
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Waves and vibrations in inhomogeneous structures
bandgaps and optimal designs

Jensen, Jakob Søndergaard

Publication date:
2011

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Jensen, J. S. (2011). Waves and vibrations in inhomogeneous structures: bandgaps and optimal designs.
Kgs.Lyngby: DTU Mechanical Engineering.

http://orbit.dtu.dk/en/publications/waves-and-vibrations-in-inhomogeneous-structures(c5da53c9-a669-4de1-90d7-e05e1c2018ba).html


WAVES AND VIBRATIONS IN

INHOMOGENEOUS STRUCTURES

bandgaps and optimal designs

Jakob Søndergaard Jensen
DTU Mechanical Engineering

Technical University of Denmark



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
Title of the thesis: 
Waves and Vibrations in Inhomogeneous Structures – bandgaps and optimal designs 
 
Author: 
Jakob Søndergaard Jensen 
E-mail: jsj@mek.dtu.dk 
 
Address: 
Department of Mechanical Engineering 
Technical University of Denmark  
Nils Koppels Allé, Building 404 
DK-2800 Kgs. Lyngby, Denmark 
 

Copyright © 2011 Jakob Søndergaard Jensen 

ISBN 978-87-90416-48-5 



 

 

 
 
 
Denne afhandling er af Danmarks Tekniske Universitet antaget til forsvar for den 
tekniske doktorgrad. Antagelsen er sket efter bedømmelse af den foreliggende 
afhandling.  
 

Kgs. Lyngby, den 2. marts 2011 
 

Lars Pallesen 
Rektor 

 
/Martin P. Bendsøe 
      Dekan 

 
 
 
 

 
This thesis has been accepted by the Technical University of Denmark for public 
defence in fulfilment of the requirements for the degree of Doctor Technices. The 
acceptance is based on an evaluation of the present dissertation. 
 

Kgs. Lyngby, 2 March 2011 
 

Lars Pallesen 
Rector 

 
 /Martin P. Bendsøe 
       Dean  

 





Preface

The work collected in this thesis has been carried out during my employment at
the Technical University of Denmark, Department of Mechanical Engineering in the
period from September 2001 to February 2010.

I am indebted to my colleague Ole Sigmund for suggesting to me to return to
the scientific environment at the University and coming up with the initial idea to
the project that started it all. Also I would like to give my sincere thanks to Jon
Juel Thomsen who as my PhD-supervisor gave me my scientific upbringing and has
continued to influence me through discussions and project cooperations.

I would like to thank all the various members of the TopOpt group who has
responded to many ideas and come up with many suggestions and comments in
group meetings and at informal events.

The staff and students at the section for Solid Mechanics have always provided a
friendly and relaxed working atmosphere and have done their best to take my mind
off scientific issues by engaging in lively conversations and discussions about daily
life.

Finally, I would like to thank the two girls in my life, Teresa and Jana, for always
putting my work in the proper perspective.

Kgs. Lyngby, February 22, 2010
Jakob Søndergaard Jensen

i



ii



List of Thesis Papers

[1] J. S. Jensen 2003 Journal of Sound and Vibration 266(5), 1053–1078. Phononic
band gaps and vibrations in one- and two-dimensional mass-spring structures.

[2] J. S. Jensen, O. Sigmund, J. J. Thomsen and M. P. Bendsøe 2002 Design of
multi-phase structures with optimized vibrational and wave-transmitting prop-
erties. In E. Lund, N. Olhoff and J. Stegmann (eds.), Institute of Mechanical
Engineering, Aalborg University, Denmark, 63–66, 15th Nordic Seminar on Com-
putational Mechanics.

[3] B. S. Lazarov and J. S. Jensen 2007 International Journal of Non-Linear Me-

chanics 42(10), 1186–1193. Low-frequency band gaps in chains with attached
non-linear oscillators.

[4] O. Sigmund and J. S. Jensen 2003 Philosophical Transactions of the Royal Society

of London Series A-Mathematical Physical and Engineering Sciences 361(1806),
1001–1019. Systematic design of phononic band-gap materials and structures by
topology optimization.

[5] S. Halkjær, O. Sigmund and J. S. Jensen 2005 Zeitschrift für Kristallographie

220(9–10), 895–905. Inverse design of phononic crystals by topology optimiza-
tion.

[6] J. S. Jensen 2007 Journal of Sound and Vibration 301(1–2), 319–340. Topology
optimization problems for reflection and dissipation of elastic waves.

[7] J. S. Jensen and N. L. Pedersen 2006 Journal of Sound and Vibration 289(4–5),
967–986. On maximal eigenfrequency separation in two-material structures: the
1D and 2D scalar cases.

[8] A. A. Larsen, B. Laksafoss, J. S. Jensen and O. Sigmund 2009 Structural and

Multidisciplinary Optimization 37(6), 585–594. Topological material layout in
plates for vibration suppression and wave propagation control.

[9] J. S. Jensen and O. Sigmund 2005 Systematic design of acoustic devices by topol-
ogy optimization. In J. L. Bento Coelho and D. Alarcão (eds.), International
Institute of Acoustics and Vibration, 12th International Congress on Sound and
Vibration.

[10] J. S. Jensen and O. Sigmund 2004 Applied Physics Letters 84(12), 2022–2024.
Systematic design of photonic crystal structures using topology optimization:
Low-loss waveguide bends.

iii



[11] J. S. Jensen and O. Sigmund 2005 Journal of the Optical Society of America

B-Optical Physics 22(6), 1191–1198. Topology optimization of photonic crystal
structures: a high-bandwidth low-loss T-junction waveguide.

[12] P. I. Borel, A. Harpøth, L. H. Frandsen, M. Kristensen, P. Shi, J. S. Jensen and
O. Sigmund 2004 Optics Express 12(9), 1996–2001. Topology optimization and
fabrication of photonic crystal structures.

[13] L. H. Frandsen, A. Harpøth, P. I. Borel, M. Kristensen, J. S. Jensen and O.
Sigmund 2004 Optics Express 12(24), 5916–5921. Broadband photonic crystal
waveguide 600 bend obtained utilizing topology optimization.

[14] P. I. Borel, L. H. Frandsen, A. Harpøth, M. Kristensen, J. S. Jensen and O.
Sigmund 2005 Electronics Letters 41(2), 69–71. Topology optimised broadband
photonic crystal Y-splitter.

[15] J. S. Jensen, O. Sigmund, L. H. Frandsen, P. I. Borel, A. Harpøth and M.
Kristensen 2005 IEEE Photonics Technology Letters 17(6), 1202–1204. Topology
design and fabrication of an efficient double 900 photonic crystal waveguide bend.

[16] P. I. Borel, B. Bilenberg, L. H. Frandsen, T. Nielsen, J. Fage-Pedersen, A. V.
Lavrinenko, J. S. Jensen, O. Sigmund and A. Kristensen 2007 Optics Express

15(3), 1261–1266. Imprinted silicon-based nanophotonics.

[17] J. S. Jensen and O. Sigmund 2005 Topology optimization of building blocks
for photonic integrated circuits. In J. Herskovits, S. Mazorche and A. Canelas
(eds.), International Society for Structural and Multidisciplinary Optimization,
6th World Congress on Structural and Multidisciplinary Optimization.

[18] J. S. Jensen 2007 International Journal for Numerical Methods in Engineering

72(13), 1605–1630. Topology optimization of dynamics problems with Padé
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Chapter 1
Introduction

This thesis is devoted to waves and vibrations in inhomogeneous structures and
specifically to the investigation of bandgap phenomena and optimization of bandgap
structures. The effect of a bandgap on the propagation of waves is illustrated in
Fig. 1.1 for a simple one-dimensional structure. A single inclusion in an otherwise
homogeneous structure reflects a part of the wave pulse (shown in the three figures to
the left). A sequence of equidistantly spaced inclusions (4 inclusions in this example)
causes in-phase reflections which lead to a larger part of the wave being reflected
(shown in the three plots to the right). In order for in-phase reflections to occur and
a bandgap condition to be created, the spacing between the inclusions must match
certain conditions. These conditions are governed by the main frequency/wavelength
of the wave pulse and also by the contrast between the material properties of the
inclusions and the background material. This usually results in a few inclusions per
wavelength. If the bandgap condition is fulfilled the amplitude of the transmitted

wave decays exponentially with the number of inclusions and if an infinite number
of inclusions were present (a periodic material) the incoming wave will, in theory,
be totally reflected.

In the following the background and motivation for the work leading to this
thesis will be outlined.

Phononic and photonic bandgaps

The research on bandgap materials and structures has had a rather peculiar history
during the last century. To the author’s knowledge the first report on the bandgap
phenomenon was made in 1887 by Lord Rayleigh (Rayleigh, 1887) who found that
in-phase reflections from certain periodic arrangements of different elastic materials
may lead to frequency ranges for which waves will be totally reflected. However,
Lord Rayleigh did not use the term bandgap to describe this effect. Neither did
Brillouin in his book on wave propagation in lattice structures (Brillouin, 1953).
Instead the terms passband and stopband were used to describe the frequency ranges
for which waves either could or could not propagate. With his pioneering work,
Brillouin paved the way for much of today’s research in the field of bandgaps with
his treatment of symmetry conditions and the concept of Brillouin zones. These
concepts are nowadays an integrated part of the description of wave propagation
through periodic materials through the use of the band diagrams.

A band diagram for a certain periodic material is illustrated in Fig. 1.2. The
solid lines in the plot indicate propagating modes with the frequency of the wave

1
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Figure 1.1 Illustration of the bandgap phenomenon for wave propagation in a one-
dimensional layered structure. The plots show the incident/transmitted wave pulses as
well as the reflected wave pulse at three different time instances. Left plots: a single inclu-
sion with different material properties. Right plots: Four equidistantly placed inclusions,
where the distance between the inclusions combined with the material properties leads
to in-phase reflections of the incident wave. With infinitely many inclusions present, a
complete reflection of the wave will occur – known as the bandgap phenomenon.

given along the vertical axis and the reduced wave vector given along the horizontal
axis. A frequency range appears for which no modes exist. In this gap (the bandgap)
waves cannot propagate regardless of the direction. The small inserted figure shows
the irreducible Brillouin zone (Brillouin, 1953) spanned by the triangle Γ−X−M−Γ.
The zone relates to the smallest repetitive unit in the periodic material – the unit

cell (it is here a quadratic cell) – as well as its symmetry properties. The irreducible
Brillouin zone indicates the wave vectors which are necessary to investigate in order
to completely describe wave propagation through the material. It turns out to be
sufficient to examine the wave vectors corresponding to the triangular path 1.

About half a century later, in 1987, the discovery of the bandgap phenomenon
for optical waves – photonic bandgaps – by John (1987) and Yablonovitch (1987)
marks a major breakthrough in the field of electromagnetics. This finding had

1In principle the entire triangular area must be examined, but it is commonly accepted that it
is sufficient to examine the wavevectors on the exterior triangular path. To the author’s knowledge
no proof of this has been presented yet.
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Figure 1.2 A band diagram for an infinite periodic material. The solid lines show propa-
gating modes with the wave frequency along the vertical axis and the reduced wave vector
(property of wave length and propagation direction) along the horizontal axis. A bandgap
appears as a frequency range for which no waves can propagate through the material re-
gardless of its direction. The inserted figure shows the irreducible Brillouin zone for the
periodic material which is spanned by the triangle Γ−X−M− Γ. The wave propagation
can be completely described by analyzing the wavevectors corresponding to the triangular
path.

a significant impact and intensive research on the photonic bandgap phenomenon
continues today in connection with applications in photonic crystal fibres and pos-
sible future applications in integrated optical circuits. Many books and papers have
been published on the subject, e.g. the monograph by Joannopoulos et al. (1995)
who provide a comprehensive set of band diagrams for different configurations of
photonic bandgap materials – also known as photonic crystals.

The discovery of photonic bandgaps led to a ”rediscovery” of the bandgap phe-
nomenon for elastic waves. Band diagrams were produced and bandgaps found for
many different periodic material configurations in 1D, 2D and 3D, see e.g. Sigalas and
Economou (1992), Kushwaha (1996) and Suzuki and Yu (1998). Gaps in the band
diagrams were now often referred to as phononic bandgaps or sometimes acoustic
or sonic bandgaps. Parallel to this work, research on structures with a periodic-like
nature was carried out including the works by Elachi (1976) and Mead (1996). Here,
the main focus was not on the bandgap properties of an infinite periodic material but
instead on the effect of the periodicity on the dynamic performance of engineering
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structures.

The first paper of this thesis (paper [1]) intends to couple the analysis of the
bandgap phenomenon for elastic waves in a periodic material with the corresponding
dynamic behavior of a finite structure made from this periodic material. Further-
more, this paper attempts to provide an increased understanding of the applicability

of bandgap structures in mechanical structures by studying the influence of bound-
aries, damping and disorder. Paper [1] was followed by other papers that investigate
different aspects of the bandgap phenomenon.

Optimal material distribution – topology optimization

In past research bandgap materials in 2D and 3D are almost exclusively found in
the form of circular or spherical inclusions. For the static behavior of mechanical
structures it has been long known that circular or spherical holes are rarely optimal
with respect to structural performance, but similar conclusions for elastic or optical
waves are not widely known. In two papers, Cox & Dobson used a numerical material
distribution method to optimize the distribution of air and dielectric material in a
photonic bandgap material and maximized the size of the gap (Cox and Dobson,
1999, 2000). They found that circular holes were not optimal. Sigmund (2001)
used topology optimization to maximize phononic bandgaps for elastic materials
and arrived at a similar conclusion.

The method of topology optimization is widely applied in this thesis. Topol-
ogy optimization of mechanical structures was introduced by Bendsøe and Kikuchi
(1988) in order to optimize the material distribution and obtain maximum stiffness.
Paper [4]2 attempts to apply the topology optimization method to design phononic
bandgap structures, i.e. to find the distribution of two elastic materials that opti-
mizes the performance of the structure. This could be to minimize the vibrational
response in a certain part of the structure. The basic hypothesis is that the optimal
material distribution in certain cases should have a periodic appearance – a bandgap

structure.

The work in paper [4] was later extended and topology optimization applied
to design a number of different bandgap structures. The design methodology used
in this thesis follows the outline schematically illustrated in Fig. 1.3. The top left
figure shows a part of an original structure with two different materials (here the
darkest color represents air holes and the two shades of gray represent a dielectric
material). The top right figure shows a corresponding finite element (FE) model
which is parameterized with a single continuous design variable xe assigned to each
element. With a suitable interpolation scheme, see e.g. Bendsøe and Sigmund (1999),
it is ensured that xe = 0 corresponds to air (illustrated as light gray) and xe = 1
corresponds to dielectric material (black). A gradient-based iterative algorithm is
then applied to find the set of design variables that optimizes a specified performance

2In the author’s contribution to the paper.
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xe = 0 xe = 1

optimized design variables

FE model w. design variables

optimized design

original design

Figure 1.3 Illustration of the topology optimization method for optimizing the distribu-
tion of two materials in a bandgap structure. Top left: the original design with the dark
color indicating air holes and light/dark gray indicating a dielectric material. Top right:
finite element (FE) model with one continuous design variable xe per element, for which
xe = 0 represent air (light gray) and xe = 1 represent dielectric material (black). Bottom
left: FE model with an optimized set of design variables taking either the value 0 or 1.
Bottom right: the fabricated optimized design.

measure (objective function), e.g. maximizes the wave transmission through the
structure. This procedure is based on the use of analytically computed gradients
(the sensitivity of the objective function wrt. the design variables) and the use of a
mathematical programming tool, as e.g. Krister Svanberg’s MMA (Svanberg, 1987).
The bottom left figure shows the FE model with the optimized element design
variables corresponding to a new distribution of the two materials. Finally, the
bottom right figure shows the fabricated optimized structure.

As a general feature of topology optimization certain numerical techniques must
be applied in order to generate usable optimized structures. Penalization is used to
avoid design variables in the final design with intermediate values (0 < xe < 1) that
do not correspond to any of the specified materials. Regularization is applied to
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convert ill-posed optimization problems into well-posed problems. Filtering is used
to solve problems with mesh-dependency of the designs and also problems with small
structural details that are not amenable to fabrication. For an overview of these
tools and their application see e.g. the monograph by Bendsøe and Sigmund (2003).
In this thesis new techniques have been developed to deal with issues specifically
relevant to the optimization problems treated here.

Structure of the thesis

The four following chapters present the main results obtained in the thesis papers
[1]–[21].

Chapter 2 is dedicated to the analysis of the bandgap phenomenon. The analysis
is based on simple mass-spring structures and the results highlight the effect of
finite dimensions, damping, nonlinearities, and type of bandgap material on the
behavior of structures made from a bandgap material. Experimental support of the
performance of bandgap structures is provided as well.

Chapter 3 introduces the method of topology optimization as a design tool for
bandgap structures. The methodology is used to design structures that quench
structural vibrations, minimize the transmission of elastic and acoustic waves and
maximize the dissipation of waves. Furthermore, the chapter demonstrates that
bandgap structures can be created by maximizing the separation of structural eigen-
frequencies.

Chapter 4 illustrates the optimization method used to design photonic waveguide
structures. Photonic crystal waveguide bends and splitters with low loss in large
frequency ranges are designed. The method is also applied to design a wavelength
splitter and splitters for waves in photonic ridge waveguides. The theoretical results
are supplemented by fabricated devices and experimental testing of the performance.

Chapter 5 presents new advanced optimization procedures that are developed
to design bandgap structures and are applicable to a broader range of problems as
well. It illustrates an efficient method to optimize the performance of structures
in finite frequency ranges by the use of Padé approximants. A transient topology
optimization formulation is formulated to deal with a nonlinear bandgap structure
and finally the chapter presents an extension of the transient topology optimization
method to allow for optimized structures that vary in time as well as in space.

In each of the chapters a general brief introduction is followed by a summary of
the contents of the relevant thesis papers and key references to original works in the
area. Then comes a description of the main results from the papers and the chapters
are concluded by references to the recent advances made in the research field since
the publication of the thesis papers.

A concluding chapter summarizes the main contributions of the thesis.



Chapter 2

The bandgap phenomenon

In order to understand complex phenomena it is always useful to look at the simplest
possible structure that displays the behavior of interest. This obvious observation
fully applies to the phenomenon of the formation of gaps in the band structure
for periodic materials. A system of simple masses connected by linear springs is
particularly useful because it produces simple equations often amenable to analytical
predictions. Additionally, visualization of the dynamic behavior is straightforward
and this aids immensely in the process of grasping the mechanisms involved.

All theoretical results presented in this chapter are obtained using simple mass-
spring models. This chapter intends to provide a fundamental understanding of the
bandgap phenomenon and pinpoint the factors that have significant impact on the
performance of engineering structures that integrate bandgap materials.

Thesis papers [1]–[3]

Paper [1] presents an analysis of the interaction between bandgaps and forced vi-
brations for 1D and 2D mass-spring systems. The focus is on these issues: the
effects of the finite dimensions of structures created from a bandgap material, the
effect of non-idealities such as damping and disorder and the possibility of creating
waveguides in bandgap structures. These effects are analyzed for different types
of bandgap materials. One of these offers the possibility of creating low-frequency
bandgaps.

Paper [2] demonstrates experimentally the bandgap phenomenon for longitudinal
vibrations in an elastic rod composed of sections of aluminum and PMMA (plastic).
The experimental results are compared to predictions based on the mass-spring
model studied in paper [1]. Paper [2] contains preliminary optimization results for
bandgap structures which are relevant to the results presented in Chapter 3.

Paper [3] analyzes the bandgap behavior and wave transmission in a finite nonlin-
ear structure using analytical and numerical tools. It focuses on a one-dimensional
mass-spring system with nonlinear resonators attached with respect to low-frequency
bandgaps. Special attention is given to the effect of the nonlinearities on the wave
transmission through the chain. Furthermore, the paper includes a discussion of the
possibilities of utilizing a non-uniform distribution of nonlinearities to reduce the
wave transmission.

7
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Main references

The main inspiration to paper [1] is the pioneering work by Brillouin (1953) who
contributed significantly to the understanding of wave propagation in periodic lattice
structures in 1D, 2D and 3D including the formation of bandgaps. It was influenced
also by the work of Martinsson and Movchan (2003) who studied bandgaps in 2D
lattice structures and looked at low-frequency bandgaps created by local resonating
structures. However, the major contribution to the investigation of local resonators
in mechanical structures was made previously by Liu et al. (2000) who introduced
the concept of locally resonant material.

The effect of nonlinearities on bandgaps was only subjected to a few studies such
as by Marathe and Chatterjee (2006). They examined the effect of weak nonlinear
damping on the propagation characteristics of a periodic mass-spring structure.

2.1 Band diagram and forced vibrations

The band diagram reveals the fundamental characteristics of wave propagation
through a periodic material. Fig. 2.1 shows the basic building block of a peri-
odic material – the unit cell1 and the corresponding band diagram. Propagating
modes (indicated with solid lines in Fig. 2.1b) do not exist in the frequency range
≈ 46.6−57.3 kHz for this particular configuration and set of parameters values. This
implies that no waves in this range can propagate through the material regardless
of the direction of propagation.

Thus, the band diagram provides useful information about propagation of waves
in an infinite material. To fully understand the potential for applying bandgap ma-
terials in engineering structures the forced vibration response of a finite structure

made from such a material is investigated. Fig. 2.2a displays a finite structure with
simple supports and periodic loading with frequency Ω. The structure is composed
of a number of identical unit cells (Mx cells horizontally and My vertically). Fig. 2.2b
shows the forced vibration response of point A located in the middle position of the
bottom structural boundary. There is a correlation between the bandgap frequency
range (indicated by vertical dashed lines) and a low vibration response in point A. If
the structure is composed of many unit cells (such as 15×15 or more), the response
dips exactly when the forcing frequency exceeds the lower bandgap frequency limit.
This response dip is significant and more pronounced with more unit cells. When
waves cannot propagate in the material a high steady-state vibration level cannot
build which explains this correlation. Instead the vibration level decays exponen-
tially away from the point of excitation. With fewer unit cells (say 7 × 7 or less)
the boundary effects become more dominant and resonance peaks appear within the
bandgap frequency range close to the lower bandgap frequency limit.

1The unit cell is defined as the smallest repetitive unit in a periodic configuration. The periodic
material is understood as an infinite assembly of such unit cells.
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Figure 2.1 a) A 2D unit cell consisting of an inclusion with 3× 3 masses and connecting
springs (in bold) surrounded by a matrix material with additional masses and springs, b)
The corresponding band diagram showing the frequency of propagating modes versus the
reduced wavevector (indicating wavelength and direction of propagation). From paper [1].
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Figure 2.2 a) A simply supported structure with Mx × My unit cells subjected to a
periodic load f cos Ωt, b) The acceleration response in point A with different numbers of
unit cells in the structure. From paper [1].
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Figure 2.3 The influence of added viscous damping characterized by the damping ratio
ζ of the individual masses. From paper [1].

At first glance the correlation seems to fail near the upper limit of the bandgap
frequency range. Here, many resonance peaks and thus high vibration levels are
found within the gap – also with many unit cells in the structure. However, unit
cells near the boundary of the structure behave differently due the presence of a
free edge and actually allow waves to propagate for these frequencies. Therefore it
is possible for waves to propagate from the point of excitation to point A and to
create high vibration levels.

2.2 Structural damping

Thus, it is clear that the dimensions of a bandgap structure and the presence of
boundaries have a great influence on the bandgap footprint observed in a structure
made from a periodic material. Another important factor that affects the vibrational
behavior is the presence of structural damping.

Fig. 2.3 shows the response (measured in point A) of the structure shown in
Fig. 2.2a with 21 × 21 unit cells. Curves indicate the undamped response as well
as the response computed with linear viscous damping added to the masses. The
damping corresponds to levels of 0.1 % and 1.0 % relative to critical damping of
the individual masses. The expected effect of damping is clearly noted outside the
bandgap frequency range where damping reduces the magnitude of resonance peaks
and anti-resonance dips. The result is a more smooth response curve. Within the
gap the apparent effect of damping is small. Hence, the vibration suppression from
the bandgap effect dominates the suppression effect from damping. Only a high
level of damping (1.0 %) results in a slightly increased vibration reduction.

The results also indicate that the bandgap effect is retained even if all resonance
effects away from the bandgap frequency range are smoothed by strong viscous
damping. This result turns out to be very useful for optimizing bandgap structures
(cf. Chapter 3).
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Figure 2.4 Experimental setup and part of the setup showing (from left to right) the
vibration exciter, force transducer, periodic bar system with supporting threads, and
accelerometer. From paper [2].
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Figure 2.5 Response curves showing the acceleration response at the end of the bar versus
the excitation frequency. Left: experimental data and right: corresponding theoretical
predictions. From paper [2].

2.3 Experimental demonstration

The theoretical predictions are based on simple mass-spring models. Thus, it is
here especially important to support observations and conclusions experimentally.
In this way it can be documented that the bandgap phenomenon manifests itself in
a realistic setup and is not merely the product of an overly simplified model.

Fig. 2.4 illustrates a schematic and experimental setup for measuring the forced
vibration response of an elastic rod composed of alternating sections of aluminum
and PMMA (a plastic material). The rod is subjected to periodic forcing imposed
by a shaker in one end and the acceleration is recorded in the other end using
an accelerometer. Fig. 2.5 shows plots of the measured response and the response
predicted by a mass-spring model fitted to the actual material parameters including
a single fitted viscous damping parameter.
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The model predicts two frequency ranges with a low vibration level due to
bandgaps in the band diagram for the corresponding periodic structure. The two
gaps are computed to be located at ≈ 5.5− 13 kHz and ≈ 15.5− 24.5 kHz. The low
vibration levels observed in the simulations are confirmed by the experiment. The
non-smooth response within the bandgap frequency ranges is ascribed to background
noise in the experimental setup (cables etc.).

2.4 Low-frequency bandgaps

The required spatial periodicity is a fundamental characteristic of a bandgap mate-
rial. It also sets an important limitation for using bandgap materials as components
in engineering structures. For example, compressional elastic waves/vibrations in
steel at 200 Hz correspond to a wavelength of approximately 30 m. With a periodic-
ity required at approximately the same order of magnitude, this naturally leads to
finite structures of impractical large dimensions.

A way to circumvent this fundamental limitation is to use another type of unit
cell. This is illustrated in Fig. 2.6b that shows a forced response curve for a cor-
responding finite structure (with loading and boundary conditions as in Fig. 2.2a)
shown in Fig. 2.6a. The unit cell consists of a stiff and dense inclusion (the center
2×2 masses and connecting springs) which is suspended by flexible springs (a coat-
ing layer) and embedded in a matrix material. A bandgap emerges near a frequency
in the vicinity of the fundamental natural frequency for rigid body motion. This
frequency is primarily influenced by the total mass of the inclusion and the equiv-
alent stiffness of the coating layer. Thus, with a suitable choice of parameters the
bandgap can be moved to a low frequency range. This would otherwise require a
unit cell of much larger dimensions.

It should be emphasized that the mechanism that causes this bandgap is funda-
mentally different from the previous examples. The prohibition of wave propagation
is not caused by in-phase reflections but by a coupling to resonant motion of the in-
clusion. Hence, the structure behaves as if multiple added-mass vibration dampers
were attached to it. The difference is also reflected in the forced vibration curve
that shows a low vibration level only near the lower bandgap frequency limit (corre-
sponding to the rigid body natural frequency). Additionally, it can be observed that
the response is fairly insensitive to the positioning of the inclusions. This supports
the conclusion that this phenomenon is not relying on a periodicity of the structure
which is otherwise a key feature of the ”normal” bandgap phenomenon.

2.5 Nonlinearities

For practical applications of bandgap materials the extension to the low-frequency
range is promising. This section further investigates the effect of nonlinearities
on low-frequency bandgap behavior. Fig. 2.7 shows a one-dimensional mass-spring
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Figure 2.6 a) A 6×6 mass-spring unit cell that models a heavy stiff resonator (center 2×2
masses and springs) in soft suspension (surrounding springs) connected to a surrounding
matrix material, b) The acceleration response in point B (cf. Fig. 2.2) with different
numbers of unit cells included in the structure. From paper [1].

Figure 2.7 Linear mass-spring chain with local oscillators attached to the masses via
linear or nonlinear spring (as well as linear viscous dampers). From paper [3].

structure with identical oscillators attached to the masses in the main structure. The
structure behaves in a similar manner as the two-dimensional structure described in
Section 2.4. Consequently, the corresponding periodic material has a bandgap near
the eigenfrequency of the local oscillators.

If the local oscillators are attached to the main masses via nonlinear springs, the
bandgap behavior is significantly modified. Cubic hardening springs make the at-
tached system stiffer for high vibration amplitudes and therefore move the bandgap
up in the frequency range. As a result, the bandgap becomes a local property as its
location in the frequency spectrum depends on the local vibration amplitude of the
attached oscillator. The resulting complex behavior is illustrated in the transmis-
sion of waves through a finite chain2. Fig. 2.8 shows the transmission of a harmonic
wave through a chain with 2000 attached oscillators (each having a normalized lin-
ear eigenfrequency of 1). For linear oscillators (Fig. 2.8a) the bandgap behavior is
noticed with a low wave transmission in a well defined frequency range. With cubic
hardening nonlinear oscillators the low transmission region is moved up in the fre-

2The chain is finite, but absorbing boundaries conditions are added to both ends in order to
simulate wave transmission.
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Figure 2.8 Amplitude of last mass (relative to the first mass) for a one-dimensional
mass-spring structure with 2000 attached oscillators. a) Linear oscillators, b) Nonlinear
oscillators. Solid lines: numerical simulation, dotted lines: analytical predictions of upper
and lower amplitude bounds. From paper [3].

quency range and the behavior is much more complex due to the varying bandgap
behavior along the structure and the nonlinear wave interaction. However, it can be
observed that the amplitude reduction is smaller than for the linear case, but the fre-
quency range with a significant reduction of the amplitude is slightly broader. The
figures also illustrate upper and lower bounds for the response predicted analytically.

The perspectives for using a non-homogeneous distribution of nonlinearities along
the chain is illustrated in Fig. 2.9 for the case of 400 attached oscillators. The solid
line represents the wave transmission when the nonlinear parameter is increased
along the chain according to a prescribed exponential function. This is done to com-
pensate for the reduced wave amplitude and the resulting decrease in the bandgap
frequency. The transmission is also shown with three different constant values of
the nonlinear parameter. These values correspond to the minimum, maximum and
the average value of the exponential parameter variation. It is seen that the non-
homogeneous distribution opens up the possibilities of further wave propagation
suppression. These findings have prompted the work on optimization of local oscil-
lator parameters as presented in Section 5.2.

Relations to recent work

The research on bandgaps has continued with increasing intensity and a large num-
ber of papers have appeared since the publication of paper [1].

Paper [1] contributed to the basic understanding of the bandgap phenomenon by
studying simple mass-spring systems. Other researchers have continued this work
up until the present date. An incomplete compilation of recent theoretical papers
on mass-spring systems include the work by Avila and Reyes (2008) on phonon
propagation through 1D atomic structures, by Zalipaev et al. (2008) on waves in
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Figure 2.9 Relative amplitude of the last mass for non-homogeneous nonlinearity (solid
line) for a structure with 400 attached oscillators. The circular dots and the two dashed
lines show the amplitude for fixed nonlinearities of 0.3, 0.12 and 0.88 corresponding to
the average, lowest and the highest value used for the chain with varying non-linearities.
From paper [3].

2D lattices with defects, and by Yan et al. (2009) on localized modes for 1D elastic
waves. Recently, experimental work has been carried out by Hladky-Hennionne and
de Billy (2007) who investigated bandgaps in 1D diatomic structures and by Yao
et al. (2008) who examined a structure with local resonators.

A large amount of recent papers concentrate on the creation of low-frequency
bandgaps using local oscillators – often referred to as locally resonant materials. The
research has focused on the use of local oscillators in different types of mechanical
structures such as beams, plates and rotating shafts (Wang et al., 2006; Yu et al.,
2006a,b; Liu et al., 2007). The connection between locally resonant materials and
multiple added mass-dampers was recently investigated in a conference paper by
the author and Boyan Lazarov (Jensen and Lazarov, 2007). Furthermore, the link
between locally resonant materials and electromagnetic metamaterials was pointed
out recently by Huang et al. (2009) and Zhou and Hu (2009).
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Chapter 3
Bandgap structures as optimal designs

It can be concluded from the study of simple mass-spring structures that a large
reduction of the vibration level can be obtained if the structure is created from a
periodic material – a bandgap structure. One question then naturally arises: ”Are
bandgap structures then optimal for quenching vibrations?”. The answer is in many
cases yes and periodic-like structures often appear as optimal designs. Whether this
is the case depends on the contrast of the material properties and the dimensions of
the structure relative to the frequency of vibrations.

This chapter presents optimized designs for different types of mechanical and
acoustic structures. All results are based on FE continuum models combined with
gradient-based topology optimization.

Thesis papers [4]–[9]

Paper [4] presents a study of the optimal layout of two elastic materials in a planar
two-dimensional continuum structure that is subjected to forced in-plane vibrations.
The author’s contribution to the paper focuses on design of structures that quench
vibrations. Special emphasis is put on an investigation of how the optimized material
layout depends on the contrast between material properties and the effect of differ-
ent loading conditions. Additionally, the possibility of creating elastic waveguiding
structures is explored.

Paper [5] also deals with optimization of the layout of two elastic materials in a
planar two-dimensional structure. Here, the structure is subjected to a steady-state
pressure or shear wave propagating in multiple directions. Special focus is put on
investigating how the material layout depends on the wavelength of the wave relative
to the dimensions of the structure.

Paper [6] follows up on the work initiated in paper [5]. Two-dimensional mate-
rial layouts are obtained for the case of multi-frequency pressure and shear waves.
Moreover, the optimization algorithm is extended to allow for distributing three
materials in the structure. The paper also considers the design of structures that
maximize the absorption of waves with two or three materials available.

Paper [7] considers the problem of vibration quenching from another perspective.
Instead of minimizing vibration levels or wave amplitudes, the eigenfrequencies of
the structure are explored. The paper demonstrates that bandgap structures can
be created by maximizing the separation of two adjacent eigenfrequencies. The
connection between the material properties and the maximum possible separation
of eigenfrequencies is investigated as well.

17
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In paper [8] the optimization problem is extended to the case of transverse vi-
brations and waves in moderately thick plates. The paper deals with optimizing the
distribution of two elastic materials in order to suppress forced vibrations or guide
elastic waves in designated paths in the plate.

Paper [9] studies a closely related problem in a quite different physical setting.
Solid material is distributed in an acoustic chamber in order to minimize the trans-
mission of acoustic waves through the chamber. The problem is considered for waves
in a finite frequency range.

Main references

The design of phononic bandgap structures using a material distribution optimiza-
tion method is believed to be a novel contribution of this thesis. Topology opti-
mization methods had previously been used to design structures subjected to forced
vibrations in the lower frequency range by Ma et al. (1993) for 2D elastic problems
and by Soto and Diaz (1993) for plate structures. Tcherniak (2002) considered op-
timization of resonating structures and Jog (2002) optimized plates for minimum
dynamic compliance by considering the dissipated energy. Optimization problems
related to maximization and minimization of eigenfrequencies had also been con-
sidered using topology optimization, e.g. by Diaz and Kikuchi (1992) for 2D elastic
structures and by Pedersen (2000) for plates. Ma et al. (1994) and Osher and San-
tosa (2001) considered the problem of separating eigenfrequencies. However, here
the separation of low order eigenfrequencies was examined with no special consider-
ation to bandgap structures.

Topology optimization of plate structures for maximum bandgaps was first ex-
plored by the author, Ole Sigmund and Søren Halkjær (Halkjær et al., 2006). Diaz
et al. (2005) had previously studied maximization of bandgaps in similar beam gril-
lage structures.

The problem of using topology optimization to design acoustic structures was
proposed in two conference papers by the author, Ole Sigmund and co-workers
(Sigmund and Jensen, 2003; Sigmund et al., 2004).

3.1 Vibration-quenching structures

The primary optimization problem is:

What is the optimal distribution of two elastic materials in a structure
so that the forced vibration response is minimized?

Fig. 3.1a shows the model used to create the optimized structures. A free planar two-
dimensional structure (plane-strain condition) is subjected to forced vibrations by a
harmonic load (with frequency Ω) acting along a free edge. The vibration response is
minimized along the opposite edge. Fig. 3.1b illustrates the optimized distribution of
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a) b) c)

Figure 3.1 Optimized distribution of two elastic materials in a 2D structure (12×12 cm)
for creating minimum response at 63 kHz. a) Structural domain and loading, b) Optimized
distribution for a high material contrast, c) Optimized distribution for a low material
contrast. In four considered scenarios, the load acts on one edge and the response is
minimized on the opposite edge. From paper [4].

two materials with a high contrast between their material properties (mass density
and Young’s modulus). Fig. 3.1c shows the distribution of the materials if the
contrast is smaller. Four different loading scenarios are considered (with loading on
each boundary) so that symmetrical structures are obtained.

For the high contrast case the structure appears periodic-like. However, it must
be observed that the periodicity is irregular and changes near the free edges of the
structure. This is not surprising, considering the results obtained in Section 2.1
which demonstrate that waves propagate differently along the structural boundary
due to the presence of a free edge. Thus, along a free edge a different periodicity is
needed to quench the vibrations. If the contrast is smaller, the structure cannot be
characterized as periodic-like – although periodic substructures are observed. This
is due to the fact that for the low contrast no bandgaps can be created for the
infinite material1 and consequently a periodic-like finite structure does not emerge.

Fig. 3.2 shows the vibration response curves for the two optimized structures.
It is noticed that the response for the high contrast case has been significantly
reduced. A clear bandgap footprint is observed with a well-defined low response
frequency range. The vibration reduction is not nearly as pronounced for the low
contrast case. It resembles more the low response obtained at the anti-resonances
that distributed throughout the displayed frequency range. Furthermore, the figures
show the response computed with a large amount of mass-proportional damping
present. The significance of the damping is explained in the following.

The first attempts to find optimized material distributions for the structure in
Fig. 3.1 were unsuccessful. A messy material distribution was obtained with no clear

1A contribution from co-author Ole Sigmund.
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Figure 3.2 Vibration response for the two optimized material distributions in Fig. 3.1
showing the average response at the right boundary when subjected to loading at the left
boundary. Target frequency for the optimization is indicated. a) High contrast case, b)
Low contrast case. Curves shown with and without the added mass-proportional damping
used in the optimization procedure. From paper [4].

definition of the two material constituents (black and light gray). It must be assumed
that the multitude of resonance peaks and anti-resonance dips in the vicinity of the
target frequency caused the optimization algorithm to find local optima with poor
performance. Inspired by the work on mass-spring structures (Section 2.2) the
optimization was then repeated with strong artificial damping added. This removes
the peaks and dips in the response curves and results in the well-defined optimized
structures shown in Fig. 3.1. The approach of using strong artificial damping in the
optimization procedure has been applied successfully to most optimization problems
in this thesis.

3.2 Maximizing wave reflection

The previous section showed optimized designs of structures subjected to forced
vibrations. Their appearance could be explained with the connection between the
bandgap phenomenon and vibrations of finite structures made from a periodic ma-
terial as illustrated in Chapter 2. This section studies the closely related problem of
optimizing planar two-dimensional structures subjected to propagation of harmonic
steady-state waves.

Fig. 3.3 (top) illustrates the computational model used to create optimized de-
signs for this type of problems. The design domain is indicated with length dx and
height dy. Periodic boundary conditions are specified in the vertical direction in
order to model a structure that stretches infinitely in the y−direction. The design
domain (shown in dark gray) is surrounded by a homogeneous material and the op-
timized distribution of this material and a material with different elastic properties
is to be identified. Using appropriate boundary conditions, a steady-state wave is
simulated to propagate through the domain from left to right2.

2As described in several thesis papers the study of wave propagation in finite structures relies
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design domain

dx

dy

x

y

Figure 3.3 Top: computational model for obtaining optimized distributions of two dif-
ferent elastic materials in order to minimize wave transmission, bottom: the optimized
design for a plane shear wave propagating in the structure. Design domain dimensions,
length: dx = 10×wavelength and height: dy = 1/10 of the length. From paper [5].

Fig. 3.3 (bottom) shows a typical optimized structure for the case of a normal
incident shear wave. The wavelength is small compared to the dimensions of the
structure (λ << dx). In this case the optimal material distribution becomes a
one-dimensional bandgap structure – also known as a Bragg grating.

Qualitatively different designs are obtained when the dimensions of the structure
are reduced. This is also the case when different types of waves are considered
simultaneously and when more wave frequencies are included. Fig. 3.4 illustrates
two different examples of optimized designs along with the corresponding reflection
curves. The curves show the reflected wave energy relative to the input energy versus
the wave frequency. It is seen from a comparison with the structure in Fig. 3.3 that
reduced structural dimensions result in fewer inclusions in the design. The particular
design in Fig. 3.4a is created so that the transmission for both a shear and a pressure
wave is minimized in a ±10 % frequency range around 788 Hz. This condition results
in a Bragg grating with uneven spacing between the three inclusion layers. Fig. 3.4b
depicts the corresponding reflectance curves indicating a large reflection of both
wave types. If the frequency range is extended to ±25 %, the optimized material
distribution changes qualitatively and attains an intricate two-dimensional character
(Fig. 3.4c and Fig. 3.4d).

Fig. 3.5 illustrates the effect of restricted dimensions of the structural domain
combined with the effects of the angle of incidence and wave type. The structure
is optimized for minimum transmission for a single frequency but with a variety
of propagation directions. This is facilitated by considering a number of different
loading conditions. For each loading condition a wave propagates from different
small sections of the boundary. This ensures that the structure is able to reflect
waves coming from different directions.

The dimensions of the structure are small so that dx ≈ λ. The three figures

on adding absorbing boundary conditions that allow waves to exit the structural domain without
being reflected. One such type of boundary condition is the use of Perfectly Matched Layers
(PML).
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Figure 3.4 Optimized distribution of scattering (black) and host material (white) for
maximum reflectance in a frequency interval around 788Hz and reflectance curves for the
optimized designs for pressure (solid line) and shear waves (dashed line). a,b) ±10%
frequency interval, c,d) ±25% frequency interval. From paper [6].

are given for a pressure wave (a), a shear wave (b) and for both a shear and a
pressure wave (c). The appearance of the structures reflects the multi-angle wave
incidence that provokes the two-dimensional nature of the material distribution.
The restricted spatial dimension also gives the structures appearances that are not
regularly periodic.

The results show that adding a third material to the design problem has no
beneficial effect on reducing the transmission of waves. In all reported cases the best
performance is obtained for a structure that is composed of the two materials having
the largest contrast between their material properties. For a further discussion of
this observation see the comments in the last paragraph of this chapter.

3.3 Eigenfrequency separation

The optimized structures strongly depend on the specific location of the input force
and/or the direction of the incoming wave. Hence, a unidirectional wave usually
results in a one-dimensional structure (Bragg grating) optimized for exactly this
form of excitation. Other excitation types as in the form of multi-directional waves
result in different structures. If the structure is to be optimized for all relevant
loading conditions, the problem of how to specify these loading conditions arises.
An alternative to this approach is to consider the structural eigenfrequencies. If
frequency ranges with no eigenfrequencies can be created, then no loading condition
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a) b) c)

Figure 3.5 Optimized designs for the case of multi-directional wave input with a design
domain length of twice the wavelength of a shear wave. The design domain height equals
the length. Designs obtained for a) Pressure wave, b) Shear wave, c) Both pressure and
shear wave. From paper [5].

can excite high vibration levels.
Fig. 3.6 shows two examples of optimized distribution of two materials in a 1D

elastic bar and the corresponding vibration response. The response is recorded
in one end of the bar when the structure is subjected to a periodic load in the
other end3. The structures are obtained by formulating the optimization problem
so that the separation of two adjacent eigenfrequencies is maximized. The resulting
structures are clearly periodic-like bandgap structures with alternating sections of
the two materials corresponding to the design variables taking the values 0 and 1.
It is also evident that there exists a direct relation between the modes that are
separated and the number of material sections in the optimized structure.

Additionally, it turns out that there is a direct connection between a single
material contrast parameter and the maximum eigenfrequency separation that can
be obtained. Here, the separation is quantified as the ratio between two adjacent
eigenfrequencies. Fig. 3.7 shows the eigenfrequency separation for the optimized
structures versus the mode numbers that are separated. Depending only on the
contrast parameter β = ρ2E2/(ρ1E1), an asymptotic limit is found for how much
the eigenfrequencies can be separated. Here, E and ρ denote Young’s modulus and
mass density, respectively.

It can also be shown that the fraction occupied by each of the two materials in the
optimized structure relates directly to the contrast parameter α = ρ1E2/(ρ2E1). For
instance, it is observed that if α = 1 then the two materials are equally represented
in the optimized design.

3.4 Maximizing wave dissipation

All results presented so far have focused on the ability of bandgap (or periodic-like)
structures to quench vibrations or to reflect waves. However, another interesting

3The 1D problem is supplemented by a similar problem in 2D in paper [7]. This is the contri-
bution of the co-author Niels L. Pedersen.
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Figure 3.6 Optimized element design variables for maximum separation of two adjacent
eigenfrequencies and the corresponding forced response curve for the optimized designs.
a,b) Separation of eigenfrequency number 2 and 3, c,d) Separation of eigenfrequency 9
and 10. From paper [7].
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Figure 3.7 The squared eigenfrequency ratio for a series of optimized designs versus
the optimization mode number. Curves are bottom-up for: a homogeneous rod (no op-
timization) and for increasing values of the material parameter β = ρ2E2/(ρ1E1) that
characterizes the contrast between the two materials. From paper [7].
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Figure 3.8 Basic setup for the problem of maximizing the dissipation of an incoming
wave by optimizing the distribution of dissipating material (absorber) and possibly an
extra reflecting material (scatter) in the background material. Incident wave power is I,
transmitted and reflected powers T and R, and the dissipated power is D. From paper
[6].

phenomenon is noticed if the dissipation of vibrations or waves is computed for a
bandgap structure with added material damping. High energy dissipation occurs for
frequencies near (but outside) bandgap frequency ranges where the eigenfrequencies
are closely spaced in the frequency domain. This numerical observation leads to the
question if periodic-like structures are also optimal for maximizing dissipation or, if
not, which kind of structures are?

