for mod-
ulated pole machines (MPMs). The authors introduce a new three-
phase topology, which takes advantage of mutual flux paths; this
is analyzed using 3-D finite-element methods and compared to a
three-phase topology using three single-phase units stacked axi-
ally. The results show that the new “combined-phase MPM” ex-
hibits a greater torque density, while offering a reduction in the
number of components. The results obtained from two prototypes
are also presented to verify the concept; the results show that the
“combined-phase” machine could provide both performance and
constructional benefits over prior MPM topologies.

Index Terms—AC machine, modulated pole, mutual flux path,
permanent magnet machine, phase isolation, three phase, trans-
verse flux, torque dense.

I. INTRODUCTION

MODULATED pole machines (MPMs) have existed for
more than 100 years, with a design first proposed by

W. M. Morday [1]. The MPM topology has been developed
over the years; they are often found in the form of claw pole [2],
[3] and transverse flux machines (TFMs) [4].

MPMs are known for their high torque densities, often up to
5 times that of conventional machines [5]. This is due to the
decoupled nature of the electric and magnetic circuits of the
machine. In conventional machines, a doubling in pole number
will lead to a reduction in the armature magnetomotive force
(MMF) per pole by the same proportion due to a reduced slot
area. Hence, there is no increase in torque as a result.

In MPMs, the MMF is seen across all of the poles; an increase
in pole number does not decrease the available slot area; hence,
for an increase in pole number, there is a corresponding increase
in the electrical loading and therefore an increase in torque [6].

MPMs are particularly suited to low-speed applications where
a high torque is required [7]; they exist in linear [8]–[11] and
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Fig. 1. Two pole section of a single phase.

rotary [12] forms, and commonly have two [13] or three phases
[12]. Target applications have included propulsion systems for
ships [14], buses [15], cars [16], as well as renewable energy
systems such as generators in direct drive wind turbines [17]
and wave energy generation [18], [19]. Their speed is limited
by the frequency of available electrical converters due to the
high electrical frequency required as a consequence of the high
pole number. These machines can also exhibit a high reactance,
resulting in a low power factor [20], thus, requiring a converter
with a higher voltampere rating.

The term “MPM” captures all machine types where a two-
pole armature field is guided or “modulated” into many poles
by a toothed iron stator structure, such as the claw pole and
TFMs. This paper is henceforth concerned with an MPM of the
transverse flux type.

The flux path for a two-pole section of a TFM is illustrated
in Fig. 1. Flux from the circumferentially magnetized magnets
(1) is gathered and concentrated into the “north” pole-piece
(2), traversing in the axial direction and crossing the air gap into
tooth (3), across the coreback (4), and returning via the opposing
tooth (5) positioned at an electrical angle of 180◦, crossing the air
gap once again, traversing the “south” pole piece (6) and across
the magnet to complete the magnetic circuit, thus, completely
enclosing the coil (7).

This 3-D flux path requires magnetic isotropy. The authors
have based this study on the use of soft magnetic composites
(SMCs), the properties of which are discussed in detail in [21].

0885-8969/$31.00 © 2012 IEEE
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Fig. 2. Axial cross section of a three-phase separate-phase modulated pole
machine.

This study is based on stator and rotor components built using
Somaloy 3P [22].

II. THREE-PHASE TOPOLOGIES

By the nature of their equal stator and rotor pole num-
ber, MPMs cannot produce continuous torque in a single-
phase arrangement; hence they are typically used in a multiple-
phase arrangement. This paper will concentrate on three-phase
arrangements.

A balanced three-phase topology can be achieved by axially
stacking three separate stator phases at an angular position of
0◦, 120◦, and 240◦ electrical, respectively. It is possible to use
three axially separated rotors, or a single rotor extending the full
axial length of the three-phase machine, as used in this study.
However, in either case, the stator phases must be magnetically
separated by a large distance, in relation to the air gap, to avoid
mutual coupling between adjacent phases. This arrangement is
illustrated in Fig. 2 and is henceforth termed a separate-phase
machine.

By way of explanation, tooth 1 denotes the two teeth enclos-
ing the coil of phase A. A north and south pole result from a
circumferential angular displacement of 180◦ electrical between
teeth 1 and 1′. Tooth 1 (phase A) is at an angular position of 0◦

electrical, tooth 2 (phase B) is at 120◦, and tooth 3 (phase C) is
at 240◦. The three-phase coils are denoted by A, B, and C.

The arrangement in Fig. 2 avoids excessive mutual coupling
between phases by magnetically separating the stator phases.
The question arising in this study is whether there is an arrange-
ment where these mutual flux paths can be used to an advantage?

Gieras [23] presents a three-phase transverse flux generator
in which the stator phases are stacked axially with a separation
between. Three rotor sections are also arranged in a similar
fashion, effectively three single-phase machines of the separate-
phase topology.

A similar topology has been used by Dubois et al. [24] in
a hybrid SMC/lamination TFM stator. The stator teeth in this
case form a partial claw pole. Again the three-phase arrangement
comes from the stacking of three stator units, with each phase
interacting with its own rotor.

Blissenbach et al. [25] describe a three-phase transverse flux
traction motor in which a single stator structure forms three
phases using circumferentially stacked laminations. The stator
laminations extend the full axial length of the three-phase ma-
chine and form four teeth, partially enclosing the three-phase
coils. The four teeth are bent into a position of 0◦, 180◦, 0◦, and

Fig. 3. Axial cross section of a three-phase combined-phase modulated pole
machine.

Fig. 4. Combined-phase flux paths.

180◦ electrically, respectively. To achieve the 120◦ phase shift
between each of the three phases, three separate rotor units are
axially stacked with a 60◦ offset and a magnetic gap between.
The two central teeth need to carry their own and shared flux;
hence, for the same magnetic flux density, the area is greater by
a factor of

√
3. This is achieved by making the axial length of

the central two teeth longer.
In this paper, the authors describe a new three-phase arrange-

ment, termed the “combined-phase MPM” [26] in which the
stator is a three-phase unit and a single rotor extends the full
axial length of the machine.

Fig. 3 illustrates this new combined-phase arrangement. The
internal teeth of the separate-phase topology have been com-
bined into sets; Teeth 1′ and 2 combine to form tooth 2 of the
combined-phase topology, and likewise separate-phase tooth 2′

and 3 to form combined-phase tooth 3. Hence, there are now
four rather than six sets of teeth. Note however that the three
coils and rotor are identical in both cases.

In order to ascertain the angular position and axial length
of the four sets of teeth in the combined-phase topology, the
magnetic flux in each of the four teeth is considered with the
aim of producing a balanced three-phase flux linkage in each of
the three coils.

Fig. 4 illustrates the tooth fluxes within the combined-phase
machine. It is assumed that the amount of stray flux in this area
is negligible and hence the flux directly below each coil (i.e.,
in the stator coreback) completely links the coil. For a balanced
three-phase machine, these must be

ΦA = |Φ|� 0◦ (1a)

ΦB = |Φ|� 120◦ (1b)

ΦC = |Φ|� 240◦ (1c)

where |Φ| is the magnitude of coil flux linkage (equal for all
phases).
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Fig. 5. Flux vector diagram showing the required tooth fluxes to achieve a
balanced set of three-phase flux linkages.

If this is the case, the flux in each of the four teeth can be
found by superposition

Φ1 = ΦA (2a)

Φ2 = ΦB − ΦA (2b)

Φ3 = ΦC − ΦB (2c)

Φ4 = −ΦC . (2d)

If the air-gap flux due to the rotor is assumed to be sinusoidal
in space, standard vector methods can be applied to find the
magnitude and angle of the flux in each tooth. In addition, the
air-gap flux density is assumed to be uniform along the axis of
the machine. The air-gap flux may not be sinusoidal, but the
inclusion of harmonics complicates the initial analysis; instead,
the fact that the air-gap flux is not a perfect sinusoid is taken
into account during the finite–element (FE) modeling.