Fig. 3.8 shows the setup for studying maximization of the dissipation of elastic
waves propagating through a two-dimensional section of material. The distribution
of a background material and up to two additional materials is optimized. One of
these materials is absorbing (and also slightly reflecting) and the other is a reflecting
material (which is both denser and stiffer than the background material). Special
focus is on investigating whether optimizing the distribution of both the absorb-
ing and a reflecting material can increase the possible dissipation in the structure
compared to distributing only absorbing material.

Fig. 3.9 depicts two examples of optimized material distributions. In Fig. 3.9a
two materials are available: background (white) and absorbing (black) and in Fig.
3.9b the extra reflecting material is present (gray is the absorbing material and black
is the reflecting material). Fig. 3.9a shows a clear distribution of the absorbing mate-
rial. The structure is clearly not periodic-like, however, the distribution of inclusions
inside the domain causes a large amount of wave reflection that leads to increased
dissipation in the inclusions. Additionally, the thin strip of absorbing material near
the inlet (left) causes an impedance match and a high transmission of the wave into
the domain. The thicker material strip at the outlet (right) creates maximum wave
reflection back into the domain. If the additional reflecting material is available (as
shown in Fig. 3.9b), it replaces the outlet strip to increase the reflection of waves
back into the absorbing domain. The distribution of the absorbing material inside
the domain is different, too.

Fig. 3.9c illustrates the corresponding dissipation curve that depicts the fraction
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Figure 3.9 Optimized material distributions for maximum dissipation in a ±10% fre-
quency interval around 788Hz. a) Two materials: absorptive material (black) and loss-free
background material (white), b) Three materials: absorptive material (gray), background
material (white), reflecting material (black), c) Corresponding dissipated energy (relative
to input energy) of pressure and shear waves. Pressure wave – 3 materials (solid), shear
wave – 3 materials (dash), pressure wave – 2 materials (dot), shear wave – 2 materials
(dashdot). From paper [6].

of the input wave energy that is dissipated versus the wave frequency. Plots for both
pressure and shear waves are given. The curves in Fig. 3.9c show that the dissipation
for both structures is about 40 %, and the added benefit on the extra reflecting
material is marginal. It should be noted that the dissipation is a factor two larger
than the case in which the whole domain is filled with absorbing material. Structures
that are efficient for absorbing wave energy could be of interest in components for
which both transmission and reflection of incident waves is undesired or for energy
harvesting purposes.

3.5 Plate structures

Plate structures are important for industrial applications in mechanics. The bandgap
phenomenon can also be observed for bending waves and vibrations in plates. Such
a wave type is typically of major interest for plates due to the corresponding low
eigenfrequencies that often coincide with major emitters of waves and vibrations in
mechanical structures. This section demonstrates how the material distribution in
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a) b)

Figure 3.10 Minimization of the dynamic response of a simply supported plate subjected
to a harmonic point load in the plate center. a) Optimized material distribution (black:
steel, light gray: polycarbonate), b) Frequency responses for the optimized and initial
(homogeneous) plate. The arrow in the frequency response indicates the optimization
frequency. From paper [8].

plates can be optimized in order to quench vibrations and create advanced waveg-
uiding structures.

Fig. 3.10a shows an example of the optimized distribution of two elastic materials
in a square plate of dimensions 30 × 30 cm with a thickness of 3 mm. The two
materials are polycarbonate and steel and a maximum of 25 % of the material is
allowed to be steel. The plate is simply supported along the rim and is subjected to
a transverse harmonic load in the center. The optimized structure is seen to have a
periodic-like distribution of steel inclusions near the rim of the plate combined with
a large centrally placed circular inclusion. Fig. 3.10b illustrates the corresponding
frequency response plot. It is seen how the vibration level (measured as the total
kinetic energy of the plate) has been significantly reduced compared to the initial
design – a homogeneous plate of equivalent mass.

The optimization algorithm can also be used to design structures with more
advanced functionalities, as presented in Fig. 3.11a. Instead of minimizing the re-
sponse, a plate is designed that transports wave energy in a circular path and thereby
creating a ring wave device4. The wave is initiated by exciting the plate with two
out-of-phase harmonic forces.

The wave vector plot in Fig. 3.11c shows that the desired functionality is obtained
with reasonable success. The main part of the wave is guided anti-clockwise through
the designated regions. The optimization setup could be refined by adding more
energy evaluation points in the domain and consequently a better performance could

4Ring wave devices have several applications such as in small ultrasonic motors for cameras.
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a) b) c)

Figure 3.11 a) Sketch of optimization problem for creating a ring wave in a simply
supported plate. The black parts indicate fixed steel regions and the arrows indicate in
which direction the energy transport is maximized. The two small steel areas indicate
where the out-of-phase harmonic forces are applied, b) Optimized material distribution,
c) Energy transport in the optimized structure (only vectors larger than 10% of the
maximum vector are shown). From paper [8].

be obtained. However, the present setup displays the basic principle. Fig. 3.11b
shows the corresponding distribution of the two materials which indicate a relatively
well defined structure consisting of steel inclusions (black) in a polycarbonate plate
(light gray). Some dark gray areas indicate that design variables with intermediate
values exist in the optimized design. The inclusions are observed to act partly to
reflect the waves so that they do not propagate toward the edges of the plate and
partly so that the waves are guided in the correct direction.

3.6 Acoustic design

This chapter is concluded with an example taken from a quite different physical
setting. However, optimization of acoustic wave propagation can be performed using
the same optimization scheme that was presented for elastic waves. This can be
facilitated merely by changing the material parameters in order to model acoustic
instead of elastic media.

Fig. 3.12 shows a (half) model of an acoustic reflection chamber. An optimized
distribution of reflecting material and air is found in the design domain so that
the transmission of steady-state acoustic waves is minimized. Fig. 3.12 presents an
example of an optimized material distribution obtained by minimizing the transmis-
sion in a finite frequency range. Three inclusions of reflecting material are placed
approximately with equal spacing in the design domain which causes reflection of a
large part of the incoming wave. This is illustrated in the corresponding transmis-
sion plot in Fig. 3.13 showing that a transmission of less than 5 % is obtained in the
(non-dimensional) frequency range of interest from 0.15 − 0.20.
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symmetry line

Figure 3.12 Bottom: Half model of a channel with two symmetrically placed reflection
chambers, Top: Optimized topology in the chamber. Blue: air, red: solid material. From
paper [9].
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Figure 3.13 Transmission curve for the optimized design corresponding to an optimiza-
tion frequency range from 0.15− 0.20 (non-dimensional frequency). From paper [9].
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Relations to recent work

Paper [4] was to the author’s best knowledge the first that applied a numerical
material distribution algorithm to the design of mechanical (or phononic) bandgap
structures. This work has later been followed by a number of optimization studies on
elastic structures for wave reflection, guiding and control purposes such as by Hussein
et al. (2007b) for 1D banded materials, Hussein et al. (2007a) for 2D phononic
crystals, by Rupp et al. (2007) who designed surface waveguides using 3D modeling,
by Evgrafov et al. (2008) who optimized 2D tunable waveguides and by Du and
Olhoff (2007a, 2010) who mininimized and controlled sound radiation from vibrating
structures. The separation of eigenfrequencies was also recently considered by Du
and Olhoff (2007b,c) using topology optimization.

The conference paper [9] dealing with the acoustic design problem was later ex-
tended to a journal publication in cooperation with Maria Dühring (Dühring et al.,
2008) where also 3D problems were analyzed as well the planar problem of optimiza-
tion of sound barriers. The acoustic problem has later been studied using topology
optimization by Wadbro and Berggren (2006) who considered optimal design of an
acoustic horn, by Lee and Kim (2009) who optimized holes in a cavity partition
in order to control eigenfrequencies. Duhamel (2006) used a genetic algorithm to
design sound barriers. Related to this problem is also the study on topology opti-
mization of acoustic-structure interaction by the author, Ole Sigmund and Gil Ho
Yoon (Yoon et al., 2007).

In optimization problems where a large reflection of waves is required, well de-
fined structures seem to appear ”automatically”. Thus there is no need for penaliza-
tion of intermediate design variables (between 0 and 1). In most other applications
of topology optimization such a penalization is essential. This phenomenon is re-
lated to the fact that intermediate design variables reduce the contrast between the
materials and thus lead to a reduced wave reflection. Mathematically, this issue has
been studied by Bellido and Donoso (2007) who proved that ”classical solutions”
(pure 0–1 designs) are optimal under certain conditions.



Chapter 4
Optimization of photonic waveguides

Bandgap materials for optical waves are known as photonic crystals. Technolog-
ical applications have appeared in photonic crystal fibers for telecommunication
purposes, for example, but also for waveguides in planar photonic crystals which
are believed to have an important role in future integrated optical circuits. Thus,
there has been a large interest in optimizing the performance of such components
especially with respect to efficiency bottlenecks such as sharp waveguide bends.

Chapter 3 introduced a design methodology for phononic bandgap structures
using topology optimization based on FE analysis. Chapter 4 applies the same
methodology to the case of planar photonic waveguides. Although the two problems
relate to very different physical settings (and magnitude of physical dimensions),
the governing equations are similar so that the methodology can be adapted quite
easily. However, important differences exist. When photonic crystal waveguides are
concerned, the focus is often on designing only small parts of the structure where the
problems occur instead of the entire structure. Additionally, it is necessary to modify
the optimization formulation in several ways in order to overcome new problems such
as the appearance of intermediate material properties in the optimized design.

Thesis papers [10]–[17]

Papers [10] and [11] present the first numerical results for the optimal design of
photonic crystal waveguide bends and junctions using topology optimization. The
material distribution in a 90-degree bend and in a T-junction of a waveguide are
optimized in order to maximize the power flow through the components. Both
examples use a two-dimensional model for E-polarized optical waves. Furthermore,
paper [11] proposes a method for efficient optimization of the performance in a
frequency range using Padé approximants. It also introduces a novel method for
eliminating intermediate material properties in the optimized designs by using an
artificial damping method.

In papers [12]–[15] a number of different photonic crystal waveguide components
are optimized, fabricated and tested experimentally1. The components form the
basic building blocks for photonic crystal waveguide devices in the form of a 120-
degree, 60-degree and a 90-degree bend and a wave splitter.

1These papers are the result of a fruitful collaboration between the author, colleague Ole Sig-
mund, and a number of people at the Photonics department at the Technical University of Denmark
(now DTU fotonik).
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Paper [16] presents an example of an optimized, fabricated and experimen-
tally tested photonic crystal component with a more advanced functionality. The
λ−splitter splits an incoming wave by channeling shorter waves in one output di-
rection and longer waves in another output direction. The component is fabricated
with a nano-imprint lithography technique that facilitates an accurate reproduction
of fine structural details.

In paper [17] the design methodology is applied to a similar problem of the design
of a T-junction in a photonic ridge waveguide. Numerical results are presented for
E- and H-polarized waves and the importance of the size of the design domain as
well as the chosen frequency range for the optimization procedure are discussed.

Main references

The contributions in this thesis are believed to be the first that use a numerical ma-
terial distribution optimization method to design photonic crystal waveguide bends
and splitters.

Earlier optimization studies for photonic crystal waveguides were mostly based
on simple geometrical variations such as the movement of one or several holes in the
structure, as found in Mekis et al. (1996), Moosburger et al. (2001), Chutinan et al.
(2002), and Olivier et al. (2002). Smajic et al. (2003) and Jiang et al. (2003) used
genetic algorithms with relatively few design variables to optimize similar structures.
Geremia et al. (2002) marked an exception by optimizing the material distribution
in photonic crystal structures using a mathematical inversion technique. Optimiza-
tion of ridge waveguide splitters was considered previously using a combination of
numerical analysis and analytical considerations by Manolatou et al. (1999) and by
Sakai et al. (2002).

Closely related is the application of topology optimization to the design of elec-
tromagnetic antenna structures as was demonstrated in the work by Kiziltas et al.
(2003).

4.1 Waveguide bends and junctions

Fig. 4.1 shows two models used for the fundamental study of the optimization of
bends and junctions in photonic crystal waveguides. Both structures are built
around a 2D photonic bandgap material for E-polarized optical waves. The unit
cell is squared with a circular inclusion of a dielectric material placed in air (light
gray indicates air and black indicates dielectric). The bandgap is located in the
(non-dimensional) frequency range from ω = 0.302 − 0.443. A single line of dielec-
tric inclusions is removed which creates a waveguide that allows a wave to propagate
with frequencies in the range from ω = 0.312 − 0.443. The aim of the optimization
study is to redistribute air and dielectric in the vicinity of the bend or junction so
that the power transmission through the components is maximized. Hereby the loss
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Figure 4.1 Topology optimization of the material distribution in photonic crystal waveg-
uides, a) 90-degree bend, b) T-junction. Black: dielectric material with ε = 11.56, light
gray: air. The design domain for the 90-degree bend is indicated in dark gray and the
energy transmission in the structures is evaluated in the gray regions close to the output
ports. Unwanted reflections from the waveguide boundaries are eliminated by using PML
(Perfectly Matched Layers). From papers [10] and [11].

that otherwise occurs due to reflections at the waveguide discontinuities is reduced.

Fig. 4.2b shows the optimized material distribution for the 90-degree bend. The
design is obtained by optimizing the sum of the transmitted power for the three
frequencies ω = 0.34, ω = 0.38 and ω = 0.42. The resulting structure has a non-
intuitive appearance very different from structures reported in precedent studies
(such as the one shown in Fig. 4.2a taken from Mekis et al. (1996)). More impor-
tantly, the structure also outperforms previously reported structures significantly
by having a very low loss in a broad frequency range. Fig. 4.2c shows the perfor-
mance of the structures. A bend loss of less than 0.3 % in the frequency range from
ω = 0.325− 0.440 is obtained for the optimized structure. This can be compared to
the structure in Fig. 4.2a that has a similar low loss only in narrow frequency band
around ω ≈ 0.35. The circular dots in Fig. 4.2c correspond to transmission losses
for a post-processed optimized design in which the (few) elements with intermediate
values of the design variable that appear in Fig. 4.2b are forced to either 0 or 1. The
plot shows negligible discrepancy between the performance of two structures.

Fig. 4.1b illustrates the related design problem of a T-junction. A set of opti-
mized material distributions is presented in Fig. 4.3a-c plotted together with the
electric field amplitude for ω = 0.38. The structures are all optimized for maxi-
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Figure 4.2 a) Bend design from Mekis et al. (1996), b) Topology optimized bend design,
c) Transmission losses for the two designs and a post-processed topology optimized design
with all intermediate design variables forced to either 0 or 1. From paper [10].

mum power transmission through the output channels. In Fig. 4.3a the structure
is optimized for a single frequency (ω = 0.38) whereas Fig. 4.3b,c show structures
for which the entire frequency range from ω = 0.32 − 0.44 is considered. The two
latter structures differ merely in the chosen design domains. Fig. 4.3d depicts the
transmission through the output channels and illustrates the difference between the
performance of the three structures. The transmission for Fig. 4.3a is best (very
close to the theoretical maximum value of 0.5) for ω = 0.38, whereas a better broad-
band performance is seen for the other structures. The structure obtained for the
larger design domain is seen to perform slightly better especially near the extremes
of the frequency range.

An active set strategy is used to make the optimization procedure for an en-
tire frequency range more efficient. Initially, a number of target frequencies (up to
12) are spread out evenly in the interval. During the optimization iterations these
frequencies are changed repeatedly to target the most critical frequencies with low
transmission. An accurate identification of these critical frequencies requires the
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computation of a transmission curve with high frequency resolution. The compu-
tational burden associated with this identification is reduced significantly by using
Padé approximants2

An extension of the optimization formulation is necessary in order to obtain
the well defined distribution of dielectric material near the T-junction in Fig. 4.3c.
The first attempts resulted in intermediate design variables near the corners of the
junction and thus a well defined structure with air and dielectric material was not
obtained. However, if a penalization of the intermediate design variables using
artificial damping is introduced, the problem is resolved. Linear viscous damping is
added in each element with the damping being proportional to ǫxe(1−xe) in which ǫ
is a positive constant and xe is the element design variable. Thus if xe = 0 or xe = 1
no damping is present, but if xe has an intermediate value, energy is dissipated and
the power transmission reduced. Thus, to avoid unwanted dissipation of energy, xe is
forced toward either 0 or 1. The effect is clear as a well defined structure is obtained
if ǫ is chosen sufficiently large. This method has later been applied successfully to
other optimization problems as well.

4.2 Photonic crystal building blocks

A collaboration with a photonic crystal research group allowed for fabrication and
experimental testing of optimized photonic crystal waveguide components. However,
the components illustrated in Section 4.1 are optimized for E-polarized waves and are
not easily fabricated due their realization as dielectric pillars placed in air. Instead
a number of optimized designs for H-polarized waves were generated and fabricated.
These basically consist of air holes in the dielectric material placed in a triangular
pattern. This configuration is more amenable to fabrication and also less prone to
out-of-plane losses.

Fig. 4.4 shows a compound photonic crystal structure that integrates three of
the optimized building blocks (dark regions represent air and gray regions represent
silicon). These building blocks allow for control and manipulation of the flow of light
in the crystal. With optimized bends and splitters this can be done with minimum
loss of energy. Specifically, the structure contains a 120-degree, a 60-degree bend and
a splitter that separates a wave into two. All components are optimized separately by
maximizing the power transmission through a simpler structure for given frequency
ranges. This is carried out using the procedure described in Section 4.1. It is seen
from the figure that holes of irregular sizes and shapes are obtained. The structures
are hence qualitatively different than what could have been created using intuitive
trial-and-error design methods and also regular parameter/size optimization. The
performance of the individual components in Fig. 4.4 is very satisfactory with low
loss over a broad frequency range. In all cases a significant improvement of the

2This procedure was the inspiration for the new method of frequency-range optimization using
Padé approximants described in Section 5.1.
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Figure 4.3 Optimized T-junction material distribution for: a) Target frequency 0.38,
b,c) Frequency range 0.32 − 0.44 (non-dimensional frequencies), d) Transmission spectra
for the three optimized designs. The designs in b) and c) differ in the extent of the chosen
design domain. From paper [11].

performance is seen when compared to previously suggested structures.

Fig. 4.5b shows an optimized 90-degree bend. This is an unusual and rather awk-
ward component due to the triangular hole configuration of the photonic crystal that
does not readily facilitate a 90-degree bend. However, it demonstrates what can be
achieved when the design freedom is greater by allowing larger parts of the structure
to be optimized. Fig. 4.5c illustrates the measured performance for the optimized
bend compared to the un-optimized generic 90-degree bend shown in Fig. 4.5a. As
noted the optimization results in a large improvement of the performance.

For these building blocks the optimization techniques described earlier are ap-
plied. This means that penalization with artificial damping is introduced as de-
scribed in Section 4.1. This was important especially for the 90-degree bend in
order to obtain a well defined structure. Furthermore, the procedure of using a high
value of added damping (as described in Section 3.1) has been used successfully. This
technique is further developed here in that more damping is added to the air than
to the dielectric which facilitates a reduction of the amount of air in the structure.
This is beneficial for the performance of the structures since it is known that large
out-of-plane losses occur in the air holes. Additionally, it is observed that adding
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Figure 4.4 Compound structure illustrating the optimized building blocks for photonic
crystal waveguides optimized in papers [12]–[14]. From left to right are seen: a 120-degree
bend with 5 optimized holes near the outer bend region, a Y-splitter and a 60-degree bend.
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Figure 4.5 a) Fabricated un-optimized structure, b) Topology optimized (double) 90-
degree photonic crystal waveguide bend, c) Measured bend loss for the two structures.
From paper [15].
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Figure 4.6 a) The optimized and fabricated design. Light enters the component from
the left side and is split into the two arms dependent on the wavelength, b) Normalized
measured transmission. Also shown are 3D FDTD calculations for the transmission that
have been shifted by 0.5% to match the experimental wavelength scale. From paper [16].

extra damping to the air quite accurately mimics the true 3D performance of the
component. This is verified by comparisons with 3D FDTD calculations performed
by colleagues at the Photonics department at the Technical University of Denmark.

4.3 Advanced functionalities

The optimized photonic crystal building blocks may be useful in future integrated
photonic circuits. Additionally, components with more advanced functionality are
relevant and can be designed with the developed methodology.

Fig. 4.6a shows one such advanced component. The optimization problem is
apparently similar to the wave-splitter in Fig. 4.4 in so far as a wave is to be split
up into two waves with a minimum of loss. However, here the wave is to be split so
we have maximum transmission of shorter waves (below 1480 nm) through the lower
output waveguide whereas longer waves (above 1480 nm) should propagate through
the upper output waveguide. The optimized design is quite complicated with fine
details3. Fig. 4.6b illustrates the corresponding transmission plot. The desired
functionality is obtained with reasonable success but a noticeable loss of around
2 − 3 dB occurs in both channels. The loss is caused by the inherent difficulty of
the problem and it is unlikely that a better performance can be obtained with the
proposed setup.

3The fabrication of this device was performed with nano-imprint lithography which nicely re-
produces the small features in the design.
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Figure 4.7 a) Design problem for a 2D model of a photonic ridge waveguide splitter.
The objective is to distribute 50% of the input energy into the top and bottom output
ports and thus avoid reflection and radiation at the T-junction, b) optimized design for
E-polarized waves, c) optimized design for H-polarized waves. Black: dielectric material,
light gray: air. From paper [17].

4.4 Ridge waveguides

The examples of optimized waveguide components are all based on waveguides
carved out in photonic crystal structures. This provides a basis for confinement
of the light which is very useful for waveguiding purposes. However, another type
of waveguides, denoted strip or ridge waveguides, are applicable to photonic circuits
as well. These consist of dielectric strips with a rectangular cross section placed on
a substrate and surrounded by air. Such strips may provide perfect waveguiding for
straight guides. However, the problems at bends and junctions are even more severe
than for photonic crystal waveguides in that the waves are no longer confined to the
guide and thus additional in-plane scattering losses may be induced.

Nevertheless, the same design procedure can be applied as for the photonic crys-
tal waveguide components. Fig. 4.7a shows an optimization problem for the design
of a T-junction in a 2D model of a ridge waveguide. The optimized junctions in
Fig. 4.7b,c correspond to the case of E- and H-polarized waves, respectively. In both
cases the optimization is performed for waves with a wavelength close to 1550 nm
which is relevant for telecommunication purposes4.

For both optimized junctions the obtained efficiency is close to 100 % near the
wavelength 1550 nm, yet, the required junction area is larger (relative to the strip
width w) for the case of the E-polarized waves (Fig. 4.7b). This is due to the
wavelength/strip width ratio being larger for this polarization. If a smaller design
domain is used, the efficiency is reduced accordingly. Fig. 4.7c illustrates also that

4It should be noted that the two different polarizations correspond to two different values of
the strip width w and dielectric constant ε.



40 Chapter 4 Optimization of photonic waveguides

the optimized design for the case of H-polarized waves is more complicated with air
holes inside the waveguide area.

Relations to recent work

The use of topology optimization for the design of photonic devices continues to be
applied by different research groups. Different waveguide optimization studies have
been performed recently e.g. by Frei et al. (2005) who optimized a photonic crystal
waveguide termination for maximum directivity, by Tsuji et al. (2006), Hirayama
et al. (2007) and Tsuji and Hirayama (2008) who considered various planar pho-
tonic waveguide optimization problems and by Nomura et al. (2009) who optimized
the periodic microstructure of electromagnetic materials. Design of other photonic
crystal components such as high-Q cavities have been considered e.g. by Dobson and
Santosa (2004) using a material distribution method and also by Frei et al. (2007)
and Frei et al. (2008) using related geometry-projection/level set methods. Similar
optimization problems have been analyzed out using different numerical optimiza-
tion techniques such as simulated annealing (Kim and O’Brien, 2004) and genetic
algorithms (Smajic et al., 2004).

Some publications have elaborated directly on the optimized structures presented
in this thesis. This includes a study on the optimized 60-degree bend by Miao et al.
(2004). The structures optimized in papers [12]–[15] have also been further examined
and subjected to additional experimental investigation by Tetu et al. (2005).

Furthermore, a number of optimized structures have been created by other re-
searchers using the software developed by the author and co-workers. This has
been facilitated by an executable code and a graphical user interface (GUI) which
have been made accessible to colleagues in Denmark and Japan. Fig. 4.8 shows a
snapshot of the GUI. The structures created with the use of the software include
a waveguide crossing, a waveguide taper and waveguide bends (Ikeda et al., 2006;
Watanabe et al., 2006, 2007, 2008; Asakawa et al., 2006; Yang et al., 2007).

The appearance of very small details in the optimized designs can be a major
challenge with respect to fabrication and often these details cannot be reproduced
exactly causing a deterioration of the performance. This problem is not addressed
in this thesis. However, new work in this area (Sigmund, 2007, 2009) is expected to
facilitate optimized structures that are robust to fabrication tolerances and uncer-
tainties.
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Figure 4.8 Screenshot from the GUI interface to the developed topology optimization
software for the design of photonic crystal waveguide components. The setup for the
design of a 60-degree bend is shown with indications of wave input, design domains and
power evaluation area.
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Chapter 5
Advanced optimization procedures

As mentioned in the previous chapters the optimization studies on phononic and
photonic bandgap structures have inspired the development of new optimization
procedures. This chapter will highlight three such procedures which can be identified
as independent contributions. As a common feature they have been used to optimize
bandgap structures but are also applicable to a broader class of problems that deal
with the optimization of dynamic systems either based on steady-state or transient
computations.

Thesis papers [18]–[21]

Paper [18] introduces an efficient scheme for optimization of dynamical systems in
finite frequency ranges based on the use of Padé approximants. A detailed derivation
of the computation of Padé approximants is provided along with derivation of the
design sensitivities. The method is demonstrated on topology optimization of two
dynamical structures subjected to forced vibrations with the aim to create frequency
ranges with a low vibrational response.

In paper [19] the one-dimensional mass-spring structure with attached nonlinear
oscillators is reconsidered (the same system was analyzed in paper [3]). Here, the
four independent oscillator parameters, natural frequency, mass, damping ratio, and
nonlinear stiffness, are individually optimized in order to reduce the transmission
of waves through the chain. The optimization procedure is based on a transient
optimization formulation for a nonlinear system.

In papers [20] and [21] the transient topology optimization method is extended
to allow for optimized structures where the material distributions vary in time. In
these papers, the necessary methodology is developed and expressions for the design
sensitivities are derived. Paper [21] also demonstrates the importance of choosing
the proper time-integration scheme. The papers present examples in which dynamic
bandgap structures and pulse shaping structures are designed.

Main references

Optimization of the frequency response using Padé approximants has not received
much attention. Webb (2002) marks an exception. Here an electromagnetic com-
ponent, parameterized by a few design variables, was optimized.

Transient topology optimization has previously been used for the design of dy-
namic systems, e.g. by Min et al. (1999) for applications in structural mechanics,
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by Nomura et al. (2007) for a 3D electromagnetics problem, and by the author,
Ole Sigmund and Jonas Dahl (Dahl et al., 2008) who applied transient topology
optimization to 1D wave propagation problems. The extension to a nonlinear wave
propagation problem in paper [19] is believed to be a novel contribution of this
thesis.

Optimal design based on a transient simulation with system parameters that vary
in time was considered by Chambolle and Santosa (2002) for a single parameter in a
one-dimensional structure. The optimization problem was for the first time treated
as a material distribution problem in space and time in the work by Maestre et al.
(2007) and Maestre and Pedregal (2009). However, it should be emphasized that
the problem of finding the optimal time-evolution of parametrized systems has also
been studied in the context of optimal control problems.

5.1 Padé approximants

As described earlier in this thesis, it is often important to optimize the performance
for ranges of excitation frequencies rather than for single frequencies. This can be
accomplished by considering several frequencies simultaneously, but this is usually
computationally costly. Another drawback is that the performance between the
target frequencies may be poor even with many frequencies considered. This can
partly be resolved by tracking the worst-case frequencies during the optimization
iterations as described in Section 4.1 using Padé approximants.

Another and more efficient approach is to use the Padé approximant directly in
the optimization process. With Padé approximants the frequency response can be
approximated as:

u(Ω) ≈
u(Ω0) +

∑N

i=1
ai(Ω − Ω0)

i

1 +
∑N

i=1
bi(Ω − Ω0)i

(5.1)

in which the unknown coefficients bi and ai are determined based on the computation
of first and higher order derivatives dnu/dΩn at a chosen expansion frequency Ω0. An
accurate approximation for u(Ω) can be obtained with a proper choice of the number
of expansion functions N . Only one system matrix factorization is needed (for the
center frequency Ω0) and the computational overhead in addition to factorizing the
system matrix is usually small. Additionally, the frequency resolution can be chosen
arbitrarily fine without significant extra computational cost.

Fig. 5.1 illustrates an optimization example that illustrates an application of the
optimization scheme. In Fig. 5.1a is shown a 2D structure subjected to forced vi-
brations. Two elastic materials are distributed in the structure in order to minimize
the vibrational response in point A.

Fig. 5.1c-e show three examples of optimized distributions of the two materials.
The structure is optimized for a single frequency (Ω = 1) and for two different
frequency intervals (Ω = 0.8−1.2 and Ω = 0.7−1.3). For both frequency intervals the
optimization procedure is performed with seven expansion functions (N = 7) and a
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Figure 5.1 a) An unsupported 2D elastic body (plane stress) subjected to a harmonic
load, b) Response in point A for the three optimized structures in c,d,e). Dashed lines
indicate the optimization frequency intervals with the structure in c) optimized for the
single frequency Ω = 1 only. From paper [18].

resolution of the frequency range corresponding to 100 points. Fig. 5.1b displays the
response of the structures. A difference in the performance for the three structures
is seen; a very low response can be obtained for a single frequency but the response
is very sensitive to the excitation frequency and just a small frequency de-tuning
will result in a significantly higher response. With frequency range optimization a
much more robust performance is obtained. Furthermore, it also results in much
more well defined structures with fewer design variables with intermediate values
between 0 and 1. The reason for this is, however, not fully understood.

Numerical problems arise if the number of expansion functions is too high. The
coefficients are computed on the basis of derivatives at the expansion frequency
and more functions require higher order derivatives. This puts a large demand
on the numerical precision. This is illustrated in Fig. 5.2 which is based on a 1D
model. The error in the bi-coefficients is here plotted versus the precision used in
the numerical scheme. Double precision, which is the standard in most numerical
libraries (corresponding to 16 significant digits), yields unacceptable high errors if
e.g. N = 7 is chosen (for this particular example). Quad-precision numerics (32
significant digits) would, in this case, yield acceptable accuracy.
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Figure 5.2 Error of the bi−coefficients in the computation of the Padé approximant
versus the numerical precision (significant digits) used in the computations. From paper
[18].

5.2 Nonlinear transients

Section 2.5 analyzes the performance of a mass-spring structure with attached os-
cillators. The results indicate that it could be beneficial to optimize the parameters
of each oscillator, including the nonlinear stiffness parameter, in order to minimize
the transmission of waves through the structure.

The steady-state formulation used in Chapter 3 and Chapter 4 is not directly
applicable to this system due to the presence of nonlinearities that add higher-order
harmonics to the response. Instead, a time-domain optimization formulation can
be applied which is based on transient simulation of the wave propagation through
the system. The method is adapted to the present nonlinear system which turns
out to pose no significant complications with regards to simulation and sensitivity
analysis.

Fig. 5.3 shows the considered system with a one-dimensional mass-spring struc-
ture with a number of oscillators attached to the masses by linear viscous dampers
and nonlinear springs. The design variables in the system are the mass ratio for each
oscillator (relative to the mass it is attached to), the natural frequency, the viscous
damping ratio and the nonlinear stiffness parameter. Thus, we have four design
variables per attached oscillator and all oscillators may possess different parame-
ters. A propagating steady-state wave pulse is simulated by adding a sinusoidal
time-dependent force at the first mass and absorbing boundaries in the form of
properly tuned viscous dampers at both ends.

Fig. 5.4 shows an example of the optimized distribution of the natural frequency,
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f(t)

Figure 5.3 Finite one-dimensional mass-spring structure consisting of a number of masses
with attached nonlinear oscillators. Viscous dampers are added in the ends to simulate
absorbing boundaries. From paper [19].

mass ratio and nonlinear stiffness in a structure with 25 attached oscillators. The
damping ratio is not shown since it is found it should always attain the minimum
possible value in order to minimize the transmission of the waves. In this way the
attached oscillators maximize their motion and have the largest possible effect on
the system. The remaining parameters attain optimized values which do not imme-
diately offer a physical interpretation. However, the nonlinear stiffness parameter
increases along the length of the structure, which in Section 2.5 was shown to be
beneficial for reducing the wave transmission. Notice, that the mass ratio is con-
strained so that the mean value must not exceed 0.1. If this constraint is omitted,
the mass parameters attain their maximum value in order to maximize the effect of
the attached oscillators.

5.3 Space-time topology optimization

Usual applications of topology optimization produce static material distributions
also for dynamic problems. However, as demonstrated here, the methodology can be
extended to create designs in which the optimized material distribution also change
in time. With time-dependent designs additional functionalities can be obtained
such as further enhancement of vibration and wave quenching or tailoring of the
dynamic response of structures.

The extension of the design procedure is facilitated by adding the discretized
time as an extra dimension to the existing design space. This implies that if a one-
dimensional structure is to be designed the procedure results in a two-dimensional
design grid. Since the time dimension is included in the procedure the optimiza-
tion formulation is based on a transient simulation of the model equations. The
sensitivity analysis is extended without great difficulties and importantly it can be
performed as efficiently as for a standard ”static” optimization procedure based on
transient simulation.

An application of the method is illustrated by the example shown in Fig. 5.5.
A one-dimensional elastic structure is subjected to a propagating Gauss-modulated
sinusoidal pulse. The aim of the optimization procedure is to distribute two elastic
materials in the design domain so that the transmission of the pulse through the
domain is minimized. In this case the optimal static structure is a composite with
5 inclusion layers of the stiffer (but with equal density) material – thus resulting in
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Figure 5.4 Optimized distribution of the 25 oscillator’s parameters for maximum re-
flection of a steady-steady sinusoidal wave, top) Natural frequency, middle) Mass ratio,
bottom) Nonlinear stiffness. From paper [19].
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Figure 5.5 Design problem for the space-time topology optimization example. The trans-
mission of a Gauss-modulated sinusoidal pulse is to be minimized by finding an optimized
distribution of two materials in a space-time design domain. From paper [20].
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Figure 5.6 Left) Indication of the position-time design domain for the optimization
problem, right) Optimized distribution of the two materials. From paper [20].

a one-dimensional bandgap structure (a so-called Bragg grating).

The optimized static structure is used as a basis for the space-time optimization
as illustrated in Fig. 5.6(left). The static bandgap structure is retained in the
simulation before the pulse enters the design domain and after the main part of
the signal is transmitted through the domain. For a time interval of 1.5 s for which
the main part of the pulse propagates through the design domain the material is
allowed to change in space and time using a corresponding two-dimensional design
grid. Fig. 5.6(right) shows the material distribution in a space-time design variable
plot. The black (stiffer) material is still distributed in layers but now arranged with
a slope in space-time.

Fig. 5.7 illustrates the type of dynamic bandgap structure which is created. The
plots show the instantaneous material distribution along with the wave motion for
two separate time instances. The layered structure moves together with the wave
with a speed matching the effective speed of the wave pulse (this speed can be
computed from the slope in the space-time design plot in Fig. 5.6). The transmitted
wave energy is reduced by approximately a factor three by this dynamic design
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Figure 5.7 Instantaneous material distribution and wave motion for the optimized struc-
ture at t = 5.0 s and t = 5.4 s. From paper [20].
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Figure 5.8 Input wave pulse and compressed wave pulse for an optimized structure. For
comparison the uncompressed output wave pulse is shown too. From paper [21].

compared to the optimized static design. Interestingly, this improvement is not
facilitated by an increased reflection. On the contrary, the reflected wave energy is
reduced from 17 % to only 1 %. Instead wave energy is extracted from the system
by the action of the external forces that must be present in order to change the
stiffness at each structural position in time.

Other possibilities for wave manipulation appear when it is possible to change
the structural properties in time as well as in space. In the second example the
aim of the optimization procedure is to minimize the difference between the output
pulse and a specified target output. Fig. 5.8 shows an example of the compression
of a Gaussian pulse when it propagates through an optimized dynamic structure.
Shown for comparison are also the input wave pulse and an uncompressed output
wave pulse. It should be noted that for a static linear structure such a compression
is not possible, since it involves changing the frequency contents of the pulse.

A further illustration of the compression of the pulse along with instantaneous
plots of the material distribution is shown in Fig. 5.9. The compression of the pulse
is created by the stiffer material moving along with the rear tail of the wave. In this
case the design variables generally attain intermediate optimized values. However,
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Figure 5.9 Illustration of the compression of the pulse as it propagates through a space-
time optimized structure. From paper [21].

these can be partly removed if an explicit penalization term is added to the objective
function, although this generally causes the output pulse to deviate more from the
target output.

It turns out that if the two involved materials have different stiffness and mass
density the possibility for manipulating the wave is greater. This however depends
on the specific values of the parameters. An additional complication arises if the
mass density varies in time. Then it becomes necessary to use a more sophisticated
time-integration routine that is able to handle time-discontinuous velocity fields.

Relations to recent work

Optimization of dynamic systems in finite frequency ranges with Padé approximants
was recently used by Donoso and Sigmund (2009). They considered the distribution
of piezo-electric material in order to optimize the dynamic response of a mechanical
structure.

The system of non-linear oscillators studied in paper [19] has been further ex-
amined by Rothos and Vakakis (2009) who studied wave interaction in the case of
essentially nonlinear oscillators. They did not consider optimization.
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Chapter 6
Conclusions

In the first five chapter of this thesis the main findings of papers [1]–[21] are summa-
rized. Chapter 2 contains contributions to the basic understanding of the bandgap
phenomenon, exemplified in simple one- and two-dimensional mass-spring struc-
tures. Chapter 3 demonstrates how the method of topology optimization can be
applied to design various elastic and acoustic bandgap structures. Chapter 4 ex-
tends the topology optimization method to deal with photonic waveguide compo-
nents and in Chapter 5 three advanced optimization methods and algorithms for
the optimization of dynamical systems are presented.

The main contributions of this thesis are:

• Analysis of the connection between the band diagram for a periodic material
and the forced vibration response for a finite structure made from this material.

• Analysis of the effect of nonlinearities on the bandgap effect of a mass-spring
system with attached oscillators.

• Design of phononic bandgap structures using a material layout optimization
method.

• Design of key components of photonic crystal waveguides using topology op-
timization.

• Development of new techniques based on artificial damping for using topology
optimization to design bandgap structures

• Design of acoustic structures using topology optimization.

• Development of an efficient methodology for optimizing the performance of
dynamic system using Padé approximants.

• Topology optimization for transient wave propagation problems with nonlin-
earities.

• Development of a space-time topology optimization formulation to design
structures with optimized material distributions that can vary in time.

53
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Dansk resumé

Dansk titel: Bølger og vibrationer i inhomogene strukturer: b̊andgab og optimale

design

Denne afhandling omhandler bølger og vibrationer i inhomogene strukturer med
speciel fokus p̊a undersøgelse af b̊andgabsfænomenet og optimering af b̊andgabs-
strukturer. Afhandlingen best̊ar af 21 artikler, hvoraf 17 er publiceret i interna-
tionale tidsskrifter og 4 er publiceret i konferenceproceedings. Afhandlingen indledes
med en sammenfatning af de vigtigste resultater fra artiklerne. Denne sammenfat-
ning best̊ar af en indledning fulgt af fire kapitler, der beskriver de opn̊aede resultater
inden for omr̊aderne: b̊andgabsfænomenet, b̊andgab som optimal design, optimering
af fotoniske bølgeledere og avancerede optimerings procedurer. Sammenfatningen
afrundes med en kort opsummerende konklusion.

Et b̊andgab er et fænomen der optræder i periodiske materialer, f.eks. i en lagdelt
elastisk stang eller i en to-dimensional fotonisk krystal best̊aende af cirkulære huller
placeret i et hexagonalt eller kvadratisk mønster i et dielektrisk materiale. Ordet
b̊andgab referer til et specifikt frekvensinterval, hvor bølger ikke kan udbrede sig
igennem materialet.

I denne afhandling klarlægges bl.a., hvorledes mekaniske strukturer, der er op-
bygget af et b̊andgabsmateriale, opfører sig, n̊ar de p̊avirkes af en harmonisk be-
lastning. Dette gøres ved at modellere systemerne som simple masse-fjeder struk-
turer. Det vises, hvorledes dimensionerne af konstruktionen, randbetingelser samt
dæmpning og imperfektioner har en indflydelse p̊a opførslen, og det demonstr-
eres, at b̊andgabsstrukturer generelt er effektive mht. at dæmpe vibrationer. En
eksperimentel demonstration af b̊andgabsfænomenet er ligeledes inkluderet. I afhan-
dlingen analyseres desuden en speciel type af b̊andgabsstrukturer baseret p̊a reso-
nante svingninger af lokale resonatorer. Disse vises at være effektive til at dæmpe
lavfrekvente svingninger. Desuden undersøges det, hvorledes ikke-lineariteter i form
af ikke-lineære fjedre influerer transmissionen af bølger igennem simple masse-fjeder
systemer.

Topologioptimering er en effektiv metode til at designe materialefordelingen i en
struktur for at opn̊aønskede egenskaber. I denne afhandling anvendes og videreud-
vikles metoden til at designe b̊andgabsstrukturer. Det vises, at hvis en struktur opti-
meres for at opn̊aet minimalt vibrationsniveau, vil den genererede materialefordeling
ofte have en periodisk lignende struktur – en b̊andgabsstruktur. Det demonstreres
dog yderligere, at materialefordelingen i den optimerede struktur hænger nøje sam-
men med dimensionerne af strukturen og af belastningssituation. Det vises ogs̊a at
b̊andgabsstrukturer kan genereres ved at maksimere separationen af egenfrekvenser
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i strukturen. En række forskellige problemstillinger analyseres: materialefordelin-
gen i pladestrukturer optimeres for at opn̊aminimalt vibrationsniveau eller for at
generere en ringbølge i pladen, akustiske strukturer optimeres for minimal trans-
mission af trykbølger, og endelig optimeres elastiske strukturer s̊a de absorberer
bølgeenergi maksimalt.

Et vigtigt resultat i afhandlingen er anvendelsen af optimeringmetoden til at
designe bøj og splittere i bølgeledere baseret p̊a fotoniske krystaller. Optimerin-
gen af disse strukturer medfører store forbedringer mht. signaltab og b̊andbredde.
Desuden vises det ofte at resultere i nye designs, der er meget anderledes end de
sædvanlige strukturer, der tidligere har været benyttet. Desuden demonstreres det
at metoden kan anvendes til at designe mere komplicerede komponenter som f.eks.
en bølgelængde splitter, og metoden anvendes yderligere til at designe splittere i
fotoniske strip bølgeledere.

I forbindelse med anvendelsen af topologioptimering til at designe b̊andgabs-
strukturer er der benyttet nye strategier til at opn̊agode designs. Stærk dæmpning
viser sig at være særdeles nyttig i optimeringsproceduren med henblik p̊a at opn̊a
strukturer med gode egenskaber. Desuden benyttes dæmpning til at eliminere gr̊a
designs, der ikke kan fabrikeres med de specificerede materialer.