Fig. 5 shows a vector diagram of the three balanced fluxes
and the resultant tooth fluxes Φ1 , Φ2 , Φ3 , and Φ4 .

Taking the resultant flux for each of the four teeth, the required
tooth flux magnitude and angle is

Φ1 = |Φ|� 0◦ (3a)

Φ2 = |
√

3Φ|� 150◦ (3b)

Φ3 = |
√

3Φ|� 270◦ (3c)

Φ4 = |Φ|� 60◦. (3d)

To maintain an equal flux density in all four teeth, the cross-
sectional area of teeth 2 and 3 must be adjusted. Maintaining
an identical circumferential profile (tooth angular span) means
adjusting the axial length only; tooth 1 must be 1 unit long
axially, teeth 2 and tooth 3 are

√
3 units long axially, and tooth

4 must be 1 unit long. The angular position of the tooth centers
must be 0◦, 150◦, 270◦, and 60◦, respectively.

By combining the central teeth and removing the axial sep-
aration, each phase of the combined-phase machine will link
more flux than its separate-phase counterpart. By applying su-
perposition to the magnetic circuits of Figs. 2 and 3, the axial
length of iron associated with each phase was found to increase
by 23.1%, and it is therefore postulated that there should be an
equivalent increase in phase flux. This is tested using 3-D FE
methods in the following section.

III. THREE-DIMENSIONAL FE COMPARISON

Three-dimensional FE analysis has been carried out on both
the combined- and separate-phase MPMs. For this comparison
both machines have identical features, as listed in the following.

1) Dimensions: The same overall axial length, rotor and sta-
tor outer diameter, rotor and stator inner diameter, and
air-gap length.

2) Rotor: The same pole number, magnet type, and SMC
pole pieces.

3) Coils: Three coils of the same inner and outer diameter,
axial length, turn number, and fill factor.

4) Materials: NdFeB magnets with BR = 1.2 T and Somaloy
3P SMC stator components and rotor pole pieces.

5) Excitation: An MMF of 340 A, representing a slot rms
current density of 3.3 A/mm2 .

Both motors are of the outer rotor type with a rotor con-
structed of circumferentially magnetized NdFeB magnets sand-
wiched between SMC pole pieces giving a typical TFM flux
concentrating arrangement.

The phases of the separate-phase machine are combined, as
outlined in Section II, to form the combined-phase machine with
teeth positioned at 0◦, 150◦, 270◦, and 60◦ electrical. The inner
two teeth are a factor of

√
3 axially longer than the outer two

teeth.

A. FE Model

It is possible to model a single phase of an MPM and infer it’s
three-phase performance. This is due to the magnetic isolation
given by the phase separation [8]. However, for the purposes
of this comparison, it was felt that the three-phase combined-
phase model must be compared to a three-phase separate-phase
model. In both cases, a single pole pair of the machine is modeled
with an even periodic (pole pair) boundary condition applied to
the radial edges. The rotor extends the full axial length of the
machine. By modeling all three phases of the separate-phase
machine in the no-load condition, it was found that the peak
flux linkage is 13% higher than that found in a model of a
single completely isolated phase. This is due to the additional
flux obtained by using a rotor that extends the full length of the
stator. The additional magnet flux is provided by the magnets
directly above the 2 mm gap separating the phases and also some
mutual fluxes due to the proximity of phases to each other. To
accurately represent this effect, the following analysis is of one
pole pair of the three-phase machine.
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Fig. 6. Flux plots of the separate phase (top) and combined phase (bottom)
with the left most phase in the aligned position.

B. No-Load Flux Linkage

The combined- and separate-phase machines were modeled
in the no-load condition with the rotor aligned with tooth 1: this
corresponds to the d-axis of phase A.

An arrow plot of the two models can be seen in Fig. 6. The
isolated flux paths of the separate-phase machine are clear to
see in contrast with the mutual flux paths of the combined-phase
machine.

In this position, phase A of the combined-phase machine
links 53.47 μWb per pole pair, compared to 48.32 μWb for the
separate-phase machine; a 10.7% increase in peak flux linkage.
Also taking into account the 13% increase in flux by using a
rotor extending the flux axial length of the machine (including
over the phase separation gaps), this is a 25.1% increase in flux
linkage, slightly higher than the increase of 23.1% expected
from the additional axial length of iron in the combined-phase
machine.

The variation in flux linkage for the outermost phase of the
separate- and combined-phase machines is shown in Fig. 7 and
was obtained by performing a series of magnetostatic simula-
tions with the rotor stepping through a full electrical cycle (two
pole pitches) in increments of 5◦ electrical.

Fig. 8 shows the three-phase flux linkage for the combined-
phase machine. The results show that all three phases are bal-
anced with an equal 120◦ displacement and that the peak fluxes
are within 3% of one another.

C. Back EMF

The differential of the flux waveforms yields the back EMF,
as shown in Fig. 9. At 285 r/min, the rms phase back EMFs
for the combined- and separate-phase machines are 28.8 and
25.8 mV per pole per turn, respectively, an increase of 11.6%

Fig. 7. Three-dimensional FE no-load flux linkage for phase A of the separate-
and combined-phase machines.

Fig. 8. No-load coil flux linkage for all three phases of the combined-phase
machine.

Fig. 9. Three-dimensional FE comparison of the induced back EMF in one
coil of the separate- and combined-phase machines.

for the combined-phase machine. This is in line with the increase
in no-load flux linkage but also reflects the fact there is some
harmonic content in each of the waveforms. The fundamental
components of voltage have also been compared to remove the
effect of these harmonics; the combined phase shows a 13.7%
increase in its fundamental component over the separate phase.

1) Static Torque: The static torque characteristics of both
machines have been simulated with an MMF applied to phase
1 and returning via phases 2 and 3 connected in parallel, as
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Fig. 10. Three-dimensional FE static torque characteristic for the combined-
phase machine.

Fig. 11. Comparison of torque due to excitation for the separate- and
combined-phase machines with the cogging torque removed.

in a typical experimental static torque test. The rotor steps
through one-pole pair in 10◦ electrical steps, and the torque
is obtained for MMFs ranging from 0 to 680 A [equivalent to
6.6 A/mm2 or an overload of 2.0 per unit (p.u.)]. Fig. 10 shows
the torque-position-MMF characteristics of the combined-phase
machine.

The no-load cogging torque is in the order of 20% of the
rated full-load torque. This level of cogging torque is significant
and may be undesirable for certain applications. The authors are
working on solutions to this problem, and these will form the
subject of subsequent papers.

In Fig. 11, the cogging torque has been subtracted from the
load torque at the rated MMF of 340 A. The rms torque for the
separate- and combined-phase machines is 0.395 and 0.439 Nm
per pole-pair, respectively; an 11.1% increase for the combined-
phase machine.

2) Three-Dimensional FE Design Summary: A 3-D FE
study of the new combined-phase MPM topology has been
shown to compare favorably with the separate-phase MPM
topology. Table I summarizes the results of the 3-D FE study.

IV. EXPERIMENTAL VALIDATION

By way of experimental validation, a combined-phase stator
and a separate-phase stator have been built; these are shown in

TABLE I
COMPARISON OF THE SEPARATE- AND COMBINED-PHASE MODULATED

POLE MACHINE

Fig. 12. Axial view of combined-phase stator.

Fig. 13. Axial view of separate-phase stator.

Figs. 12 and 13, respectively. A single outer rotor has also been
constructed from NdFeB magnets and SMC pole pieces; this
is shown in Fig. 14. Experimental testing has been carried out
with the same rotor throughout.