Til slut demonstreres nye optimeringsprocedurer der er udviklet til at designe
b̊andgabsstrukturer. Disse kan dog ogs̊a finde anvendelser inden for en bredere vifte
af problemer relateret til optimering af dynamiske strukturer. Først demonstreres
en effektiv metode til at optimere strukturers dynamiske opførsel i et frekvensb̊and.
Dette gøres ved at bruge de s̊akaldte Padé funktioner. Topologioptimering baseret
p̊a transient simulering af strukturers dynamiske opførsel bruges til at optimere et
system af ikke-lineære resonatorer for at minimere transmissionen af bølger gennem
et masse-fjeder system. Til sidst demonstreres det, hvorledes transient topologiop-
timering kan udvides, s̊aledes at man kan finde optimale materialefordelinger, der
kan variere i tiden. Fordelen ved et tidsvarierende optimeret design demonstreres
i forbindelse med generering af en-dimensionale b̊andgabsstrukturer og strukturer,
der kan komprimere en bølgepuls.
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Abstract

The vibrational response of finite periodic lattice structures subjected to periodic loading is investigated.
Special attention is devoted to the response in frequency ranges with gaps in the band structure for the
corresponding infinite periodic lattice. The effects of boundaries, viscous damping, and imperfections are
studied by analyzing two examples; a 1-D filter and a 2-D wave guide. In 1-D the structural response in the
band gap is shown to be insensitive to damping and small imperfections. In 2-D the similar effect of
damping is noted for one type of periodic structure, whereas for another type the band gap effect is nearly
eliminated by damping. In both 1-D and 2-D it is demonstrated how the free structural boundaries affect
the response in the band gap due to local resonances. Finally, 2-D wave guides are considered by replacing
the periodic structure with a homogeneous structure in a straight and a 901 bent path, and it is shown how
the vibrational response is confined to the paths in the band gap frequency ranges.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

In the last decade the interest in photonic band gap crystals has been great. Periodic structures
of two materials with different di-electric properties may exhibit stop bands in the band structure
where light waves cannot propagate—thus, photonic crystals can be constructed that effectively
inhibit light at certain frequencies to be transmitted through them. Numerous research papers
have appeared on the subject, see e.g., Refs. [1,2] and possible industrial applications have
emerged such as e.g., wave guides, antennas, and lasers.
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The work on photonic band gaps has led to a renewed interest in elastic wave propagation in
periodic materials and especially the existence of the so-called phononic band gaps—i.e., stop
bands in the band structure for propagation of elastic waves. However, the existence of frequency
ranges where propagating wave solutions do not exist has already been demonstrated by Rayleigh
[3]. Comprehensive reviews of earlier work on wave propagation and band gaps in periodic
structures can be found in Refs. [4–6]. New research has focussed on theoretical predictions as
well as experimental documentation of gaps in the band structure. Studies of periodic structures in
one dimension include the experimental and theoretical analysis of string–mass chains [7],
microtapered optical fibers [8], and theoretical work on band structures in locally periodic media
governed by the wave equation [9]. In 2- and 3-D periodic structures gaps in the elastic band
structure have been predicted using a variety of computational methods such as plane-wave
expansion e.g., Refs. [10,11], finite elements (FEM) e.g., Refs. [12,13], the multiple scattering-
theory (MST) e.g., Refs. [14,15], and a related Rayleigh method [16]. An extensive review of newer
research in band structures of periodic materials can be found in Ref. [17], and frequently updated
reference lists on phononic and photonic band gaps can be found at http://www.pbglink.com.
Unlike e.g., photonic crystals to the author’s knowledge no direct applications of phononic

band gap structures and materials have appeared. Little work has been published on analyzing the
behavior of band gap materials in engineering structures, where the effects of the finite dimension,
boundaries, damping, and imperfections must be addressed. Two recent exceptions are the studies
of surface states and localization phenomena in periodic structures with defects [18,19]. It is the
aim of this work to add knowledge that can be exploited in the development towards future
applications. An extension of this work is the application of topology optimization techniques in
the design of materials and structures with phononic band gaps [20,21].
In this work simple mass–spring models are used to demonstrate the dynamical behavior of

periodic structures. The mass–spring models provide a convenient setting for the realization and
visualization of periodic structures, for including damping and imperfections, and qualitatively
they fully capture the phenomena involved. In Section 2 the mass–spring models of the unit cells
are presented. The unit cells describe the repetitive units in the periodic structure. Band structures
are calculated for the corresponding infinite lattices and for special cases approximate analytical
frequency bounds for the gaps are obtained. Two examples are then provided in Section 3 in order
to analyze the vibrational response of the periodic structures subjected to periodic loading in the
band gap frequency ranges.
The first example deals with a 1-D structure with filtering properties (Section 3.2). Two different

sizes of masses and springs are used in the structure, chosen so that it corresponds to a discrete
model of aluminum and PMMA (acrylplastic) with filtering of longitudinal waves. It is shown
how the response in the band gap frequency range depends on the number of unit cells in the
structure and also how the response in the band gap is insensitive to moderate amounts of viscous
damping and to small imperfections in the periodic structure.
The second example deals with a 2-D structure that can be utilized as a wave guide (Section

3.3). The structure is considered with two different types of unit cells, with masses and springs
chosen to make the lattice correspond to a structure with a stiff aluminum inclusion in an epoxy
matrix (type 1), or a heavy resonator of copper suspended in a flexible layer of silicone rubber in
an epoxy matrix (type 2). With type 1 unit cells the response in the band gap depends only weakly
on damping, whereas with type 2 unit cells damping almost eliminates the band gap effect. It is
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shown for 2-D, as well as for the 1-D example, how the presence of boundaries creates local
resonances that affect the response in the band gap. Finally, two wave guide structures are created
by replacing the periodic structure with a homogeneous structure in a straight and in a 901 bent
path. It is demonstrated how the vibrational response is confined to these paths when the
frequency of the periodic loading is within the band gap.

2. Model: the unit cell—infinite lattices

The periodic structures to be considered are made up of a finite number of identical unit cells.
These unit cells are the repetitive units that are used to describe the micro-structure (or material).
If the unit cells are inhomogeneous, i.e., made up of different masses and/or springs, the
corresponding structure is periodic, whereas with a homogeneous unit cell the structure is also
homogeneous.
In the following, dispersion relations are obtained for wave propagation in infinite periodic

lattices. Results are presented in form of band structures relating the frequency of the propagating
waves to the wavenumber or wavevector.

2.1. The one-dimensional case—longitudinal waves

Fig. 1a shows the 1-D unit cell. Within the cell N masses mj are connected by linear elastic
springs with stiffness coefficients kj: The small-amplitude displacement of the ðp þ jÞth mass is
governed by

mj .upþj ¼ kjðupþjþ1 � upþjÞ � kj�1ðupþj � upþj�1Þ; ð1Þ

where p is an arbitrary integer.
Wave propagation through an infinite number of connected unit cells is considered and thus a

travelling wave solution is assumed as

upþj ¼ Aje
iððpþjÞg�otÞ; ð2Þ
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Fig. 1. (a) The 1-D unit cell with N masses mj and springs kj ; and (b) the corresponding irreducible Brillouin zone

indicating the range of the wavenumber g evaluated when constructing the complete band structure from Eq. (8).
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where Aj is the wave amplitude, g the wavenumber, and o is the wave frequency. Inserting Eq. (2)
into Eq. (1) yields N linear complex equations

ðo2
j � o2ÞAj ¼ c2j e

igAjþ1 þ ðo2
j � c2j Þe

�igAj�1; j ¼ 1;y;N; ð3Þ

where the following non-dimensional parameters have been introduced:

o2
j ¼

kj þ kj�1

mj

; ð4Þ

c2j ¼
kj

mj

: ð5Þ

An infinite number of identical unit cells is considered and the following periodic boundary
conditions can thus be applied:

Aj�1 ¼ AN ; j ¼ 1; ð6Þ

Ajþ1 ¼ A1; j ¼ N: ð7Þ

Eq. (3) forms with Eqs. (6) and (7) a standard complex eigenvalue problem

ðSðgÞ � o2IÞA ¼ 0; ð8Þ

that can be solved to construct the band structure of wave frequencies o for known
wavenumber g:
It is not necessary to solve Eq. (8) for all values of g: Due to the periodicity all propagating

modes are captured by restricting the wavenumber to the irreducible Brillouin zone as shown in
Fig. 1b [4]. The two end points in the zone, gN ¼ 0 and p; correspond to the masses in two
neighboring unit cells moving in phase and in anti-phase, respectively.

2.1.1. Wave propagation for an inhomogeneous unit cell

As it is well known no gaps exist in the band structure for the homogeneous infinite lattice, i.e.,
waves of all frequencies are allowed to propagate. However, with an inhomogeneous unit cell gaps
emerge in the band structure for the corresponding periodic infinite lattice. An example of an
inhomogeneous unit cell is shown in Fig. 2a. This unit cell consists of four masses with the center
masses and springs representing a material with lower stiffness to mass ratio (lower wave speed).
For the four-mass system ðN ¼ 4Þ the masses and springs are chosen as

m1 ¼ m4 ¼ 3:98 kg;

m2 ¼ m3 ¼ 1:69 kg;

k1 ¼ k4 ¼ 70:9� 109 kg=s2;

k2 ¼ k3 ¼ 5:28� 109 kg=s2 ð9Þ

which makes the mass–spring system correspond to a discrete model of a 0:15 m rod with the
middle 50% of PMMA and the two ends of aluminum.1
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As shown in Fig. 2b three large gaps appear in the band structure for oE5:2–12.0, 13:5–26.6,
and 26:8–42:3 kHz: In these frequency ranges no waves can propagate through the infinite
periodic lattice. In Fig. 2c is shown a close-up of the lowest band gap including curves computed
for higher values of N (a finer discretization of the unit cell with the middle N=2 masses and
springs of PMMA). The band structure converges with increasing N towards the corresponding
continuum model, but as appears the simple model with N ¼ 4 gives a good estimation of the first
band gap. For the other gaps the difference between the simple model and the continuum model is
naturally larger.
The upper and lower frequency bounds for the first band gap can be accurately estimated by

considering a simplified system (Fig. 2d). For wave propagation in the first pass band the four
masses move in phase, corresponding to the fundamental mode of propagation. The first band
gap appears when gN ¼ p (Fig. 2a) for which the wave amplitude of one of the masses in the unit
cells vanishes. Fig. 2d shows the four possible system configurations with a single mass in the unit
cell fixed (replaced by a support in the figure). It is now possible to estimate the lower and upper
frequency bound of the band gap by identifying the lowest and highest fundamental
eigenfrequency for the four configurations. The system third from top in Fig. 2d has the lowest
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Fig. 2. (a) The unit cell with N ¼ 4 (sizes of masses and springs given in the text), (b) band structure for wave

propagation in the infinite periodic lattice, (c) close-up of the first gap including curves computed for N ¼ 16 and 64,

and (d) the four possible isolated systems with a single mass in the unit cells fixed.
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fundamental eigenfrequency o ¼ 5:2 kHz which matches the lower band gap frequency well, and
the system at the top has the highest fundamental eigenfrequency found as o ¼ 12:0 kHz giving a
good estimation of the upper band gap frequency.
In the band gaps, instead of propagating modes, solutions exist for purely imaginary

wavenumbers. Introducing the imaginary wavenumber g-ig into the solution form (2) yields

upþj ¼ Aje
�ðpþjÞge�iot ð10Þ

showing that the solution is a standing wave with an amplitude of vibration that is exponentially
decaying spatially.

2.2. The 2-D case—in-plane elastic waves

A 2-D unit cell is shown in Fig. 3a. Within the cell N � N masses are arranged in a square
configuration with each mass connected to eight neighboring masses with springs. The four
springs connected to the j; kth mass in the 01; 451; 901; and 1351 directions from the x-axis are
denoted kj;k;1; kj;k;2; kj;k;3; and kj;k;4:

The equations of motion governing the small-amplitude displacements of the ðp þ jÞ; ðq þ kÞth
mass in the x and y directions ðu; vÞ are given as:

mj;k .upþj;qþk ¼ kj;k;1ðupþjþ1;qþk � upþj;qþkÞ

þ 1
2

kj;k;2ðupþjþ1;qþkþ1 � upþj;qþk þ vpþjþ1;qþkþ1 � vpþj;qþkÞ

þ 1
2

kj;k;4ðupþj�1;qþkþ1 � upþj;qþk � vpþj�1;qþkþ1 þ vpþj;qþkÞ

þ kj�1;k;1ðupþj�1;qþk � upþj;qþkÞ

þ 1
2

kj�1;k�1;2ðupþj�1;qþk�1 � upþj;qþk þ vpþj�1;qþk�1 � vpþj;qþkÞ

þ 1
2

kjþ1;k�1;4ðupþjþ1;qþk�1 � upþj;qþk � vpþjþ1;qþk�1 þ vpþj;qþkÞ; ð11Þ
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Fig. 3. (a) The 2-D square unit cell with N � N masses and corresponding 4� N � N springs, and (b) the

corresponding irreducible Brillouin zone indicating the triangular path on which the wavevector g should be evaluated

in Eq. (21).
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mj;k .vpþj;qþk ¼ kj;k;3ðvpþj;qþkþ1 � vpþj;qþkÞ

þ 1
2

kj;k;2ðvpþjþ1;qþkþ1 � vpþj;qþk þ upþjþ1;qþkþ1 � upþj;qþkÞ

þ 1
2

kj;k;4ðvpþj�1;qþkþ1 � vpþj;qþk � upþj�1;qþkþ1 þ upþj;qþkÞ

þ kj;k�1;3ðvpþj;qþk�1 � vpþj;qþkÞ

þ 1
2

kj�1;k�1;2ðvpþj�1;qþk�1 � vpþj;qþk þ upþj�1;qþk�1 � upþj;qþkÞ

þ 1
2

kjþ1;k�1;4ðvpþjþ1;qþk�1 � vpþj;qþk � upþjþ1;qþk�1 þ upþj;qþkÞ; ð12Þ

where p and q are arbitrary.
As in the 1-D case a travelling wave solution is assumed in the infinite lattice

upþj;qþk ¼ Aj;ke
iððpþjÞgxþðqþkÞgy�otÞ; ð13Þ

vpþj;qþk ¼ Bj;ke
iððpþjÞgxþðqþkÞgy�otÞ; ð14Þ

where Aj;k and Bj;k are the wave amplitudes, o the wave frequency, and gx and gy are the two
components of the wavevector c:
With the following non-dimensional constants defined:

o2
x;j;k ¼

kj;k;1 þ kj�1;k;1 þ 1
2
ðkj;k;2 þ kj;k;4 þ kj�1;k�1;2 þ kjþ1;k�1;4Þ

mj;k
; ð15Þ

o2
y;j;k ¼

kj;k;3 þ kj;k�1;3 þ 1
2
ðkj;k;2 þ kj;k;4 þ kj�1;k�1;2 þ kjþ1;k�1;4Þ

mj;k
; ð16Þ

*kj;k ¼
1
2
ðkj;k;2 � kj;k;4 þ kj�1;k�1;2 � kjþ1;k�1;4Þ

mj;k
; ð17Þ

c2j;k ¼
kj;k

mj;k
; ð18Þ

Eqs. (11) and (12) become

ðo2
x;j;k � o2ÞAj;k þ *kj;kBj;k ¼ c2j;k;1e

igxAjþ1;k

þ 1
2

c2j;k;2ðe
iðgxþgyÞAjþ1;kþ1 þ eiðgxþgyÞBjþ1;kþ1Þ

þ 1
2 c2j;k;4ðe

iðgy�gxÞAj�1;kþ1 � eiðgy�gxÞBj�1;kþ1Þ

þ c2j�1;k;1e
�igxAj�1;k

þ 1
2

c2j�1;k�1;2ðe
�iðgxþgyÞAj�1;k�1 þ e�iðgxþgyÞBj�1;k�1Þ

þ 1
2

c2jþ1;k�1;4ðe
iðgx�gyÞAjþ1;k�1 � eiðgx�gyÞBjþ1;k�1Þ; ð19Þ
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ðo2
y;j;k � o2ÞBj;k þ *kj;kAj;k ¼ c2j;k;3e

igyBj;kþ1

þ 1
2

c2j;k;2ðe
iðgxþgyÞBjþ1;kþ1 þ eiðgxþgyÞAjþ1;kþ1Þ

þ 1
2

c2j;k;4ðe
iðgy�gxÞBj�1;kþ1 � eiðgy�gxÞAj�1;kþ1Þ

þ c2j;k�1;3e
�igyBj�1;k

þ 1
2

c2j�1;k�1;2ðe
�iðgxþgyÞBj�1;k�1 þ e�iðgxþgyÞÞAj�1;k�1

þ 1
2

c2jþ1;k�1;4ðe
iðgx�gyÞBjþ1;k�1 � eiðgx�gyÞAjþ1;k�1Þ ð20Þ

with periodic boundary conditions applied using a 2-D equivalent of Eqs. (6) and (7).
The corresponding eigenvalue problem is set up

ðSðgx; gyÞ � o2IÞA ¼ 0 ð21Þ

and solved for the wave frequency o for known wavevector components gx and gy: As in the 1-D
case it is not necessary to analyze Eq. (21) for all gx and gy: In Fig. 3b the irreducible Brillouin
zone in two dimensions is shown, [4], where the analysis can be restricted to the triangular zone if
the unit cell is square and symmetrical. Furthermore, it is only necessary to search the zone on the
exterior boundary, i.e., along the path G�X�M� G; since the extremums of the wave
frequencies are always found on the zone boundary.2

2.2.1. Band gaps for a stiff inclusion: type 1 unit cell

The homogeneous unit cell produces a band structure without gaps, as was also the case for the
1-D problem.
A unit cell with a band gap is shown in Fig. 4a with the corresponding band structure shown in

Fig. 4b. A cell with 5� 5 masses and connecting springs is chosen where the center 3� 3 masses
and corresponding springs represent a heavy and stiff inclusion and the remaining masses and
springs are the lighter and more flexible matrix material.
The values of masses and springs are

mmat ¼ 1:82� 10�2 kg;

minc ¼ 4:53� 10�2 kg;

kmat;1 ¼ kmat;3 ¼ 2� kmat;2 ¼ 2� kmat;4 ¼ 4:10� 109 kg=s2;

kinc;1 ¼ kinc;3 ¼ 2� kinc;2 ¼ 2� kinc;4 ¼ 70:9� 109 kg=s2: ð22Þ

The values in Eq. (22) are chosen so that the model corresponds to a 0:02 m� 0:02 m unit cell of
epoxy matrix with an aluminum inclusion. By choosing the springs k;2; and k;4 to be half the size
of the springs k;1; and k;3; as in Eq. (22), a good qualitative agreement is obtained between the
mass–spring model and a plane-strain 2-D continuum model of materials with the Poisson ratio
near n ¼ 0:3:
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2To the author’s knowledge no proof of this has been published. However, it appears to be generally accepted and in

the numerical examples presented in this paper this is indeed so.
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As appears from Fig. 4b a gap appears in the band structure for oE46:6–57:3 kHz between the
third and fourth bands. In this frequency range waves cannot propagate in the infinite lattice
regardless of the direction of propagation. The band gap calculated for this mass-spring unit cell
model corresponds qualitatively to the band gap found for the corresponding continuum model,
see e.g., Refs. [15,20].

2.2.2. Band gaps for a heavy resonator: type 2 unit cell
Alternatively, band gaps can be obtained in the lower frequency range by placing a heavy

inclusion in soft suspension with a surrounding matrix material. The heavy inclusion acts as a
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Fig. 4. (a) The 5� 5 mass–spring unit cell (denoted type 1) modelling a stiff inclusion (center 3� 3 masses and springs)

in a surrounding matrix, and (b) the corresponding band structure for wave propagation in the infinite periodic lattice

structure.
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local resonator and splits up the band structure. Recently, band gaps for such structures were
demonstrated in Refs. [14,22], with the former pointing out a possible application in noise
reduction due to the low band gap frequency range.
Fig. 5a shows the unit cell and the corresponding band structure is shown in Fig. 5b. The

masses and springs in the model have been chosen as

mmat ¼ 1:27� 10�2 kg;

minc ¼ 9:93� 10�2 kg;

kmat;1 ¼ kmat;3 ¼ 2� kmat;2 ¼ 2� kmat;4 ¼ 4:10� 109 kg=s2;

kinc;1 ¼ kinc;3 ¼ 2� kinc;2 ¼ 2� kinc;4 ¼ 118� 109 kg=s2;

ksusp;1 ¼ ksusp;3 ¼ 2� ksusp;2 ¼ 2� ksusp;4 ¼ 4:00� 106 kg=s2: ð23Þ

With the parameters in Eq. (23) the model corresponds to a 0:02 m� 0:02 m unit cell of an epoxy
matrix with a copper inclusion suspended in a thin massless layer of silicone rubber.3

The band gap frequency range can be accurately predicted. The local resonance of the heavy
inclusion in the soft suspension splits up the band structure and determines the lower bound for
the band gap

o1E

ffiffiffiffiffiffiffiffiffiffi
Ksusp

Minc

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
7ksusp

4minc

s
E1:34 kHz: ð24Þ

The first possible propagation mode above the band gap is when the inclusion and the matrix
material can move essentially rigidly in anti-phase. With the matrix motion denoted x and the
motion of the inclusion y; the rigid motion is governed by the 2-d.o.f. system

Mmat .x ¼ Ksuspðy � xÞ; ð25Þ

Minc .y ¼ Ksuspðx � yÞ; ð26Þ

that yields the upper bound frequency

o2E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KsuspðMinc þ MmatÞ

MincMmat

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7ksuspð4minc þ 32mmatÞ

4minc32mmat

s
E1:88 kHz ð27Þ

as well as the ratio of amplitudes at the upper frequency bound

y

x
¼ 1� o2

2

Mmat

Ksusp

¼ �
Mmat

Minc

¼ �
32mmat

4minc

E� 1:02: ð28Þ

It is noted that the frequency bounds in Eqs. (24) and (27) correspond well to the gap frequencies
shown in the inset in Fig. 5b.
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3Material data: Eepo ¼ 4:1 GPa; repo ¼ 1140 kg=m3; Ecop ¼ 118 GPa; rcop ¼ 8940 kg=m3; Erub ¼ 4 MPa:
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3. Finite lattice structures

Wave propagation in infinite, undamped, periodic lattices was analyzed in Section 2. In this
section the behavior of finite periodic structures subjected to periodic loading is considered in
order to study the effects of boundaries, damping, and imperfections in the periodic structure.
The finite structures are treated by two examples: A 1-D-periodic structure that acts as a filter

and a 2-D-periodic structure that can be used to guide waves.
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Fig. 5. (a) The 6� 6 mass–spring unit cell (denoted type 2) modelling a heavy stiff resonator (center 2� 2 masses and

springs) in soft suspension (surrounding springs) connected to a surrounding matrix, and (b) the corresponding band

structure for wave propagation in the infinite periodic lattice. The inset shows a magnification of the band structure

from o ¼ 0–2 kHz with the band gap shown hatched.
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3.1. Model equations

A finite number of 1-D or 2-D unit cells are considered. The displacement vector uðtÞ ¼
fu1u2yuNtot

gT is introduced where Ntot is the total number of degrees of freedom in the model. In
1-D the vector takes the form: uðtÞ ¼ fu1yuNuNþ1yuMNg

T; where M is the number of unit cells.
In 2-D the vector is given as uðtÞ ¼ fu1;1v1;1yu1;MyNv1;MyNyuMxN;MyNvMxN;MyNg

T; where Mx and
My is the number of unit cells in the x and y directions, respectively.
The model equations that govern the small-amplitude displacement of the masses can now be

taken directly from Eq. (1) or (11)–(12) and written as

M.uþ C’uþ Ku ¼ feiOt; ð29Þ

where M and K is the assembled mass- and stiffness-matrices, respectively, C is an added viscous
damping matrix, and f is a vector of forces of frequency O:
A diagonal damping matrix is used to model the viscous damping with the components ci

expressed in terms of the actual to critical damping ratio zi from the relation

zi ¼
ci

2
ffiffiffiffiffiffiffiffiffi
mi

%ki

p ; ð30Þ

where mi is the mass corresponding to the ith dof and %ki is an equivalent stiffness defined as mio2
i ;

cf. Eq. (4) in 1-D and Eqs. (15) and (16) in 2-D.
With the time dependency of the displacement vector

uðtÞ ¼ aeiOt ð31Þ

inserted into Eq. (29), the linear set of equations to be solved for the amplitudes a is given as

ð�O2Mþ iOCþ KÞa ¼ f: ð32Þ

3.2. Example 1: a 1-D filter

An application for band gaps in a 1-D lattice is as pass- or stop-band filters. In theory, for an
infinite, and perfectly periodic lattice without damping, perfect filtering properties exist with
alternating pass bands and complete stop bands. The properties of finite lattice structures
subjected to periodic loading is here considered by analyzing the effect of the number of unit cells
in the structure, viscous damping, and imperfections in the periodic structure.
The unit cell considered in Section 2.1 with four masses and springs is used to describe the

periodic structure. As previously stated, this can be seen as a discrete model of a 0:15 m unit cell
consisting of 50% aluminum and 50% PMMA. In Section 2.1 it was shown that for the infinite
lattice this unit cell displays a band gap between approximately 5.2–12 kHz: Another band gap
appears above 13:5 kHz but the focus is here put on the response in the first gap.
Fig. 6a shows the model of the structure with M unit cells. The structure is subjected to a

periodic loading f cosOt at the left end. Fig. 6b shows the corresponding computational mass–
spring model with 10 unit cells ðM ¼ 10Þ and the four mass unit cell ðN ¼ 4Þ:
In the following sections, the filtering properties of this structure are analyzed for different

choice of system parameters. The response of the structure is typically given for the last mass in
the lattice and presented as frequency response functions (FRF) showing the acceleration of the
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mass for a reference force amplitude. The FRF curves are computed by solving the full set of
linear equations (32) for each frequency O:

3.2.1. The number of unit cells
An important parameter in the performance of the filter is of course the number of unit cells

used. If only a few unit cells are used the potential attenuation of the signal in the band gap
frequency range is lower than if more unit cells are used.
Fig. 7a displays the FRF for the last mass in the lattice structure when it is subjected to a

periodic loading of the first mass. Curves are shown for M ¼ 2; 5; 10; and for comparison the
band gap boundaries calculated for the infinite lattice are shown with vertical dashed lines.
For M ¼ 2 the band gap is detectable from the curve but the drop in response inside the band

gap is not much larger than the response drops between other resonance frequencies. With more
unit cells included the gap clearly appears—resonances are clustered outside the gap, the response
is reduced significantly inside the gap, and the steepness of curves increases at the band gap
boundaries. With even more unit cells included the steepness of the response curves near these
boundaries can, in principle, be as large as desired.
When M is large the computed band gap boundaries for the infinite lattice are seen to

correspond well with the band gap detectable from the FRF. However, a small discrepancy is
noted near the first gap OE5:3 kHz where resonance peaks appear just inside the gap boundary.
The resonance here is associated with a local eigenmode located near the boundary of the
structure where the boundary conditions are different.
This boundary effect is displayed in Fig. 7b. Here, the response of all masses in the structure is

shown for four frequencies. The short-dashed line for O ¼ 5:27 kHz corresponds to the boundary
mode frequency. The two curves for frequencies inside the band gap (i.e., O ¼ 5:27 and 6:00 kHz)
display an exponentially decreasing amplitude away from the point of excitation as predicted from
Eq. (10), but the boundary mode is seen as an increase in the response towards the end of the
structure. The curves for the two other frequencies outside the band gap correspond to excitation
of a low and a high vibration mode.

3.2.2. Viscous damping and imperfections

Fig. 8a shows FRF-curves for the considered structure with M ¼ 10 without damping and with
three different amounts of viscous damping characterized by the damping ratios z ¼ 0:1%; 1.0%,
and 5.0% added.
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M

Unit cell
f cos �t

f cos �t

(a)

(b)

Fig. 6. (a) Structure made of M unit cells with a periodic loading f cosOt acting in one end, and (b) the corresponding

computational mass–spring model with M ¼ 10 and the unit cell with 4 masses ðN ¼ 4Þ:
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For low values of damping the response resembles that of the undamped structure, except that
the peaks at resonance are reduced, i.e., a normal effect of added damping. In the band gap the
responses are hardly changed by small amounts of damping. Only with strong damping added
ðz ¼ 5%Þ is the response inside the gap affected.
Like with damping it can be expected that some imperfection in the periodic structure is

present. Fig. 8b shows the effect of adding some level of disorder to the perfect periodic structure.
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Fig. 7. (a) FRF-curves for the last mass in the lattice for different numbers of unit cells in the structure. Vertical dashed

lines indicate the band gap boundaries calculated for the infinite periodic structure, and (b) the response for all masses

for M ¼ 10 for four different frequencies.
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The imperfections are simulated by adding a random variation to each mass size. The variation is
indicated by a disorder percentage representing the maximum variation of the mass relative to its
nominal value.
Fig. 8b shows that the response is insensitive to the presence of small imperfections. Only if the

structure deviates significantly from the perfect periodic (20% disorder) is the response inside the
band gap noticeably changed by e.g., the presence of local resonances. But even with this high
level of imperfection the band gap is still clearly seen in the response.
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Fig. 8. (a) The influence on the response of the last mass of added viscous damping characterized by the actual to

critical damping ratio z of the individual masses, and (b) the influence of random disorder of the sizes of the individual

masses. For all curves M ¼ 10:
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3.3. Example 2: a 2-D waveguide

In Sections 2.2.1 and 2.2.2 it was shown how two different inhomogeneous unit cells have gaps
in the band structure for 2-D in-plane waves. In this section the vibrational response of periodic
structures with these two types of unit cells are analyzed when it is subjected to periodic loading.
The effects of the number of unit cells, viscous damping, and boundary effects are considered and
it is shown also how a structure with band gap unit cells can act as a wave guide.
Fig. 9a displays a model of the structure composed of a number of unit cells, Mx in one

direction and My in the other. A periodic loading f cosOt is applied centrally on the upper
boundary and the structure is simply supported at the two lower corners. Fig. 9b shows the
corresponding computational mass–spring model for Mx ¼ My ¼ 7 with type 1 unit cell.

3.3.1. Type 1 unit cells
Fig. 10 shows FRF-curves for the structure with type 1 unit cells (5� 5 masses corresponding

to a 0:02 m� 0:02 m epoxy matrix with a square aluminum inclusion). Indicated in the figure with
vertical dashed lines are the band gap boundaries for the infinite periodic lattice, as seen in Fig. 5.
Fig. 10a shows the response in the bottom of the structure (point A in Fig. 9a), and Fig. 10b on
the side of the structure (point B). For Mx ¼ My ¼ 3 the band gap is not clearly detectable from
the response, with e.g., several resonance peaks appearing inside the band gap boundaries. With
more unit cells the response clearly drops inside the gap. However for all curves resonance peaks
and a high response are seen from OE55 kHz and up to the upper boundary frequency. These
resonance peaks are associated with local resonances for the boundary elements, as in the 1-D
case.
Fig. 11 shows contour plots of the response in the structure for two frequencies. The res-

ponse in Fig. 11a is calculated for O ¼ 52:1 kHz; corresponding to a point in the middle of the
band gap and shows clearly how the response is localized near the point of excitation. For
O ¼ 54:8 kHz a high response is seen to be localized near the boundary of the structure. This
frequency is inside the band gap range but appears as waves can still propagate along the
boundary elements.

3.3.2. Type 2 unit cells
The type 2 unit cell also displays a band gap, but in a lower frequency range than type 1 unit

cell. This unit cell corresponds to a 0:02 m� 0:02 m epoxy matrix with a copper inclusion in a soft
suspension of silicon rubber.
Fig. 12 shows the FRF-curves and the corresponding band gap frequency range in points A and

B. As expected, the response drops inside the band gap, but a significant reduction is seen only
very locally near the lower band gap frequency boundary, i.e. the local resonance frequency of the
inclusions.
A contour plot of the response for O ¼ 1:34 kHz is shown in Fig. 13a, the frequency where the

response drops to a minimum. The vibrations are seen to be localized near the point of excitation
with the inclusions vibrating with a higher amplitude than the surrounding masses throughout the
whole structure.
Fig. 13b shows the response for O ¼ 1:90 kHz; i.e., slightly above the upper band gap

frequency. Here, the response is seen to be nearly constant over most of the domain except near
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the supports. This corresponds well to the motion predicted by Eq. (28), where the inclusions and
the matrix material are predicted to move essentially rigidly in anti-phase with nearly identical
amplitudes.
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Fig. 9. (a) The structure with Mx � My unit cells with a periodic loading f cosOt acting centrally at the top boundary

and simple supports at the bottom corners, and (b) the corresponding computational model for Mx ¼ My ¼ 7 and type

1 unit cells.
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3.3.3. Viscous damping
Fig. 14a shows the effect of adding damping to the structure with Mx ¼ My ¼ 21 and type 1

unit cells. The undamped FRF curve is shown for comparison together with curves for damping
ratios of z ¼ 0:1% and 1.0%. Fig. 14b shows the corresponding curves with type 2 unit cells.
Clearly, with type 1 unit cells the band gap is still noticeable with damping present, even when

the damping is so strong that all resonance peaks have nearly disappeared from the response.
However, with type 2 unit cells in the structure the band gap practically disappears for strong
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Fig. 10. The structural response with Mx � My type 1 unit cells included in the structure, (a) shows the response in

point A and (b) in point B.
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Fig. 11. (a) Contour plot of the structural response (in dB) for O ¼ 52:1 kHz; and (b) for O ¼ 54:8 kHz: Type 1 unit

cells with Mx ¼ My ¼ 21:
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damping, and although for z ¼ 0:1% a drop in the response is noticed near the gap it is hardly
distinguishable from other response drops between resonances.

3.3.4. Wave guides
It has been demonstrated how structures assembled from unit cells with band gaps may exhibit

a large reduction in the structural response away from the point of excitation when subjected to
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Fig. 12. The structural response with Mx � My type 2 unit cells included in the structure, (a) shows the response in

point A and (b) in point B.
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Fig. 13. (a) Contour plot of the structural response (in dB) for O ¼ 1:34 kHz; and (b) for O ¼ 1:90 kHz: Type 2 unit

cells with Mx ¼ My ¼ 21:
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periodic loading at certain frequency ranges. By introducing defects in the periodicity this effect
can now be utilized to construct wave guides.
Type 1 unit cells are used in the following with Mx ¼ My ¼ 21: The defect is introduced by

removing the inclusions from the unit cells in a path from the point of excitation in either a
straight path to the bottom of the structure (point A) or in a 901 bent path to the side of the
structure (point B).
Fig. 15a shows the response with a straight path of defects through the structure. It is seen that

as for the perfect periodic structure the response in point B drops significantly in the band gap,
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Fig. 14. The influence on the response of added viscous damping characterized by the actual to critical damping ratio z
of the individual masses, (a) for type 1 unit cells, and (b) type 2 unit cells. In both figures Mx ¼ My ¼ 21:
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whereas in point A the response remains high indicating that the signal is now confined to the
path. Fig. 15b shows the response for the bent path leading to point B. The response is now seen
to be normalized in B inside the band gap, whereas in point A the response drops.
Contour plots of the response for the two lattice structures with paths are shown in Figs. 16a

and b, respectively. The frequency of excitation for both figures is O ¼ 52:1 kHz; i.e., inside the
band gap. The figure shows how the paths of defects in the periodic structures effectively isolates
the vibrations to the path regions and thus ‘‘leads’’ the vibrations to the structural point A or B,
whereas away from the paths the response drops rapidly with distance.

ARTICLE IN PRESS

Fig. 15. The response in points A and B with a path of defects in the periodic structure for a the structure, (a) for

vertical path, and (b) for a corner path. The insets show schematics of the paths. Type 1 unit cells with Mx ¼ My ¼ 21:
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Fig. 16. Contour plot of the response for O ¼ 52:1 kHz; (a) for a vertical path of defects, and (b) for a corner path of

defects. Type 1 unit cells with Mx ¼ My ¼ 21:
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4. Conclusions

In order to use phononic band gap materials in mechanical structures that utilize the selective
wave blocking abilities of these materials, the effects associated with the boundaries, damping,
and imperfections need to be taken into account.
In this work the vibrational response of 1-D and 2-D mass–spring structures subjected to

periodic loading has been investigated. The focus has been put on analyzing structures with a
periodic micro-structure (unit cells) with gaps in the band structure for the corresponding infinite
periodic lattice. Two examples were used to demonstrate the effect on the response of boundaries,
viscous damping, and imperfections—a 1-D structure acting as a wave filter, and wave guiding in
2-D structures.
It was shown how the response in the band gap frequency range depends on the number of unit

cells in the structure. In 1-D and for one of the two types of unit cells analyzed in 2-D, it was seen
how the response in the band gap is insensitive to moderate amounts of viscous damping, whereas
for the other 2-D unit cell analyzed, the band gap effect almost disappears with strong damping
added. In the 1-D example it was shown also that the response in the band gap is insensitive to
small imperfections in the periodic structure. It was demonstrated in both the 1-D and 2-D
example, that the free boundaries cause local resonances that affect the response in the band gap.
Two 2-D wave guides were analyzed, created by replacing the periodic structure with a
homogeneous structure in a straight and a 901 bent path. It was shown how the vibrational
response is confined to these paths in the band gap frequency ranges.
Further work deals with the formulation and solution of optimization problems that can be

used to design of applications of phononic band gap materials and structures.
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Summary In this paper we show the status of a research project dealing with optimization of vibration
and wave-propagation in multi-phase structures. We present experimental and theoretical results and point
out directions for further research.

Introduction

Band gap materials have received considerable attention in the last decade, see e.g. [1]. A periodic
arrangement of materials with different physical properties may cause gaps to appear in the clas-
sical band structures—corresponding to ranges of frequencies for which waves cannot propagate.
The waves may be electromagnetic or elastic, with the corresponding band gap materials referred
to as photonic and phononic, respectively.

Structures made from a band gap material have several interesting applications, e.g. as parts of
mechanical filters and resonators and in optical wave guides and lasers. A FE-program has been
developed to analyze steady-state vibration and/or wave-propagation in periodic structures. As an
example we show the vibrational behavior of an elastic band gap structure shown in Fig. 1. The
periodic material has here been designed so that a band gap exists in the frequency range around
40 kHz and the corresponding frequency response is seen to be significantly reduced near this fre-
quency. Currently, the computational model is being extended to cover also 3D structures and has
also been used to study the behavior of periodic mass-spring structures [2].
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Figure 1: A structure composed of 10×10 square aluminum inclusions in epoxy subjected to peri-
odic loading at the left boundary and the corresponding frequency response at the right boundary.

To facilitate the design of optimized structures a topology optimization code has been developed.
Recently the topology optimization technique was applied successfully to the design of band gap
materials [3], and the first results for designing structures with optimized wave-reflecting and
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wave-guiding properties show promising results [4, 5, 6]. This paper presents a status of the re-
search project dealing with the design of optimized structures and provides an outlook on further
research.

Vibrations in an elastic bar: Theory and experiments
To test the computational model and study the basic phenomenon a simple experiment has been
performed. The theoretical predictions of frequency responses were checked experimentally using
a laboratory model of an elastic bar and the setup shown in Fig. 2. Here, an input signal is fed to
a vibration shaker, which transmits vibrations to the bar across a force transducer. Elastic waves
then propagate through the bar, where end movements are picked up by an accelerometer.

We tested elastic bars made of periodic sections of Brass-PMMA or Aluminium-PMMA, both
exhibiting band gaps. The results described here are for the bar shown in Fig. 2, made of five-
and-a-half repetitions of a base section consisting of two bars of circular cross section, one of
Aluminium and one of PMMA, both having diameter 10 mm and length 75 mm, and with bar
pieces glued end-to-end using Araldite 2011 epoxy structural adhesive.

Fig. 3(left) is a typical frequency response for this periodic bar, showing two pronounced band
gaps with a response drop-off about 40 dB compared with the non-resonant, low-level response
outside the band gaps. Fig. 3(right) shows the corresponding theoretical predictions from the com-
putational program. Reasonable agreement is noted, both with regards to the resonance tops but
more importantly with respect to the response drop in the band gap frequency ranges. The noise in
the experimental curves in the band gaps originates in the noise limit of the experimental setup.

Figure 2: Experimental setup and part of the setup showing (from left to right) the vibration exciter,
force transducer, periodic bar system with supporting threads, and accelerometer.

Additional experiments are planned in order to study the vibrational response of 2D periodic and
optimized structures as well as of micro-size structures.

The topology optimization method
The topology optimization technique, see e.g. [7], can with advantage be used to design multi-
phase structures with optimized vibrational and wave-transmitting properties. Using this method
for the steady-state dynamical problem involves, in addition to e.g. a compliance problem, addi-
tional difficulties due the complex FE equations, possible wave-transmitting boundary conditions,
and/or structural damping.
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Figure 3: Response curves showing the acceleration response at the end of the bar as a function of
the excitation frequency, left: experimental data and right: corresponding theoretical predictions.

With the objective of e.g. minimizing the structural response in a certain part of the structure we
can formulate a topology optimization problem as

min
x

|a|T L |a|

s.t. : (K + iΩC − Ω2
M) a = f

0 ≤ xe ≤ 1, e = 1, . . . , N

(1)

where K, C, M are the stiffness-, damping-, and mass-matrix, f , a the forcing and vibration/wave
amplitude and L is a zero matrix with ones at the diagonal elements corresponding to the degrees
of freedom of the nodes, lines, or areas to be damped. A design variable xe is assigned to each of
the N finite elements and the element properties are interpolated as:

p(xe) = (1 − xe)p1 + xep2 (2)

where the subscripts 1 and 2 here correspond to two different material phases and p is a relevant
physical property, e.g. mass density and two stiffness parameters in the elastic case.

Design of optimized structures

In the following, we present some examples of two-phase material structures with optimized wave-
reflecting and wave-guiding properties. In all examples the structural domain is 20×20cm, out-of-
plane waves/vibrations are considered, and the two materials are epoxy and aluminum. The figures
show the optimized topology and the frequency response to the corresponding periodic loading.

In Fig. 4(a) the structure is optimized for a minimum vibration response along each edge of the
structure when it is subjected to a periodic load at 40 kHz along the opposite edge. All boundaries
are free. The frequency response from Fig. 1 is shown for comparison. In Fig. 4(b) the structure
is optimized for maximum wave amplitude at the center of the right edge with a 40 kHz load
acting on most of the left edge. The boundaries are all wave-transmitting and for comparison the
wave-amplitudes are also shown for the structures made of the pure materials.

Further research is currently focused around design of wave-guide structures with the aim of com-
paring the response of optimized designs to existing wave-guide structures.

Concluding remarks

By using multiple material phases it is possible to design structures that have specific wave-
reflecting/vibration-damping and wave-guiding properties. The basic phenomenon used in the de-
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Figure 4: Optimized topologies (left) and frequency responses (right) for 2D structures designed
for minimum/maximum wave/vibration amplitude, (a) wave-reflecting structure, (b) wave-guide
structure.

sign process is band gaps, representing certain frequency ranges for which waves cannot propagate
through a multi-phase periodic material. Topology optimization enables us to systematically de-
sign structures that have optimized properties. This paper has presented some recent results and
also a simple experiment validating the theory and illustrating the basic physical phenomenon.
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Abstract

The aim of this article is to investigate the wave propagation in one-dimensional chains with attached non-linear local oscillators by using
analytical and numerical models. The focus is on the influence of non-linearities on the filtering properties of the chain in the low frequency
range. Periodic systems with alternating properties exhibit interesting dynamic characteristics that enable them to act as filters. Waves can
propagate along them within specific bands of frequencies called pass bands, and attenuate within bands of frequencies called stop bands or
band gaps. Stop bands in structures with periodic or random inclusions are located mainly in the high frequency range, as the wavelength has
to be comparable with the distance between the alternating parts. Band gaps may also exist in structures with locally attached oscillators. In
the linear case the gap is located around the resonant frequency of the oscillators, and thus a stop band can be created in the lower frequency
range. In the case with non-linear oscillators the results show that the position of the band gap can be shifted, and the shift depends on the
amplitude and the degree of non-linear behaviour.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Non-linear wave propagation; Local resonators; Low-frequency band gaps

1. Introduction

The filtering properties of periodic structures with alternat-
ing characteristics have been investigated by many authors by
using analytical, numerical and experimental methods. Such
systems possess interesting filtering properties. Waves can prop-
agate unattenuated along these structures within specific bands
of frequencies called propagation or pass bands, and atten-
uate within bands of frequencies called stop bands, attenu-
ation zones or band gaps. Band gaps in linear systems can
also be created by introducing random inclusions or geometric
disturbances. External excitation in such structures results in
localised response surrounding the external input. The major-
ity of the texts consider linear systems [1–3]. Localisation phe-
nomena can also be observed in perfectly periodic non-linear
structures [4–7], where spring–mass chains are studied and the
non-linear behaviour is introduced either in the spring between
the two neighbour masses, or by adding non-linear springs

∗ Corresponding author.
E-mail addresses: bsl@mek.dtu.dk (B.S. Lazarov), jsj@mek.dtu.dk

(J.S. Jensen).

0020-7462/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijnonlinmec.2007.09.007

between the ground and the masses. The applications of these
filtering phenomena are mainly in the high frequency range, as
the distance between the inclusions has to be comparable with
the wavelength.

In the beginning of the twentieth century Frahm discovered
the vibration absorber as a very efficient way to reduce the
vibration amplitude of machinery and structures by adding a
spring with a small mass to the main oscillatory body [8]. The
additional spring–mass system is tuned to be in resonance with
the applied load. When the natural frequency of the attached
absorber is equal to the excitation frequency, the main struc-
ture does not oscillate at all, as the attached absorber provides
force equal and with opposite sign to the applied one. The idea
can be exploited further by attaching multiple absorbers on a
waveguide. Waves are attenuated in a frequency band located
around the resonant frequency of the local oscillators, and thus
stop bands can be created in the lower frequency range, which
is often more important in mechanical applications. The effect
has been studied experimentally and analytically in [9–11].

If the attached oscillators are non-linear, the response dis-
plays a dependency between the amplitude and the frequency.
Very little is known about the filtering properties of the

http://www.elsevier.com/locate/nlm
mailto:bsl@mek.dtu.dk
mailto:jsj@mek.dtu.dk
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systems in this case. Periodic spring–mass system with attached
non-linear pendulums are investigated in [12]. The attached
pendulums are considered to be stiffer than the main chain, and
they do not introduce band gaps in the lower frequency range.
The aim of this paper is to investigate the behaviour of one-
dimensional infinite spring–mass chain with locally attached
oscillators with linear or non-linear behaviour. The oscillators
are considered to be relatively soft compared to the main chain,
and to create band gaps in the lower frequency range. The
non-linearities in the attached oscillators are considered to be
cubic. First the mechanical system together with the equations
of motion is presented. The appearance of band gaps is shown
in the linear case, and in the case with non-linear attached
oscillators the method of harmonic balance is utilised to obtain
a system of equations for the wave amplitude, as well as an
approximate expression for the wave propagation properties of
the chain. The analytical results are compared with the ones
obtained by numerical simulations, some of which are presented
in [13].