A. Back EMF

The prototype machines were both driven on a dynamometer
test rig with the armature open circuit to measure the back EMF.
Both machines were star connected; the phase EMF waveforms
for both prototypes were obtained and are shown in Fig. 15 at a
speed of 285 r/min. Table II compares the two waveforms.
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Fig. 14. Close-up view of flux concentrating rotor; the NdFeB magnets are
light and the SMC pole pieces are dark.

Fig. 15. Comparison of separate- and combined-phase back EMFs for one
phase at 285 r/min.

TABLE II
QUANTITATIVE COMPARISON OF BACK EMF AVERAGED FOR ALL THREE

PHASES OF BOTH THE MACHINES

The combined-phase machine has a 10.3% higher fundamen-
tal phase back EMF than the separate-phase machine.

B. Static Torque

Static torque was measured using an in-line torque transducer
with the shaft connected to a rotary dividing head to allow for
fine angular movements of the rotor, this test setup is shown
in Fig. 16. The inner coil was connected in series with the
outer two coils in parallel, thus, representative of a three-phase
sinusoidal distribution with 1, −0.5, and −0.5 on phases 1,2,
and 3, respectively.

The static torque produced over a rotation of one full electrical
cycle (two pole pitches) is shown in Fig. 17. At 20 A (the thermal
limit), the average per phase separate-phase torque is 7.45 Nm,
compared to 8.92 Nm for the combined-phase machine.

Fig. 16. Test setup showing the combined-phase machine connected through
an in line torque transducer to a rotary dividing head.

Fig. 17. Comparison of separate- and combined-phase static torque wave-
forms taken with maximum current in the inner phase.

The combined-phase machine shows a slightly higher level
of cogging torque than the separate-phase machine; this is not
a concern at this stage as this will likely be reduced by minor
design modification. Further analysis of this will be considered
in later publications.

The average excitation torque (i.e., the torque only due
to armature current with cogging removed) produced by the
combined-phase machine is 15.0% greater than the separate-
phase machine. This increase is partly due to the larger back
EMF and increased inductance.

C. Mass

The mass of the combined-phase machine is of course higher
than the separate-phase machine as the gap between the separate
phases is now taken up by iron. The active mass (SMC + cop-
per + magnet) of the separate- and combined-phase machines is
3.89 and 4.06 kg, respectively. This is equivalent to an average
torque density of 1.82 and 2.01 Nm/kg, respectively; the torque
is however not that obtained under sinusoidal operating condi-
tions and hence the torque density will be significantly higher
under normal operating conditions.

D. Construction

It has been shown that a combined-phase machine will pro-
vide a higher flux linkage, higher back EMF, and higher torque
within a given volume than its separate-phase counterpart.
Therefore, for the same output, a combined-phase machine may
be smaller.
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In this analysis, the combined-phase machine has a 4.4%
greater active mass than the separate-phase machine. This is
due to the replacement of the phase separation by iron, but
the torque per kilogram of the combined-phase machine is still
10.4% greater than that of the separate-phase machine.

In moving from a separate- to a combined-phase topology, the
number of stator components is reduced from six (two halves
per phase for the separate phase) to four. This reduction in
component count is of a considerable benefit as the number of
compactions per machine is reduced; compaction of SMC forms
a significant portion of the cost of an SMC component. The
reduction in component count also benefits the assembly process
with fewer stages, and the removal of the phase separation results
in greater mechanical integrity. It is expected that this reduction
in component count as well as there been no need to manufacture
phase separators will lead to the overall cost of the combined-
phase machine being reduced in comparison to the separate
phase.

V. CONCLUSION

MPMs, a term describing both transverse flux and claw pole
machines, are well known for their high torque density. This
comes at the cost of a higher electrical frequency, a characteris-
tic making MPMs particularly suited to low-speed high-torque
applications, such as direct drive traction machines.

The nature of their design means that they cannot provide
continuous torque in a single-phase arrangement; hence, a mul-
tiphase arrangement is required. This paper has investigated
three-phase MPMs.

The most obvious arrangement is to axially stack the three
phases, with a small separation between to avoid flux leakage
between phases. If a single rotor is used spanning the axial length
of the three phases, the magnet above the phase separation is
wasted.

The authors have described an alternative three-phase ar-
rangement, which takes advantage of mutual flux paths between
phases and removes the phase separations. This combined-phase
MPM has been analyzed along with its separate-phase counter-
part, using an identical space envelope, rotor, coils, and material
properties.

Simulations show an improved electromagnetic performance
for the combined-phase machine, validated by prototype testing.
Two machines were built, sharing the same rotor. Experimen-
tation confirmed the improved performance of the combined-
phase machine, with a 10.3% increase in fundamental back EMF
(corresponding to a 8.6% increase in rms back EMF), a 15.0%
increase in the average excitation torque, and a 10.4% higher
torque density when compared to the separate-phase machine.
These results are shown in Table III.

In addition to the improved electromagnetic performance,
the combined-phase machine offers a reduction in stator SMC
components from six to four. This is clearly of great benefit in
terms of commercial production, with fewer components and
greater mechanical integrity of the stator.

Of continuing interest to the authors is work in reducing
harmonic content and cogging torque of the combined-phase
machine.

TABLE III
COMPARISON OF THE SEPARATE- AND COMBINED-PHASE MODULATED POLE

MACHINE ELECTROMAGNETIC PERFORMANCE

REFERENCES

[1] W. M. Mordey, “Electric generator,” United States Patent No. 437501,
Sep. 30, 1890.

[2] C. P. Maddison, B. C. Mecrow, and A. G. Jack, “Claw pole geometries
for high performance transverse flux machines,” in Proc. Int. Conf. Electr.
Mach., Istanbul, Turkey, 1998, pp. 340–345.

[3] G. Jack, B. C. Mecrow, C. P. Maddison, and N. A. Wahab, “Claw pole
armature permanent magnet machines exploiting soft iron powder metal-
lurgy,” in Conf. Rec. IEEE Int. Electr. Mach. Drives, 1997, pp. MA1/5.1–
MA1/5.3.

[4] B C. Mecrow, A. G. Jack, and C. P. Maddison, “Permanent magnet ma-
chines for high torque, low speed applications,” in Proc. 12th Int. Conf.
Electr. Mach., Vigo, Spain, 1996, pp. 461–466.

[5] H. Weh and H. May, “Achievable force densities for permanent magnet
excited machines in new configurations,” in Proc. Int. Conf. Electr. Mach.,
1986, pp. 1107–1111.

[6] W. M. Arshad, T. Backstrom, and C. Sadarangani, “Analytical design and
analysis procedure for a transverse flux machine,” in Proc. Electr. Mach.
Drives Conf., 2001, pp. 115–121.

[7] Y. G. Guo, J. G. Zhu, P. A. Watterson, and W. Wu, “Development of a PM
transverse flux motor with soft magnetic composite core,” IEEE Trans.
Energy Convers., vol. 21, no. 2, pp. 426–434, Jun. 2006.

[8] D. H. Kang and H. Weh, “Design of an integrated propulsion, guidance,
and levitation system by magnetically excited transverse flux linear motor
(TFM-LM),” IEEE Trans. Energy Convers., vol. 19, no. 3, pp. 477–484,
Sep. 2004.

[9] H. M. Hasanien, A. S. Abd-Rabou, and S. M. Sakr, “Design optimization
of transverse flux linear motor for weight reduction and performance im-
provement using response surface methodology and genetic algorithms,”
IEEE Trans. Energy Convers., vol. 25, no. 3, pp. 598–605, Sep. 2010.

[10] H. M. Hasanien, “Particle swarm design optimization of transverse flux
linear motor for weight reduction and improvement of thrust force,” IEEE
Trans. Ind. Electron., vol. 58, no. 9, pp. 4048–4056, Sep. 2011.

[11] A. S. Abd-Rabou, H. M. Hasanien, and S. M. Sakr, “Design development
of permanent magnet excitation transverse flux linear motor with inner
mover type,” IET Proc. Electr. Power Appl., vol. 4, no. 7, pp. 559–568,
Aug. 2010.