2. Mechanical system and equations of motion

The considered spring–mass system with attached local
oscillators is shown in Fig. 1. Using the dynamic equilibrium
condition for mass j, the equations describing its motion to-
gether with the equation of motion of the attached oscillator
can be written as

(m + M)
d2uj

d�2 + 2kuj − kuj−1 − kuj+1 + M
d2qj

d�2 = 0, (1)

M
d2qj

d�2 + cq̇j + klf (qj ) + M
d2uj

d�2 = 0, (2)

where k is the spring stiffness between two masses, m is
the mass at position j = 0, 1, . . . , ∞, M is the mass of the
attached local oscillator, klf (qj ) is its restoring force and c
is a viscous damping coefficient. uj is the displacement of
mass j, with positive direction shown in Fig. 1, and qj is the
relative displacement of the local oscillator. Both uj and qj

are functions of the time and their positions j. The function
f (qj ) is assumed to be in the form

f (qj ) = qj + �j q
3
j , (3)

where �j is a parameter controlling the degree of non-linearity.
By introducing normalised time t = �0�, where �0 = √

k/m,
the coefficients � = M/m and � = kl/k, Eqs. (1) and (2) can
be written as

üj + 2uj − uj−1 − uj+1 − ��2f (qj ) − 2���q̇j = 0, (4)

q̈j + 2��q̇j + �2f (qj ) + üj = 0, (5)

Fig. 1. Spring mass system with attached local oscillators.

where � = √
�/� and (̈) denotes the second derivative with

respect to the normalised time t.

3. Band gaps in spring–mass chains with attached
oscillators

3.1. Linear undamped oscillators

Using the idea for the vibration absorber, an efficient filter
for waves propagating along a spring–mass chain can be cre-
ated by attaching multiple absorbers to the chain as shown in
Fig. 1. The equations of motion are given by (4) and (5), where
the non-linear parameter � and the damping parameter � are
set to zero. In order to study the transmission properties of the
chain, the solution is sought in the form [1]

uj = Bej	u+i�t , (6)

where 	u is the so-called wave propagation constant of har-
monic wave with frequency �, which is equal to the wave num-
ber multiplied by the distance between the masses in the main
chain, and j is the mass index. The displacements of the neigh-
bour masses j + 1 and j − 1 become

uj+1 = e	uuj , uj−1 = e−	uuj . (7)

By inserting (6) and (7) into the equations of motion (4) and
(5), and requiring the resulting equations to be valid at all time
instances, the following relation between 	u and � is obtained:

cosh(	u) = 1 + 1

2

�4 − (1 + �)�2�2

�2 − �2 . (8)

Eq. (8) is also known as the dispersion relation. Plots of the
real and the imaginary part of 	u for different frequencies are
shown in Fig. 2. Around the natural frequency of the attached
oscillators there exists a frequency band where waves are atten-
uated. Outside the band gap, two neighbour masses j and j + 1
oscillate with phase difference Im(	u). Inside the band gap,
below the natural frequency � of the attached oscillators, two
neighbour masses oscillate with an opposite phase Im(	u) = 

and above � they oscillate with phase difference Im(	u) = 0.
The real part Re(	u) gives the attenuation rate of the wave am-
plitude. At � = � the real part of 	u is infinity and decreases
to zero outside the band gap. It should be pointed out that
the system studied in this section has no energy dissipation
mechanism.

3.2. Non-linear local oscillators

A solution of the non-linear system of equations (4) and (5)
is not known in a closed form. An approximate solution can be
obtained by using the method of harmonic balance, the method
of multiple scales or the method of averaging, e.g. [14,15].
Non-linear oscillators with third order non-linearities, as the
one described by (5), are well studied in the literature. Based
on these solutions the method of harmonic balance is applied
here, in order to study the wave propagation along the chain
with attached damped non-linear oscillators.



1188 B.S. Lazarov, J.S. Jensen / International Journal of Non-Linear Mechanics 42 (2007) 1186–1193

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 2 4 6

ω

Re(μu) Im(μu)

∞

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.5 1 1.5 2 2.5 3 3.5

ω

Fig. 2. Dispersion relation for � = 1.0 and � = 0.1.

The time response of qj (t) is assumed to be periodic in the
form of complex Fourier series

qj (t) =
∑

k

�(k−1)/2Ak,j eik�t + �(k−1)/2Āk,j e−ik�t ,

k = 1, 3, . . . , (9)

where � is a dimensionless bookkeeping parameter showing the
order of the amplitude of the motion. By substituting (9) into
(5) and integrating twice with respect to time, the following
expression for the time response of mass j can be obtained:

uj (t) = A1,j

(
−1 + �2

�2 + 3�
�j�

2

�2 A1,j Ā1,j + 2i��

�

)
ei�t

+ �

(
−A3,j + 2

3

i��

�
A3,j + 1

9

�2

�2 A3,j + 1

9

�j�
2

�2 A3
1,j

)

× ei3�t + c.c. + O(�2). (10)

The expression in the above equation is obtained by truncat-
ing the time series and preserving only the first two terms. By
substituting (10) and (9) into (4) and equating to zero the co-
efficients in front of eik�t , a system of algebraic equations for
the amplitudes Ak,j can be obtained

(
2

(
�2

�2 − 1

)
+ �2 − �1�

2 + 2i�
�

�
(2 − �1�

2)

)
A1,j

+ 3�j

�2

�2 (2 − �1�
2)A2

1,j Ā1,j

+
(

1 − �2

�2 − 2i�
�

�

)
(A1,j+1 + A1,j−1)

− 3�j+1
�2

�2 A2
1,j+1Ā1,j+1 − 3�j−1

�2

�2 A2
1,j−1Ā1,j−1 = 0,

(11)

(
2

(
�2

�2
3

− 1

)
+ �2

3 − �1�
2 + 2i�

�

�3
(2 − �1�

2
3)

)
A3,j

+
(

2
�2

�2
3

− �1�
2

)
�jA

3
1,j +

(
1 − �2

�2
3

− 2i�
�

�3

)

× (A3,j+1 + A3,j−1)

− �j+1
�2

�2
3

A3
1,j+1 − �j−1

�2

�2
3

A3
1,j−1 = 0, (12)

where �1 = � + 1 and �3 = 3�. By specifying the amplitudes
for two neighbour masses and, respectively, for the attached
oscillators, a solvable system of equations for the response am-
plitudes of the attached oscillators can be obtained. The system
is non-linear and there can be multiple solutions satisfying it in
certain cases. The amplitude of the wave travelling along the
main chain can be obtained by inserting the amplitude of the
attached oscillators into (10).

The wave travelling along the spring–mass chain can also
be investigated by using the wave number multiplied by
the distance between the masses in the main chain 	u. The
displacements of the masses neighbour to mass j can be
expressed as

uj±1 =
∑

k

Bk,j e±	uk eik�t + c.c., (13)

where Bk,j are the coefficients in front of eik�t from Eq. (10).
It can be clearly seen that the solution in the non-linear case
consists of a zero order wave with frequency � and addi-
tional high order waves. As the non-linearities are assumed
to be small and the focus is on the filtering properties of
the chain around the linear natural frequency of the attached
oscillators, the contributions to the solution of the harmonics
of order equal to and higher than k = 3 are neglected. Substi-
tuting (13) and (9) into (4), equating the coefficients in front of
ei�t to zero and solving the resulting equation with respect to
	u, the dispersion relation for the non-linear case is obtained in
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the form

cosh(	u) = 1 − 1

2
�2

− 1

2

�2�(�2 + 2i��� + 3�2�jA1,j Ā1,j )

(�2 + 2i��� + 3�2�jA1,j Ā1,j − �2)
. (14)

The dispersion relation for the linear case can be obtained from
(14) by setting the non-linear parameter �j equal to zero and
removing the damping in the attached oscillators. The influence
of the damping parameter � on the dispersion relation in the lin-
ear case can be seen in Fig. 3. Den Hartog has shown in [8] that
the introduction of viscous damping in the vibration absorber
increases the frequency interval in which the device is effec-
tive. Similar behaviour can be observed for wave propagation
problems. The maximal value of the attenuation rate decreases
with increasing the damping in the attached oscillators, and for
high values of � the band gap practically disappears. Similar
behaviour is observed for two-dimensional wave propagation
problems in [16]. The value of Im(	u) is always different from
0 or ±
 in the damped case, and thus oscillatory behaviour in
the spatial domain can always be observed. The influence of the
mass ratio � on the band gap is shown in Fig. 4. The width of
the stop band can be increased by increasing the attached mass.

For the non-linear spring–mass chain, 	u depends on the am-
plitude of the attached oscillator at position j. Plots of the dis-
persion relation for different values of the non-linear parameter
�A1,j Ā1,j are shown in Fig. 5. As can be seen, the position of
the maximal value of the attenuation rate varies with the value
of the non-linear parameter. The maximum is shifted above the
linear natural frequency of the attached oscillators, and the shift
increases for larger values of the amplitude A1,j . For a nega-
tive value of the non-linear parameter �, the shift will occur in
the opposite direction, below the linear natural frequency. As
the wave propagates, the amplitude A1,j decreases, due to the
reflections from the attached oscillators, as well as due to the
damping in the system, and the position of the maximal value
of Re(	u) moves toward �/� = 1. The amplitudes vary along
the chain, and 	u becomes a function of the spatial coordinate
j. A fixed wave propagation constant cannot be defined in the
non-linear case.

3.3. Transmission properties based on analytical calculations

For given values of the amplitudes B1,j and A1,j of mass
j and the corresponding attached oscillator, the value of 	u

can be calculated using (14). The amplitude of the mass at
position j +1 is calculated as B1,j+1 =e	uB1,j . The amplitude
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Fig. 5. Dispersion relation for � = 0.1, � = 0.01 and different values of the non-linear parameter �A1,j Ā1,j .

A1,j+1 of the attached oscillator can be calculated by solving
the following equation:

B1,j+1=A1,j+1

(
−1+ �2

�2 +3
�j+1�

2

�2 A1,j+1Ā1,j+1+2i��

�

)

(15)

which is obtained from (10) and (13) by equating the
coefficients of ei�t . Eq. (15) resembles the equation for the
amplitude of the stationary response of externally excited Duff-
ing oscillator. By using polar representation for the amplitudes
A1,j+1 = RA(cos(�) + i sin(�)) and RB = |B1,j+1|, (15) can
be written as

9�2r4R6
A + 6�j+1r

2(r2 − 1)R4
A + ((r2 − 1)2

+ 4�2r2)R2
A − R2

B = 0, (16)

where r = �/�. Eq. (16) can be represented as a cubic equa-
tion with respect to R2

A. It has either one, or three real roots
for R2

A. In the second case, two of the solutions are stable and
one of them is unstable, which is well known property of the
Duffing oscillator [14]. There are two values of 	u correspond-
ing to the two stable solutions of (16), and a unique value for
B1,j+2 cannot be obtained. The two solutions for 	u,j+1 can
be ordered by the magnitude of their real part. The one with
larger absolute real value, 	l

u,j+1, produces an amplitude with
a smaller absolute value, and the other one, 	u

u,j+1, produces an
amplitude with a larger absolute value. Continuing in this way,
an estimate for the upper and the lower bounds of the absolute
value of the wave amplitude can be obtained:

|Bu
1,j+k| =

( ∏
n=1...k

eRe(	u
u,j+n)

)
|Bu

1,j |,

|Bl
1,j+k| =

( ∏
n=1...k

eRe(	l
u,j+n)

)
|Bl

1,j |. (17)

In the case where only a single real solution for R2
A exists,

	l
u,j+k is equal to 	u

u,j+k and |Bu
1,j+k| = |Bl

1,j+k|.

4. Numerical simulations

The theoretical analysis derived in the previous section is
validated by using numerical simulations for finite spring–mass
chain, as shown in Fig. 1. Absorbing boundary conditions are
applied at each end of the chain by adding dash-pot with a
damping constant c = 1. The damping constant corresponds to
the exact absorbing boundary condition for a continuous rod
with distributed mass A=1 and stiffness EA=1, where  is the
mass density, A is the section area and E is the elastic modulus.
A wave travelling in the right direction is generated by applying
a harmonic force with frequency � and unit amplitude at the left
end of the chain. The first and the last 10 masses in the chain are
without attached oscillators. The wave travels undisturbed, until
it reaches the part with the attached oscillators, where a part of
it is reflected back, and a part of it propagates until it reaches
the right end of the chain. The system is integrated numerically,
until steady state is reached. The root-mean-squared (RMS)
value of the response amplitude

[Bj ] = 1√
2

√
1

T

∫ t+T

t

u2
j (t) dt (18)

is calculated at the right end of the chain and is compared with
the results obtained by using the analytical prediction derived
in the previous section. The RMS value is calculated for a
finite time interval T = 20�, where � = 2
/� and � is the
frequency of the generated wave. The contribution of the higher
order harmonics to the RMS value of the response amplitude
is assumed to be small.

4.1. Influence of the non-linearities

The transmission properties of a chain with 2000 attached
oscillators calculated by using numerical simulations, and the
procedure in Section 3.3, are shown in Fig. 6. The non-linear
coefficients �j = � are taken to be the same for all attached
oscillators. The results are obtained for several values of �.
The linear normalised frequency � of the attached oscillators is
0.05. For small values of the non-linear coefficient the estimated
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Fig. 6. Comparison of the theoretical prediction (dotted curves) of the transmitted amplitude with the one obtained by numerical integration for different values
of � = 0.0, 0.1, 0.25, 0.5, 1.0, 1.5, � = 0.1, � = 0.01. The RMS value of the amplitude of the first mass is 0.25.

upper and lower values of the absolute value of the amplitude
bound well the estimated RMS value of the amplitude from the
numerical simulations. For large values of the non-linearity the
results start to deviate. The frequency shift in the band gap can
be clearly observed in all plots for � �= 0. In addition, the shape
of the band gap changes, and the decaying rate decreases with
increasing the non-linear coefficient.

4.2. Influence of the chain length

The results obtained by both numerical simulations and
analytical calculations for chains with different number of the
attached oscillators are shown in Fig. 7. The non-linear param-
eter �=0.3 is kept at a fixed value for all different spring–mass

chains, and is taken to be the same for all attached oscillators.
As can be seen, for small number of the attached oscillators
the frequency shift of the band gap is significant. The reduc-
tion of the transmitted amplitude is relatively small compared
with the one obtained for larger number of the attached oscil-
lators. As the wave propagates along the chain, the amplitude
is decreasing leading to frequency shift of the band gap back
towards the linear natural frequency. The effect can be clearly
observed by studying the plots.

4.3. Chains with variable non-linear coefficients

If the wave frequency is located in the band gap, the am-
plitude is decaying fast, and the band gap is shifted back to
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Fig. 7. Comparison of the theoretical prediction (dotted curve) of the transmitted amplitude with the one obtained by numerical integration for different
numbers of the attached oscillators nl = 250, 500, 1000, 1500, 2000, 2500 and � = 0.3.

the one obtained for linear attached oscillators. The shift de-
pends on the value of �jA1,j Ā1,j . As the amplitude decreases
along the chain, �j can be changed, in order to keep the shift
of the band gap at a desirable frequency. For very small ampli-
tudes the value of � needs to be very large and thus, there will
always be a wave with finite amplitude propagating after the
part of the chain with attached oscillators. Plots of the trans-
mitted amplitude for chains with 400 attached oscillators are
shown in Fig. 8. A chain with variable non-linearities is chosen
with � equal to 0.12

√
exp((i − 1)/100), and for comparison the

results for chains with constant � = 0.12 corresponding to the
minimal value of � in the chain with variable non-linearities,
� = 0.88 (maximal value) and � = 0.3 (intermediate value), are

shown in the figure. The input RMS value of the amplitude is
equal to 0.25, the damping coefficient is � = 0.02 and i is the
number of the attached oscillators. The theoretical prediction
is calculated by using the procedure in Section 3.3. In all cases
with � �= 0, a shift in the stop band frequency can be clearly
observed. The shift of the chain with variable � is between the
shift for the cases with �= 0.12 and 0.88, and close to the case
with the intermediate value � = 0.3. The theoretical prediction
indicates better filtering properties in the case with variable �
and this result is also supported by the numerical simulations.

The expression for � in the chain with variable non-linearities
is obtained by trial and error. A systematic optimisation pro-
cedure can produce better results. More improvements are
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Fig. 8. Comparison of the transmitted amplitude for variable (solid line) and fixed (circular dots � = 0.3) � for chain with 400 attached oscillators. The two
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possible if variation is allowed not only in the non-linearities
but also in the linear stiffness coefficients, mass ratio and the
damping. A study based on a topology optimisation approach
for a similar linear continuous system is presented by the au-
thors in [17]. An extension to the non-linear case is a subject
for future work.

5. Conclusions

The focus in this article is on the influence of the non-
linearities on the filtering properties of the chain around the
linear natural frequency of the attached oscillators. The posi-
tion of the band gap can be shifted by changing the degree of
non-linearity of the oscillators, or by changes of the wave am-
plitude. A comparison with numerical simulations for a finite
chain with attached oscillators shows that the analytical pre-
dictions match simulations well for small non-linearities, and
start to deviate for large ones. Both estimations clearly show a
shift in the band gap. The transmitted amplitude will always be
different than zero for wave frequencies different than the lin-
ear natural frequency of the attached oscillators and for finite
values of the non-linear parameter �. The change in the posi-
tion of the stop band can be utilised in the design of adjustable
filters in the lower frequency range. The optimal distribution
of the non-linearities, as well as the natural frequencies and
the damping of the attached oscillators, is subject to further
investigations.

Acknowledgements

This work was supported by Grant 274-05-0498 from the
Danish Research Council for Technology and Production Sci-
ences. The authors wish to thank Professor Jon Juel Thomsen
for his suggestions and valuable discussions.

References

[1] L. Brillouin, Wave Propagation in Periodic Structures, Dover Publications
Inc., New York, 1953.

[2] D.J. Mead, Wave-propagation and natural modes in periodic systems. 1.
Mono-coupled systems, J. Sound Vib. 40 (1975) 1–18.

[3] D.J. Mead, Wave-propagation and natural modes in periodic systems.
2. Multi-coupled systems, with and without damping, J. Sound Vib. 40
(1975) 19–39.

[4] A.F. Vakakis, M.E. King, A.J. Pearlstein, Forced localization in a periodic
chain of nonlinear oscillators, Int. J. Non-linear Mech. 29 (1994)
429–447.

[5] G. Chakraborty, A.K. Mallik, Dynamics of a weakly non-linear periodic
chain, Int. J. Non-linear Mech. 36 (2001) 375–389.

[6] A. Marathe, A. Chatterjee, Wave attenuation in nonlinear periodic
structures using harmonic balance and multiple scales, J. Sound Vib.
289 (2006) 871–888.

[7] O. Richoux, C. Depollier, J. Hardy, Propagation of mechanical waves in
a one-dimensional nonlinear disordered lattice, Phys. Lett. E 73 (2006)
026611.

[8] J.P. Den Hartog, Mechanical Vibrations, 4th ed., McGraw-Hill, New
York, 1956 (Reprinted by Dover Publications Inc., New York, 1985).

[9] D.L. Yu, Y.Z. Liu, G. Wang, L. Cai, J. Qiu, Low frequency torsional
vibration gaps in the shaft with locally resonant structures, Phys. Lett.
A 348 (2006) 410–415.

[10] Z. Liu, X. Zhang, Y. Mao, Y.Y. Zhu, Z. Yang, C.T. Chan, P. Sheng,
Locally resonant sonic materials, Science 289 (2000) 1734–1736.

[11] G. Wang, J. Wen, X. Wen, Quasi-one-dimensional phononic crystals
studied using the improved lumped-mass method: application to locally
resonant beams with flexural wave band gap, Phys. Lett. B 71 (2005)
104302.

[12] I.T. Georgiou, A.F. Vakakis, An invariant manifold approach for studying
waves in a one-dimensional array of non-linear oscillators, Int. J. Non-
Linear Mech. 31 (1996) 871–886.

[13] B.S. Lazarov, J.S. Jensen, Band gap effects in spring–mass chains with
attached local oscillators, in: Proceedings of the ECCOMAS Thematic
Conference of Computational Methods in Structural Dynamics and
Earthquake Engineering, Rethymno, Crete, Greece, 2007.

[14] J.J. Thomsen, Vibrations and Stability, Springer, Berlin, Heidelberg,
2003.

[15] A.H. Nayfeh, D.T. Mook, Nonlinear Oscillations, Wiley, New York, 1979.
[16] J.S. Jensen, Phononic band gaps and vibrations in one- and

two-dimensional mass–spring structures, J. Sound Vib. 266 (2003)
1053–1078.

[17] J.S. Jensen, B.S. Lazarov, Topology optimization of distributed mass
dampers for low-frequency vibration suppression, in: Proceedings of
the ECCOMAS Thematic Conference of Computational Methods in
Structural Dynamics and Earthquake Engineering, Rethymno, Crete,
Greece, 2007.



r4m THE ROYAL 
10.1098/rsta.2003.1177 !.IU SOCIETY 

Systematic design of phononic band-gap 
materials and structures by 

topology optimization 
BY OLE SIGMUND AND JAKOB S0NDERGAARD JENSEN 

Department of Mechanical Engineering, Section for Solid Mechanics, 
Nils Koppels Alle Building 404, 2800 Kgs. Lyngby, Denmark 

Published online 26 March 2003 

Phononic band-gap materials prevent elastic waves in certain frequency ranges from 
propagating, and they may therefore be used to generate frequency filters, as beam 
splitters, as sound or vibration protection devices, or as waveguides. In this work we 
show how topology optimization can be used to design and optimize periodic mate- 
rials and structures exhibiting phononic band gaps. Firstly, we optimize infinitely 
periodic band-gap materials by maximizing the relative size of the band gaps. Then, 
finite structures subjected to periodic loading are optimized in order to either min- 
imize the structural response along boundaries (wave damping) or maximize the 
response at certain boundary locations (waveguiding). 

Keywords: phononic band gaps; topology optimization; materials; structures 

1. Introduction 

A new application of the topology-optimization method is design of materials and 
structures subject to wave propagation. The wave may be elastic, acoustic or electro- 
magnetic, but the phenomenon is the same: for some frequency bands it is possible to 
construct periodic materials or structures that hinder propagation. The phenomenon 
is a band gap. 

The phenomenon of band gaps may be illustrated by the following example. Fig- 
ure la, b shows a two-dimensional square domain subjected to a periodic loading 
at the left edge and with absorbing boundary conditions along all the edges. The 
frequency of excitation of the structure in figure la is lower than that for figure lb. 
It is seen that waves propagate unhindered through the structures from left to right, 
damped only slightly at the top and bottom due to the absorbing boundary con- 
ditions. Now, if we introduce a periodic distribution of inclusions with different 
propagation speeds, the situation changes. For the structure subjected to a lower 
excitation frequency (figure Ic), there is still propagation, although the waves are 
significantly distorted by the reflection and refraction from the inclusions. However, 
for the structure subjected to a higher excitation frequency (figure ld), there seems 
to be no propagation at all. This illustrates the band-gap phenomenon. For elastic 
and acoustic waves the materials are called phononic band gap materials, and for 
electromagnetic wave propagation the materials are called photonic band gap mate- 
rials. 

One contribution of 12 to a Theme 'Micromechanics of fluid suspensions and solid composites'. 
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Figure 1. Scalar wave propagation in two-dimensional domains with absorbing boundary condi- 
tions and forced vibrations at the left edge. (a) Wave propagation through homogeneous struc- 
ture; (b) wave propagation with higher frequency through a homogeneous structure; (c) wave 
propagation through a structure with periodic inclusions; (d) (no) wave propagation with higher 
frequency through a periodic structure; (e) wave propagation through a periodic structure with 
a defect; and (f) waveguiding a higher frequency through a periodic structure with a defect. 

Interest in the photonic band gap materials and structures over the last decade 
has been large. Based on the theory developed (see, for example, Joannopoulos et al. 
1995; Yablonovitch 2001), industrial applications such as improved waveguides (see 
figure le, f) and lasers have emerged. The work on photonic band gaps has caused a 
renewed interest in phononic band gap materials. The basic principles of wave prop- 
agation in elastic media are well established (e.g. Brillouin 1953; Elachi 1976), but 
more recent research in this field has focused on theoretical and experimental demon- 
stration of band gaps in two-dimensional and three-dimensional periodic materials 

(e.g. Sigalas & Economou 1992; Vasseur et al. 1998; Liu et al. 2000; Kushwaha 1996). 
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Phononic band-gap optimization 

However, unlike photonic crystals, phononic band-gap materials and structures have, 
to the authors' knowledge, not yet directly led to industrial applications, but have 

potentially rewarding applications in frequency filters with control of pass or stop 
bands, as beam splitters, as sound or vibration protection devices, as acoustic lasers 

(phasers), as perfect acoustic mirrors, or as elastic waveguides. 
A comprehensive and frequently updated reference list for work on photonic and 

phononic band gaps can be found on http://www.pbglink.com. 
Little work has been done on the systematic design of band-gap materials and 

structures. In the literature, the 'optimal' band-gap material is usually found by 
parameter studies based on fixed inclusion shapes (e.g. circular inclusions). A 

promising method for systematic design of band-gap materials and structures is 
the topology-optimization method (see Bends0e & Sigmund (2003) and references 

therein). In topology optimization one discretizes the design domain (e.g. the peri- 
odic base cell) by a large number of elements (typically coinciding with the finite- 
element mesh) and allows the material density or type in each element to be a design 
variable. By defining proper objective functions and constraints, efficient and entirely 
new topologies defined as raster pictures may be obtained. Since its introduction in 
the late 1980s (Bends0e & Kikuchi 1988), the topology-optimization method has been 

applied to a myriad of design problems ranging from simple compliance minimization 
for elastic structures over design of extremal materials with negative thermal expan- 
sion coefficients (Sigmund & Torquato 1997) to design of microelectromechanical 

systems (Sigmund 2001a, b). Topology-optimization methods have been applied to 
the design of photonic band-gap materials considering scalar fields in Cox & Dobson 

(1999, 2000), and preliminary results of the topology-optimization method applied 
to the design of phononic band-gap materials considering both scalar and coupled 
problems have been published in Sigmund (2001c) and Sigmund & Jensen (2002). To 
the authors' knowledge, no papers on topology optimization of band gap structures 
have been published, apart from some preliminary results presented in Sigmund & 
Jensen (2002). 

The paper is organized as follows: after defining the basic equations, we briefly 
discuss the analysis of materials and structures in a standard finite-element-method 

(FEM) formulation and provide examples showing the typical behaviour of periodic 
materials and structures (? 2). We then introduce the topology-optimization tech- 

nique and apply it to design materials with maximum relative band-gap size and 
structures with optimized wave-damping or waveguiding properties (? 3). Finally, we 
make some conclusions (? 4). 

2. Propagation of elastic waves 

Vibrations and wave propagation in a three-dimensional elastic inhomogeneous 
medium are governed by 

02 = , (AV .u) +V ( v+ )), (2.1) 

POt2 a ax 
Pt2 = 0(V u) + V Vv + (2.2) 

P2 = (V ) + V IV Vw + (2.3) POt2 - a(X u + ' 
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where A and ,u are Lame's coefficients, p is the material density, and u {uvw}T 
the displacement vector. 

In the following we assume that any variation in the material parameters occurs in 
the (x, y)-plane only; thus we have A = A(x, y), ,L = -u(x, y), and p = p(x, y). Further, 
we restrict the analysis by only considering waves that propagate in the (x, y)-plane, 
so that Ou/Oz = 0. Equations (2.1)-(2.3) can then be split into two coupled in-plane 
equations (governing the longitudinal and transverse modes) and an out-of-plane 
equation (the acoustic modes): 

Pt2 = a (2/,+A) a + A +3ya((,9 
- (2.4) Pt2 -Ox O2 x Dy y y x ay 

Q 
^ay (~Lh) 

v 9u\ 
P2 , = + au)) + a (2 + A) ?v + A (2.5) 9t2 ax\ 9x 9y ) 9yy 19Y Ox 

02w a ( 9w\ ( 9Ow\ 
P9t2 Ax Ax ) +y tO ay (2.6) 

/ DyOxDy 

Equations (2.4)-(2.6) can be solved with the appropriate boundary conditions 
applied. For the design of waveguides we need to be able to simulate travelling waves, 
and for that purpose we introduce absorbing boundary conditions. In the scalar case, 
for normal incident waves on a flat boundary, the absorbing boundary condition can 
be written as (e.g. Krenk 2002) 

9w 1 8w 
+- = 0, (27) On c Ot 

where n is the outward-pointing normal vector and c = /-/p is the local wave speed. 
Further analysis is now split into two separate parts. First, the material problem is 

addressed by analysing base cells that are repeated infinitely, and then the structural 
problem is considered for finite-dimensional media with external loading. In both 
cases, equations (2.4)-(2.6), with the boundary conditions (2.7), are solved using a 
standard FEM procedure using four-noded bilinear quadrilateral elements for the 
discretization. 

(a) The material problem 

For the material problem, the wave equation may be solved as an eigenvalue prob- 
lem for an infinitely periodic structure. We may solve the global problem by analys- 
ing the smallest repetitive unit, the base cell Y. We assume that the modes can be 
described by the expression 

u(y, k) = u(y)eikTYeit, (2.8) 

where i is a Y-periodic displacement field, y = (yl, Y2) are the local cell coordinates 
and k is the plane wave vector. For k = 0, the solution mode u(y) will be Y-periodic, 
for k = r, the solution mode will be 2Y-periodic and for other k, the solution modes 
can take any kind of periodicity in the plane. This kind of modelling is based on the 
so-called Floquet-Bloch wave theory (Mathews & Walker 1964; Kittel 1986). 

Inserting (2.8) into either (2.4), (2.5) or (2.6), dropping the tilde, and converting 
to FEM notation yields 

(K(k) -2M) = 0, (2.9) 
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Figure 2. (a) The irreducible Brillouin zone indicating the wave vectors to be searched for the 
general two-dimensional case (grey area). For square symmetry, the wave equation only has 
to be calculated for k-vector values along the curve F-X-M-F. (b) Sketch of band structure 
indicating lowest five eigenvalues for wave vectors along the line F-X-M-F in the irreducible 
Brillouin zone. 

Table 1. Material parameters for the examples 

pl P2 E1 E2 
contrast (103 kg m-3) (103 kg m-3) (GPa) (GPa) v 

high 1 2 4 20 0.34 
low 1 2 4 9 0.34 

which is recognized as a complex eigenvalue problem with K(k) the stiffness matrix 
and M the mass matrix. Equation (2.9) should be solved for any wave vector k, 
but due to the periodicity we may restrict the wave vector to the first Brillouin zone 
k E [-Tr, 7r]d, where d is the dimension (Brillouin 1953). Due to the square symmetry 
of the base cell, the area can be restricted further to the triangle defined by the lines 
F -+ X, X -+ M and M -+ F (see figure 2a). In principle, the whole triangle should 
be searched, but, although unproven, many researchers claim that the information 
required can be obtained by searching points only on the boundary lines. Figure 2b 
shows a sketch of how the results of the FE analysis are presented in a band diagram 
for the coupled problem (2.4), (2.5) solved for the five lowest eigenvalues. 

Throughout this paper we will use two sets of material parameters for the exam- 
ples. They are denoted the 'high-contrast' and the 'low-contrast' cases (see table 1). 

Band diagrams calculated for base cells of 2 cm x 2 cm composed of two material 
phases (high-contrast) are shown in figure 3. First we show the band diagrams for 
the in-plane coupled modes (2.4) and (2.5) for pure material phases 1 and 2 in fig- 
ure 3a and figure 3b, respectively. It is seen that, for these homogeneous materials, 
eigenmodes (i.e. propagation modes) exist for all frequencies. Figure 3c shows the 
band structure for square phase 2 cylinders in a matrix of phase 1. It is seen that in 
this case there is a range of frequencies with no corresponding eigenmodes, i.e. there 
is a band gap between the third and fourth bands (from 56 to 64 kHz, corresponding 
to a relative band-gap size of Af/fo = 0.14). This means that no elastic waves with 
frequencies within the band gap may propagate through the structure. The band-gap 
zone is indicated with hatched regions in the diagram. Figure 3d shows the band- 
gap structure for the scalar case (2.6). Here there is a band gap between the first 
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Figure 3. Left, single cell; middle, 3 x 3 arrays of cells; right, band diagram for coupled plane 
waves in (a) pure phase 1, (b) pure phase 2 and (c) square phase 2 cylinders in matrix of phase 1 

(high-contrast case). Hatched areas denote band gaps. The horizontal axes denote values of the 
wave vector k on the boundary of the irreducible Brillouin zone. The band diagrams are based 
on the solution of 30 eigenvalue problems with varying k solved for the six lowest eigenvalues. 
(d) Band diagram for the scalar (out-of-plane) problem with the full band gap shown as a 
hatched region and two partial band gaps indicated by cross-hatched regions. The size of the 
base cells is 2 cm x 2 cm and the discretization is 10 x 10 elements. 
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Figure 4. Response of a 12 cm x 12 cm square structure subjected to periodic loading on the left 
boundary, (a) pure material 1, (b) pure material 2, and (c) a periodic structure of materials 1 
and 2; (d) response calculated as the average amplitude on the right boundary for the structure 
of pure materials 1 and 2 without damping, and for the periodic structure with and without 
mass-proportional damping. High-contrast case. 

and second bands (from 38 to 46 kHz, corresponding to a relative band-gap size of 
A f/fo = 0.20). Furthermore, there are two partial band gaps (for modes propagat- 
ing in the horizontal direction for the frequency ranges 28-46 kHz and 70-76 kHz 
(indicated by cross-hatched regions in the figure). Note that the calculations in this 
example are based on an extremely coarse discretization (10 x 10 elements). The 
coarse discretization is chosen in order to be able to compare the results with results 
for the finite-dimensional structures that cannot be modelled with an extremely fine 
grid due to computing-time limitations. 

(b) The structural problem 

For the structural problem with external harmonic loading, we assume a harmonic 
wave solution described as 

u = eit, (2.10) 

where Q is the driving frequency and ut is the amplitude. Substituting equation (2.10) 
into equations (2.4), (2.5) or equation (2.6), depending on whether in-plane or out- 
of-plane waves are considered, dropping the hat, and converting to FEM notation 
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we get 
(K + i2C - 22M)u = f, (2.11) 

where we have added boundary (harmonic) forces f and a damping matrix C stem- 
ming from absorbing boundaries (2.7) or structural damping. In this work we include 
absorbing boundaries only in the out-of-plane case. Structural damping is included 
in the form of standard Rayleigh damping, 

C =aK + 3M, (2.12) 

with a the stiffness-proportional and / the mass-proportional damping constants. 
Figure 4 shows three different structures and the corresponding steady-state 

responses when subjected to harmonic loading at the left boundary. In-plane vibra- 
tions are considered for the high-contrast case and the response is calculated as the 
average amplitude along the right boundary. The structure in figure 4c is made from 
a periodic material consisting of a matrix of material 1 (grey) with 36 square inclu- 
sions of material 2 (black) (the inclusions cover 36% of the base cells, corresponding 
to the periodic material in figure 3c). From figure 3c it was found that the infinitely 
periodic material has a band gap between the third and the fourth propagation 
modes around f = 60 kHz. Figure 4d shows the corresponding response of the finite 
structure when subjected to the external loading. The band gap is identified from the 
drop in response around the gap frequency, but the drop is not as large as might have 
been expected and there are two peaks in the middle of the interval. This can partly 
be ascribed to the small number of base cells (6 x 6) included in the structure, but 
more importantly to resonance effects due to the reflections from the non-absorbing 
boundaries. 

Figure 4d also shows the response calculated with mass-proportional damping 
included (a = 0, 3 = 50 x 103). The damping is seen to remove the resonance peaks 
in the response, but the reduction in response near the band gap is still seen and the 
peaks inside the band-gap range have been removed. This effect of smoothing of the 
response by including damping will be used later in the optimization procedure. The 
responses for the structures made of pure material 1 and material 2, respectively, are 
shown in figure 4d for comparison. 

A response diagram for the structure in figure 4c but modelling the out-of-plane 
case and including absorbing boundary conditions on the left and right edges is shown 
in figure 5. Compared with the response curve for the in-plane and non-absorbing 
boundary case from figure 4, the response is seen to be much cleaner and free from 
local peaks. Also, the band gap is seen to correspond very well to the partial band 
gaps from figure 3d. 

From the results shown in figures 3 and 4, two optimization problems naturally 
emerge. For the material problem the size of the band gaps should be maximized to 
increase the frequency range for which waves cannot propagate through the material. 
For the structural problem, the response of the structure may be minimized for a 
given frequency, or alternatively maximized in certain structural areas to create 
wave-damping or wave-guiding structures, respectively. 

3. Topology optimization 

We follow the standard approach to topology optimization (cf. Bends0e 1995; 
Bends0e & Sigmund 2003). The topology-optimization problem consists of distribut- 
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Figure 5. Response of a 12 cm x 12 cm square structure subjected to periodic loading on the left 

boundary, absorbing boundary conditions on the left and right edges and out-of-plane modelling. 
High-contrast case. 

ing two material phases in the design domain such that an objective function is 
extremized subject to a number of constraints. The design variables are material 
'densities' Xe C [0, 1] that interpolate the material properties for each element used 
to discretize the structure. If the design variable takes a zero value we should have 

pure phase 1 material, and if the design variable takes a value of one we should have 

pure phase 2 material in the element. We choose a linear interpolation between the 

phases, given as 

p(Xe) = (1 - Xe)p + XeP2, (3.1) 

/1(Xe) = (1 - Xe)Pl + XeL2, (3.2) 

A(xe) = (1 - xe)Al + XeA2, (3.3) 

where subscripts '1' and '2' denote the properties in materials 1 and 2, respectively. 
The choice of linear interpolation stems from the observation that there appears 

to be no need for penalizing intermediate 'densities', i.e. values of Xe other than zero 
or one in the final design. The reason for this is believed to originate in the nature 
of the band-gap phenomenon, where large contrasts between the involved material 
phases is favoured. 

(a) Material optimization 

An obvious goal for the optimization of band-gap materials is to maximize the 
relative band-gap size. In this way the range of prohibited frequencies will be wider 
and more signals may be sent through a waveguide based on defects in the band-gap 
material. 

The goal of the optimization is to maximize the relative band-gap size between 
bands j and j + 1, i.e. maximize the lowest value of the overlying bands and minimize 
the maximum value of the underlying bands. This can written as a (double) max-min 

objective 

w2 - ) M ink1) 
2 
(J+k,x) - maxk w2(k,x) 3 

max: c(x)-= () - . (3.4) x W2 m(x) mink (2 (k,x) +maxk j(k,x) 0~~~~~)+ Wi j W 
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This is a 'dirty' objective function in the sense that it is a max-min problem with 
varying critical points (the k-vector(s) for the critical frequencies may change dur- 
ing the optimization) and it may have several multiple eigenvalues. Interestingly, 
however, there is no need for a volume fraction constraint in the problem, since pure 
phase 1 will give no band gap and pure phase 2 will give no band gap (cf. figure 3a, b). 
Somewhere in between there must be a volume fraction that results in the biggest 
band gap. 

The optimization problem may be written as 

Aw2(x) max 2() s.t.: (K(k)- M) u = 0, k E [F-X-M-r], x woW 
0 <xe 1, e= 1,..., N, (3.5) 

where N is the number of elements used to discretize the design domain. The opti- 
mization problem may efficiently be solved by use of the mathematical programming 
'method of moving asymptotes' (MMA) (Svanberg 1987, 1998).t As mentioned, the 
sensitivity analysis is somewhat complicated, since it involves sensitivities of multiple 
eigenvalues; methods to avoid this problem are described in Seyranian et al. (1994). 

An interesting observation can be made by studying the results of both the material 
optimization problem and the structural optimization problem (see below). In con- 
ventional topology-optimization problems with the goal of minimizing elastic compli- 
ance, the optimal solution does not exist in the sense that a finer discretization will 
result in a topology with a more complicated microgeometry and a better compliance. 
In the wave-propagation examples considered in this paper, this mesh-dependency 
is not encountered. This may be attributed to the finite length-scales imposed by 
the wavelengths. Nevertheless, in order to convexify the problems during initial iter- 
ations, we use the filter method suggested by Sigmund (1997). However, the filter is 
removed before the final convergence. 

(i) Results for out-of-plane waves 

The resulting topologies for maximization of the band gap between the first and 
the second bands, considering out-of-plane modelling for the two material cases, are 
shown in figure 6. For the high-contrast case the relative band-gap size is 0.225, and 
for the low-contrast case it is 0.025. It is seen that, for the high-contrast case, the 
optimized topology is a square inclusion of phase 2 material with slightly rounded 
corners. For the low-contrast case, the optimized topology approaches a circular 
inclusion with a lower volume fraction of phase 2 material. For comparison, a square 
inclusion with relative size 0.7 would result in relative band-gap sizes of 0.225 and 
0.010, respectively. This means that, at least for the high-contrast case, the simplest 
and optimal solution is the square inclusion. 

(ii) Results for in-plane waves 

The resulting topologies for in-plane waves are seen in figure 7. For both the 
high-contrast and low-contrast cases, the optimized topologies are seen to be square 

t A modified version of the code (Svanberg 1998) that allows for solving of the min-max problem 
(3.5) can be obtained from Svanberg (free for academic purposes). 
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Figure 6. Material optimization based on out-of-plane modelling. Optimized topologies for maxi- 
mization of relative size of the band gap between the first and the second bands: (a) high-contrast 
case; (b) low-contrast case. In both cases the base cell was discretized by 30 x 30 bilinear finite 
elements. 

inclusions with small 'ears' almost independent of the phase contrast. The relative 

band-gap sizes are 0.21 for the high-contrast case and 0.001 (i.e. hardly a band gap) 
for the low-contrast case. For comparison, the relative band-gap sizes for perfect 
square inclusions with relative sizes 0.17 are 0.19 and -0.001, respectively. In this 
case, it therefore cannot be concluded that the perfectly square inclusion is the 
optimal solution. 

(b) Structural optimization 

The material design problem in the previous subsection assumed infinite period- 
icity of the material. This means that neither the influence of boundaries nor the 
defects in the periodic structure could be modelled. In order to model finite domains, 
we use the wave equation (2.11) and the objective function here may be to minimize 
the magnitude of the wave at the boundaries (hinder wave propagation) or to max- 
imize the wave magnitude at certain points in the structure (waveguiding). 

An optimization problem solving the problem of minimizing the wave magnitude at 
a point, a line, or an area of a structure subjected to periodic loading with frequency 
Q can be written as 

min ulTLlul s.t.: (K + iC- 22M)u f, < Xe 1, e = 1,..., N, (3.6) 
x 

where L is a zero matrix with ones at the diagonal elements corresponding to the 
degrees of freedom of the nodes, lines or areas to be damped. Due to the complex 
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Figure 7. Material optimization based on in-plane modelling. Optimized topology for maximiza- 
tion of relative size of the band gap between the third and fourth bands: (a) high-contrast case; 
(b) low-contrast case. 

damping term if2C, the solution of (2.11) may be complex and, therefore, one must 
consider the magnitude of the output displacement in the objective function. 

The sensitivities of the objective function can by the adjoint method be found to 
be 

dc = dK dC 2 dM 
dxe =2Re AT -YT i22 dM u (3.7) 

dx, dx,e dxe dx J 
where Re(.) means the real part and A is the solution to 

(K + iQC - 22M)TA =-Lu, (3.8) 

where the overbar denotes the complex conjugate. As for the material problem, the 
MMA (Svanberg 1987) is applied to solve the optimization problem. The advantage 
of the adjoint sensitivity formulation is that only one extra load case needs to be 
solved (equation (3.8)) in order to obtain the sensitivity of the objective function for 
each design iteration. 

As seen in figure 4, the undamped structural response, especially in the in-plane 
case, has a number of resonance peaks that must be attributed to reflections from 
the boundaries. This causes ill-convergence of the optimization algorithm. Therefore, 
we introduce material damping in all our design problems in order to filter away the 
reflecting waves and other disturbances. After the design process, we remove the 
damping and analyse the undamped structure. The resulting topologies using this 
approach are, in our experience, always better than the topologies obtained without 
damping. 
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Figure 8. Damping of wave propagation in a quadratic plate for f = 41 kHz. (a) Design domain 
and boundary conditions; (b) optimized structure for high-contrast case; (c) optimized structure 
for low-contrast case; (d) frequency response for the high-contrast case. Dashed line, a = 0, 
3 = 25 x 103; solid line, c = 3 = 0. 

In the following we show a number of examples with different combinations of 
object, boundary condition and out-of-plane/in-plane modelling. The examples are 
selected for illustrative purposes, and any other combinations of the above can be 
solved by simple changes in an input file. 

(i) Results for out-of-plane waves 

Figure 8 shows an example where the suggested optimization procedure is used 
to minimize wave propagation through a square plate. The left edge is subjected to 
forced vibrations with frequency f = 41 kHz (corresponding to the centre frequency 
of the gap of figure 3d); the left and right edges have absorbing boundary conditions, 
and the top and bottom edges are free. The objective is to minimize the average 
amplitude at the right edge. The resulting topologies are, not unexpectedly, a grid 
of alternating phase 1 and phase 2 materials corresponding to Bragg gratings. This 
structure is known to reflect one-dimensional (horizontally propagating) waves. The 
frequency response for the high-contrast case is shown in figure 8d. It is seen that 
there is a large band gap around the excitation frequency f = 41 kHz. Compared 
with the response of the square-inclusion structure from figure 5, where the input 
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Figure 9. Optimization of waveguidance in a quadratic plate for f = 41 kHz. (a) Design domain 
and boundary conditions; (b) optimized structure in the high-contrast case; (c) the wave field; 
(d) frequency response of the structure (a = 0, 3 = 25 x 103). 

signal was damped by 35 dB, the optimized Bragg-like topology damps the input 
signal by 70 dB. The resulting topology for the low-contrast case is seen in figure 8c. 
Again, the optimized topology is a Bragg-like grating but with a smaller volume 
fraction of phase 2 than in the high-contrast case. 