[12] S. Baserrah and B. Orlik, “Comparison study of permanent magnet trans-
verse flux motors (PMTFMs) for in-wheel applications,” in Proc. Int.
Conf. Power Electron. Drive Syst., 2009, pp. 96–101.

[13] Heetae, J. Gunhee, C. Junghwan, C. Shiuk, and K. Dohyun, “Reduction of
the torque ripple and magnetic force of a rotatory two-phase transverse flux
machine using herringbone teeth,” IEEE Trans. Magn., vol. 44, no. 11,
pp. 4066–4069, Nov. 2008.

[14] J. Mitcham, “Transverse flux motors for electric propulsion of ships,”
presented at the IEE Colloq. New Topologies Permanent Magnet Mach.,
London, U.K., 1997.

[15] E. Schmidt, “3-D finite element analysis of the cogging torque of a trans-
verse flux machine,” IEEE Trans. Magn., vol. 41, no. 5, pp. 1836–1839,
May 2005.

[16] E. Schmidt, “Finite element analysis of a novel design of a three phase
transverse flux machine with an external rotor,” IEEE Trans. Magn.,
vol. 47, no. 5, pp. 982–985, May 2011.

[17] M. Dubois, “Optimized permanent magnet generator topologies for direct
drive wind turbines,” Ph.D. dissertation, Delft Univ. Technol., Delft, The
Netherlands, 2004.



514 IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 27, NO. 2, JUNE 2012

[18] H. Polinder, B. C. Mecrow, A. G. Jack, P. G. Dickinson, and M. A. Mueller,
“Conventional and TFPM linear generators for direct-drive wave energy
conversion,” IEEE Trans. Energy Convers., vol. 20, no. 2, pp. 260–267,
Jun. 2005.

[19] J. Vining, T. A. Lipo, and G. Venkataramanan, “Design and optimization
of a novel hybrid transverse/longitudinal flux, wound-field linear machine
for ocean wave energy conversion,” in Proc. IEEE Energy Convers. Congr.
Expo., 20–24 Sep. 2009, pp. 3726–3733.

[20] M. R. Harris, G. H. Pajooman, and S. M. Abu Sharkh, “The problem of
power factor in VRPM (transverse-flux) machines,” in Proc. 8th Int. Conf.
Electr. Mach. Drives, 1997, pp. 386–390, Conf. Publ. No. 444.

[21] A. G. Jack and L-O. Pennander, “Soft magnetic iron powder materials
A.C. properties and their application in electrical machines,” presented at
the EURO PM, Valencia, Spain, 2003.

[22] “Somaloy technology for electric motors,” (Mar. 2011). [Online]. Avail-
able: http://www.hoganas.com

[23] J. F. Gieras, “Performance characteristics of a permanent magnet trans-
verse flux generator,” in Proc. IEEE Int. Conf. Electr. Mach. Drives, San
Antonio, Texas, May 2005, pp. 1293–1299.

[24] M. R. Dubois, N. Dehlinger, H. Polinder, and D. Massicotte, “Clawpole
transverse-flux machine with hybrid stator,” presented at the Int. Conf.
Electr. Mach., Chania, Greece, 2006.

[25] R. Blissenbach, G. Henneberger, U Schafer, and W Hackman, “Develop-
ment of a transverse flux traction motor in a direct drive system,” in Proc.
Int. Conf. Electr. Mach., Espoo, Finland, 2000, pp. 1457–1460.

[26] G. J. Atkinson, A. G. Jack, and B. C. Mecrow, “Multi-phase stator device,”
Patent W0/2011/033106, Published Mar. 24 2011.

Jamie G. Washington received the B.Eng. degree
in electrical and electronic engineering from New-
castle University, Newcastle Upon Tyne, U.K., in
2008, where he is currently working toward the EngD
degree sponsored by Hoganas AB. His EngD the-
sis focuses on high-torque low-speed machines con-
structed using soft magnetic composites.