The problem formulation may also be used to design waveguides (3.6) as shown 
in figure 9. Here, all edges have absorbing boundary conditions. The left edge is 
subjected to forced vibrations and the objective function is to maximize the wave 
magnitude at a small fixed vertical line around the centre of the right edge. The 
resulting structure is intriguing. Apparently, the wave is guided towards the output 
point through a cone of material 2. The cone is surrounded by a periodic structure 
that prevents the waves from escaping. It is seen from the wave picture (figure 9c) 
that the mode at the output port has been magnified by ca. 10 dB compared with 
that of a pure material 1 structure. 

(ii) Results for in-plane waves 

Figure 10 shows the results of the optimization of the high-contrast case for in- 
plane periodic modelling. We consider a 12 cm x 12 cm structure and wish to dis- 
tribute material 1 and material 2 such that the response is minimized for f = 63 kHz 
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Figure 10. Optimization of structure for minimum response at 2 = 63 kHz. (a) Structural 
domain and periodic boundary loading in the optimization procedure; (b) optimized topology; 
(c) average response at the right boundary when subjected to loading at the left boundary. 
Dashed line, a = 0, 3 = 50 x 103; solid line, a = 0 = 0. High-contrast case. 

(corresponding to the centre frequency of the optimized gap of figure 7b). In order 
to obtain square symmetry of the resulting structure, we this time solve a multi-load 
problem. The structure is subjected to periodic excitation at the four edges inde- 
pendently, and we then minimize the sum of responses at the opposing edges. The 
optimization is performed with strong damping added (a = 0,/3 = 50 x 103) in order 
to remove resonance peaks and ensure stable convergence. 

Figure lOb shows the optimized structure. The topology is quasi-periodic and 
closely resembles the periodic band-gap structure in figure 4c. The largest differ- 
ence between the two topologies is seen at the boundaries, where the finite structure 
has inclusions touching the boundaries and with a different periodicity. This pre- 
vents waves from propagating along the boundaries: a phenomenon that cannot be 
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Figure 11. Optimization of structure for minimum response at 2 =- 52 kHz. (a) Structural 
domain and periodic boundary loading in the optimization procedure; (b) optimized topology; 
(c) average response at the right boundary when subjected to loading at the left boundary. 
Dashed line, a = 0, P = 50 x 103; solid line, a - f 0. Low-contrast case. 

modelled in the material case. The corresponding response is seen in figure 10c. 
The response with strong damping is shown by the dashed line and that without 
damping by the solid line. Although the optimization was carried out with damping 
included, it is also seen that when the damping is removed there is a large drop in 
the response, due to the band gap. We have tried to continue the optimization with 
the topology in figure lOb as a starting guess but without damping. However, this 
does not result in a significant improvement of the objective function. This finding 
justifies our idea of stabilizing the optimization procedure by including (artificial) 
damping. 

Next, we try to optimize the structure for the low-contrast case. In this case, there 
is no longer a gap in the band structure for the corresponding periodic material (cf. 
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Figure 12. Optimization of structure for minimum response at Q = 55 kHz. (a) Structural 
domain and periodic boundary loading in the optimization procedure; (b) optimized topology; 
(c) average response at the right boundary when subjected to loading at the left boundary. 
Dashed line a = 0, P = 50 x 103; solid line, a = =- 0. High-contrast case. 

figure 7b). As a result, the optimized topology obtained for f = 52 kHz is no longer 
periodic (see figure lib). The response shown in figure 1lc only has a small reduction 
in the response when the damping is removed. Since we tried several different starting 
guesses that always led to the same conclusion, this example strongly indicates that 
design of a band gap for the low-contrast case and in-plane modelling is not possible. 

Figure 12 shows the result of an optimization problem resembling the one in fig- 
ure 8. Here the structure is subjected to loading at only two opposite boundaries 

(modelled as two separate loading cases). The optimized topology (figure 12b) is 
now seen to resemble a one-dimensional Bragg grating with some modifications near 
the boundaries. The response obtained with damping included (figure 12c) shows a 
reduction in response for a large frequency range (up to more than 80 kHz). How- 
ever, the response with the damping removed is dominated by resonance peaks due 
to reflections at the boundaries. 
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4. Conclusion 

We have demonstrated that topology optimization is an efficient tool for the design 
of materials and structures with band gaps. We have formulated two optimization 
problems: one for the maximization of band-gap sizes for infinitely periodic structures 
and the other for the design of finite structures with wave-stopping or waveguiding 
behaviours. 

The proposed optimization formulations were used to design periodic band-gap 
materials with maximum relative band-gap size, and it was found that, at least for 
the scalar (out-of-plane) case, the optimum inclusion shape depends on the contrast 
in material properties between the material phases. For the structural problem we 
have demonstrated that the optimum band-gap materials for the finite case are close 
to periodic, although the inclusions close to the boundaries should be touching the 
rim in order to prevent surface modes from propagating along the boundaries. We 
have also shown an example of the design of a waveguide that concentrates a wide 
incoming wave to a narrow and magnified output wave. The size of problems solved 
was limited by MATLAB storage requirements. For future work we are rewriting 
the code to FORTRAN 90, which allows for larger problems. In MATLAB, typical 
computing times for an 80 x 80 element out-of-plane problem (such as figure 9) is 
ca. 5-6 h for 500 iterations. This time is expected to be significantly reduced by using 
the FORTRAN 90 code. 

The issue of multiple local minima was not addressed in this paper, but, in the 
structural case, several optimized designs can be obtained by varying the initial value 
of the design variables. These designs will have different periodicities corresponding 
to different band gaps. However, in our experience, topologically different solutions 
obtained from different starting guesses usually have very similar objective function 
values. 

The analysis was restricted to deal with the uncoupled problem of in-plane and 
out-of-plane waves. In the case where this decoupling cannot be performed, e.g. due to 
inclusions with out-of-plane misalignments or waves not initially propagating strictly 
in the plane, fully three-dimensional modelling is required. The effect of out-of-plane 
scattering and the design of three-dimensional structures are subjects for further 
work. In future work we will additionally consider improved objective functions and 
more advanced waveguiding problems. 

This work received support from Denmark's Technical Research Council through the Tal- 
ent/THOR Program 'Design of microelectromechanical systems (MEMS)' and the Research 
Project 'Phononic bandgap materials: analysis and optimization of wave transmission in peri- 
odic materials'. The authors express their gratitude to Professors Martin P. Bends0e and Jon 
J. Thomsen, Technical University of Denmark, for valuable discussions and inspiration. 
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Abstract. Band gaps, i.e frequency ranges for which
waves cannot propagate, can be found in most elastic
structures if the material or structure has a specific peri-
odic modulation of material properties. In this paper, we
maximize phononic band gaps for infinite periodic beams
modelled by Timoshenko beam theory, for infinite peri-
odic, thick and moderately thick plates, and for finite thick
plates. Parallels are drawn between the different optimized
crystals and structures and several new designs obtained
using the topology optimization method.

Introduction

Phononic or sonic crystals (SCs) [1] offer a great variety of
interesting and important design problems, e.g. how do we
design crystals for maximum size of band gaps, i.e. the fre-
quency ranges for which waves cannot propagate through
the crystals, or how many crystals are needed in order to
obtain the desired properties of a phononic crystal structure.
Such design problems can usually be formulated as inverse
problems: find the crystal or structure that satisfies some
specified requirements. Determination of SC characteristics
in form of e.g. band structures involves complex computa-
tions which typically makes the inverse design problem
non-trivial. Most examples of solving this problem are
based on size optimization using a few design variables and
typically using genetic algorithms or other heuristic ap-
proaches. In this paper we solve three inverse design prob-
lems by using the topology optimization method which is
based on a gradient-based algorithm with a large number of
design variables and practically unlimited design freedom.

Topology optimization has in the last decade evolved
as a popular design tool in structural and material me-
chanics [2]. The first design problem to be solved was to
find the optimal distribution of a restricted amount of ma-
terial in a given domain that gives the stiffest possible
structure [3]. Another design problem was to identify the
material that has the lowest (negative!) Poisson’s ratio [4].
The method is based on repeated material re-distributions

using a large number of continuous design variables, typi-
cally one for each element in the corresponding discre-
tized model, and the use of computationally in-expensive
analytical sensitivity analysis and advanced mathematical
programming tools. Lately the method has been applied to
other problems in alternative physics settings as well, ran-
ging from MEMS and fluid dynamics to electromagnetics
(see [2] for an overview).

In the closely related research area of photonic crystals
(PhCs) inverse design methods have received an increased
focus [5] due to the potential large application possibilities
for using PhCs in optical circuits. Cox and Dobson [6]
used a material distribution method to design two-dimen-
sional square photonic crystals with maximum band gaps.
The references [7, 8] applied the topology optimization
method to design photonic crystal waveguides. More tradi-
tional studies of photonic crystal structures using a few de-
sign variables and optimization based on either numerical
sensitivity analysis, genetic algorithms, simulated annealing
or a combination of these are seen in Refs. [9, 10].

This study extends the results published in a recent pa-
per [11] which presented some results for maximizing the
band gap size of square lattice two-dimensional SCs and
optimization of finite structures subjected to periodic load-
ing. Here, we present results for maximizing the band gap
size for bending and longitudinal waves in rods modelled
by Timoshenko beam theory1, we optimize 2D crystals
with quadratic and hexagonal base cells for inplane and
bending waves, and finally present examples of optimized
finite-size structures subjected to in-plane polarized waves.
In previous work [13] we have performed experiments on
simple longitudinal waves propagating in a 1D SC com-
posed of PMMA and Aluminum. Since we plan to extend
these experiments to plate and shell structures, we will
throughout this paper make use of these two materials.
The results of this paper will be used in the planning of
the experiments.

Inverse design by topology optimization

The topology optimization method is a gradient-based op-
timization algorithm that is used to find optimal material
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1 A modelling study has previously been performed based on
Bernoulli-Euler beam theory [12].



distributions. The design variables are spatial material den-
sities. By using analytical sensitivity analysis and mathe-
matical programming tools it is possible efficiently to han-
dle a large number of design variables. We base our
implementation on Finite Element (FE) modelling and ty-
pically choose one continuous design variable per element
or node:

ze 2 R ; e ¼ 1; . . . ; N ; ð1Þ
where N is the number of finite elements or nodes in the
design domain. It should be emphasized that the method
can be used with a finite difference discretization just as
easily and that more design variables can be assigned to
each element in order to distribute more than two materi-
als in the design domain.

The goal for the optimization algorithm is to distribute
two materials in a domain such that some cost function is
minimized (or maximized). The continuous design vari-
ables control the material distribution by defining the ele-
ment-wise constant material properties in each element. If
re denotes an element-wise property we can write:

re ¼ ð1� zeÞ r1 þ r2ze ð2Þ
where subscript 1 and 2 refers to the properties of material
1 and material 2, respectively. In this case we let ze vary
continuously between 0 and 1, such that for ze ¼ 0 the
corresponding element takes the material properties of ma-
terial 1 and for ze ¼ 1 those of material 2.

Denoting the cost function F we can now formulate
the optimization problem as follows:

min
z

: F ¼ Fðw; u; zÞ ; ð3Þ

s:t:: giðzÞ � g*i ; ð4Þ
0 � ze � 1 ; e ¼ 1; . . . ; N ; ð5Þ
ðK� w2MÞ u ¼ f ; ð6Þ

where Eq. (6) is the discretized FE equation of the time-
harmonic wave propagation problem. The vector u con-
tains the discretized nodal values of the complex ampli-
tudes of the displacement field, and K and M are the stiff-
ness and mass matrices, respectively. The load vector f
comes from external wave loading. In (4) a number of
additional constraints can be specified, e.g. specifying a
maximum amount of a single material component. For
more details about computational procedures, sensitivity
analysis and more, the reader is referred to [2].

The advantage of using continuous design variables is
that it allows for the use of efficient gradient-based optimi-
zation algorithms. However, it also implies that we may
end up with values of ze that are neither 0 or 1, but an
intermediate value that does not correspond to any of the
two materials. There are several ways to penalize the ap-
pearance of intermediate density solutions (see e.g. [2]),
however, it is our experience that intermediate densities
seldomly remain in the optimized band gap designs since
band gaps are favoured by maximum contrast in the mate-
rial properties. Therefore we have not used any penaliza-
tion techniques in this work.

As for all topology optimization problems with spatial
material distribution the results depend on the mesh. How-

ever, as opposed to conventional stiffness design problems
where the objective is improved with mesh-refinement, it
appears that the finite length of the elastic waves imposes
a length-scale for the present band gap design problems
and thus we do usually not experience a significant mesh-
dependence. Therefore, we do not use regularization tech-
niques in this paper. For more discussions of this issue,
the reader is referred to [2]. Concerning the convergence
of the finite element model, we require discretizations that
at least have 10 elements pr. wave-length. Due to the rea-
sons discussed above, we do not expect to find signifi-
cantly different design solutions if the mesh is further re-
fined.

Design of 1D structures:
the infinite periodic elastic beam

In this section, we study elastic wave propagation in a
periodic beam of infinite length. The beam consists of an
infinite number of copies of a base cell with a specific
geometry and material distribution. The periodicity intro-
duces frequency band gaps for both longitudinal and bend-
ing waves, preventing waves with frequencies in these
gaps from propagating in the beam. In general, the band
gap frequency ranges for the two wave types are different,
but for certain geometries and material distributions of the
base cell, band gaps for the two wave types overlap, pre-
venting both of the two wave types from propagating in
the beam. Such studies are relevant in design problems
where vibration insulation and filtering are important ob-
jectives.

Theory

Let the beam axis be directed along the x-axis. Longitudi-
nal wave propagation in the beam is described using the
usual 1D theory

@

@x
E
@u

@x

� �
¼ q

@2u

@t2
ð7Þ

where u ¼ uðx; tÞ denotes the displacement along the x-axis.
q denotes the mass density and E is Young’s modulus.

Bending waves in the beam are described by Ti-
moshenko theory

@

@x
ksGA

@w

@x
þ q

� �� �
¼ qA

@2w

@t2
; ð8Þ

@

@x
EI

@q

@x

� �
� ksGA

@w

@x
þ q

� �
¼ qI

@2q

@t2
ð9Þ

where w ¼ wðx; tÞ and q ¼ qðx; tÞ denote the transverse
displacement and angle of rotation of the cross-section re-
spectively. A, I, G and ks denote the cross-sectional area,
area moment of inertia, shear modulus and the shear cor-
rection coefficient, respectively. Here, we use
ks ¼ 6ð1þ nÞ=ð7þ 6nÞ [14] for a circular cross-section,
where n is the Poisson ratio. Timoshenko theory is used,
as the ratio between considered wave length and cross-sec-
tion dimension is smaller than the lower bound (�20) for
using the simpler Bernoulli-Euler theory.
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While the above PDEs may be solved analytically for
uniform and homogeneous beams, numerical methods like
the FE Method must be resorted to when considering peri-
odic in-homogeneous structures as will be the case here.
Let a base cell of length d be divided into N finite ele-
ments. For longitudinal wave motion, the N þ 1 degrees
of freedom (d.o.f) are the nodal longitudinal displace-
ments, while for bending waves the 2(N þ 1) d.o.f. are the
nodal transverse displacements and the rotation of the
cross-section. For each of the two wave type problems, the
global stiffness matrix K and mass matrix M for the base
cell are assembled in the usual manner from the corre-
sponding element matrices. For longitudinal waves the ele-
ment matrices are 2� 2 matrices using first order polyno-
mials as shape function for u [15]. For bending waves, the
element matrices are 4� 4 matrices using third and sec-
ond order polynomials as shape functions for w and q
respectively [14]. According to Bloch theory [16], the per-
iodic boundary condition at the ends of the base cell be-
comes for longitudinal waves

uN ¼ u1 eikB

where kB ¼ kd is the Bloch parameter and k the wave
number. Due to reasons of periodicity, 0 � kB � p. Simi-
larly for bending waves, the periodic boundary conditions
become

wN ¼ w1 eikB

;

qN ¼ q1 eikB

:

These boundary conditions must be incorporated into the
corresponding stiffness matrices.

Assuming time harmonic motion with circular fre-
quency w the two eigenvalue problems become

KiðkBÞ ui ¼ liMiui ; li ¼ w2
i ; i ¼ L; B ð10Þ

where ui contains the nodal values of the variables, L ¼
longitudinal waves and B ¼ bending waves. The depen-
dence on kB is shown explicitly.

The stiffness and mass matrices K and M depend in
general on the cross-sectional geometry, length of base cell
and material parameters. Here we choose a fixed circular
cross-section of radius r ¼ 0:5 cm, such that we end up
with only the longitudinally varying material properties
and the cell length as design variables. As discussed in the
previous section, the goal is to find the distribution of two
a priori chosen materials in the base cell, that results in the
largest band gaps as calculated by (10). We choose a con-
tinuous design variable 0 � ze � 1, ze ¼ 1; . . . ; N for each
element, that interpolates between the two chosen materi-
als. In our model (10), there are three material parameters
E, q and n introduced above. We thus have the following
three material interpolation functions on the form (2)

EðzeÞ ¼ ð1� zeÞ E1 þ zeE2 ;

qðzeÞ ¼ ð1� zeÞ q1 þ zeq2 ;

nðzeÞ ¼ ð1� zeÞ n1 þ zen2 :

The subscript i ¼ 1; 2 denotes one of the two materials.
Finally, we also let the base cell length d be a design

parameter, such that the cell length can be optimized.

The optimization problem

For each of the two wave type problems, we can state the
problem of maximizing the relative band gap between fre-
quency bands j and jþ 1

max
z 2 ½0; 1�N

d2 ½dmin; dmax�

: Fðz; dÞ ¼ 2

min
kB 2 ½0;p�

wjþ1� max
kB 2 ½0;p�

wj

min
kB 2 ½0;p�

wjþ1þ max
kB 2 ½0;p�

wj
: ð11Þ

For 1D problems, finding the minimum/maximum of the
involved frequencies over kB in (11) can be avoided, since
empirically it is known that the frequency bands are alter-
nating monotonic (for the purpose of illustration, consult
Fig. 1). Therefore the minimum band gap between two
consecutive bands will occur at kB ¼ p for j ¼ 1; 3; 5; . . .
and at kB ¼ 0 for j ¼ 2; 4; 6; . . .. The maximization prob-
lem (11) is solved iteratively using the method of moving
asymptotes MMA [17], which is based on a gradient des-
cent approach.

For the coupled problem of maximizing the overlap
between band gaps for longitudinal and bending waves,
the formulation becomes

max
z 2 ½0; 1�N

d2 ½dmin; dmax�

: Fðz; dÞ

¼ 2
min ðwL

jþ1 ; wB
iþ1Þ �max ðwL

j ; wB
i Þ

min ðwL
jþ1 ; wB

iþ1Þ þmax ðwL
j ; wB

i Þ
ð12Þ

where i, iþ 1 denote the bending frequency bands and j,
jþ 1 denote the longitudinal frequency bands.

The FE problem (10) together with either (11) or (12)
are the problem specific equivalents to (3) and (6) in the
general formulation.

Numerical examples

We now study an actual maximization problem consider-
ing the two materials Aluminum (Material 1) and PMMA
(Material 2) with material properties listed in Table 1.
Comparing the two materials, Aluminum is the heavy and
stiff material while PMMA is the light and soft material.

As a first example, the relative band gap between the
first and second frequency band (j ¼ 1) for longitudinal
waves has been maximized. The resulting design is shown
in Fig. 1. From (10) and (11) it can be shown, that the
relative band gap sizes are independent of the base cell
length. In the maximization algorithm this variable has
been fixed at a value of d ¼ 8:70 cm for reasons that will
be explained later. It is seen that the algorithm has chosen
the two extreme materials 1 and 2 (corresponding to
ze ¼ 0; 1 on the y-axis) instead of interpolations of the
two. This is interpreted as favouring high contrast in the
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Table 1. Material properties for the two materials used in the numer-
ical example.

Material q [kg/m3] E [GPa] n

Aluminium 2830 70.9 0.34

PMMA 1200 5.28 0.40



design. It should be noted, that if another base cell length
was chosen, no qualitative change would be observed and
the ratio of the two material lengths would be the same.
With this said, PMMA occupies approximately a fraction
of 0.29 of the base cell length. That is, the larger part of
the base cell is made up of the heavy and stiff material
while a smaller part is occupied by the light and soft ma-
terial. Figure 1 (bottom) also shows the lowest frequency
bands for both longitudinal and bending waves, the latter
just to indicate their position. The extreme edge values of
the bands are listed in Table 2. The first three relative
band gap sizes are listed in Table 6 (second column). The
symbols in the first column denote band gap number and
wave type considered, e.g. FL

12 denotes the band gap be-
tween the first and second frequency band and L indicates,
that longitudinal waves are considered.

As a second example the relative band gap between the
third and fourth band for bending waves has been maxi-
mized. The resulting design and frequency bands are
shown in Fig. 2. In this case, increasing or decreasing the
base cell length results in an increasing relative band gap
size mainly due to vertical displacements of the frequency
bands. This effect has been excluded by choosing the
same constant base cell length as in the previous case
d ¼ 8:70 cm. This design problem appears to have many
local minima, some of which result in designs consisting
of mixtures of the two materials (i.e. ze 6¼ 0; 1), depending
on the starting point. The design shown in Fig. 2 has the
largest relative band gap of several trials and furthermore

has a pure 0/1 design. The majority of the cell is again
occupied by the heavy and stiff material while a smaller
part (around a fraction of 0.33) is occupied by the light
and soft material. However, this time the light material is
distributed in two different parts. The extreme frequency
band values are listed in Table 3. The first three relative
band gaps are listed in Table 6 (third column).

As the last optimization example, the design resulting
from maximizing the overlap between the first and second
longitudinal band and the third and fourth bending band is
shown in Fig. 3 together with the frequency bands. These
band gaps are chosen because they have overlaps initially.
An optimized base cell length of d ¼ 8:70 cm is found by
the algorithm is this case (which is the reason for choos-
ing this value in the previous two cases). The unique solu-
tion is a result of the frequency bands for the two wave
types moving in the same direction but with different
speeds as a function of base cell length. The design is
quite similar to the design in the bending case. A larger
part of the light material occupies the same amount of the
cell as in the bending case, while the narrow part has de-
creased compared to the bending case. The extreme values
for the different frequency bands are tabulated in Table 4.
The relative band gaps for the separate wave types as well
as for the combined problem are shown in Table 6 (fourth
column) with F denoting the overlapping band gap for
the combined problem. As expected, the first longitudinal
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Fig. 1. Final design corresponding to maximum relative band gap be-
tween first and second band (thick lines) for longitudinal waves. Full
lines: Longitudinal waves. Dashed lines: Bending waves.

Table 2. Extreme frequency band values for longitudinal waves in
Figure 1. Unit is kHz.

kB ¼ 0 kB ¼ p

f1 0 10.367

f2 40.798 30.452

f3 40.844 51.191

f4 81.603 71.283
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Fig. 2. Final design corresponding to maximum relative band gap be-
tween third and fourth band (thick lines) for bending waves. Full
lines: Longitudinal waves. Dashed lines: Bending waves.

Table 3. Extreme frequency band values for bending waves in Fig. 2.
Unit is kHz.

kB ¼ 0 kB ¼ p

f1 0 1.1508

f2 5.2781 1.5692

f3 5.9316 10.363

f4 21.302 15.194

f5 21.415 27.832

f6 39.457 34.075



band gap is smaller than the corresponding first (optimized)
relative band gap for the single longitudinal case, while the
second and third are actually larger. Also, the third relative
band gap for bending waves is smaller (but not much) than
the corresponding third (optimized) relative band gap for the
single bending case. The similarity between this design and
the bending case design (they are almost eachother’s mirrors)
is also reflected in their performances, which are very close
(relative band gaps of 0.374 and 0.378).

Torsion waves in a beam are described by the same
differential equation as for longitudinal waves, but with

the factor
E

2ð1þ nÞ
K

I
replacing E. Here I is the area mo-

ment of inertia as before and K is the torsion stiffness
cross-sectional factor. For a circular cross-section K ¼ I
and it may be seen that the torsional frequencies are lower
than the longitudinal frequencies by a factor offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ nÞ
p

� 1:6. Comparing the torsional frequency
bands with the bands in Fig. 3 for the optimized design in
the combined case shows that there is a band gap between
10.6–13.2 kHz (relative band gap 0.43) for all three wave
types, i.e. in this interval all three wave types are pre-
vented from propagating in the beam.

Since for all geometries
K

I
� 1 (with “¼” only for cir-

cular cross-sections), it is not possible to obtain
K

I
¼ 2ð1þ nÞ which would result in perfectly coinciding

torsional and longitudinal bands. To increase the common
gap size, one may consider lowering the mid-gap values
between higher torsional modes. This can be obtained by

decreasing the ratio
K

I
which can be achieved by choosing

a non-circular cross-section. This aspect will be investi-
gated in future work.

In the following, the above results are compared with
the experimental results presented in [13]. Here, the set-up
is a (non-optimized) bar made up of five-and-a-half repeti-
tions of a base section consisting of two bars glued to-
gether with circular cross-sections with diameter 1 cm and
made of PMMA and Aluminum respectively, as in the
above case. Each bar is 7.5 cm resulting in a base cell
with a length of 15 cm. An experimental response curve
showing the acceleration response at the end of the bar as
a function of the longitudinal vibration excitation fre-
quency applied to the opposite end is shown in Fig. 4
(upper) with a corresponding theoretical prediction shown
below. The 40 dB horizontal line has been used to identify
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Fig. 3. Final design corresponding to maximum relative band gap be-
tween first and second band for longitudinal waves and third and
fourth band for bending waves. Full lines: Longitudinal waves.
Dashed lines: Bending waves.

Table 4. Extreme frequency band values for bending and longitudinal
waves in Fig. 3. Unit is kHz.

B waves L waves
kB ¼ 0 kB ¼ p kB ¼ 0 kB ¼ p

f1 0 1.145 0 10.643

f2 5.6165 1.6585 27.272 21.993

f3 5.9774 10.643 42.172 45.188

f4 21.454 15.534 77.451 72.706

FRF (Magnitude)
Working : PMMA-Alu-11-seg-7.5cm-200302-ref : Input : FFT Analyzer
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Fig. 4. Frequency response curves from [13]. Top: Experimental. Bot-
tom: Theoretical.

Table 5. Frequency band gaps in Fig. 4 determined by inspection.
Unit is kHz.

f min
1 f max

1 f min
2 f max

2

5.1 13.1 15.4 24.3



the beginning and end of the two pronounced band gaps
in the figure. Their values are listed in Table 5. The rela-
tive band gaps are shown in Table 6 (fifth column).

An infinite periodic beam with this base cell was ana-
lysed using (10) and the frequency bands and gaps were
calculated to compare with the experimental results. Very
good agreement was found.

The relative band gaps for the current problem are
higher than those for the coupled problem in Fig. 3. Com-
paring with the longitudinal results in Fig. 1, the latter per-
forms better for the first band gap as expected. Thus, the
optimized design is superior to the non-optimized design
for the first band gap considered.

Design of infinite 2D crystals

In this section we consider the design of infinite two
dimensional crystals with maximum relative band gap
sizes. We optimize the crystals for in-plane polarized
elastic waves assuming very thick plates (i.e. plane strain
assumption) and for bending waves assuming moderately
thick plates (using Mindlin plate theory for the same rea-
son as considering Timoshenko theory in the previous
section).

In-plane polarized wave propagation in thick elastic
plates is governed by the Navier equations
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where u and v are the two amplitude components and
l; m are the Lamé parameters, defined as
l ¼ En=ðð1� 2nÞ ð1þ nÞÞ, m ¼ E=ð2ð1þ nÞÞ. The out-
of-plane case is not considered here.

For bending waves in up to moderately thick plates the
governing equations are
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where t is the plate thickness and other values are defined
previously. Qx denotes the angle between the x-axis and a
cross-section in the yz-plane, and similarly for Qy. Here, in-
plane modes are ignored. Note that for n ¼ 0 and no varia-
tion in the y-direction, Eqs. (15) and (17) correspond exactly
to the equations for Timoshenko beam theory (8) and (9).

In both cases, the periodicity conditions for the base
cell are again given by Bloch theory, e.g.

wðrþ RÞ ¼ eiR � k wðrÞ ð18Þ

and likewise for the other degrees of freedom. Here R is a
lattice vector and k the (two-dimensional) wave vector.
The dynamic response of the 2D crystals can be obtained
by solving Eqs. (13)–(14) or (15)–(17) with boundary
conditions (18) for wave vectors within the irreducible
Brillouin zone. The irreducible Brillouin zones for quadra-
tic and rhombic base cells are shown in Fig. 5. Assuming
isotropic constituents and imposing 90 degree symmetry
in the square cells and 60 degree symmetry in the rhom-
bic cells, the irreducible zones can be further reduced to
the triangles indicated in the figure. Finally, it is the ex-
perience that the size of the band gap can be measured by
performing analyses only for wave vectors on the edge of
the triangular zones thus saving significantly in CPU-time.

The analysis is performed using the commercial FE
program FEMLAB which can be called from a MATLAB
script that includes the optimization routine Method of
Moving Asymptotes [17]. Triangular first order elements
have been used in the FE analysis.
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Table 6. Relative band gap sizes for the three different beam maximi-
zation problems and [13] (non-optimized rod with equal volume frac-
tions of Aluminium and PMMA). Gaps with numbers in bold have
been optimized.

L B LB L [13]

FL
12 0.9841 0.6956 0.8791

FL
23 0.0011 0.4291 0.4484

FL
34 0.3281 0.4668

FB
12 0.3076 0.3663

FB
23 0.1166 0.0623

FB
34 0.3781 0.3737

F 0.3737



Numerical examples

First we consider in-plane polarized elastic waves in a 2D
elastic crystal with a square base cell size measuring 8 cm
by 8 cm. To compare the results with the beam case, we
initially perform an analysis of waves propagating along
the x-axis through a grated plate consisting of alternating
PMMA and Aluminum slabs with the slab to cell width
ratios of 0.29 and and 0.71, respectively, as given by the
result from Fig. 1. The resulting dispersion diagram for
the first 25 eigenvalues for horizontally propagating waves
(i.e. wave vectors along the line G � X in Fig. 5) is shown
in Fig. 6. The thick lines indicate the longitudinal modes
and the thin lines indicate in-plane elastic shear waves.
The thick lines for longitudinal waves do not fully match
the full lines for the beam longitudinal waves in Fig. 1
because of slightly different base cell sizes, and the Pois-
son’s ratio effect. As opposed to the beam case, however,
the dispersion diagram is “polluted” with in-plane elastic
shear waves (thin lines) and there are only four narrow
band gaps as indicated by the grey boxes. It is not ob-
vious between which bands the gap will be largest for
waves propagating along the x-axis. In order to optimize
the structure, we first perform a simple parameter study
where we vary the relative width of the Aluminum slabs
and find the maximum band gap for the grated structure.
The result of this study is that the largest gap is found
between the 3rd and the 4th band for an Aluminum slab
to cell width ratio of 0.42. The dispersion diagram for this
structure is shown in Fig. 7 and the size of the relative
band gap is 0.452. The dispersion diagram in Fig. 7 can
be compared with the transmission diagram for the opti-
mized finite periodic structure in Fig. 13.

Now one may ask the question whether it is possible to
obtain a larger band gap for waves propagating in the
x-direction if one allows the topology of the grating to
vary? Indeed, this is possible. The result of a topology
optimization process where no symmetry was imposed on
the square base cell and the gap between the 3rd and the
4th bands was optimized is seen in Fig. 8. The optimiza-
tion problem corresponded to Eq. (11), except that the de-
sign variables for this case were the 3364 nodal density
variables in the FE mesh used to discretize the base cell.
The obtained relative band gap size is 0.525, i.e. approxi-
mately 15% better than the simple grating from Fig. 7.
The topology in Fig. 8 is an interesting variation of the
simple grating that apparently raises the shear mode bands
that define the upper edge of the gap.

If we want to create a band gap for all wave directions
simultaneously, we have to optimize the band gap for all
wave-vectors on the edges of the triangular areas indicated
in Fig. 5. The results of this study for the square base cell
is a square Aluminum inclusion with slightly rounded cor-
ners which has a relative band gap of 0.428. For the rhom-
bic base cell the optimized topology is shown in Fig. 9.
The bases cells were both discretized by 6728 triangular
first order elements. The optimized relative band gap size
is 0.505 for the rhombic base cell. Both values are, as
expected, lower than for the directionally optimized topol-
ogy in Fig. 7. It is seen that the topology with the largest
complete band gap is a hexagonal array of PMMA matrix
material with circular inclusions of Aluminum (Fig. 9). As
discussed in Ref. [11], the optimal topology depends on
the material properties and must therefore always be opti-
mized for the particular materials considered.

Now we repeat the same study for bending waves.
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To compare the results with the beam case, we initially
perform an analysis of bending waves propagating along
the x-axis through a grated plate consisting of alternating
PMMA and Aluminum slabs with the slab to cell width
ratios of 0.29 and and 0.71, respectively, as given by the
result from Fig. 1. The base cell size is again 8 by 8 cm
and the thickness of the cell is 1cm. The resulting disper-
sion diagram for the first 15 eigenvalues for horizontally
propagating waves is shown in Fig. 10. Note that all the
shear wave bands are double modes. The thick dashed
lines indicate the bending modes and the thin lines indi-
cate torsional modes. The thick dashed lines for the bend-
ing waves do not fully match the full lines for the beam
bending waves (dashed lines in Fig. 1) because of slightly
different base cell size, Poisson’s ratio effect and because
the beam has a circular cross section. Compared to the
beam case, the dispersion diagram for the lowest modes is
similar, however, the higher bending modes are ‘‘polluted”
with the torsional waves (thin lines). A parameter study
where the Aluminum slab to cell width ratio is optimized
reveals that the largest relative size of the first band gap is
0.53 and is obtained for Aluminum slab to cell width ratio
of 0.2 and that the largest relative size of the second band
gap is 0.42 and is obtained for Aluminum slab to cell
width ratio of 0.44. In contrast to the in-plane case above,
we did not find any non-symmetric cell topologies that
could improve the size of the relative band gaps of the
grating like structures for the first and second gaps. This
can be explained by the fact that the first and second gaps
only are controlled by the bending modes whereas for the
in-plane case the upper boundary of the gaps where lim-
ited by a combination of longitudinal and shear wave
modes.

To create a band gap for all wave directions simulta-
neously, we optimize the band gap for all wave-vectors on
the edges of the triangular areas indicated in Fig. 5. We did
not manage to open up a gap for the square cell case (for the
considered materials and geometry) but a topology with a
resulting relative band gap size of 0.02 (very small) for the
rhombic base cell is shown in Fig. 11. It is seen that the opti-
mized topology again is a hexagonal array of nearly circular
Aluminum inclusions in a PMMA matrix, however, this time
with a smaller radius than for the in-plane polarized case.

In future work we plan to study the case of combined
bending and in-plane plane waves modelled by the plane
stress assumption, i.e. the shell case.

Design of finite structures: 2D wavereflectors

In the previous two examples it was demonstrated how
infinite phononic crystals can be optimized with respect to
maximum band gap size. This can lead to a significant
improvement of the performance of potential phononic
crystal-based devices, such as e.g. mechanical filters and
vibration insulators. However, the analysis of the crystals
is based on the assumption of infinite media. Thus, if the
dimensions of the device are small, approaching that of a
single crystal, edge effects become important and must be
considered.

In this example we consider wave propagation through
a finite slab of elastic material and aim to design the slab
for minimum transmission of longitudinal and shear
waves. Figure 12 shows the model. We consider a wave
(longitudinal or shear) propagating in a matrix material
denoted 1 (material properties: E1; q1; n1). The goal is
now to optimize the distribution of the matrix material and
a scattering material (E2; q2; n2) in the slab (design do-
main) such that the wave energy transmitted through the
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slab is minimized. In this example, the material properties
again correspond to PMMA and Aluminum, respectively.

As in Eqs. (13)–(14) we again consider in-plane polar-
ized waves with the plane strain assumption for the fol-
lowing examples.

In order to avoid artificial reflections of waves propa-
gating in the negative x direction at x ¼ 0 and in the posi-
tive x direction at x ¼ L, a Perfectly Matched Layer
(PML) is added at x < 0 and x > L, respectively. Details of
PML modelling for elastic waves can be found e.g. in [18].

The slab is modelled as being infinite in the y direction
by using periodic boundary conditions:

uðx; dyÞ ¼ uðx; 0Þ ; ð19Þ
vðx; dyÞ ¼ vðx; 0Þ : ð20Þ

The cost function F for the optimization problem is the
squared amplitude of the transmitted wave evaluated at
x ¼ L:

F ¼ 1

dy

ðdy

0

ðuðL; yÞ2 þ vðL; yÞ2Þ dy ; ð21Þ

thus, giving a measure of the average transmitted wave
energy.

As in the previous examples we use a FE discretization
of the governing equation:

ðK� w2MÞ u ¼ f ; ð22Þ
where u ¼ fu1; v1; . . . ; uN ; vNg are the discretized nodal
values of the displacement field and where the stiffness
matrix K and the mass matrix M are complex due to the
added PML damping layers. The load vector f specifies an
incoming longitudinal or shear wave. Quadratic first order
elements have been used in the FE analysis.

In the following examples PMMA is used as a matrix
material and aluminum as the scattering material, with the
material properties as in the previous examples.

Case of dx � wavelength

We first consider the case where the slab dimension dx is
large compared to the wavelength in the matrix material,
the wavelength being 2pc=w where c is the wave speed.
Specifically, we consider a propagating shear wave and let
dx ¼ 10� 2pcs=w, where cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
m1=q1

p
is the shear wave

velocity. Thus, the axial dimension of the design domain
is 10 wavelengths in the matrix material. Additionally, we
consider a thin slab (dy ¼ 1=10dx) in order to avoid any
design variation in the y direction.

Figure 13 shows the optimized design obtained for a
plane shear wave propagating from left to right. As ap-
pears, the design is periodic-like consisting of almost iden-
tical base cells. The bottom picture depicts the transmission
spectrum, defined as the logarithm to the ratio between the
squared incident and transmitted amplitudes, for a longitu-
dinal and a shear wave propagation in the optimized struc-
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Fig. 12. Computational model. The inverse design problem is to find
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sign domain in order to have the minimum wave transmission
through the domain.



ture. Here, the periodicity of the structure has been chosen
to be 8 cm which corresponds to dx � 1.546 m. It is noted
that the results compare well with the results obtained in
the previous section for the 2D crystals. Studying the opti-
mized topology in Fig. 13 reveals that the Aluminum to
base cell size ratio is approximately 0.42 –– exactly like the
result obtained for an infinite periodic medium in Fig. 7.
One may also compare the dispersion diagram in Fig. 7
and the transmission spectrum in Fig. 13 and find nearly
perfect agreement as should be expected.

Case of dx � wavelength

The slab dimension is now reduced so that
dx ¼ 2� 2pcs=w, i.e. the axial dimension is just two wa-
velengths of a shear wave. The slab section height is
doubled so that the design domain now is quadratic
(dy ¼ dx).

Instead of considering only a single plane wave, we
now optimize the design for five different waves simulta-
neously. Each wave propagates from x ¼ 0 but only from
1/5th of the section height. In this way we can ensure that
the resulting design reflects incoming waves from multiple
directions. Additionally, we treat waves propagating both
from left to right and vice versa, so that a total of 10 load
cases are treated.

Figure 14 shows the optimized designs obtained for a
longitudinal wave and for a shear wave, separately. It is
apparent that the designs are no longer periodic-like but
are strongly influenced by the limited axial dimension.
The wavelength of the longitudinal wave is longer than the
shear wavelength (cc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2� 2nÞ=ð1� 2nÞ

p
cs ¼

ffiffiffi
6
p

cs

for material 1), which implies that dx is less that a single

wavelength. This is reflected in the designs as well as in
the performance. Due to the larger wavelength the longitu-
dinal wave cannot be reflected very efficiently, and with
an incoming plane wave we compute F � 0:27, which is
only a 1.5 dB improvement compared to the case where
the whole design domain is filled with material 2. For
the shorter shear wave the corresponding optimized de-
sign performs better, and with a plane wave we find
F � 0:00071 which is a 23 dB improvement compared to
a completely scatter-filled design domain.

Finally, we try to design the slab so that it minimizes
the transmission of longitudinal and shear waves simulta-
neously. Figure 15 shows the optimized designs. The de-
sign to the left was obtained for 10 load cases just as the
previous examples, whereas the design to the right was
obtained by considering only waves propagating from left
to right. For the symmetric design we obtain F ¼ 0:60 for
an incoming plane longitudinal wave and F ¼ 0:00078
for a shear wave, whereas we compute F ¼ 0:58 and
F ¼ 0:00081 for the asymmetrical design.

In order to study the influence of the load cases, the
optimization has been performed also with 10 wave load
cases from each side instead of five, and using the pre-
viously obtained designs as a starting guess. This caused
only very small changes of the optimized designs, which
indicates that the designs are quite robust with respect to
the angle of incidence of the incoming waves.

Conclusion and outlook

The topology optimization method has been used to de-
sign infinite periodic beams and plates as well as finite
structures with maximum band gaps from two a priori
chosen materials; one heavy and stiff (Aluminum), the
other light and soft (PMMA).

For the beam case we have designed two beams, which
prevent either longitudinal or bending waves with frequen-
cies in certain intervals from propagating in them, while a
third beam has been designed which prevents both wave
types from propagating.

Producing 2d gratings from the optimized beam topolo-
gies is not feasible since in-plane shear modes and out-of-
plane torsional modes ‘‘pollute” the band gaps. Instead,
we have performed simple parameter studies as well as
free material distribution by topology optimization in or-
der to find the optimal cell geometries of infinite sonic
crystals.
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Finally we have compared the results obtained for the
infinite 2d case with topology optimized finite 2d struc-
tures. When the size of the design domain is large (e.g. 10
wavelengths) we get full agreement with the infinite case
whereas for design domain dimension comparable to one
wavelength we get significantly different structures.

Although mixtures of the two materials are allowed,
the optimized designs for the base cell are all binary de-
signs. We interpret this as band gaps favouring high mate-
rial contrast.

We believe that the found designs are feasible in the sense
that they can be manufactured using machine or laser cutting.

Future work will include shell analysis and experiments.
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Abstract

This paper is devoted to topology optimization problems for elastic wave propagation. The objective of the study is to

maximize the reflection or the dissipation in a finite slab of material for pressure and shear waves in a range of frequencies.

The optimized designs consist of two or three material phases: a host material and scattering and/or absorbing inclusions.

The capabilities of the optimization algorithm are demonstrated with two numerical examples in which the reflection and

dissipation of ground-borne wave pulses are maximized.

r 2006 Elsevier Ltd. All rights reserved.

1. Introduction

This work deals with two fundamental optimization problems encountered in the study of elastic wave
propagation through a finite slab of material. Wave propagation can be suppressed if the wave reflection or
the wave dissipation is maximized and in this work these two problems are addressed with the method of
topology optimization. The method is used to find an optimized distribution of inclusions of scattering and/or
absorbing material that maximizes the reflection and/or the dissipation, respectively.

Recently, much work has been devoted to highly reflecting materials and structures created with a periodic
distribution of scattering inclusions—the so-called bandgap materials. If inclusions are distributed periodically
a large reflection of propagating waves can occur due to destructive interference. For a comprehensive
overview see e.g. the recent review paper by Sigalas et al. [1].

Bandgap structures are promising candidates as optimal wave reflecting structures. In Sigmund and Jensen
[2] it was demonstrated that optimized designs are typically periodic-like structures with modifications near the
boundaries that compensate for edge effects. A material optimization problem was also considered in which
the topology of repetitive identical inclusions was optimized. Rupp et al. [3] studied similar problems with a
topology optimization algorithm. Halkjær et al. [4] considered bending waves in beams and plates and
structures with limited spatial dimensions that did not allow for a repetitive periodic structure. Hussein et al.
[5] analyzed one-dimensional wave propagation through a layered medium and used a genetic algorithm to
generate optimized structures.
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Optimization of the dissipation of elastic waves has been far less studied than the reflection/transmission
problem. Planar structures that maximize dissipation of scalar waves was previously demonstrated by the
author [6]. Razansky et al. [7] studied dissipation of acoustic waves and gave bounds for maximal dissipation
in thin and thick dissipative layers. Work has also been done on optimal placement of dampers to reduce
structural dynamic compliance [8,9]. Related work with the method topology optimization were seen in Jog
[10] who studied the forced vibration problem and minimized the dissipated energy and in Wang and Chen [11]
who maximized heat dissipation in cellular structures.

Closely related to this present work are optimization studies related to propagation of electromagnetic
waves. Cox and Dobson [12] studied optimal design of infinite periodic structures with a material distribution
method and maximized the optic (photonic) bandgaps and Jensen and Sigmund [13] studied a finite photonic
bandgap structure and topology optimized the material distribution in a 90� bend so that the transmitted
power through the bend was maximized.

This paper extends the work of Jensen [6] and considers dissipation of elastic waves (pressure and shear) for
multiple frequencies instead of scalar waves at a single frequency. The work of Halkjær et al. [4] is extended to
deal with the multiple frequency case. Furthermore, both optimization problems are extended to allow for the
distribution of three material phases instead of two. The paper is organized as follows: first, the general model
for elastic wave propagation is presented (Section 2), and the formulation of the two optimization problems
are discussed in detail (Section 3). Section 4 describes the parametrization of the design domain with two
continuous design fields, the material interpolation model, and the artificial damping penalization. In Section
5 the numerical implementation of the optimization problem is explained, including boundary conditions,
FEM discretization, and a mathematical formulation of the problem. In Sections 6 and 7 two numerical
examples are presented that demonstrate optimization of the material distribution for maximized reflection
and dissipation of ground-borne wave pulses. Finally, main conclusions are given in Section 8.

2. Elastodynamic model

The computational model is based on the full 3D elastodynamic equations for an inhomogeneous medium.
The 3D model is reduced to a 2D model under the assumption that the waves propagate in the plane and
material properties vary in the same plane.

The 3D elastodynamic equations:

r €U ¼ = � R, (1)

govern the displacements U ¼ fUðx; tÞ V ðx; tÞ W ðx; tÞgT of an elastic medium with position-dependent density
r ¼ rðxÞ. The position vector is denoted x ¼ fx y zgT, and R ¼ Rðx; tÞ is the stress tensor.

Eq. (1) is transformed to complex form with the complex variable transformation U! ~U and R! ~R, so
that U ¼ Reð ~UÞ and R ¼ Reð ~RÞ. Time-harmonic motion with frequency o gives a steady-state solution to the
complex version of Eq. (1):

~Uðx; tÞ ¼ uðxÞeiot, (2)

~Rðx; tÞ ¼ rðxÞeiot, (3)

in which the displacement amplitude vector uðxÞ and the stress amplitude tensor rðxÞ are generally complex.
The solution forms (2) and (3) are inserted into the complex version of Eq. (1) to give the standard time-
harmonic elastic wave equation:

= � rþ ro2u ¼ 0. (4)

With the appropriate boundary conditions Eq. (4) gives the displacement field used as the basis for the
optimization problems introduced in the following section. With a specific solution to the complex equation
(4) the instantaneous displacement and stresses are:

Uðx; tÞ ¼ ReðuðxÞeiotÞ ¼ ur cos ot� ui sinot, (5)
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Rðx; tÞ ¼ ReðrðxÞeiotÞ ¼ rr cos ot� ri sinot, (6)

where superscripts r and i refer to the real and imaginary parts of the complex variable.
Eq. (4) is simplified by assuming the stresses to be invariant in a single direction (arbitrarily chosen as the

z-direction) and can be written in component form as:

qsxx

qx
þ

qsyx

qy
þ ro2u ¼ 0, (7)

qsxy

qx
þ

qsyy

qy
þ ro2v ¼ 0, (8)

qsxz

qx
þ

qsyz

qy
þ ro2w ¼ 0, (9)

with u ¼ fuðxÞ vðxÞ wðxÞgT. This assumption could be realized, e.g. with a uniform material distribution in the
z-direction and waves that propagate strictly in the ðx; yÞ-plane.

For a linear isotropic elastic medium the stress components are:

sxx ¼
E

ð1þ nÞð1� 2nÞ
ð1� nÞ

qu

qx
þ n

qv

qy

� �
, (10)

sxy ¼ syx ¼
E

2ð1þ nÞ
qu

qy
þ

qv

qx

� �
, (11)

syy ¼
E

ð1þ nÞð1� 2nÞ
ð1� nÞ

qv

qy
þ n

qu

qx

� �
, (12)

for the coupled in-plane problem, and

sxz ¼
E

2ð1þ nÞ
qw

qx
, (13)

syz ¼
E

2ð1þ nÞ
qw

qy
, (14)

for the scalar out-of-plane problem. In the following the coupled problem will be considered. Various
optimization results for the out-of-plane problem can be found e.g. in Refs. [2,6].

3. Optimization problems

Two optimization problems are considered in this paper. The basic setup is displayed in Fig. 1. A plane
elastic wave propagates in a loss-free host material. Within the slab of material, indicated by the vertical
dashed lines, a number of scattering and/or absorbing inclusions cause the incident wave to be partially
reflected and/or possibly dissipated and partially transmitted through the slab. The power balance for the
system is

~I ¼ ~Rþ ~T þ ~D, (15)

where ~I is the incident wave power, ~T and ~R is the transmitted and reflected power, respectively, and ~D is the
power dissipated due to absorbing inclusions.

3.1. Maximizing reflection

The first optimization problem is to maximize the reflection of the propagating wave with an optimized
distribution of inclusions of one or two scattering materials. Pressure and shear waves at multiple frequencies
are treated but the analysis is restricted to plane waves with normal incidence.
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The reflection of the wave is found indirectly from the transmitted power at the output boundary G2. The
instantaneous transmitted power (Poynting vector) is defined as (e.g. Ref. [14, p. 133]):

pðx; tÞ ¼ fpxðx; tÞ pyðx; tÞg
T, (16)

where

pxðx; tÞ ¼ �Sxx
_U � Syx

_V , (17)

pyðx; tÞ ¼ �Sxy
_U � Syy

_V , (18)

is the power in the x- and y-direction, respectively.
Expressions for _U and R, taken from Eqs. (5)–(6), are inserted into Eqs. (17)–(18) so that px and py are

expressed in terms of the computed quantities u and r. Now, the time-averaged x- and y-components of the
power can be computed as:

hpxðx; tÞi ¼
o
2p

Z 2p=o

0

ð�Sxx
_U � Syx

_V Þdt ¼ 1
2
oReðisxxūþ isyxv̄Þ, (19)

hpyðx; tÞi ¼
o
2p

Z 2p=o

0

ð�Sxy
_U � Syy

_V Þdt ¼ 1
2
oReðisxyūþ isyyv̄Þ, (20)

where the notation h i ¼ o=2p
R 2p=o
0 dt is introduced and will be used in the following. In Eqs. (19)–(20) the

overbar denotes complex conjugation. The time-averaged power ~T transmitted through the output boundary
is now found as:

~T ¼

Z
G2

n � pdx

� �
¼

Z
G2

hpxidx, (21)

in which n ¼ f1 0gT is the outward pointing normal vector at G2.
Without dissipation the reflected power ~R is simply the difference between the time-averaged incident and

transmitted power ~R ¼ ~I � ~T and the corresponding reflectance R is computed by scaling ~R with ~I :

R ¼
~I � ~T
~I
¼ 1� T , (22)

where T ¼ ~T= ~I is the transmittance and ~I is found by evaluating the Poynting vector at the input
boundary G1:

~Ip ¼

Z
G1

h� _USxxidx, (23)
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Fig. 1. Basic setup for the two optimization problems. Incident wave power is denoted ~I , transmitted and reflected power ~T and ~R, and

the dissipated power is ~D.
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for a plane pressure (P) wave of normal incidence (pure horizontal motion) and

~Is ¼

Z
G1

h� _VSyxidx, (24)

for shear (S) wave (vertical motion). In Section 5 a set of boundary conditions are specified that ensure a unit
magnitude incident wave that propagates away from G1 in both directions. Eqs. (23)–(24) are evaluated with
these boundary conditions (Eqs. (49)–(50)):

~I ¼ 1
2
ho2Z, (25)

where h is the vertical dimension of the input boundary and Z is the wave impedance, given as Z ¼ Zp for a P
wave and Z ¼ Zs for an S wave, in which:

Zp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ehrhð1� nhÞ

ð1þ nhÞð1� 2nhÞ

s
, (26)

Zs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ehrh

2ð1þ nhÞ

s
, (27)

and the subscript h denotes host material which is fixed at the boundary G1. Thus, the final expression for the
reflectance from the slab of material between G1 and G2 is

R ¼ 1�
1

hoZ

Z
G2

Reðisxxūþ isyxv̄Þdx, (28)

that takes the value 1 when the wave is fully reflected and 0 with full transmission. The reflectance R will be the
first objective function in the optimization study.

3.2. Maximizing dissipation

An alternative optimization problem is now defined. Another way to hinder propagation of the wave is to
maximize the dissipation of the wave within the slab. A benefit of this is that potential annoyance associated
with the reflected wave can be eliminated.

Naturally, the dissipation of the wave energy is dependent on the damping model. A simple model is mass-
and stiffness-proportional viscous damping. Reasonable agreement with experimental results can be obtained
in large frequency ranges if a suitable combination of these two contributions are used. In this work smaller
frequency ranges are considered and a simple mass-proportional damping model is chosen.

The mass-proportional viscous damping is added directly to the continuous Eq. (1):

r €Uþ rZr _U ¼ = � R, (29)

where Zr ¼ ZrðxÞ is a position-dependent damping coefficient. Eq. (29) leads to a time-harmonic wave
equation with a complex density:

= � rþ ~ro2u ¼ 0, (30)

~r ¼ r 1� i
Zr
o

� �
. (31)

A power balance is obtained by multiplying both sides of Eq. (29) by the velocities:

_U � ðr €UÞ þ _U � ðrZr _UÞ ¼ _U � ð= � RÞ. (32)

The second term on the l.h.s. is the instantaneous point-wise dissipated power:

dðx; tÞ ¼ rZr _U � _U, (33)

ARTICLE IN PRESS
J.S. Jensen / Journal of Sound and Vibration 301 (2007) 319–340 323



which averaged over a wave period yields the time-averaged dissipation:

hdðx; tÞi ¼ 1
2o

2rZrðuūþ vv̄Þ. (34)

The second objective function ~D is defined as the time-averaged dissipation hdðx; tÞi integrated over the total
domain O. The relative dissipation D is obtained by scaling with the input power ~I :

D ¼
~D
~I
¼

1

hZ

Z
O
rZrðuūþ vv̄Þdx. (35)

4. Design variables and material interpolation

The design optimization is based on two continuous design fields R1 and R2 that are defined everywhere
within the slab:

R1ðxÞ 2 Rj 0pR1p1, (36)

R2ðxÞ 2 Rj 0pR2p1. (37)

These two design fields are used to specify and control the point-wise material properties and can, in the
present formulation, be used to distribute three different materials in the slab. For both problems one material
is the host material through which the undisturbed wave propagates and the other two may be scattering and/
or absorbing materials.

Any material property; E, r, n or Zr is found by a linear interpolation between the properties of the involved
materials:

aðxÞ ¼ ð1� R1Þah þ R1ðð1� R2Þa1 þ R2a2Þ, (38)

in which a is any of the properties. Subscript h denotes host material, and subscripts 1 and 2 refer to the two
other materials. A material interpolation scheme such as Eq. (38) is a standard implementation for three-phase
design. See e.g. Bendsøe and Sigmund [15, p. 120], for a similar implementation with two materials and void.

From Eq. (38) it can be seen that the design field R1 is an indicator of host material (obtained for R1 ¼ 0) or
inclusion (obtained for R1 ¼ 1). If an inclusion is specified by R1, the field R2 then specifies the inclusion type.
Hence, type 1 is found for R2 ¼ 0 ðR1 ¼ 1Þ and type 2 for R2 ¼ 1 ðR1 ¼ 1Þ. Non 0� 1 values of the design
variables correspond to some intermediate material property that may not be physically realizable. This is not
important in the optimization procedure, but it must be ensured that only 0� 1 values remain in the finalized
optimized design so that the material properties are well defined.

4.1. Penalization with artificial dissipation

In most implementations of material interpolation models, penalization factors are introduced (SIMP
model) (e.g. Ref. [15, p. 5] ). This is done so that the continuous design variables are likely to take only the
extreme values 0 or 1 in the final design. The SIMP strategy is not used in this work since a constraint on the
amount of one of the material phases is required and for this problem such a constraint is not natural.
Moreover, previous studies on wave propagation problems have shown that maximum material contrasts are
favored so that 0� 1 optimized designs appear automatically [12,2,4]. However, in the dissipation example
intermediate design variables appear especially with three material phases. In this case a penalization method
is adapted that was originally introduced for optics problems.

In Jensen and Sigmund [16] it was suggested to use artificial damping to penalize intermediate design
variables. An extra damping term was introduced:

Zart ¼ bRð1� RÞ, (39)

for the case of a single design field R. In Eq. (39) b is a damping coefficient and the product Rð1� RÞ ensures
that only intermediate design variables cause dissipation of energy. This penalization is similar to the explicit
penalization method introduced by Allaire and Francford [17]. A nice physical interpretation is possible by
imagining the intermediate material as a sponge that soaks up energy.
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Here, this approach is reused and expanded to deal with two design fields:

Zart ¼ b1R1ðð1� R1Þ þ b2R2ð1� R2ÞÞ, (40)

where the two factors b1 and b2 allow for separate penalization of R1 and R2 (in the numerical examples
b2 ¼ 1). The specific form of Eq. (40) is connected to the definition of the design fields, i.e. if R1 ¼ 0 host
material is obtained regardless of the value of R2. Thus, only if R1a0 intermediate values of R2 should be
penalized. The fraction of the input power that is dissipated due to the artificial damping is

Dart ¼
b1
hZ

Z
O
rR1ðð1� R1Þ þ b2R2ð1� R2ÞÞðuūþ vv̄Þdx. (41)

where r is given from Eq. (38).
It should be emphasized that the artificial damping approach penalizes intermediate design variables only if

the optimization problem is of the maximization type. With a minimization problem, e.g. minimizing the
reflection, a work-around could be either to reformulate the problem into a maximization problem (e.g.
maximizing the transmission) or alternatively to use a negative artificial damping coefficient b1. The latter
approach, however, lacks an appealing physical interpretation and has not been thoroughly tested.

5. Numerical implementation

The computational model is shown in Fig. 2. The design domain is defined with outer dimensions L� h,
input boundary G1 at x ¼ 0, and output boundary G2 at x ¼ Lþ 2d. Two perfectly matched layers (PMLs) are
added to the computational domain to absorb waves propagating away from the design domain (at arbitrary
angles) in the positive and/or negative x-direction, respectively. The reader is referred to Basu and Chopra [18]
for a comprehensive treatment of PMLs for elastic waves.

5.1. Perfectly matched layers (PML)

PMLs generally ensure a low reflection for all angles of incidence for pressure and shear waves. A good
performance of the absorbing boundary is important since the distribution of inclusions is not known a priori
and a good optimization algorithm can be expected to exploit this. The good performance comes, however, at
the expense of increased computational requirements due to the enlarged domain.

For the computational model in Fig. 2, the governing equations in the PMLs become:

1

e
q ~sxx

qx
þ

q ~syx

qy
þ rho

2u ¼ 0, (42)
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Fig. 2. Computational model used for numerical implementation of the optimization algorithm.
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1

e
q ~sxy

qx
þ

q ~syy

qy
þ rho

2v ¼ 0, (43)

where the modified stress components are:

~sxx ¼
Eh

ð1þ nhÞð1� 2nhÞ

1

e
ð1� nhÞ

qu

qx
þ nh

qv

qy

� �
, (44)

~sxy ¼ ~syx ¼
Eh

2ð1þ nhÞ

1

e
qv

qx
þ

qu

qy

� �
, (45)

~syy ¼
Eh

ð1þ nhÞð1� 2nhÞ
ð1� nhÞ

qv

qy
þ

1

e
nh

qu

qx

� �
, (46)

in which subscript h indicates that the material in the PMLs is host material. The complex variable e is a
function of x:

eðxÞ ¼ 1� ia
x� x�

L�

� �2

, (47)

where x� is the x-position of PML layer/real domain interface, and a is the absorption coefficient in the layer.
The total length of the PML domain is L�. Eq. (47) fulfills that e ¼ 1 for x ¼ x�, so that the PML equations
(42)–(43) reduce to the normal wave equations at the interface. The imaginary part of e ensures the dissipation
of the wave. The choice of letting the imaginary part increase with square of the distance from the interface is
empirical but has been shown to yield low reflection values [18]. The coefficient a should be chosen large
enough so that the wave is fully absorbed in the PMLs, but not excessively large so that spurious reflections
occur at the interface. Here, L� ¼ L=2 and a ¼ 50 have been used in the numerical examples.

5.2. Boundary conditions

A non-zero stress amplitude jump at G1 specifies a stress wave propagating away from the boundary in both
directions:

n � ðrþ � r�Þ ¼ 2iofZpU0 ZsV0g
T, (48)

where n ¼ f�1 0gT is the normal vector pointing away from O, (rþ � r�) is the stress jump and U0 and V0 are
the amplitudes of the P and S wave. Thus for a P wave of unit magnitude:

�ðsþxx � s�xxÞ ¼ 2ioZp, (49)

and

�ðsþxy � s�xyÞ ¼ 2ioZs, (50)

gives a unit magnitude S wave that propagates away from G1.
The wave input boundary condition and the transition to the PMLs are simplified with constant material

properties (host material) at the interface. This is accomplished by moving the design domain a small distance
d (Fig. 2) away from G1 and G2 . The transmitted power is averaged over the small domain instead of
evaluated at the boundary:

T ¼
1

hoZd

Z Lþ2d

Lþd

Z h

0

Reðisxxūþ isyxv̄Þdydx, (51)

as this simplifies the numerical implementation of the sensitivities (Section 5.3).
A periodic boundary condition is applied for the amplitude fields on the upper boundary:

uðx; hÞ ¼ uðx; 0Þ, (52)

as well as zero traction conditions at the outer PML boundaries.
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5.3. FEM discretization and sensitivity analysis

The commercial finite element software package COMSOL is used to discretize the domain and to assemble
and solve the discretized equations. The two displacement fields u; v as well as the two design fields R1 and R2
are discretized as follows:

uðxÞ ¼
XN

i¼1

c1
i ui; vðxÞ ¼

XN

i¼1

c2
i vi, (53)

R1ðxÞ ¼
XM
i¼1

f1
i R1;i; R2ðxÞ ¼

XM
i¼1

f2
i R2;i, (54)

in which c1
i ;c

2
i ;f

1
i ;f

2
i are the basis functions, N is the number of nodal displacement variables, and M is the

number of nodal design variables. Linear or quadratic basis functions are used for the displacement fields and
linear basis functions is used for the design fields. A regular mesh with nearly quadratic elements is used in all
examples.

The discretized version of Eq. (4) with boundary conditions and PMLs is

SðoÞd ¼ fðoÞ, (55)

where

S ¼ Kþ ioC� o2M, (56)

is the system matrix and d ¼ fu1 u2 . . . uN v1v2 . . . vNg
T are the discretized nodal amplitudes, K, C and M is

the stiffness, damping, and mass matrices, respectively, and f is the frequency-dependent load vector.
The vector of design variables c ¼ fR1;1R1;2 . . . R1;MR2;1R2;2 . . . R2;Mg

T is introduced and the sensitivities of the
objective function with respect to these design variables are obtained. Let F be either of the two objective
functions considered and let 0 ¼ d=dgi denote the derivative with respect to the ith design variable. The adjoint
method (e.g. Ref. [19]) leads to the expression for the derivative of the augmented objective function F0:

F00 ¼ F0 þ kTR0 þ k̄
T
R̄
0
, (57)

where F0 is the derivative of the objective function, k is a vector of Lagrangian multipliers, and R0 is the
derivative of the residual of Eq. (55) that vanishes at equilibrium (R ¼ R0 ¼ 0). Straightforward calculations
lead to an equation for the Lagrangian multipliers:

STk ¼ �
qF
qdr � i

qF
qdi

� �T

, (58)

so that the final expression for the sensitivities become:

F0 ¼
qF
qgi

þRe kT
qS
qgi

d

� �
. (59)

The implementation of the sensitivity analysis is facilitated by the use of the COMSOL software, that allows
for an almost automated generation of the derivatives [20].

5.4. Optimization problem formulation

With artificial damping included the overall power balance can be written:

R ¼ 1� ðT þDþDartÞ, (60)

where T, D and Dart are defined in Eqs. (51), (35) and (41). From Eq. (60) it is seen that the artificial damping
reduces R so that intermediate design variables are costly and likely to be penalized from the design.

In the example in Section 6 the wave reflection is maximized. Only scattering inclusions are considered so
there is no real dissipation (D ¼ 0). However, if material damping is added the convergence of the
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optimization algorithm is enhanced and the risk of obtaining a local optimum is reduced [2]. The material
damping is applied using a continuation method in which the optimization procedure is initiated with high
damping which is then gradually removed as the optimization progresses. A reverse procedure is used with the
artificial damping. The optimization is started with a small (or vanishing) artificial damping coefficient b1
which is then increased slowly.

For the second optimization problem, the power balance (60) is rewritten as:

D ¼ 1� ðT þ RþDartÞ, (61)

from which it is seen that artificial damping penalizes intermediate design variables also when D is maximized.
Both optimization problems are solved with Krister Svanberg’s MMA routine [21] with multiple load cases

that comprise several frequencies for pressure and shear waves. The implementation is based on the min–max
approach [22] and the final optimization problem is written:

min
c

max
oi

ðFpðoiÞ; FsðoiÞÞ

subject to : SðoiÞd ¼ fðoiÞ

0pcp1, ð62Þ

in which F ¼ T þDþDart for the reflection problem and F ¼ 1�D for the dissipation problem. The
subscripts p and s refer to pressure and shear waves and oi is any of the frequencies that are considered. Thus,
the formulation in Eq. (62) states that the maximum value of the objective function F for both wave types and
all frequencies is to be minimized by an optimized set of design variables c that fulfills the constraints.

6. Numerical example 1

In this first example the aim is to design a structure that reflects both P and S wave pulses. The wave pulse is
assumed to be narrow-band with center frequency f 0 and the main frequency content in a finite frequency
range near the center frequency. A possible application could be for isolation of structures from ground-borne
waves, e.g. coming from underground train tunnels. The properties of the materials used in this example have
been taken partly from studies of train-induced ground vibrations [23]. Table 1 lists the material properties of
the three materials that are used.

The optimized design should be a compromise between having a sufficient reflection of waves but also a
structure with manageable spatial dimensions. The length of the design domain slab, L, is chosen to be one
wavelength for a P wave in the host material. With a center frequency of f 0 ¼ 788Hz this gives L ¼ 1m.

Before optimized designs are generated the reflectance is computed for two structures with inclusions
of scattering material (scatter 1) placed periodically in the design domain. It is well known that periodi-
cally placed inclusions may cause bandgaps in the corresponding band structure which leads to high reflection.
This occurs if the material contrast is sufficiently high and the wavelength is commensurable with the
periodicity [1].

Fig. 3a shows a one-dimensional periodic structure, a Bragg-grating, and the corresponding reflectance
(Fig. 3b). Large frequency bands with high reflectance exist for pressure and shear waves, but they are off-set
due to the difference in wavelength. However, near the center frequency f 0 ¼ 788Hz high reflectance occurs
for both wave types. For the two-dimensional periodic structure (Fig. 4a) frequency bands with high
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Table 1

Material properties used for the reflection example

Material r ðkg=m3Þ E (MPa) n Zr ðs
�1Þ

Host (ground) 1550 269 0.257 —

Scatter 1 (ground) 2450 2040 0.179 —

Scatter 2 775 134.5 0.257 —

The material data for the two ground types is taken from Ref. [23].
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Fig. 3. (a) One-dimensional periodic structure (Bragg grating) with three inclusions of scatter 1 (black) in the host ground material (white);

(b) the corresponding reflected power R for P and S waves. P wave (solid line), S wave (dashed line).

0.0

0.2

0.4

0.6

0.8

1.0

b

a

   0  200  400  600  800 1000 1200 1400 1600

R
ef

le
ct

an
ce

, R

Frequency [Hz]

Fig. 4. (a) Two-dimensional triangular periodic structure with three rows of scatter 1 inclusions (black) in the host ground material

(white); (b) the corresponding reflected power R for P and S waves. P wave (solid line), S wave (dashed line).
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reflectance are also seen (Fig. 4b) but the reflectance is generally lower than for a Bragg-grating with the same
number of rows of inclusions. However, a 2D-structure is known better to reflect waves from different angles
of incidence [1]. The size of the inclusions were chosen after a simple parameter study so that a large
reflectance was obtained near f 0 ¼ 788Hz. It should be emphasized that a further improvement is possible by
using repetitive cells with an optimized material distribution [2]. However, the improvement that can be
obtained with further cell optimization is small due to the restricted design space.

6.1. Two-phase design

Thus, with two materials available a one-dimensional layered structure seems a good candidate as an
optimal design. However, as will be shown in this section this depends on whether the frequency range is
sufficiently small so that high reflectance bands for P and S waves can overlap. First the optimization is
performed for a relative small frequency range �10% away from the center frequency. Fig. 5 shows the
optimized design and the reflectance curves for pressure and shear waves. The design is a one-dimensional
structure with three inclusion layers of different thickness and with uneven spacing between them. Everywhere
in the target frequency range a high reflectance is obtained.

The target frequency range is now extended to �25% and Fig. 6a shows the optimized design (with 10
optimization frequencies in the target range). The design is no longer a one-dimensional layered structure since
such a structure cannot reflect both wave types sufficiently in the entire frequency range. Instead a
combination of a layered structure and a more intricate 2D material arrangement is seen. Fig. 6b shows that
the reflectance is more than 90% in the entire optimization range. Fig. 7 shows the corresponding wave
pattern for P and S waves at the center frequency and illustrates how wave amplitudes are attenuated in the
structure.
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Fig. 5. (a) Optimized distribution of scatter 1 (black) and host material (white) for maximum reflectance in a �10% frequency interval

around the center frequency f 0 ¼ 788Hz; (b) resulting reflectance curves for P and S waves. P wave (solid line), S wave (dashed line).

J.S. Jensen / Journal of Sound and Vibration 301 (2007) 319–340330



ARTICLE IN PRESS

0.0

0.2

0.4

0.6

0.8

1.0

a

b

   0  200  400  600  800 1000 1200 1400 1600

R
ef

le
ct

an
ce

, R

Frequency [Hz]

Fig. 6. (a) Optimized distribution of scatter 1 (black) and host material (white) for maximum reflectance in a �25% frequency interval

around the center frequency f 0 ¼ 788Hz; (b) resulting reflectance curves for P and S waves. P wave (solid line), S wave (dashed line).

Fig. 7. Wave patterns for the optimized structure computed for the center frequency f 0 ¼ 788Hz: (a) abs(u) for a P wave and (b) abs(v) for

an S wave.
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It should be emphasized that other local optima can be found with different initial material distributions.
The design shown in Fig. 6a is the best structure found after an extensive search but it is not guaranteed to be
the global optimum. The problem with many local optima in wave-propagation problems is known and has to
the author’s knowledge not yet been solved. Genetic or other evolutionary algorithms are not easily applied to
this problem due to the large number of design variables (5000 or more).

6.2. Three-phase design

A more effective wave-reflecting structure can be obtained if the design domain length L is increased. This
allows for more inclusion layers in the structure and consequently higher reflectance. Also for larger L the
optimized design has a combined layered/2D appearance (as in Fig. 6a) so that it is effective in the entire
frequency range.

For situations where the spatial extent of the design domain is limited higher reflectance can be obtained
with increased contrast between the inclusion material and the host. This contrast can be quantified as the
ratio between the impedances (cf. Eq. (26)–(27)). Generally, the layout of the optimized designs is different for
different contrasts.

However, an additional scattering material does not seem to increase the reflectance. Extensive numerical
experiments showed in all cases that a design with those two materials having the highest contrast is always
better than a three-phase design. This supports previous studies that indicate that maximum contrast is
favorable for high wave reflection (cf. Section 4.1).

Fig. 8 illustrates this effect. A third material phase is introduced (Table 1) and the corresponding optimized
design (Fig. 8a) consists mainly of scatter 1 (gray) and scatter 2 (black) as they have the largest material
contrast. However, small areas of host material (white) are seen in the design. If these areas are replaced by
scattering material (Fig. 8b), the reflectance (Fig. 8c) is almost identical as for the optimized 3-phase design
and actually slightly better averaged over the target range. Thus, it can be concluded that the 3-phase
optimized design is a local optimum.

Quadratic elements were used for the displacement fields in the last example to increase the convergence and
stability of the optimization algorithm. However, although an improvement was noted the final design is still
unsymmetrical which is an indication of the instabilities in the optimization procedure. The design is also
dominated by small fragmented details. To remedy this problem, different filtering techniques could be applied
(e.g. Ref. [15]). This has not been examined further in this work.

7. Numerical example 2

In this second example the setting from the first example is kept but now the goal is to maximize the fraction
of the input power that is dissipated in the slab. An absorptive material phase with the properties of epoxy
(Table 2) is introduced. The damping coefficient is chosen arbitrarily as Zr ¼ 0:05 s�1 and the damping of the
other material phases is neglected. The importance of Zr will be investigated for the optimized designs. A third
material phase (scatter) is also introduced and it will be investigated how this can improve the performance of
the design. The material properties of this material are chosen so that the density is twice and the stiffness 20
times that of the host material.

The dissipated power fraction D is computed for the situation with the entire design domain filled up with
absorptive material. Fig. 9 shows the dissipation of a P and an S wave with Zr ¼ 0:05 s�1 and also for higher
values of Zr. Due to the impedance contrast between the two material phases a part of the incident wave is
reflected directly at the input boundary and consequently not all input power is dissipated regardless of the
magnitude of Zr.

Thus, merely filling up the domain with absorptive material is not optimal for maximum dissi-
pation, although perhaps intuitively attractive. Instead, a good design must ensure a low direct reflection
at the input boundary and additionally ensure that the wave is not transmitted but reflected inside the
domain and then dissipated. The following sections demonstrate that such designs are generated by the
optimization algorithm.

ARTICLE IN PRESS
J.S. Jensen / Journal of Sound and Vibration 301 (2007) 319–340332



7.1. Two-phase design

In this section host and the absorptive material are used for the optimization. Fig. 10a shows an optimized
design for shear and pressure waves in a �10% frequency range near the center frequency with 10
optimization frequencies used. The optimized design is complicated but with characteristic features. A thin
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Fig. 8. (a) Optimized distribution of scatter 1 (gray), scatter 2 (black) and host (white); (b) 2-phase design with host replaced by scattering

material; (c) resulting reflectance curves for P and S waves. P wave (solid line), S wave (dashed line), P wave-2 phase (discrete circles), S

wave-2 phase (discrete crosses).

Table 2

Material properties for the materials used in the dissipation example

Material r ðkg=m3Þ E (MPa) n Zr ðs
�1Þ

Host (ground) 1550 269 0.257 —

Epoxy 2000 4000 0.400 0.05

Scatter 3100 5380 0.350 —

The material data for the ground is taken from Ref. [23].
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inclusion slab at the input boundary modifies the effective impedance seen by the incident wave so that the
direct reflection is minimized. The thicker slab at the output boundary maximizes the reflection of the wave
that ‘‘escapes’’ through the domain. The inner parts of the domain are filled with strategically placed
inclusions that dissipate the high amplitude waves.

Fig. 10b shows curves for the dissipated power fraction. The dissipation is significantly increased in the
target range and is a factor 2–10 higher than for the case with the whole domain filled (Fig. 9). The dissipation
is also plotted for the same structure with a higher value of Zr. It is noted that the dissipation approaches
unity. This implies that the structure effectively reduces the direct reflection and the transmission through the
domain to a minimum. This also indicates that the specific choice of Zr used in the optimization algorithm is
not critical for the generation of the optimized design. Fig. 11 shows the point-wise distribution of the
dissipated power for the two wave types computed at the center frequency. The dissipation of both wave types
is seen to be localized and concentrated in a few absorptive inclusions near the input boundary and in the inner
part of the domain.
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Fig. 9. (a) Design domain filled with absorptive material (epoxy), corresponding dissipated energy fraction D for (b) P and (c) S waves for

four different values of Zr. Zr ¼ 0:05 s�1 (solid), Zr ¼ 0:50 s�1 (dash), Zr ¼ 0:75 s�1 (dot), Zr ¼ 1:00 s�1 (dash–dot).
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Fig. 10. (a) Optimized distribution of absorptive material (black) and loss-free host material (white) for maximum dissipation in a �10%

frequency interval around f 0 ¼ 788Hz; (b) corresponding dissipation of P and S waves. P wave Zr ¼ 0:05 s�1 (solid), S wave Zr ¼ 0:05 s�1

(dash), P wave Zr ¼ 0:75 s�1 (dot), S wave Zr ¼ 0:75 s�1 (dash–dot).

Fig. 11. Point-wise dissipated power for the optimized design for f 0 ¼ 788Hz: (a) a P wave and (b) an S wave. Zr ¼ 0:05 s�1.
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7.2. Three-phase design

The extra scattering material is now included in an attempt to further improve the performance. The
hypothesis is that with a highly reflecting material available a larger part of the wave can be reflected leading to
higher wave amplitudes and higher dissipation. Fig. 12a shows the optimized design with gray as absorptive
material and black as scattering material. Qualitatively, the design is similar to the two-phase design. The
major difference is that the inclusion near the output boundary is made of the scattering material as the higher
impedance contrast leads to increased reflection. Additionally, two small reflecting inclusions are seen in the
inner part of the structure.

Fig. 12b shows the dissipated power fraction for the three-phase design. The improvement of the
performance is quite limited (from about 32% to about 35% in average) and although the details of the two-
phase and three-phase designs are different the performance in the target range is similar. Thus, it seems
possible to create many good optimized designs (local optima) with similar overall features but with different
structural details such as precise size and placement of the absorptive inclusions.

The effect of a refinement of the computational model and the use of higher-order finite elements is
illustrated in Fig. 13. Fig. 13a shows the optimized design with quadratic elements for the displacement fields
instead of linear elements. The higher-order elements stabilize the optimization algorithm (as for the reflection
example) and the small asymmetries in the design in Fig. 12a vanish. Apart from this the two designs are very
similar. Fig. 13b shows an optimized design with 100� 100 linear elements in the design domain (80� 80 used
in the other examples) and with 15 optimization frequencies in the target range (instead of 10 used in the other
examples). The overall features of the design are unchanged but the details are different. The numerical
instabilities are more severe and lead to a very unsymmetrical design. However, as illustrated in Fig. 13c, these
differences in the design are not reflected in the performance which is very similar in the target range.
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Fig. 12. (a) Optimized distribution of absorptive material (gray), host material (white), and scattering material (black) for maximum

dissipation in a �10% frequency interval around f 0 ¼ 788Hz; (b) corresponding dissipation of P and S waves compared to the two-phase

design in Fig. 10. P wave-3 phase (solid), S wave-3 phase (dash), P wave-2 phase (dot), S wave-2 phase (dash–dot). Zr ¼ 0:05 s�1.
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Fig. 14 shows the point-wise dissipated power computed at the center frequency for the structure gene-
rated with quadratic elements for the displacement fields. The dissipation is fairly well distributed for the P
wave and more localized near the input boundary for the S wave. The behavior of the optimized absorptive
structure is further examined in Fig. 15. The dissipation (D), reflectance (R), and transmittance (T) are
depicted for an S wave. As seen in Fig. 15a (Zr ¼ 0:05 s�1) the increase in dissipation in the target range
is accompanied by a large drop in R. However, the transmission T is relatively large due to the small
dissipation in the absorptive inclusions. If a material with a larger damping coefficient is used (Zr ¼ 0:75 s�1)
the reflection R is again very small, but now almost all of the wave that propagates through the structure is
dissipated and consequently the transmission T of the wave is almost reduced to zero. Similar behavior is seen
for a P wave.

8. Conclusions

Two topology optimization problems for elastic wave propagation were considered. The objective of the
optimization study was to optimize the distribution of two or three material phases in a slab of material so that
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Fig. 13. (a) Optimized design obtained with quadratic elements for the displacement amplitudes; (b) design obtained with refined mesh
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wave propagation was hindered. This was accomplished either by maximizing the reflection from the slab or
the wave dissipation in the slab.

A design domain was defined and parameterized with two continuous design fields that control the material
properties. With two design fields up to three different material phases could be distributed in the domain. A
penalization method based on artificial damping was introduced. The penalization was employed to ensure
well-defined material properties in the final design.

The optimization problems were formulated and discretized with a standard finite element method
and implemented with the commercial software COMSOL. The optimization problem was solved with
the aid of the mathematical programming software MMA, with analytical sensitivity analysis and a
min-max formulation so that pressure and shear waves for multiple wave frequencies could be
considered.

The use of the optimization algorithm was demonstrated by two application examples. The propagation of
a ground-borne wave pulse was suppressed by optimizing the material distribution in a square design domain.
In the first example scattering inclusions were distributed to maximize the wave reflection and in the second
example the wave dissipation was maximized with an optimized distribution of absorbing and scattering
inclusions.

The examples have demonstrated that large reflection of waves can be obtained by optimizing the
distribution of two material phases but also that adding a third phase with intermediate material properties
could not lead to further improvement. By optimizing the distribution of absorbing material the dissipation of
waves can be significantly enhanced and it was shown that the dissipation could be further increased by
including also a scattering material phase in the design optimization.
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Fig. 14. Point-wise dissipated power for the optimized design for f 0 ¼ 788Hz: (a) a P wave and (b) an S wave. Zr ¼ 0:05 s�1.
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Abstract

We present a method to maximize the separation of two adjacent eigenfrequencies in structures with two
material components. The method is based on finite element analysis and topology optimization in which
an iterative algorithm is used to find the optimal distribution of the materials. Results are presented for
eigenvalue problems based on the 1D and 2D scalar wave equations. Two different objectives are used in
the optimization, the difference between two adjacent eigenfrequencies and the ratio between the squared
eigenfrequencies. In the 1D case, we use simple interpolation of material parameters but in the 2D case
the use of a more involved interpolation is needed, and results obtained with a new interpolation function
are shown. In the 2D case, the objective is reformulated into a double-bound formulation due to the
complication from multiple eigenfrequencies. It is shown that some general conclusions can be drawn that
relate the material parameters to the obtainable objective values and the optimized designs.
r 2005 Elsevier Ltd. All rights reserved.

1. Introduction

One strategy for the passive vibration control of mechanical structures is to design the
structures so that eigenfrequencies lie as far away as possible from the excitation frequencies. This
paper exploits the possibility for using the method of topology optimization to maximize the
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separation of two adjacent eigenfrequencies in structures with two material components. This
study is restricted to 1D and 2D structures where the vibrations are governed by the scalar wave
equation.
The method of topology optimization [1] has been used to optimize a number of different

mechanical and physical systems [2]. The original formulation using a homogenization approach
was applied by Diaz and Kikuchi [3] for eigenfrequency optimization. The problem was
formulated as a reinforcement problem in which a given structure is reinforced in order to
maximize eigenfrequencies. Soto and Diaz [4] considered optimal design of plate structures and
they maximized higher-order eigenfrequencies and also two eigenfrequencies simultaneously. Ma
et al. [5] used the same formulation to maximize the sums of a number of the lowest
eigenfrequencies and also considered maximization of gaps between eigenfrequencies of low-order
modes for structures with concentrated masses. Topology optimization using interpolation
schemes (e.g. SIMP with penalization) or similar material interpolation models [6], was used by
Kosaka and Swan [7] to optimize the sum of low-order eigenfrequencies. In Ref. [8] topology
optimization was used to maximize eigenfrequencies of plates. Here, the problem was not
formulated as a reinforcement problem and emphasis was laid on the use of an interpolation
function different from SIMP. Recently, optimization of the lowest eigenfrequencies for plates
subjected to pre-stress has been considered [9].
The separation of adjacent eigenfrequencies is closely related to the existence of gaps in the

band structure characterizing wave propagation in periodic elastic materials [10], often referred to
as phononic band gaps. This is illustrated by the 1D example in Fig. 1, showing an elastic rod
subjected to time-harmonic longitudinal excitation. The rod is made from a periodic material with
two components PMMA and aluminum. It can be shown that there are large gaps in the band
structure corresponding to frequency ranges where longitudinal waves cannot propagate through
the compound material. The implication for the corresponding structure is that no
eigenfrequencies exist in these band gap frequency ranges, except possibly for localized modes
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near the boundaries [11]. The resulting gaps between two adjacent eigenfrequencies may be large,
as seen from the frequency response curve in the figure, and the corresponding response in the
gaps when subjected to time-harmonic excitation may be very low.
Topology optimization and related methods have previously been applied to maximize the band

gaps in periodic materials for photonic band gaps, i.e. for electromagnetic waves [12,13] and by
Sigmund [14] for phononic band gaps. Minimizing the response for band gap structures, i.e.
creating a structure with a response as low as possible (cf. Fig. 1), was considered by Sigmund and
Jensen [15]. Other works have considered minimizing the vibrational response of structures, such
as Ma et al. [16] who used the homogenization approach for the optimal design of structures with
low response and in Ref. [17] where structures subjected to time-harmonic loading were optimized
with respect to dynamic compliance.
Osher and Santosa [18] used a level set method to study extremal eigenvalue problems for a

two-material drum, considering also the case of maximizing the gap between the first and second
eigenfrequencies. The present paper extends these results by considering the more general scalar
wave equation problem and by systematically considering separation of eigenfrequencies of
arbitrary order. We start by treating the simplest problem of structures for which the vibrations
are governed by the 1D wave equation and present results for maximizing the gap between two
eigenfrequencies and also for an alternative formulation that considers the ratio of adjacent
eigenfrequencies. Then we consider the more complicated problem of 2D structures and show
results for both optimization formulations. In the 2D case we introduce a new interpolation of the
material parameters in order to ensure a final 0–1 design, i.e. a design with a clear separation of
the use of the two materials. Additionally, we must treat multiple eigenfrequencies which are
present in the optimized designs. The treatment of multiple eigenfrequencies is primarily related to
the sensitivity calculation but we also reformulate the objective of the optimization into a double-
bound formulation which gives stable convergence. Finally, we present some conclusions.

2. The 1D scalar problem

First, we treat the simplest problem of separating eigenfrequencies for the 1D scalar problem.

2.1. Model

Consider the 1D scalar time-reduced wave equation (Helmholtz equation):

ðAðxÞw0Þ0 þ o2BðxÞw ¼ 0, (1)

subjected to free–free boundary conditions at x ¼ 0 and x ¼ L.
Eq. (1) governs eigenvibrations of different mechanical systems depending on the choice of the

coefficients A and B. For A ¼ 1 and B ¼ ~r=T we can interpret the problem as that of transverse
vibrations of a taut string with ~rðxÞ and T being the string mass per length and the tensile force,
respectively. For A ¼ E and B ¼ r we instead treat the problem of longitudinal vibrations of a
uniform rod. In this case, EðxÞ is Young’s modulus and rðxÞ is the density. Similarly, with another
set of coefficients we can treat the problem of torsional vibrations of a rod.
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To solve the wave equation with in-homogeneous coefficients we apply a standard Galerkin
finite element discretization of Eq. (1) and the boundary conditions, which lead to the discrete
eigenvalue problem:

K/ ¼ o2M/, (2)

which has ðoi;/iÞ as the ith eigensolution (frequency and vector), and where M and K are system
matrices given by

K ¼
XN

e¼1

Aeke; M ¼
XN

e¼1

Beme, (3)

where the summations should be understood in the normal finite element sense, and ke and me are
element matrices defined as

ke ¼

Z
Ve

dNT

dx

dN

dx
dV ; me ¼

Z
Ve

NTNdV , (4)

where N is the shape function vector for the chosen element type. In this work, we use simple
elements, i.e. a 2-node linear element for the 1D case and later a 4-node bilinear quadratic element
for the 2D case.
This finite element formulation for the problem is now the basis for the optimization procedure

presented in the following.

2.2. Optimization

The basis of topology optimization with a material interpolation scheme is to assign constant
material properties to each element in the finite element model and then associate these material
properties with continuous design variables [2]. We choose one design variable per element and let
it vary continuously between 0 and 1:

te 2 Rj 0ptep1; e 2 ½1;N�, (5)

where N is the number of finite elements in the model.
We now let the material properties in each element, Ae and Be, be a specified interpolation

function of this design variable. This is done so that the material properties for te ¼ 0 correspond
to material 1, i.e. A1 and B1, and similarly for te ¼ 1 they take the values of material 2, A2 and B2.
We emphasize the fundamental difference between this approach in which we use a continuous
design variable that allows us to apply well-founded gradient-based optimization techniques, and
the use of discrete design variables that requires integer-type algorithms.
Since te vary continuously between 0 and 1 we may expect that in the optimal design we can end

up with material properties that do not correspond to either of the two materials, but instead with
some intermediate values. In order to ensure a well-defined distribution of materials 1 and 2 in the
structure, referred to as a 0–1 design, we can manipulate the interpolation functions [6]. Especially
when dealing with eigenvalue problems the choice of the interpolation function is important [8].
However, for the 1D problem the choice is less critical and we choose the functions:

AeðteÞ ¼ A1 þ teðA2 � A1Þ ¼ ð1þ teðmA � 1ÞÞA1, (6)
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BeðteÞ ¼
B1

1þ te
B1

B2
� 1

� � ¼ B1

1þ teðm�1B � 1Þ
, (7)

which correspond to the homogenized density (Be) and stiffness (Ae) of an ‘‘effective’’ 1D material
with two different material components. As will appear later this is sufficient to ensure the wanted
0–1 design. In Eqs. (6)–(7) the coefficient contrast parameters mA ¼ A2=A1 and mB ¼ B2=B1 have
been introduced.
We now define the difference between two adjacent eigenfrequencies on and onþ1 as our

objective for the optimization to maximize. This can be written as a standard optimization
problem as follows:

max
te

J ¼ onþ1 � on

s.t. K/ ¼ o2M/

0ptep1; e 2 ½1;N�:

(8)

The maximization problem in Eq. (8) is solved using an iterative procedure involving the
following steps:

1. Choose n for the optimization problem.
2. Choose an initial design te, typically chosen as a homogeneous material distribution (e.g.

te ¼ 0:5 for all elements).
3. Calculate the M lowest eigenfrequencies (M4nþ 1) from Eq. (2) and compute the objective

function J.
4. Calculate the sensitivities dJ=dte.
5. Get a design update using an optimizing routine, e.g. MMA [19].
6. Repeat steps 3–5 until the design change between successive iterations is less than a specified

tolerance.