Glynn J. Atkinson received the M.Eng. degree in
electrical and electronic engineering from Newcas-
tle University, Newcastle Upon Tyne, U.K., in 2001.
His EngD degree focused on fault-tolerant machines
for aerospace applications, focusing on high-power,
high-speed permanent magnet machines.

He was a Research Associate in the power elec-
tronics, machines, and drives group at Newcastle
University, Newcastle upon Tyne, where he was en-
gaged in research on 3-D machine topologies using
soft magnetic composites, and is currently a Lecturer

within the group leading research into permanent magnet machine topologies
for use in traction applications.

Nick J. Baker received the M.Eng. degree in me-
chanical engineering from Birmingham University,
Birmingham, U.K., in 1999, and the Ph.D. degree in
electrical machine design for marine renewable en-
ergy devices from Durham University, Durham, U.K.,
in 2003.

He has held research posts in machine design at
Durham University. He is currently with Newcastle
University, Newcastle upon Tyne, U.K., in addition
to an academic post within Lancaster University’s
Renewable Energy Group (2005–2008). From 2008

to 2010, he was a Senior Consultant for energy consultancy TNEI, Newcastle,
U.K.

Alan G. Jack received the Ph.D. degree from
Southampton University, Southampton, U.K., in
1975. His Ph.D. thesis focused on numerical anal-
ysis of electromagnetic fields in turbogenerators.

He is currently the Emeritus Professor in Electrical
Engineering, formally the Chair of Electrical Engi-
neering, and the Head of the Department and leader of
the Newcastle Electric Drives and Machines Group,
Newcastle University, Newcastle upon Tyne, U.K. He
has been with the University for more than 20 years,
joining them from NEI Parsons, where he was for 13

years with roles from craft apprentice to principal design engineer. He is the
author of more than 80 papers in the area of electrical machines and drives.

Barrie C. Mecrow received the Ph.D. degree from
Newcastle University, Newcastle Upon Tyne, U.K.,
in 1987, his thesis focused on 3-D eddy current com-
putation applied to turbogenerators.

He was a turbogenerator Design Engineer with
NEI Parsons, Newcastle Upon Tyne, U.K., until 1987.
In 1987, he became a Lecturer at the University of
Newcastle, Newcastle Upon Tyne, where he is cur-
rently a Professor of Electrical Power Engineering.
He is involved in a range of research projects, in-
cluding fault-tolerant drives, high-performance per-

manent magnet machines, and novel switched reluctance drives.

Bogi B. Jensen received the Ph.D. degree from New-
castle University, Newcastle Upon Tyne, U.K. His
Ph.D. thesis focused on toroidally wound induction
machines.

From 1994 to 2002, he was in the marine sector
with roles from Engineering Cadet to Senior Field
Engineer. In 2002, he joined academia as a Lecturer
at the Centre of Maritime Studies and Engineering,
Faroe Islands. He moved to the United Kingdom in
2004 and became a Research Associate in 2007 and a
Lecturer in 2008, both at Newcastle University. He is

currently an Associate Professor of Electrical Machines at the Centre for Elec-
tric Technology, Department of Electrical Engineering, Technical University
of Denmark (DTU), Kongens Lyngby, Denmark. His major research interests
include electrical machine design, analysis, and development.

Lars-Olov Pennander received the M.Sc. and Ph.D.
degrees from the Department of Materials Engineer-
ing and Production Technology, LTH/Lund Univer-
sity, Lund, Sweden, in 1985 and 1998, respectively.
His M.Sc. thesis focused engineering materials, ma-
chine design, and production technology, and the
Ph.D. thesis focused on giant-magnetostrictive actu-
ation of metal–matrix composite material production
systems.

In 1981, he was a technical officer in the Swedish
Air Force. In 2001, he became a Development Engi-

neer with the world leading supplier of metal powders, Höganäs AB, Höganäs,
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