The sensitivity of the objective function is calculated analytically

dJ

dte

¼
donþ1

dte

�
don

dte

, (9)

where the sensitivity of the nth eigenvalue is

don

dte

¼

dAe

dte
uela � o2

n
dBe

dte
ukin

2on

, (10)

where we assume that only Ae and Be are functions of the design variable te on an element level. It
is also assumed that the eigenvectors have been normalized so that /TM/ ¼ 1, and that

ukin ¼ ð/eÞ
T
nmeð/eÞn, (11)

uela ¼ ð/eÞ
T
nkeð/eÞn, (12)

are the element-specific kinetic and elastic energies for the given mode of order n.
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In the following section, we show results for a specific choice of the material coefficients. We
consider free–free boundary conditions and enumerate the rigid body mode as n ¼ 0.

2.3. Results—the elastic rod

In the example, we use the values mA ¼ 13:21 and mB ¼ 2:25. This corresponds to the ‘elastic
rod’ problem of longitudinal vibrations with PMMA and aluminum as the two materials to be
distributed. The objective of the optimization is to distribute the two materials in such a way that
the eigenfrequency gap onþ1 � on is maximized.
Results are shown in Fig. 2 for maximizing the gap for four different cases: n ¼ 1, n ¼ 2, n ¼ 9,

and n ¼ 24. The figures on the left show the material distribution in the optimized designs with the
relative element position indicated along the abscissa. The figures on the right are the results of
subjecting the optimized structure to time-harmonic excitation at the left end and computing the
velocity response at the right end. The curves show the response versus the normalized excitation
frequency OL=ð2pcÞ, where L is the rod length and c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
A1=B1

p
is the wave speed in material 1.

From these curves the discrete eigenfrequencies of the structure are easily identified by the peaks.
The most important result is that the designs consist of alternating sections of te ¼ 0 (material

1) and te ¼ 1 (material 2); thus the structures are well defined in terms of distribution of materials
1 and 2. Furthermore, there is a direct relation between the mode order n and the number of
sections with material 2 (inclusions) that appear. The inclusions also appear to have a uniform size
in the interior of the structure, and only near the rod ends the effect of the boundary conditions
may be seen as a local modification of the material distribution. For high-order mode separation
(n ¼ 9 and 24) the optimized gap between mode n and nþ 1 becomes significantly larger than the
gaps between other adjacent modes, and a low-velocity response is noted in the maximized gap.
For low-order modes (n ¼ 1 and 2) the difference in gaps is smaller and the response drop in the
maximized gap is hardly distinguishable compared to the drop in response between the other
eigenfrequencies.

2.4. Maximizing the ratio of adjacent eigenfrequencies

Instead of maximizing the gap between two adjacent eigenfrequencies we now maximize the
ratio between the two eigenfrequencies (or rather the square of the frequencies). The new objective
function is

J ¼
o2

nþ1

o2
n

, (13)

and the corresponding expression for the sensitivities is given as

dJ

dte

¼ 2
onþ1

o2
n

donþ1

dte

�
onþ1

on

don

dte

� �
, (14)

where don=dte and donþ1=dte are found from Eq. (10).
In order to compare the designs obtained using this new objective function with the previous,

results are shown with mA and mB as in Section 2.3 for two different modes, n ¼ 4 and n ¼ 19. The
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Fig. 2. Optimized design (left) and corresponding velocity response (right) for maximum separation of onþ1 and on.

The material parameters correspond to the ‘elastic rod case’ with mA ¼ 13:21, mB ¼ 2:25. Results are given for four

different values of n, from top to bottom: n ¼ 1; 2; 9; 24.
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comparison is shown in Fig. 3 with the results for the new objective function plotted with solid
lines and for the old objective function with dotted lines.
The material distribution curves left show that the new objective function has caused a shift in

the distribution between materials 1 and 2 and that the material in the end of the rods is now
material 2 instead of material 1. Interestingly, the response curves on the right show that the
response in the gaps optimized for maximum ratio drops lower in both examples even though the
absolute gap size is smaller for these designs.
We now introduce a material parameter b that characterizes the contrast between materials

b ¼ mAmB41, (15)

where the last inequality condition just implies that if not fulfilled the enumeration of the two
materials should be interchanged.
In Fig. 4, we show results for maximizing the ratio of eigenfrequencies for three different

combinations of material coefficients but keeping b ¼ 4. We vary mA and mB such that in the top
figures mA ¼ mB, in the middle figures mA ¼ 4, mB ¼ 1, and in the bottom figures mA ¼ 1 and
mB ¼ 4. For all three combinations we maximize the ratio for n ¼ 4 and find that the ratio for the
optimized designs in all cases becomes 3.09. For other combinations of material coefficients and
when optimizing for other n, we see that the maximum ratio between the adjacent
eigenfrequencies obtainable for any mode order seems to depend only on the parameter b.
However, as also seen in the figure, the material distribution varies and there is also a large
difference in the response curves for the different combinations of material coefficients.
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Fig. 3. Comparison of optimized design (left) and velocity response (right) for maximizing the eigenfrequency gap

onþ1 � on (dotted lines) and maximizing the eigenfrequency ratio o2
nþ1=o

2
n (solid lines). Material parameters are as for

Fig. 2 and results are given for n ¼ 4 and 19.
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We now plot the maximum obtainable eigenfrequency ratio versus mode order n for different
values of the parameter b. Fig. 5 shows the maximum ratio for three different values of b,
corresponding to the combination of coefficients for the elastic rod (b � 29:7), as well as for b ¼ 2
and b ¼ 9. The ratio for a homogeneous structure which is given by the analytical expression
o2

nþ1=o
2
n ¼ ðnþ 1Þ2=n2 is also shown in the figure. Naturally, for higher contrast, i.e. higher values

of b, the maximum ratio is higher. Also it appears that for high values of n this ratio attains a
constant value.
Fig. 4 shows that although the eigenfrequency ratio for the optimal design depends only on the

value of the parameter b, the material distribution depends on the chosen values of the material
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Fig. 4. Optimized design (left) and corresponding velocity response (right) for maximized eigenvalue ratio o2
5=o

2
4 for

three different choices of mA and mB, top: mA ¼ mB ¼ 2, middle: mA ¼ 4, mB ¼ 1, and bottom: mA ¼ 1, mB ¼ 4. The

maximum ratio is (for n ¼ 4 as shown) for all three cases equal to 3.09.
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coefficients. In order to analyze this effect, a second material parameter is introduced:

a ¼
mA

mB

. (16)

We now optimize the ratio for different material coefficients but keep a constant. In this case the
optimized material distribution is always the same, whereas the maximum eigenvalue ratio varies
significantly. In Fig. 6, we plot the volume fraction of material 2 versus the value of a. The volume
fraction is computed in the interior part of the domain where the boundary effects are not
important. As seen, with a ¼ 1 the two materials are evenly distributed in the optimized design,
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whereas if a is increased material 2 is dominating and for lower values of a material 1 is
dominating. If mA ¼ 1 (e.g. a taut string) we have a ¼ 1=bo1 which shows that material 1 (the
lighter material) is always dominant in the optimized design for this special case.

3. The 2D scalar case

We now consider the more complex problem of the 2D scalar case.

3.1. Model

The 2D scalar time-reduced wave equation (Helmholtz equation) is given by

=T
ðAðx; yÞ=wÞ þ o2Bðx; yÞw ¼ 0, (17)

where the problem-dependent material coefficients A and B can now vary in the 2D plane ðx; yÞ.
As in the 1D case we apply a standard FEM discretization, which leads to the discrete eigenvalue
problem stated in Eqs. (2)–(3). The element matrices are in the 2D case given by

ke ¼

Z
Ve

ðONÞTONdV ; me ¼

Z
Ve

NTNdV , (18)

where

O ¼
q=qx 0

0 q=qy

" #
. (19)

Also in the 2D case we may study different structural vibration problems by changing the two
coefficients A and B. Letting A ¼ 1 and B ¼ r=T enables us to analyze the membrane problem
where rðx; yÞ is the density and T is the uniform tension (force per area). Alternatively with
A ¼ E=ð2ð1þ nÞÞ, where Eðx; yÞ is Young’s modulus and nðx; yÞ is Poisson’s ratio, and with B ¼
rðx; yÞ being the density, Eq. (19) governs out-of-plane shear vibrations of a thick elastic body.

3.2. Optimization

When we optimize a 2D domain with respect to maximizing the gap between eigenfrequencies
there are a number of extra difficulties we must deal with. The primary source of the difficulties is
the possibility of multiple eigenfrequencies. The multiple eigenfrequencies can be calculated
without difficulty using, e.g. the subspace iteration method [20].
The objective for the optimization is as in the 1D case given by

maximize J ¼ onþ1 � on, (20)

where the gap between the eigenfrequency of order nþ 1 and n is maximized.
If the eigenfrequencies of order nþ 1 and n are both distinct eigenpairs, with squared

eigenfrequencies o2
nþ1 and o2

n and corresponding eigenvectors fnþ1 and fn, no problems arise and
we use the objective (20) directly since the sensitivities of the squared eigenfrequency with respect
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to a design parameter te are given by

do2

dte

¼ /T dK

dte

� o2 dM

dte

� �
/, (21)

where it is assumed that the eigenvector has been normalized so that /TM/ ¼ 1. In the case of
multiple eigenvalues we cannot use Eq. (21) to find the sensitivities. The extended method is
presented in Ref. [21] and was used more recently in Ref. [22].
We elaborate on the case of a double eigenfrequency with two corresponding eigenvectors, (o2,

/1, /2). It is assumed that the two eigenvectors are normalized with respect to the mass matrix as
before and that the two eigenvectors are orthogonal, i.e.,

/T
1M/2 ¼ 0. (22)

The problem is that any linear combination of the two eigenvectors is also an eigenvector with the
same corresponding eigenfrequency:

/̄ ¼ c1/1 þ c2/2, (23)

c21 þ c22 ¼ 1) /̄
T
M/̄ ¼ 1. (24)

Therefore, the sensitivities are not only related to the change in design space, given by the change
in design parameter te, but also by the choice of the eigenvector. Only for two specific
eigenvectors, depending on the design parameter, do the sensitivities have meaning, because only
these two eigenvectors exist when te is changed. By inserting Eq. (23) in Eq. (21) we get

do2

dte

¼ c21g11 þ c22g22 þ 2c1c2g12, (25)

gab ¼ /T
a

dK

dte

� o2 dM

dte

� �
/b. (26)

The extreme values of do2=dte are found by differentiating Eq. (25) with respect to the two
constants c1 and c2 and setting this equal to zero

g11 g12

g12 g22

" #
c1

c2

( )
¼

0

0

� �
, (27)

and we now find the eigenvalues and the eigenvectors of the matrix in Eq. (27):

ga; ca ¼
ca1

ca2

( ) !
; gb; cb ¼

cb1

cb2

( ) !
. (28)

The sensitivities of the double eigenfrequency with respect to the design parameter te are given
directly by ga and gb. The corresponding eigenvectors are given by Eq. (23) where the constants c1
and c2 are the values of the eigenvector ca or cb:

do2

dte

¼
ga with eigenvector /a ¼ ca1/1 þ ca2/2;

gb with eigenvector /b ¼ cb1/1 þ cb2/2:

(
(29)
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For different design parameters the eigenvectors /a and /b vary, i.e. the sensitivities in Eq. (29)
are given for two specific directions in the space spanned by the two originally determined
eigenvectors (/1, /2). The derivation shown here is for a double eigenfrequency but the extension
to a higher number of multiplicity is straightforward.
It is now possible to find the sensitivities of multiple eigenfrequencies. However, there is

still a problem because the sensitivities are given for specific eigenvectors that vary for each
design parameter. It is therefore difficult to solve the optimization problem as formulated in
Eq. (20). As an alternative formulation we propose to use a double-bound formulation, as in
Ref. [14]. The standard-bound formulation is used to reformulate a min–max problem; instead of
minimizing the maximum value of a given quantity, a new variable is introduced which is
minimized subject to the constraint that the value of the given quantity should be less than
this variable. By using the double-bound formulation we do not need to identify the two
eigenvectors corresponding to on and onþ1 in each iteration step of the optimization, which may
change from iteration to iteration. This is an advantage when we have multiple eigenfrequencies.
The optimization problem of maximizing the gap between two eigenfrequencies is thus
reformulated as

max
te

J ¼ C1 � C2

s.t. onþiXC1 i 2 ½1; nu�

onþ1�jpC2 j 2 ½1; nl�

K/ ¼ o2M/

0ptep1; e 2 ½1;N�;

(30)

where the two extra variables introduced are C1 and C2. The numbers nu and nl are chosen
suitable in order to secure that all eigenfrequencies of order nþ 1 and higher are greater than C1

and all eigenfrequencies of order n and lower are less than C2.
In the practical implementation in each iteration step of the optimization we need to check if

there are multiple eigenfrequencies and in this case calculate the sensitivities according to Eq. (29).
It is important to note here that the sensitivities found for multiple eigenfrequencies are found for
different eigenvectors for each design parameter. If the eigenfrequency of order n is a double
eigenfrequency, which vector of sensitivities should we assign to the eigenfrequency of order n and
which one to the eigenfrequency of order n� 1? For a specific design parameter it is natural to
assign the lowest sensitivity (including the sign) to the lowest order eigenfrequency (n� 1) and the
highest sensitivity to the highest order eigenfrequency (n). If we make the infinitesimal design
change the actual values of the involved eigenfrequencies comply with the chosen allocation of the
sensitivities.

3.3. Penalization

The simplest interpolation of the material coefficients A and B when using two materials is
made using a linear approach:

AeðteÞ ¼ A1 þ teðA2 � A1Þ ¼ ð1þ teðmA � 1ÞÞA1, (31)
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BeðteÞ ¼ B1 þ teðB2 � B1Þ ¼ ð1þ teðmB � 1ÞÞB1, (32)

where te is the element design parameter which, we recall, takes values between 0 and 1.
As an illustrative example we start with a domain where the ratio between the side lengths of the

domain is 2/1 and the domain has free boundary conditions, i.e, we find the free–free modes.
In Fig. 7, the result of three different optimizations are shown: Fig. 7(a) shows the result when

minimizing the first eigenfrequency, in Fig. 7(b) the maximization of the second eigenfrequency is
shown, and finally in, Fig. 7(c) the result of maximizing the gap between the second and first
eigenfrequencies is shown. It should be noted that by the notation of first and second
eigenfrequencies we have neglected the rigid body mode.
In Figs. 7(a–c) the black color corresponds to material 2 and the white color corresponds to

material 1. From Fig. 7 we see that the maximization of the gap between first and second
eigenfrequencies clearly is a compromise between the results of minimizing first eigenfrequency
and maximizing second eigenfrequency. It should be noted that for the case of maximizing the
second eigenfrequency, this second eigenfrequency is a double eigenfrequency, and in the case of
maximizing the gap between the two eigenfrequencies the second eigenfrequency is also a double
eigenfrequency. In Fig. 7(a) we have a 0–1 design, i.e. no intermediate values of te are present,
whereas in Figs. 7(b–c) there are some remaining elements with intermediate values, so-called
‘‘gray’’ elements.
To explain the gray elements we must discuss the interpolation (in some case penalization) that

is used. For the optimizations shown in Fig. 7 the linear interpolation in Eqs. (31) and (32) are
used. In Ref. [8] it was noted that the important aspect is not the interpolation of the stiffness
(here coefficient A) or the interpolation of the mass (here coefficient B), but the interpolation of
the eigenfrequency. The squared eigenfrequency o2 is by the Rayleigh quotient given as ‘‘stiffness
divided by mass’’. Using Eqs. (31) and (32), we find

Ae

Be

¼
ð1þ teðmA � 1ÞÞ

ð1þ teðmB � 1ÞÞ

A1

B1
¼ f ðteÞ

A1

B1
. (33)

The curvature of Eq. (33) is such that intermediate values are penalized when an eigenfrequency is
minimized. To achieve this intermediate values are penalized when an eigenfrequency is
maximized, the curvature of the interpolation function, f ðteÞ must have an opposite sign. This can
be obtained in many ways and here it is chosen to let the interpolation be a second-order
polynomial that goes through the three points

P1 ¼ ð0; 1Þ; P2 ¼ ðp2x; p2yÞ; P3 ¼ ð1; aÞ.

ARTICLE IN PRESS

Fig. 7. Eigenfrequency optimization of a 2D domain with two different materials, the ratio of the side length is 2/1 and

the domain have no supports (free boundary conditions). (a) The result when optimized for minimum first

eigenfrequency, (b) the result when optimized for maximum second eigenfrequency, (c) the result when maximizing the

gap between first and second eigenfrequency.
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The three points are shown in Fig. 8. Point P2 is at a distance L along a line that is perpendicular
to the linear interpolation and intersects this line at the center. The parameter L can be used in a
continuation setting where the value of L is slowly increased during optimization to ensure 0–1
design. The penalization of A is then given by

Ae ¼ f ðteÞBe ¼ ðk1ðteÞ
2
þ k2te þ 1Þ � ð1þ teðmB � 1ÞÞA1, (34)

where k1 and k2 are constants that depend on the specific value of L and Be is the linear
interpolation (32), which seems reasonable from a physical point of view.
Using the new penalization function (34) together with Eq. (32) we achieve the optimized design

in Fig. 9, where it is clear that the gray elements have been removed. However, there is still a
problem with regard to the interpolation functions when the objective is to maximize the gap
between two eigenfrequencies. The interpolation function shown in Fig. 8 with positive values of
L is suited for the maximization of eigenfrequencies, whereas for negative values of L it is suited
for the minimization. In the maximization of the gap we need both so we apply the following
approach: when calculating the sensitivities of the constraints in Eq. (30) with respect to the lower
bound C2 we calculate the eigenfrequencies and the sensitivities on the basis of the interpolation
function (34) with Lo0. When we calculate the sensitivities of the constraints in Eq. (30) with
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P1 = (0,1)

P3 = (1,α)

P2 = (p2x, p2y)

L

f (te)

te
0.0 0.2 0.4 0.6 0.8 1.0

Fig. 8. Interpolation function of the squared eigenfrequency that simultaneously acts as a penalization function when

eigenfrequencies are maximized.

Fig. 9. Optimization of second eigenfrequency of a 2D domain with two different materials using interpolation (34), the

ratio of the side lengths is 2/1 and the domain has no supports (free boundary conditions).
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respect to the higher bound C1 we calculate the eigenfrequencies and the sensitivities on the basis
of the interpolation function (34) with L40. The cost of using this method is that we have to
calculate the eigenfrequencies twice.

3.4. Results for a square design domain

In the first examples we use material parameters corresponding to

mA ¼ 2:25; mB ¼ 2.

First, we maximize the gap between eigenfrequencies for a square domain. A square design
inherently has double eigenfrequencies even with only one material. If we want to maximize the
gap between the first and second eigenfrequencies it is not possible to start from an initial design
where all of the design values have been assigned a uniform value (e.g. te ¼ 0:5). To overcome this
problem it is chosen to start from a design in which all design variables are assigned a finite value,
e.g. te ¼ 0:5, except for one element in which the value te ¼ 0 is used. With this small variation,
there are no initial double eigenfrequency and the optimization works. We apply a continuation
scheme in which the optimization is started with L ¼ 0 and the value of jLj is then increased
during the optimization to ensure a final 0–1 design. This scheme also reduces the possibility of
ending in a local minimum. Additionally, we always perform the optimization with different
initial designs in order to ensure that we converge to the same minimum.
In Fig. 10, the results of optimizing the gap between eigenfrequencies are shown for n 2 ½1 : 12�.

The design domain is discretized in 100� 100 elements. As it appears from the figure, the new
penalization scheme has enabled us to obtain optimized structures with a well-defined distribution
of the two materials. Only very few gray elements appear such as those near the corners for n ¼ 7
and n ¼ 12. For some modes it appears that the pattern observed in 1D is valid here as well, i.e.
the optimal design is periodic like with the periodicity increasing with increasing mode order. For
other modes (n ¼ 5, n ¼ 10, n ¼ 11 and n ¼ 12) the optimized design show a different topological
distribution of the two materials.

3.5. Results for a rectangular design domain

In the next examples the same method of optimization has been used but in this case the design
domain size is changed so that the ratio of the side length is 2/1. The results of the optimizations
are shown in Fig. 11. The design domain is here discretized in 100� 50 elements.
The results depicted in Fig. 11 are similar to the results for the square domain with some

topologies being periodic like and others being qualitatively different. We now try to examine if
the general results from 1D can be transferred to the 2D case.

3.6. Maximizing the ratio of adjacent eigenfrequencies

As in the 1D case we now change the objective function to that in Eq. (13) so that the ratio
between adjacent eigenfrequencies is maximized, but we still use the double-bound formulation
introduced in Eq. (30). We repeat the optimization for the rectangular domain for the case where
n ¼ 7, i.e. corresponding to the design in Fig. 11(g).

ARTICLE IN PRESS

J.S. Jensen, N.L. Pedersen / Journal of Sound and Vibration 289 (2006) 967–986982



We change the values mA and mB so that the value of a is changed but the value of b ¼ 4:5 is kept
fixed. The results are shown in Fig. 12(a–c). The value of the objective, i.e. the ratio between the
squared eigenfrequencies, does not vary significantly but is not exactly constant as in the 1D case.
The value of o2

8=o
2
7 is 2.12, 2.06 and 2.00 for Figs. 12(a–c), respectively.

When we compare Figs. 12(a–c) it is clear that although the value of the objective stays almost
constant the design change is evident. In the final examples we fix the value of a ¼ 1:125 and
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Fig. 10. Eigenfrequency optimization of a 2D domain with two different materials, the design domain is a square that

has no supports (free boundary conditions). (a) The result when maximizing the gap between 1st and 2nd

eigenfrequency (n ¼ 1), (b) n ¼ 2, (c) n ¼ 3, (d) n ¼ 4, (e) n ¼ 5, (f) n ¼ 6, (g) n ¼ 7, (h) n ¼ 8, (i) n ¼ 9, (j) n ¼ 10, (k)

n ¼ 11, (l) n ¼ 12.
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instead vary the value of b. The results of the optimization are shown in Fig. 13(a–c) and the
objective values are 2.99, 4.18 and 5.89, respectively. The figures show that we achieve the
opposite result compared to when the value of a is changed; the objective value is changed
considerably but the design stays more or less the same.

4. Conclusions

In this paper, we consider optimal design of 1D and 2D structures for which the vibrations are
governed by the scalar wave equation. The method of topology optimization is used to maximize

ARTICLE IN PRESS

Fig. 11. Eigenfrequency optimization of a 2D domain with two different materials, the ratio of the side length is 2/1

and the domain has no supports (free boundary conditions). (a) n ¼ 1, (b) n ¼ 2, (c) n ¼ 3, (d) n ¼ 4, (e) n ¼ 5, (f)

n ¼ 6, (g) n ¼ 7, (h) n ¼ 8, (i) n ¼ 9, (j) n ¼ 10, (k) n ¼ 11, (l) n ¼ 12.

Fig. 12. Maximizing the separation of 7th and 8th eigenfrequencies (n ¼ 7). Compared to Fig. 11 the objective is here

the ratio between the squared eigenfrequencies and the value of a is changed but the value of b ¼ 4:5 is kept fixed. (a)

a ¼ 2, o2
8=o

2
7 ¼ 2:12, (b) a ¼ 4, o2

8=o
2
7 ¼ 2:06, (c) a ¼ 8, o2

8=o
2
7 ¼ 2:00.
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the separation of two adjacent eigenfrequencies for structures with two different material
components.
The optimization procedure is based on finite element analysis with a single continuous design

variable assigned to each element. This design variable te is defined so that for te ¼ 0 the material
properties in that element are those of material 1 and for te ¼ 1 the properties correspond to
material 2. For intermediate values of te the material properties are also intermediate and a special
interpolation formulation is introduced in the 2D case to ensure that only the two materials
appear in the final optimized design. In the 2D case we treat multiple eigenfrequencies both in
relation to the sensitivity calculations but also by reformulating the objective into a double-bound
formulation.
Two different formulations are used for maximizing the separation of the eigenfrequencies.

The first approach is to use the maximum difference in the frequencies as the optimiza-
tion objective. For both the 1D and the 2D cases the optimized designs are well-defined
0–1 designs, i.e. no intermediate materials appear in the optimal designs. In 1D the
optimized structures are periodic-like and there is a direct relation between the mode order and
the number of alternating sections of materials 1 and 2. In the 2D case, square and rectangular
domains are studied, and it is seen that the optimized designs for some modes consist of
periodically placed inclusions as in 1D, whereas for other modes a quite different topology is
obtained.
In the second optimization formulation we maximize the ratio of two adjacent eigenfrequencies.

Two material parameters are introduced: a and b that are functions of the material coefficients of
the two materials. In 1D it is shown that the material distribution in the final optimized design
appears to depend only on a, whereas the maximum ratio for this design depends only on b. For
2D a similar relation appears, but unlike in 1D an exact correspondence is not seen. Additionally,
it is seen that in 1D the maximum ratio that can be obtained between adjacent eigenfrequencies
seems to be independent of the mode order n for high values of n. This phenomenon was not
studied in 2D.
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Fig. 13. Maximizing the separation of 7th and 8th eigenfrequencies (n ¼ 7). Compared to Fig. 11 the objective is here

the ratio between the squared eigenfrequencies and the value of b is changed but the value of a ¼ 1:125 is kept fixed. (a)

b ¼ 9, o2
8=o

2
7 ¼ 2:99, (b) b ¼ 18, o2

8=o
2
7 ¼ 4:18, (c) b ¼ 36, o2

8=o
2
7 ¼ 5:89.
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Abstract We propose a topological material layout
method to design elastic plates with optimized prop-
erties for vibration suppression and guided transport
of vibration energy. The gradient-based optimization
algorithm is based on a finite element model of the plate
vibrations obtained using the Mindlin plate theory cou-
pled with analytical sensitivity analysis using the adjoint
method and an iterative design update procedure based
on a mathematical programming tool. We demonstrate
the capability of the method by designing bi-material
plates that, when subjected to harmonic excitation, ei-
ther effectively suppress the overall vibration level or
alternatively transport energy in predefined paths in the
plates, including the realization of a ring wave device.
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1 Introduction

In this paper we use the method of topology optimiza-
tion to design bi-material structures for suppressing the
vibration response and for controlling the transport of
vibration energy in moderately thick plates. Possible
applications are for structural shielding and isolation
of vibration in the audible frequency range and for the
creation of devices that rely on guided transportation of
vibrations e.g. for absorption or harvesting of energy.

Topology optimization (Bendsøe and Kikuchi 1988)
is a systematic design methodology that allows to create
material distributions of one or more materials that
optimize a specified objective. Aside from its origi-
nal application to structural optimization problems in
mechanics, many recent extensions to other physics
settings have appeared, e.g. in optics, fluid mechanics,
electromagnetism, etc. (see e.g. Bendsøe and Sigmund
(2003) for a recent comprehensive coverage of the
method and its applications).

The idea of using topology optimization to design
mechanical structures for passive control of the prop-
agation of elastic waves was suggested in Sigmund and
Jensen (2003), in which several examples dealing with
wave shielding and wave guiding devices were given.
The paper considered the material design problem,
in which repetitive unit cells were designed and used
for periodic wave-reflectors and also the corresponding
structural optimization problem for finite structures to
be used for both wave reflecting and wave guiding
purposes. In the examples a 2D plane strain model of
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a thick solid was considered. A few years earlier the
use of a material distribution method was suggested by
Cox and Dobson (1999) for optimizing repetitive unit
cells for optical wave reflecting structures (photonic
crystals).

The study in Sigmund and Jensen (2003) was ex-
tended in two papers (Halkjær et al. 2005, 2006) to
deal with propagation of bending waves in moderately
thick plates. The relatively low frequency of bending
waves makes the plate structures attractive candidates
for applications in the audible frequency range. The pa-
pers considered the optimization of repetitive unit cells
and in Halkjær et al. (2005) bi-material designs were
generated, whereas in Halkjær et al. (2006) designs
with one material (and void) were generated. The latter
paper included a comparison of the theoretical model
with experimental results obtained for a specimen with
10 by 10 optimized unit cells.

Several related studies that deal with design of elastic
structures for optimized wave propagation character-
istics have appeared recently. Hussein et al. (2007)
considered the design of 1D layered structures for lon-
gitudinal wave propagation and Rupp et al. (2007) con-
sidered design of 3D structures for optimized surface
wave propagation. In these papers bi-material designs
were generated for wave reflection and wave guiding.
In Jensen (2007b) bi- and triple-material designs were
generated for minimizing the transmission and absorp-
tion of elastic waves through slabs of material.

These papers build on numerous works that have
considered topology optimization of steady-state
forced vibrations of elastic structures. The problem
was considered e.g. by Ma et al. (1995), Jog (2002) and
recently by Du and Olhoff (2007), Olhoff and Du
(2008) for plate structures.

The results in the present paper extends the work in
Halkjær et al. (2005, 2006) on plates. Instead of con-
sidering the unit cell optimization problem, this paper
considers the structural problem that was initiated in
Sigmund and Jensen (2003) for a 2D plane strain model,
in which the material in the entire plate can be distrib-
uted freely not relying on periodicity. Additionally, we
consider the possibility to create novel wave propaga-
tion control in plates by directing the propagation of
waves in certain directions and also the possibility of
creating ring wave devices that function purely due to
material contrast differences.

The paper is organized as follows: section two
presents the plate model and the formulas describing
energy transport in plates are presented in section
three. In section four the problem is discretized and
in section five the optimization problems are defined.
Section six and seven show two examples: in the first

example the method is used to design structures with
minimized vibrational response in finite frequency
ranges and the second example demonstrates the gen-
eration of energy transporting devices.

2 Plate model

Plate models are well established but to provide the ba-
sis for the energy flow derivations presented in the next
section we review the basic equations. The equilibrium
equations for an infinitesimal small plate element

ρh3

12

d2ψx

dt2
= Tx − ∂ Mx

∂x
− ∂ Mxy

∂y
(1)

ρh3

12

d2ψy

dt2
= Ty − ∂ My

∂y
− ∂ Mxy

∂x
(2)

ρh
d2w

dt2
= ∂Tx

∂x
+ ∂Ty

∂y
(3)

govern the out-of-plane deflection w and the angles
of rotation ψx and ψy (see Fig. 1). The moments are
denoted Mx, My and Mxy, the shear forces Tx and Ty,
and ρ is the mass density and h is the plate thickness.

We use the Mindlin plate theory to account for the
transverse shear deformation introduced in moderately
thick plates. Thus the moments and shear forces are
defined in terms of the deflection and rotations as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Mx

My

Mxy

Tx

Ty

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= −D

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ψx,x

ψy,y

ψx,y + ψy,x

ψx − w,x

ψy − w,y

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4)

where the subscript (), denotes differentiation with
respect to the spatial variables and the stiffness matrix
is defined as

D =

⎡
⎢⎢⎢⎢⎢⎣

D νD 0 0 0
νD D 0 0 0

0 0
1 − ν

2
D 0 0

0 0 0 kGh 0
0 0 0 0 kGh

⎤
⎥⎥⎥⎥⎥⎦ (5)

where D = Eh3

12(1−ν2)
is the flexural rigidity, G is the shear

modulus, ν is Poissons’ ratio, and k is a shear correction
factor which takes the value 5

6 for the plate.
Assuming harmonic excitation of the form f eiωt,

with angular frequency ω, the resulting displacements
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Fig. 1 Plate element showing rotations and translations. Coordi-
nate system and dimensions

will also be harmonic. We use the following complex
notation

ψx(x, y, t) = �
(
ψ̃x(x, y)eiωt

)
(6)

ψy(x, y, t) = �
(
ψ̃y(x, y)eiωt

)
(7)

w(x, y, t) = � (w̃(x, y)eiωt ) (8)

where a tilde denotes the complex amplitudes and i
is the imaginary unit. � symbolizes the real part of a
complex quantity. Inserting (4)–(8), (1)–(3) can be re-
written in the complex form(

D
(
ψ̃x,x + νψ̃y,y

))
,x

+
(

1 − ν

2
D
(
ψ̃x,y + ψ̃y,x

))
,y

+ kGh
(
w̃,x − ψ̃x

)
+ ω2 ρh3

12
ψ̃x = 0 (9)

(
D
(
ψ̃y,y + νψ̃x,x

))
,y

+
(

1 − ν

2
D
(
ψ̃y,x + ψ̃x,y

))
,x

+ kGh
(
w̃,y − ψ̃y

)
+ ω2 ρh3

12
ψ̃y = 0 (10)(

kGh
(
w̃,x − ψ̃x

))
,x

+
(

kGh
(
w̃,y − ψ̃y

))
,y

+ ω2ρhw̃ = 0 (11)

in which the moments and forces have been written ex-
plicitly in terms of the complex deflection and rotation
amplitudes.

The equations are solved using a standard finite
element method implementation, but first we derive ex-
pressions for energy transport in the plate in continuous
form.

3 Energy flow and the Poynting vector

The Poynting vector P(x, y, z, t) is a measure of the
point-wise instantaneous power flow in the plate. The
in-plane components are (Auld 1973)

Px = −σxxḋx − σyxḋy − σzxḋz (12)

Py = −σxyḋx − σyyḋy − σzyḋz (13)

where σij are the stress components and {ḋx, ḋy, ḋz} are
the point-wise velocity components.

The velocity components are related to the plate
model degrees-of-freedom in the following way

ḋx(x, y, z) = −zψ̇x(x, y) (14)

ḋy(x, y, z) = −zψ̇y(x, y) (15)

ḋz(x, y, z) = ẇ(x, y) (16)

assuming that the out-of-plane (z−direction) velocity
is constant through the plate thickness and the in-plane
velocities depend linearly with the distance z from the
mid-plane (see Fig. 1).

The total xy−plane power flow per unit area, de-
noted P̂(x, y, t), is found by integrating P through the
plate thickness:

P̂(x, y, t) =
∫ h/2

−h/2
P(x, y, z, t)dz (17)

so that

P̂x =
∫ h/2

−h/2
(σxxzψ̇x + σyxzψ̇y − σzxẇ)dz (18)

P̂y =
∫ h/2

−h/2
(σxyzψ̇x + σyyzψ̇y − σzyẇ)dz (19)

The integrals can be expressed in terms of the de-
fined moments and shear forces by using the relations

Mx =
∫ h/2

−h/2
σxxzdz, My =

∫ h/2

−h/2
σyyzdz,

Mxy =
∫ h/2

−h/2
σyxzdz,

Tx =
∫ h/2

−h/2
σzxdz, Ty =

∫ h/2

−h/2
σzydz, (20)

which give the following expressions for the Poynting
vector integrated through the plate thickness

P̂x = Mxψ̇x + Mxyψ̇y − Txẇ (21)

P̂y = Myxψ̇x + Myψ̇y − Tyẇ (22)

By inserting the expressions for the moments and
shear forces we obtain

P̂x = −D(ψx,x + νψy,y)ψ̇x − 1 − ν

2
D(ψx,y + ψy,x)ψ̇y

+ kGh(ψx − w,x)ẇ (23)

P̂y = −1 − ν

2
D(ψx,y + ψy,x)ψ̇x − D(νψx,x + ψy,y)ψ̇y

+ kGh(ψy − w,y)ẇ (24)
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The above expressions provide instantaneous values
of the power flow. The energy transported during a
single period of excitation T is defined as:

W =
∫
T

P̂dt (25)

This measure of the energy transported by a travelling
wave is considered as the optimization objective in our
second application example. In the case of a standing
wave considered in the first example, W vanishes since
no energy is transported in this case.

The time-dependence of the solution from (6)–(8) is
inserted into (23)–(24) and the integration is performed
to yield the expressions

Wx = π D�
(

i
(
ψ̃x,x + νψ̃y,y

)
ψ̃∗

x

)

+ 1 − ν

2
π D�

(
i
(
ψ̃x,y + ψ̃y,x

)
ψ̃∗

y

)
− πkGh�

(
i
(
ψ̃x − w̃,x

)
w̃∗
)

(26)

Wy = 1 − ν

2
π D�

(
i
(
ψ̃x,y + ψ̃y,x

)
ψ̃∗

x

)
+π D�

(
i
(
νψ̃x,x + ψ̃y,y

)
ψ̃∗

y

)
−πkGh�

(
i
(
ψ̃y − w̃,y

)
w̃∗
)

(27)

where the asterisk is used to denote the complex
conjugate.

4 Discretized problem

A standard Galerkin FE approach is used to set up a set
of discretized equations based on (9)–(11):

(−ω2M + iωC + K
)

d = f (28)

in which M, C and K are the mass-, damping- and
stiffness matrices, respectively, d is a vector containing
the complex nodal variables and f is a load vector. The
matrices M, C and K are collected in the system matrix
S = −ω2M + iωC + K.

M and K are assembled from the local element ma-
trices in the usual way. These are based on the local
shape functions defined as:

⎧⎨
⎩

w̃

ψ̃x

ψ̃y

⎫⎬
⎭ = Nde =

⎡
⎣NT

1
NT

2
NT

3

⎤
⎦de (29)

and from the B matrix defined as:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ψ̃x,x

ψ̃y,y

ψ̃x,y + ψ̃y,x

ψ̃x − w̃,x

ψ̃y − w̃,y

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= ∂Nde = Bde =

⎡
⎢⎢⎢⎢⎢⎢⎣

NT
2,x

NT
3,y

NT
2,y + NT

3,x

NT
2 − NT

1,x

NT
3 − NT

1,y

⎤
⎥⎥⎥⎥⎥⎥⎦

de

(30)

In all examples presented in this paper we use rec-
tangular 4-noded bilinear elements with dimensions
2a by 2b .

Damping is not defined in the continuous problem
but included in the discretized version in the form of
proportional (Rayleigh) damping:

C = αM + βK (31)

where α and β is the mass- and stiffness-proportional
damping coefficients.

The load is specified in the examples and the load
vector is assembled in the usual way.

Inserting the discretized displacements into the
formulas for the energy transport we obtain

Wx = π�
(

i
(
de)T Qe

x

(
de)∗) (32)

Wy = π�
(

i
(
de)T Qe

y

(
de)∗) (33)

in which Qe
x and Qe

y are local element matrices defined
in terms of the shape functions and their derivatives as:

Qe
x = D(N2,x + νN3,y)NT

2 + 1 − ν

2
D(N2,y + N3,x)NT

3

−kGh(N2 − N1,x)NT
1 (34)

Qe
y = D(νN2,x + N3,y)NT

3 + 1 − ν

2
D(N2,y + N3,x)NT

2

−kGh(N3 − N1,y)NT
1 (35)

The energy transport in the x− and y−direction
through a single element is given as:

We
x =

∫
e

Wxdy, We
y =

∫
e

Wydx (36)

By assuming uniform energy transport through an ele-
ment we approximate this as

We
x =

∫
e
π�

(
i
(
de)T Qe

x

(
de)∗) dy

≈ 2bπ�
(

i
(
de)T Q̃e

x

(
de)∗) (37)

We
y =

∫
e
π�

(
i
(
de)T Qe

y

(
de)∗) dx

≈ 2aπ�
(

i
(
de)T Q̃e

y

(
de)∗) (38)
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where Q̃e
x and Q̃e

y are the element matrices Qe
x and

Qe
y evaluated at the center of the elements. For a fine

mesh the error introduced with this simplification is
negligible.

A finite subdomain of the plate �s is composed of
N�s elements with N�x and N�y elements in the two
directions respectively. The energy transported in the
two directions averaged over �s, denoted W̄, has the
components:

W̄x = 1

�x

∫
�s

Wxd�

= 1

N�x

N�s∑
e=1

We
x = 2bπ

N�x
�
(

idTQ̃xd∗
)

(39)

W̄y = 1

�y

∫
�s

Wyd�

= 1

N�y

N�s∑
e=1

We
y = 2aπ

N�y
�
(

idTQ̃yd∗
)

(40)

the global matrices Q̃x and Q̃y are assembled from the
element matrices Q̃e

x and Q̃e
y in the usual way.

5 Optimization problem

We consider two different optimization problems. The
first is to minimize the global response of a plate
subjected to time-harmonic loading. Different formu-
lations for the dynamic compliance for steady-state
response have been suggested, e.g. Ma et al. (1995),
Jog (2002). We choose a formulation similar to Du and
Olhoff (2007) that ensures that the global response of
the plate is minimized. In discretized notation it may be
written as

Φ1 = dTMd∗ (41)

in which M is the mass matrix. The objective function
is thus proportional to the kinetic energy of the plate.
Alternatively, we could have chosen to consider the
potential energy or a weighted average between kinetic
and potential energy, but with time-harmonic loading
the difference is minimal.

The second optimization problem considered is the
maximization of energy transport through a vertical
or horizontal line in the structure, �, which has the
normal vector n. The objective function is then written
in continuous and discretized form as

Φ2 =
∫

�

n · Wd� ∼ Re
(

idTQ̃ jd∗
)

(42)

where subscript j indicates either the x-direction or y-
direction depending on the orientation of the line � and
the factor appearing in (39)–(40) has been omitted for
simplicity. In the case of lines not aligned with either
the x- or y-direction the formulas (39)–(40) can be
modified in a straightforward way.

For the gradient-based optimization procedure we
need sensitivities of the objective function with respect
to the design variables. In the following �e will denote
the element-wise continuous design variable that may
take values between 0 and 1. The adjoint method is
used (Bendsøe and Sigmund 2003; Sigmund and Jensen
2003) and the sensitivities become

dΦ1

d�e
= dT ∂M

∂�e
d∗ + 2�

(
λT ∂S

∂�e
d
)

(43)

in which the Lagrange multipliers λ are calculated from
the equation

STλ = −MTd∗ (44)

Since S is symmetric and already factorized during the
solution of the equation of motion λ can be computed
without much computational effort.

For the second objective function the sensitivities are
found as:

dΦ2

d�e
= −�

(
idT ∂Q̃ j

∂�e
d∗
)

+ 2�
(

λT ∂S
∂�e

d
)

(45)

and

STλ = − i
2

(
QT

j − Q j

)
d∗ (46)

In this paper we consider plates built from two dif-
ferent materials so that the design variable �e deter-
mines the fraction of one material in element e. The
stiffness and mass density of the material is interpolated
between the two materials with stiffness E0 and Emin

and mass density ρ0 and ρmin, respectively, based on
the value of �e. We use the RAMP scheme (Stolpe and
Svanberg 2001) for the interpolation of stiffness

E(�e) = Emin + �e

1 + q(1 − �e)

(
E0 − Emin) (47)

and a linear interpolation for the mass density

ρ(�e) = ρmin + �e
(
ρ0 − ρmin) (48)

This formulation is used in order to penalize intermedi-
ate densities and at the same time it allows us to use two
different materials. If q = 0 then (47) reduces to linear
interpolation.
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In all the examples shown a density filter is used in
order to avoid checkerboard structures (Guest et al.
2004; Sigmund 2007). The method of moving asymp-
totes (Svanberg 1987) is used for the optimization.

6 Examples: vibration response

In this section we show examples of plates optimized
with the objective of minimizing the overall response
given by (41). The structure to be optimized is a simply
supported plate subjected to a harmonic point load in
the center. The plate is 0.5 × 0.5 m, has a thickness of
3 mm and is made from steel and polycarbonate with a
maximum allowed fraction of steel of 25%. There is no
damping included.

In Fig. 2 the resulting topology and frequency re-
sponses based on (41) are shown for three different fre-
quencies which are close to one of the eigenfrequencies
of the plate (for the initial homogeneous structure).

In the first example the structure is optimized at
the third eigenfrequency, in the second example at the
fourth eigenfrequency and in the last example at the
seventh eigenfrequency.

When looking at the optimized structures we no-
tice that they all consist of a central steel inclusion
of varying size which is surrounded by an array of
smaller inclusions. Looking at the frequency responses
we see a large reduction in overall response at the
optimization frequencies. This reduction has been ob-
tained by changing the structure in such a way that the
eigenfrequencies are moved away from the excitation
frequencies. The minimum of the response curve is
now located close to the optimization frequency and we
see that there exists a relative large span around this
frequency where the response is low. However in the
last case there are response peaks inside this frequency
range and close to the optimization frequency. Due
to the complex designs the frequency responses for
the optimized plates are more irregular than for the
original plates. In the examples shown here no damping
is included. Adding damping as well as changing the
stiffness to mass ratio will change the optimal topology
but this has not been investigated in detail.

In Fig. 3 a plot of the displacements of the plate
shown in the last plot in Fig. 2 is shown for the fre-
quency ω = 9000 rad

s . It is seen that for the optimized
plate the largest displacements are located around the
plate center where the load is applied. Although no
damping is applied to the structure the displacements
decay rapidly when moving away from the plate center.
This behavior is also characteristic for bandgap struc-
tures where the response is localized and decays rapidly

Fig. 2 Minimization of dynamic response [given by (41)] of
a simply supported plate subjected to a harmonic point load
in the plate center. The optimized topologies and frequency
responses are shown. Black represents steel and the arrows in the
frequency responses indicate the optimization frequencies. Top:
ωopt = 2790 rad

s , center: ωopt = 4040 rad
s , bottom: ωopt = 9000 rad

s

(exponentially) away from the point of excitation (see
e.g. Halkjær et al. 2006). In contrast the displacements
are large all over the plate for the original plate.

A way of ensuring a low response for larger ranges
of frequencies without the computational efforts of
doing the full calculations could be through the use of
Pade approximants (Jensen and Sigmund 2005; Jensen
2007a).

The results shown here are all for a two-material
case such that the structure always has a certain static
stiffness. If instead we were using one solid material
and void it could be necessary to include a constraint



Topological material layout in plates for vibration suppression and wave propagation control

Fig. 3 Displacement of the plate shown in Fig. 2 bottom for the
frequency ω = 9000 rad

s . Top: The optimized plate. The largest
displacements are located around the plate center. Bottom: The
original plate

on static stiffness in order to obtain results that can be
used in practice.

7 Examples: energy transport

In this section we look at the optimization of the energy
transport in different plates. Although we present aca-
demic problems they are relevant for guiding mechan-
ical vibrations in certain direction with the purpose of
absorbing them or alternatively harvesting the energy.

First consider the problem sketched in Fig. 4a. The
figure shows a plate subjected to a harmonically varying
out-of-plane force on the left edge and damped in all
degrees of freedom along the remaining edges. The
objective is to maximize the energy transport in the
horizontal direction through the black part to the right
which consists of 4 by 8 elements. The black areas
also indicate that the densities are fixed at one, i.e.
they represent steel. The frequencies of excitation are
ω = 11900, 12000, 12100 rad

s . We use three frequencies
in order to optimize for a wider frequency span and also
it seems to provide more black and white designs. The
plate is quite heavily damped with damping coefficients
α = 1 · 10−4 and β = 1 · 10−5 and damping applied to

a b
Fig. 4 Sketch of optimization problem. a The objective is to
maximize the energy in the horizontal direction through the black
area to the right which consists of 4x8 elements. b The objective
is to maximize the energy in the vertical direction towards the
edges through the black areas to the right. Each area is made by
4x3 elements

the three edges as well. The plate is discretized into
100 by 100 elements which combined with a wavelength
of 0.064m in the pure polycarbonate means that there
are approximately 13 elements per wavelength. The
wavelenght in steel is longer giving more elements per
wavelength in steel regions. We will allow at most 50%
steel to be used in the design.

In Jensen and Sigmund (2005) artificial damping
(pamping) was proposed to penalize intermediate den-
sities and obtain more black and white structures. By
adding the term

Ce
P = εP�e(1 − �e)ωMe (49)

to the element damping matrix intermediate density
elements will act as dampers. In (49) εP is a parameter
controlling the magnitude of damping and Me is the el-
ement mass matrix. When maximizing energy transport
this will favor 0-1 designs.

The results are shown in Fig. 5 as a plot of the
topology and vectors showing the energy transport.

We see a structure with a cone-like shape that guides
the energy from the excitation towards the optimization

Fig. 5 Topology and energy transport for the problem sketched
in Fig. 4a. Only energy vectors larger than 10% of the maximum
energy vector are shown for clarity
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domain. To the very left the passive elements are seen
and immediately to the right of these a thin strip of
white (polycarbonate) before a large domain of steel.
Further to the right the structure consists of steel inclu-
sions that deflect the energy towards the optimization
area and keeps it away from the damped edges. Only
energy vectors larger than 10% of the largest vector are
shown in order to make the figure more clear. From
that we can see that very little energy is transported
outside the cone-shaped part. This is partly due to
damping and partly due to the optimized design that
guides the energy. Right at the optimization area an
interesting effect is seen, as the energy after passing
these elements follows a circular path back in order to
increase the objective value.

A closer look at the results shows that during the
optimization the objective energy is increased by a
factor of 63 while the energy supplied to the structure
is increased by a factor of 5.7. This means that a part of
the increase in objective energy is due to a larger energy
input to the structure and a part is due to an improved
design that is able to guide the energy more efficiently.
As we are maximizing the energy through some part of
the structure an increase in input energy is an efficient
way to obtain a larger objective value.

We now look at a slightly different example as shown
in Fig. 4b, consisting of the same plate as before but
only loaded along the central part of the left edge. The
objective is now to maximize the energy transport in
the vertical direction through two symmetrically placed
areas near the top and bottom edge. The structure is
thus supposed to split the energy and lead it towards
the edges. The topology and energy transport is shown
in Fig. 6.

We see that the structure is designed in such a way
that the energy is kept from going to the edges. Instead
it is being led to the right where it is bend towards the
optimization areas. Looking closely we recognize the
same behaviour as before where the energy turns after

Fig. 6 Topology and energy transport for the problem sketched
in Fig. 4b. Only energy vectors larger than 10% of the maximum
energy vector are shown for clarity

leaving the optimization area in that way increasing the
objective energy.

As in the previous example both the input and
objective energies are increased. The input energy is
increased by a factor of 5.4 while the objective en-
ergy is increased by a factor of 306. This is a very
large improvement compared to the input energy and
compared to the last example. The large improvement
is possible because the objective is to maximize the
energy in the vertical direction and for the original plate
the energy propagates from the applied force in a way
such that the vertical component of the energy through
the optimization areas is very small. In this case the
increase is therefore mostly due to an improvement in
the design of the plate.

In both examples, shown here, it is seen that the
material boundaries, i.e. where steel and polycarbonate
meet, deflect the energy such that it is guided along the
boundary. This effect is clear around the central part of
the plates in Figs. 5 and 6. However the energy seems
to pass material boundaries if these are perpendicular
to the energy vector. This is particularly clear in the left
part of Fig. 5.

As stated earlier artificial damping is used in order
to penalize intermediate density elements. However it
is clear from the two examples shown that some grey
elements still exist. This means that the plate is more
damped than what is applied as material or external
damping. In the next example we therefore omit this
penalization and only include material damping.

In the final example the objective is to guide the
energy in a circular path in order to create a ring

Fig. 7 Sketch of optimization problem for creating a ring wave
in a simply supported plate. The black parts indicate fixed steel
regions and the arrows indicate in which direction the energy
transport is optimized. The two small steel areas indicate where
the forces are applied
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Fig. 8 Topology and energy transport for the optimization prob-
lem sketched in Fig. 7. Only energy vectors larger than 10% of
the maximum vector are shown

wave device. The simply supported plate is excited by
two harmonic forces, where one is phase shifted by a
quarter of a period. This will initiate a wave in the
plate. The objective function is defined as the energy
through three groups of elements as sketched in Fig. 7.
This example is inspired by the working principles of
piezoelectric ring motors that rely on ring waves and
friction between a stator and a rotor, see e.g. Uchino
(1998).

In Fig. 8 the optimized structure is shown along
with the energy transport. We see that energy is being
guided in a near-circular path as defined in the opti-
mization problem but also that some energy escapes
this path. This can for instance be seen in the lower right
part of the plate. Especially at the lower optimization
area we see that the energy vectors have a relatively
large vertical component while in the other two areas
the energy is more efficiently guided only in the desired
direction.

8 Conclusion

We have presented a material layout algorithm based
on the method of topology optimization. The algorithm
allows for the design of bi-material elastic plates with
optimized vibrational suppression and guided energy
transport when subjected to harmonic excitation.

The optimization algorithm is based on a finite el-
ement model of plate vibration for moderately thick
plates using the Mindlin plate theory. Special consid-
eration is given to the derivation of an energy transport
measure using the Poynting vector.

The optimization algorithm is based on the FE
model combined with analytical sensitivity analysis per-
formed with the adjoint method. An iterative optimiza-
tion scheme is set up with design updates performed
with the method of moving asymptotes.

To demonstrate the capabilities of the method we
have presented two sets of examples. The first deals
with minimizing the total vibrational response of the
plate in response to harmonic excitation at one or
several distinct frequencies. The resulting bi-material
designs display a low vibrational response at the target
frequency range by moving the plate natural frequen-
cies away from these targets.

The second, and more challenging, set of examples
deals with optimizing the materials distribution in order
to direct the vibrational energy flow in specified paths
in the plate. It was demonstrated that the specified
energy transporting behavior could be realized by a
complicated material layout and the rather difficult task
of creating a ring wave device that functions by material
contrasts was accomplished.
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Abstract
We present a method to design acoustic devices with topology optimization. The general algo-

rithm is exemplified by the design of a reflection chamber that minimizes the transmission of

acoustic waves in a specified frequency range.

INTRODUCTION

We treat the problem of designing acoustic devices with prescribed properties by using

topology optimization. The method is exemplified by the design of a reflection chamber

with minimized acoustic transmission in a designated frequency range.

A recent example of optimization of an acoustic devices, was given in [1], who

used a FEM-based shape optimization algorithm to design an acoustic horn with min-

imal reflection for larger frequency ranges. In general, shape optimization employs a

parametrization of the original device geometry as a basis for obtaining an optimized

design. Thus, good results rely on the initial geometry as well as a suitable set of de-

sign parameters. Contrary to this, topology optimization ([2]) is based on a point-(or

element-)wise parametrization of the material properties. This allows for, in princi-

ple, unlimited design freedom, regardless of the initial geometry. The method is well

suited when good performance is hard to obtain with intuition-based design, which is

often the case for wave propagation phenomena. Preliminary studies of using topology

optimization to design acoustic devices were presented in [3] and [4], and the present

1



paper extends on this work. For an outline of the general method as well as examples

of various applications see e.g. [5].

We start out by describing the governing equation and discuss the basic material

interpolation scheme on the basis of a simple acoustic model. We solve the model equa-

tions using a FEM procedure, and move on to illustrating the optimization algorithm

for a sample problem. Lastly, we give conclusion and directions for further work.

ACOUSTIC MODEL

We consider a plane model of steady-state acoustic wave propagation, modelled by the

2D Helmholtz equation:

∇ · (ρ−1∇p) + ω2κ−1p = 0. (1)

In Eq. (1), p is a complex pressure amplitude, ρ and κ are the position dependent density

and bulk modulus of the acoustic medium. The wave frequency is denoted ω.

The optimization problem is to distribute two materials (air and solid), in a design

domain Ωd, so that some functional Φ(ω, ρ, κ,∇p, p) is extremized. The two materials

have the following set of material properties: (ρ, κ) = (ρ1, κ1) (air), and (ρ, κ) =
(ρ2, κ2) (solid). It should be emphasized that the present pure-acoustic model neglects

any acoustic-structure interaction. For large values of ρ2κ2 the solid is practically a

perfectly rigid and thus fully reflecting, whereas for smaller values it represents an

acoustic medium.

We rescale the equations by introducing the new variables:

ρ̃ =
ρ

ρ1

=

{

1, air
ρ2

ρ1

, solid
, κ̃ =

κ

κ1

=

{

1, air
κ2

κ1

, solid
(2)

and inserting them into Eq. (1):

∇ · (ρ̃−1∇p) + ω̃2κ̃−1p = 0, (3)

where ω̃ = ω/c is a scaled wave frequency and c =
√

κ1/ρ1 is the speed of sound in

air. In the following the tildes will be omitted for simplicity.

We may apply different boundary conditions to simulate incoming waves, as well

as reflecting and absorbing boundaries. Additionally, perfectly matching layers can be

added to the model such that low reflection at radiating boundaries is ensured for all

angles of incidence.

DESIGN VARIABLES AND MATERIAL INTERPOLATION

The basis of the topology optimization method is to let the "material" properties ρ and κ
take not only the discrete values of air and solid (cf. Eq. (2)), but also any intermediate

values. To facilitate this, we introduce a continuous material indicator field 0 ≤ ̺ ≤ 1,

2
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1
Tρ=1

κ=1
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Figure 1 - A one-dimensional acoustic wave in air is partially reflected (R) and transmitted (T )
at the interface to an acoustic medium.

and define continuous property interpolation functions ρ(̺) and κ(̺) that fulfill the

following conditions:

ρ(̺) =

{

1, ̺ = 0
ρ2

ρ1

, ̺ = 1
, κ(̺) =

{

1, ̺ = 0
κ2

κ1

, ̺ = 1
(4)

The introduction of continuous properties allows us to compute the gradients of the

objective functional with respect to the indicator function: dΦ/d̺, and we can thus use

a gradient based optimization strategy with ̺ as a topological design variable.

Clearly, we are only interested in binary values (0 or 1) of the indicator function

in our optimized design, and our optimization formulation must include a strategy to

avoid intermediate values of ̺ in the final design. Various strategies exist to ensure a

binary design (see e.g. [5]) and in this work we rely on the choice of the functions ρ(̺)
and κ(̺). To find suitable candidates we study a simple 1D acoustic system (Fig. 1).

A unit magnitude wave propagating in air is partially transmitted (T ) and partially

reflected (R) at the interface to an acoustic medium with the material properties ρ(̺)
and κ(̺). The amplitudes of the reflected and the transmitted wave are:

R =

√
κρ− 1

√
κρ+ 1

, T =
2√

κρ+ 1
, (5)

so that R → 1, T → 0 when κρ → ∞ (a perfectly rigid solid), and R = 0, T = 1
when κρ = 1 (air).

We want to choose our interpolation functions so that the reflection from the

acoustic medium is a smooth and well-behaved function of ̺. One possible choice is

the polynomial form:

ρ(̺) = 1 + ̺q1(
ρ2

ρ1

− 1), κ(̺) = 1 + ̺q2(
κ2

κ1

− 1). (6)

The reflection versus ̺ is depicted in Fig. 2(left) for different values of q1 and q2
(ρ2/ρ1 = κ2/κ1 = 500). All curves have vanishing slope at ̺ = 1, which turns

out to make it difficult to obtain well defined solid regions in the design.

Instead, inspired by the Helmholtz equation, we use polynomial interpolation in

ρ−1 and κ−1:

ρ(̺)−1 = 1 + ̺q1((
ρ2

ρ1

)−1 − 1), κ(̺)−1 = 1 + ̺q1((
κ2

κ1

)−1 − 1). (7)
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Figure 2 - Reflection, R, versus the design variable ̺, left: polynomial interpolation (Eq. (6)),
right: inverse polynomial interpolation (Eq. (7)), for different values of the parameters q1 and
q2. Parameters: ρ2/ρ1 = κ2/κ1 = 500.

Fig. 2(right) shows reflection versus ̺ for different parameter values. The curves are

clearly more well-behaved with a non-vanishing slope for ̺ → 1. The different pa-

rameter combinations have been used in the optimization algorithm and the simplest

choice of q1 = q2 = 1 yields good results with well-defined air and solid regions in the

optimized designs. Naturally, a simple 1D model cannot fully account for all neces-

sary properties, and more work should be put into fully understanding the effect of the

choice of interpolation functions.

DISCRETIZATION AND SENSITIVITY ANALYSIS

To solve the model equation (with the appropriate boundary conditions) and the opti-

mization problem, we discretize the complex amplitude field p and the design field ̺
using finite elements:

p =
N

∑

i=1

φipi, ̺ =

Nd
∑

i=1

ψi̺i, (8)

where φi and ψi are basis functions, and the vectors p = {p1 p2 . . . pN}T and ̺ =
{̺1 ̺2 . . . ̺Nd

}T contain the nodal values of the two fields. We use the commercial

FEM package FEMLAB on top of MATLAB for assembling and solving the discretized

equation:

S(̺)p = f(̺). (9)

Throughout this work we use a triangular element mesh, and a quadratic approximation

for the pressure field and a linear approximation for the design field.

We now derive the sensitivities of the objective functional Φ(̺,p) with respect

to a single design variable. We use the adjoint method and obtain the adjoint equation

as:

ST λ = −1

2
(
∂Φ

∂pR

− i
∂Φ

∂pI

)T , (10)
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Figure 3 - Half model of a channel with two symmetrically placed reflection chambers.

where pR and pI are the real and the imaginary parts of the complex pressure. The

sensitivities are then found as:

dΦ

d̺i

=
∂Φ

∂̺i

+ 2ℜ(λT (
∂S

∂̺i

p − ∂f

∂̺i

)). (11)

The vectors ∂Φ

∂̺
, ∂Φ

∂pR

, ∂Φ

∂pI

, and the matrix (∂S

∂̺
p− ∂f

∂̺
) are obtained through the FEMLAB

matrix assembly procedure (see e.g. [6]).

OPTIMIZATION OF A REFLECTION CHAMBER

We consider the model problem illustrated in Fig. 3. The goal is to distribute solid

material in a chamber in such a way that a propagating wave is reflected. The acoustic

waves propagate in air through the main channel of height 2H and length L. Two

reflection chambers with height h and length l are positioned symmetrically on the

main channel. Each chamber consists of an air-filled part and the design domain where

a favorable distribution of air and solid is to be found.

We apply the following boundary conditions:

n · (ρ−1∇p) + iω
√

ρ−1κ−1p = 2iω
√

ρ−1κ−1p0, Γin

n · (ρ−1∇p) + iω
√

ρ−1κ−1p = 0, Γout

n · (ρ−1∇p) = 0, other boundaries.

(12)

This specifies an incoming plane wave with amplitude p0 at Γin (p0 set to unity in the

following), absorbing boundaries at Γin and Γout, traction free conditions on the outer

boundaries and a symmetry condition at the lower boundary.

As optimization objective we consider the squared amplitude of the acoustic pres-

sure averaged over the output boundary:

Φ(ω) =
1

H

∫

Γin

|p(ω)|2dS, (13)

and minimize the maximum value of Φ(ωi) for a set of frequencies ωi, i = 1, . . . , M .

We now state the optimization problem as follows:

min max Φ(ωi) i = 1, . . . , M
subject to : S(̺)p = f

0 ≤ ̺j ≤ 1 j = 1, . . . , Nd

1

Nd

∑

Nd

j=1
̺j ≤ V

(14)
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Figure 4 - Objective Φ(ω∗) for the air-filled chamber and response for ω∗ = 0.175. Parameter
values: L = 7, l = 5, H = 1, h = 1.

where the third constraint introduces an optional limit on the amount of solid to be

distributed (V = 1 corresponds to no limit). The optimization problem is solved itera-

tively by material redistribution steps, using Svanberg’s MMA [7] as optimizer and the

analytical sensitivities in Eqs. (10)–(11). The optimization formulation considers the

objective for a number of discrete frequencies. Since we are interested in minimizing

the objective in frequency ranges rather than at discrete frequencies we use frequency

sweeps at regular intervals during the optimization in order to identify the most critical

frequencies in the desired interval and then update the target frequencies ωi accordingly.

The frequency sweeps are done fast and accurately using Padé expansions [8].

We now optimize the chamber for a specific set of parameters; L = 7, l = 5,

H = 1, h = 1, ǫ = 0.5. Fig. 4 shows Φ(ω∗) for an air-filled reflection chamber and

the computed pressure field for ω∗ = 0.175. The frequency is here normalized so that

ω∗ = 2πcω/H . We choose now to design the chamber so that Φ(ω) is minimized in

the frequency range ω∗ = 0.15 − 0.20 by distributing maximum 15% solid material

(V = 0.15). The optimized topology, the corresponding response curve, and the pres-

sure field for ω∗ = 0.175 are shown in Fig. 5. Clearly, a reduction of Φ is seen in the

designated frequency range. Naturally, a larger reduction can be obtained if the cham-

ber dimensions are increased. Fig. 6 shows the results for a double length chamber

l = 10 and here a further reduction of the objective is noted.

CONCLUSIONS AND FURTHER WORK

We have demonstrated a general design method for acoustic devices based on topology

optimization.
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Figure 5 - Optimized topology for ω∗ = 0.15 − 0.20 and V = 0.15, blue: air, red: solid.
Pressure field for ω∗ = 0.175 and response curve Φ(ω∗). Parameters: L = 7, l = 5, H = 1,
h = 1, ǫ = 0.5.
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Figure 6 - Optimized topology for ω∗ = 0.15 − 0.20 and V = 0.15, blue: air, red: solid.
Pressure field for ω∗ = 0.175 and response curve Φ(ω∗). Parameters: L = 12, l = 10, H = 1,
h = 1, ǫ = 0.5.

7



The optimization algorithm employs repeated material redistributions based on

analytical sensitivity analysis and mathematical programming. In this work we de-

velop continuous material interpolation functions using a simple 1D model, and use the

method to design a reflection chamber that minimizes the transmitted wave in a desig-

nated frequency range. The frequency range optimization is facilitated by computing

fast frequency sweeps to identify the most critical frequencies.

Further work will include multi-physics modelling in order to study coupled prob-

lems, e.g. combined fluid flow and acoustic wave propagation or fluid-structure inter-

action.

This work was supported by the Danish Technical Research Council (FTP).
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Systematic design of photonic crystal structures using topology
optimization: Low-loss waveguide bends
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Topology optimization is a promising method for systematic design of optical devices. As an
example, we demonstrate how the method can be used to design a 90° bend in a two-dimensional
photonic crystal waveguide with a transmission loss of less than 0.3% in almost the entire frequency
range of the guided mode. The method can directly be applied to the design of other optical devices,
e.g., multiplexers and wave splitters, with optimized performance. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1688450#

A range of perspectives exist for using photonic crystal
~PC! based waveguides in optical components. This has led
to a considerable research interest in the design of waveguide
bends with low transmission loss.

PCs can be created by periodic arrangements of materi-
als with different dielectric properties such as, e.g., dielectric
columns in air or holes in a dielectric base material.1 Such
two-dimensional periodic configurations may forbid the
propagation of plane polarized light in specific frequency
ranges, i.e., the so-called photonic band gaps~PBGs!. A
waveguide can be created by removing one or several lines
of columns or holes resulting in defects that support guided
modes in the PC structure.2

A key advantage of PC waveguides is that bends can be
created with very little or no transmission loss even with
bend curvatures as small as the wavelength. Although PC
waveguides generally offer low losses compared to tradi-
tional dielectric waveguides, much effort has been devoted to
reducing these losses to a minimum over larger frequency
ranges. Waveguides with dielectric columns in a rectangular
configuration have been subjected to extensive
computations3 and recently waveguides with holes etched in
a triangular pattern in a dielectric have been analyzed thor-
oughly both theoretically and experimentally.4

Despite the considerable amount of studies on PC
waveguides that have appeared, few papers have dealt with
optimization or the inverse problem of obtaining structures
with optimal or desired properties. The few papers that have
appeared~e.g., Refs. 5 and 6!have considered simple geom-
etry variations like existence/nonexistence of holes or rods or
variations of hole or rod diameters. The topology optimiza-
tion method7,8 is a gradient-based optimization method that
creates optimized designs with no restrictions on resulting
topologies and can thus be used to create designs with pre-
viously unattainable properties. The topology optimization
method has in the last decade been used to design materials
with extremal properties, compliant and multiphysics mecha-
nisms, piezoelectric actuators, and plenty more.8 Here, the
transmission loss in a column-based waveguide with a 90°
bend is systematically minimized by the topology optimiza-

tion method. This work applies a gradient-based method to
waveguide optimization, thus creating optimized waveguides
with much less computational effort and more design free-
dom than previously used genetic or other heuristic algo-
rithms.

The analyses and optimization presented here are based
on a time-harmonic two-dimensional finite element~FE!
model. Unwanted reflections from the input and output
waveguide ports are eliminated by using anisotropic per-
fectly matching layers~PML! with the waveguide structure
continued into the damping layers. This ensures that reflec-
tions from the input and output ports are kept to a minimum.9

The loss in the waveguide bend is found by comparing the
transmission of energy through the bend waveguide to that of
a straight waveguide.

The computational model is shown in Fig. 1 and consists
of the actual computational domain and two additional PML
areas. For this example we consider propagation of an
E-polarized wave governed by

¹2E1v2S n

cD 2

E50, ~1!

a!Electronic mail: jsj@mek.dtu.dk

FIG. 1. Waveguide with a 90° bend line defect in a periodic configuration of
dielectric columns (n53.4) in air. Unwanted reflections from the input and
output waveguide ports are eliminated by using anisotropic PML regions,
and the energy transmission through the waveguide is evaluated in the unit
cell denotedA.
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wherev is the wave frequency,n5n(x,y) is the refractive
index, c the speed of light, andE5E(x,y) is the electric
field. In the PML regions the governing equation is modified
to obtain anisotropic damping properties.9

An incident wave is specified by the boundary condition:
n"“E52iv(n/c), and on the other boundaries of the com-
putational domain the condition:n"“E1 iv(n/c)E50, en-
sures normal absorbing boundaries. The vectorn is in both
cases an outward pointing normal vector.

We use a FE discretization of Eq.~1! ~as well as the
PML equation and the boundary conditions! with '115 000
rectangular bilinear elements. This leads to a set of linear
complex equations:

S~v!u5f~v!, ~2!

whereS~v! is a frequency-dependent system matrix,f~v! a
frequency-dependent load vector, and Eq.~2! is solved for
the vectoru containing the discretized nodal values of the
field E.

The energy transmission through the waveguide is found
by computing the time-averaged Poynting vector through the
areaA ~Fig. 1!:

p5$pxpy%
T5

v

2a EA
R~ i ~¹E!E* !dA, ~3!

wherea is the lattice constant andE* is the complex conju-
gate field.

We consider a square configuration of unit cells with
centered dielectric columns (n53.4) with a diameter ofd
50.36a placed in air. This configuration has been shown to
have a PBG for E-polarized waves for v50.302
20.443(2pc/a).3 Each unit cell is discretized using 19
319 finite elements which is adequate to reproduce this band
gap frequency range. The waveguide model~Fig. 1! consists
of 11311 unit cells with 2 PML regions attached~each hav-
ing a depth of 11 unit cells!. By removing a line of columns
a waveguide is created that supports a single guided mode in
the frequency rangev50.312– 0.443(2pc/a).3

First we consider three standard corner designs@Figs.
2~a!–2~c!# and compute their corresponding transmission

loss@Fig. 2~d!#. The zero-curvature bend@Fig. 2~a!#displays
a loss up to'20% in the guided mode frequency range. By
repositioning a single column@Fig. 2~b!# the loss is reduced
and full transmission through the bend is reached forv
'0.352(2pc/a). In Fig. 2~c! the corner is designed with
two extra columns in the path and via resonant tunneling
nearly full transmission is obtained forv'0.386(2pc/a),
but the loss increases significantly for other frequencies. The
losses computed with our FE model have been verified
against results previously obtained by using different compu-
tational methods, e.g., FDTD simulations.3,10

In order to reduce the bend loss we now apply the topol-
ogy optimization method to design the corner geometry. We
choose a design area in the corner region consisting of five
unit cells~Fig. 1!and designate a single design variablexi to
each corresponding finite element in the region:

xiPRu0<xi<1 for i 51,N, ~4!

that is, in totalN design variables where in this caseN55
319251805. We use a linear interpolation scheme for the
dielectric property«5n2 of the material in the design region
elements:

ni
25n1

21xi~n2
22n1

2!, ~5!

wheren151 andn253.4 corresponding to air and the di-
electric, respectively. That is, forxi50 the element will take
the property of air, forxi51 the property of the dielectric,
and for any intermediate value ofxi we have some interme-
diate dielectric property. As will appear in the following,
these intermediate values practically vanish in the optimized
design which may be explained by the fact that a high index
contrast is favorable for creating wide band gaps.

In this example we choose as our optimization goal to
maximizethe y component of the time-averaged Poynting
vectorpy in the cellA for a numberM of target frequencies
v̄ j , j 51,M . Our optimization objective can thus be formu-
lated as

max
xi

C5(
j 51

M

py~uj !

subject to: S~v̄ j !uj5f~v̄ j !, j 51,M ,

0<xi<1, i 51,N. ~6!

The optimization problem in Eq.~6! is solved using an
iterative procedure~see Ref. 8 for details!. Given an initial
material distributionxi @here chosen as the structure in Fig.
2~a!# the objectiveC is computed along with the sensitivities
with respect to the design variables. Using the mathematical
programming toolMMA 11 this is transformed into an im-
proved design suggestion, i.e., updated values ofxi , andC is
again computed. This procedure is repeated until the design
xi no longer changes significantly between successive itera-
tions. The sensitivities are found analytically using the ad-
joint method,8,12 which is computationally very cheap since
it only requires solving the system equation~2! for one ad-
ditional load case. Although we here use a simple objective
function it should be emphasized that any numerically quan-
tifiable objective function can be used, and since we are us-

FIG. 2. ~a!, ~b!, and~c! Three standard corner designs, and~d! the corre-
sponding transmission losses vs normalized frequencyva/(2pc) computed
in the guided mode frequency range~indicated by vertical dashed lines!.
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ing a mathematical programming solver~MMA ! extra geo-
metric or behavioral constraints can easily be added to
Eq. ~6!.

In our example we maximize the output energy for three
frequenciesv̄50.34,0.38,0.42(2pc/a) in order to minimize
the loss in a large frequency range. Figure 3~a! shows the
optimized design obtained after about 500 iterations of the
optimization algorithm~about 20 s per iteration on a 2.66
GHz computer!. It is evident that the optimized design is
practically ‘‘black–white,’’ i.e., almost free of elements with
intermediatexi values between 0 and 1. In Fig. 3~b! is shown
a postprocessed design where the few intermediate values
that do appear are forced to either 0 or 1 with a simple filter.
Figure 3~c!shows the transmission loss for the optimized
and for the postprocessed designs. Noticeable is that a loss

below 0.3% is obtained in the entire frequency range from
v'0.325 to 0.440(2pc/a).

Although low transmission loss is obtained using a two-
dimensional model, the question of out-of-plane losses for
the optimized waveguide remains open and should be ad-
dressed using a three-dimensional~3D! model~the optimiza-
tion algorithm can immediately be used with a 3D model!.
However, the method is naturally also applicable to the de-
sign of waveguides based on holes in a dielectric and these
are generally known to be less prone to out-of-plane losses.
In addition to waveguide bends the method can be applied to
systematic design of a large variety of optical devices such
as, e.g., wave-splitters, multiplexers, and other more com-
plex objectives. Future work will address these issues and we
are also expecting to test optimized devices experimentally
in the near future. Previous work by the authors has consid-
ered design of similar devices for elastic waves.12

This work was supported by the Danish technical
research council~STVF!.
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FIG. 3. ~a! Optimized corner design,~b! postprocessed design with black
and white elements only, and~c! transmission losses for the two designs and
for a standard corner design.
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A T junction in a photonic crystal waveguide is designed with the topology-optimization method. The gradient-
based optimization tool is used to modify the material distribution in the junction area so that the power trans-
mission in the output ports is maximized. To obtain high transmission in a large frequency range, we use an
active-set strategy by using a number of target frequencies that are updated repeatedly in the optimization
procedure. We apply a continuation method based on artificial damping to avoid undesired local maxima and
also introduce artificial damping in a penalization scheme to avoid nondiscrete properties in the design
domain. © 2005 Optical Society of America

OCIS codes: 000.4430, 130.1750, 230.7390.

1. INTRODUCTION
Since the primary publications,1,2 photonic crystals
(PhCs) have attracted much attention owing to the poten-
tial applications in integrated optical circuits and commu-
nication devices. PhCs rely on the bandgap phenomenon
that causes total prohibition of wave propagation for some
frequencies in certain periodic media. Future applications
of PhC components will inevitably rely on high-level per-
formance, such as ultra-low-loss and high-bandwidth op-
eration. Thus an increased interest has recently been de-
voted to the possibility of using inverse design techniques
in the form of various optimization methods to design
such components,3 e.g., to maximize bandgaps of PhCs
and to reduce losses in PhC waveguide bends, junctions,
inlets, and outlets. In this paper we demonstrate how to-
pology optimization can be used to design low-loss and
high-bandwidth two-dimensional (2D) waveguide T junc-
tions.

In a recent paper4 a 90-deg bend in a 2D PhC wave-
guide was designed with topology optimization. The opti-
mization was performed by maximization of the power
transmission of E-polarized waves through the bend for
three wave frequencies simultaneously, and the resulting
design, which was rather unconventional, displayed a
good performance in a large frequency range. In the
present paper the theoretical details behind the optimiza-
tion algorithm are explained in detail, and a new optimi-
zation strategy based on active frequency sets, as well as
a new penalization scheme, is introduced to treat the
more difficult case of a T-junction waveguide. Although we
here consider the case of E polarization, the methods de-
scribed can immediately be applied to H polarization with
a change of material parameters. In Ref. 5 a double 120
-deg bend designed for H polarization was fabricated and
showed a satisfactory performance of the component in
good agreement with numerical simulations.

The T junction in a 2D PhC with circular dielectric rods
in a square configuration has previously been studied and
subjected to optimization. In Ref. 6, T junctions (and 90-
deg bends) were studied by use of a 2D finite-difference
time domain simulations, and the performance of the
junction was improved by addition of extra rods of various
radii in the corner regions. In Ref. 7 the reflection at the T
junction was minimized with a combination of genetic-
type algorithms and gradient-based optimization with the
position and size of a selected number of rods used as de-
sign variables. In a related study,8 optimization based on
simulated annealing was used to optimize a 60-deg junc-
tion in a waveguide based on a triangular configuration of
holes. In that case the design variables were the radii of a
number of holes. Recently researchers performed a simi-
lar optimization study9 by allowing the radii of selected
holes in a 60-deg bend to be varied to maximize the trans-
mission through the bend.

Unlike the aforementioned studies, topology optimiza-
tion is based on free distribution of material in a design
domain and hence does not restrict the design to consist
of circular rods, or indeed rods at all. The method was
originally developed for use in structural mechanics with
the aim of obtaining the stiffest possible structures with a
restricted amount of material.10 This has led to new de-
signs that significantly outperformed structures designed
with standard shape- or size-optimization techniques, led
to an increasing popularity in aero and automotive indus-
tries, and resulted in implementation in commercial opti-
mization tools.11 In the past decade, topology optimization
has also been successfully applied in other areas such as
fluid mechanics and heat conduction.12 Recently the
method has been applied to optimization of phononic
bandgap materials and structures.13

In this paper we use topology optimization to design T
junctions with high transmission over a large frequency
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range. To ensure a high bandwidth of the junction, we
maximize the transmission for a number of target fre-
quencies simultaneously and use an active-set strategy to
update these frequencies repeatedly. To identify the fre-
quencies with lowest transmission, we use fast frequency
sweeps based on Padé approximants. The performance of
the junction design obtained with this new method (Sec-
tion 4) is compared with the performance of designs we
get by optimizing the junction for single frequencies (Sec-
tion 3). In Section 2 we introduce the basic optimization
procedure along with the continuation method and a new
penalization scheme.

2. TOPOLOGY OPTIMIZATION OF
TWO-DIMENSIONAL PHOTONIC
CRYSTAL STRUCTURES
Our implementation of topology optimization is based on
the finite-element method. We use a frequency-domain
method based on a 2D model of plane polarization (2D
Helmholtz equation) in domain V:

¹ · fAsxd ¹ usxdg + v2Bsxdusxd = 0 in V. s1d

In Eq. (1), v is the wave frequency, usxd is the unknown
field in the plane x= sx ,yd, and Asxd and Bsxd are the
position-dependent material coefficients. For E polariza-
tion A=1 and B=«rsxdc−2, and for H polarization A
=«r

−1sxd and B=c−2, where «rsxd is the dielectric constant
and c is the speed of light in air. In the following we con-
sider E polarization only.

The 2D computational model of the T junction is shown
in Fig. 1. The domain V consists of 15315 square unit
cells, each with a centrally placed circular rod with the di-
electric constant «r=11.56 and diameter 0.36a, where a is
the distance between the individual rods. This configura-

tion has been shown to have a large bandgap in E polar-
ization in the frequency range v=0.302–0.443 2pc /a,
and, with single rows of dielectric columns removed, a
guided mode is supported for v=0.312–0.443 2pc /a.14

One creates T-junction waveguide by removing single
rows of rods as shown in Fig. 1.

Incident wave and absorbing boundary conditions are
specified on Ginp,]V and Gabs,]V, respectively (Fig. 1),

n · sA ¹ ud = 2ivÎABU on Ginp,

n · sA ¹ ud + ivÎABu = 0 on Gabs, s2d

where U is a scaling factor for the wave amplitude (in the
following, set to unity). In Eqs. (2), n is the outward-
pointing normal vector at the boundary, and the material
coefficients are those of air in E polarization: A=1 and
B=Bair=c−2.

To eliminate reflections from the input and output
waveguide ports, we add more anisotropic perfectly
matching layers (PMLs) (denoted VPML in Fig. 1). The
governing equation in these layers is

]

]x
S sy

sx
A

]u

]x
D +

]

]y
S sx

sy
A

]u

]y
D + v2sxsyBu = 0 in VPML,

s3d

where the factors sx and sy are complex functions of the
position and govern the damping properties of the layers.
A standard implementation for PhC waveguides is used
with the PhC structure retained in the PMLs.15

A Galerkin finite-element procedure is applied,16 lead-
ing to the discretized set of equations:

s− v2M + ivC + Kdu = f, s4d

where u is a vector of discretized nodal values of usxd. On
the element level the nodal values are interpolated as
usxd=Nsxdu, which leads to the following form of the
finite-element matrices:

M = o
e[V

BeMe + o
e[VPML

Besxe
sye

Me, Me =E NTNdV,

C = Cabs = o
e[Gabs

ÎAeBeCe, Ce = R NTNdS,

K = o
e[V

AeKe + o
e[VPML

AeFS sye

sxe

DKx
e + S sxe

sye

DKy
eG ,

Ke = Kx
e + Ky

e =E ]NT

]x

]N

]x
dV +E ]NT

]y

]N

]y
dV,

f = 2iv o
e[Ginp

ÎAeBefe, fe = R NTdS, s5d

where Ae, Be, sxe
, and sye

are assumed element wise con-
stants.

We discretize the domain by using standard quadratic
bilinear elements,16 with 19319 elements for each unit

Fig. 1. Computational model consisting of 15315 unit cells in V
with centrally placed circular rods of diameter 0.36a. A wave in-
put is provided on Ginp, and absorbing boundaries are specified on
Gabs. Perfectly matching layers VPML are added to avoid reflec-
tions from the input and output waveguide ports. The objective is
to maximize the power transmission in the two subdomains near
the output ports VJ1

and VJ2
.
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cell. Thus the entire computational domain consists of
s15315+339310d3192=178,695 elements. On a 2.66
-GHz computer with 1-Gbyte RAM, a solution for a single
frequency of Eq. (4) takes approximately 10 s. This is suf-
ficiently fast for the model to be used in our iterative op-
timization algorithm in which several hundred solutions
need to be computed in a single optimization procedure.

A. Design Variables and Material Interpolation
The design domain VD is a subdomain of V. We assign one
design variable xe to each finite element within VD:

0 ø xe ø 1, e [ VD. s6d

It is impossible to solve the discrete combinatorial
problem for more than, e.g., 100 design variables. Instead,
we use continuous design variables so that we can apply a
gradient-based algorithm. We let the design variable gov-
ern the distribution of air and dielectric in each element
in VD by letting the material coefficients Ae and Be vary
linearly with xe:

Ae = A1 + xesA2 − A1d,

Be = B1 + xesB2 − B1d, s7d

such that, for xe=0, the material in the element will be
material 1 (air) and, with xe=1, it will be material 2 (di-
electric). It is now the task for the optimization algorithm
to identify the values of xe in VD that optimize our chosen
objective function and, additionally, to ensure only dis-
crete values, 0 and 1, of the design variables in the final
design in order to obtain a well-defined structure.

B. Objective Function and Sensitivity Analysis
The goal is to maximize the power transmission through
the waveguide, thereby minimizing the reflection at the T
junction. The power transmission is found from the time-
averaged Poynting vector:

Psxd = hPxPyjT = 1
2vARsiū ¹ ud. s8d

We consider the vertical component of the power trans-
mission, Py, averaged in two separate domains VJ1

and
VJ2

near the two output waveguide ports [see Fig. 1]:

J1 =
1

Ny
o

e[VJ1

Py
e ,

J2 = −
1

Ny
o

e[VJ2

Py
e , s9d

where Ny are the number of finite elements in the y direc-
tion in VJ1

and VJ2
. The vertical component of the time-

averaged Poynting vector in each element is given as

Py
e = 1

2vAeRfisuedTQy
eūeg, s10d

where ūe denotes the complex conjugate of the element
nodal values. Qy

e is defined as

Qy
e =E ]NT

]y
NduSuy=0. s11d

We want to maximize the total power transmitted
through the output ports for a given frequency v, which
leads to the optimization problem:

max
xe

Jsvd,

Jsvd = J1svd + J2svd, s12d

in which we additionally enforce a simple symmetry con-
dition to ensure a symmetrical design with J1=J2. The
optimization problem in expressions (12) is solved with
the mathematical programming tool, the Method of Mov-
ing Asymptotes,17 in combination with the computed sen-
sitivities of the objective function with respect to the de-
sign variables.

Analytical sensitivity analysis is an essential part of a
fast optimization method and can be performed, e.g., with
the adjoint method,12 leading to the expression

dJ

dxe
= 2RFlT

ds− v2M + ivC + Kd

dxe
uG , s13d

where it has been assumed for simplicity that the design
domain VD neither includes the wave input boundary Ginp
nor overlaps VJ and where l is the solution to the adjoint
problem

s− v2M + ivC + KdTl =
iv

4 o
e[VJ

AefQy
e − sQy

edTgTūe,

s14d

where the summation should be understood in the normal
finite-element sense. Note that Eq. (14) can be solved es-
sentially without computational effort if the original prob-
lem is solved by a direct factorization method. This means
that one can obtain all the sensitivities [Eq. (13)] simply
by solving the original problem [Eq. (4)] with an extra
right-hand side (load case) and inserting the result into
Eq. (13).

In structural mechanics the problem of mesh depen-
dency arises when the standard formulation is used. This
implies that if the finite-element mesh is refined, finer de-
tails will appear in the optimized structure. One can
avoid this by introducing a heuristic mesh-independency
filter.12 In optics this dependency is not inherent in the
problem, but the filter can nevertheless be applied with
advantage to avoid too fine details in the structure. The
variant used here is based on filtering the computed sen-
sitivities in the following way:

dĴ

dxe
=

oSHe
ˆ

dJ

dxe
D

o He
ˆ

, s15d

where the summation is performed over all elements in
the design domain and where Hi

ˆ is a convolution operator
defined as
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He
ˆ = rmin − distsk,ed, he [ VDudistsk,ed ø rminj,

k = 1, . . . , NVD
. s16d

Thus the filtered sensitivities is a modification of the
original sensitivities based on a weighted average of the
sensitivities in neighboring elements within a fixed range
(specified by rmin). In the examples shown, we have used
rmin=2.5 times the element size.

C. Continuation Method and Penalization
The solution of the optimization problem turns out to be
strongly nonunique, which results in multiple local
maxima. Some of these are based on local resonance ef-
fects that lead to a poor performance away from the tar-
get frequency and to strong out-of-plane scattering and,
consequently, to poor transmission for a real three-
dimensional structure. A way to reduce the chance of end-
ing up in such a maximum is to apply a continuation
method in which we attempt to convexify the object func-
tion by changing the original problem into a smoother
one. After a converged design is obtained for the smooth
problem, we gradually change the problem back into its
original form during a continued optimization procedure.
As shown for phononic bandgap structures,18 the pres-
ence of strong damping smoothes the dynamic response
considerably, and in Ref. 13 this was used with advantage
to avoid undesired local extrema in the optimization of
these structures.

Similar to the case of phononics (elastic waves), we
here add an artificial damping term Cart to the model:

C = Cabs + Cart, s17d

where Cabs is the damping matrix stemming from the ab-
sorbing boundaries. We let the extra damping matrix be
proportional to the mass matrix, such that

Cart = bvM, s18d

where b is a real and positive constant. In a typical opti-
mization procedure we start out with strong damping,
say, b=0.1, and then gradually decrease b until the per-
formance of the structure no longer can be improved.

Even when avoiding the pitfall of resonance-based local
maxima, we may still end up with an unfeasible design
with elements that have nondiscrete design variables xe,
i.e., values other than strictly 0 or 1. For other applica-
tions of topology optimization, various penalization meth-
ods have been developed to avoid this problem. For
bandgap-type problems, the need for penalization appears
to be small13 in that the highest possible material con-
trast is favorable for maximum wave reflection. However,
if the problem is not strictly of the reflection type, we may
end up with some gray elements.

Here we propose a new scheme inspired by an explicit
penalization scheme introduced in Ref. 19. Instead of add-
ing a penalization term directly to the objective, we use
an implicit variant by introducing the penalty as an extra
damping term for elements in VD:

Cpen
e = 4exes1 − xedvMe, e [ VD, s19d

thereby causing elements with 0,xe,1 to induce an en-
ergy loss and hence be expensive for the objective func-
tion. The penalization scheme is typically employed when
a converged design is obtained and gray elements have
appeared. Then e is gradually increased from, e.g., e
=0.01 until the gray elements vanish. However, if a lot of
gray elements appear in the design, it can be beneficial to
have a nonzero e throughout the optimization procedure.
In the following we call e the pamping coefficient as an ac-
ronym for penalization damping.

D. Algorithm
The optimization algorithm is outlined in the following:

1. Set up a finite-element model and choose an appro-
priate design domain VD and target frequency v.

2. Choose an initial design, i.e., distribution of xe in VD,
and initial values of artificial damping, e.g., b=0.1.

3. Compute the elementwise material coefficients Ae
and Be.

4. Solve system equations and compute objective func-
tion J and filtered design sensitivities dJ /dxˆ

e.
5. Update design with the mathematical programming

tool, the Method of Moving Asymptotes.17

6. Repeat steps (3)–(5) until design convergence is
maxuxnew−xeu,d, where d is a small positive constant.

7. Decrease artificial damping, e.g., bnew=b /2.
8. Repeat steps (3)–(7) until the performance is no

longer improved.
9. If gray elements appear in the design, repeat steps

(3)–(5) with increasing values of e, starting from, e.g., e
=0.01. Alternatively, carry out the whole optimization
procedure with a nonzero e.

3. SINGLE-FREQUENCY OPTIMIZATION
We now use the basic algorithm to design the T junction
for maximum transmission at three separate frequencies.
Figure 2 shows the design domain. A domain consisting of
ten unit cells is chosen, but the choice is arbitrary, and it

Fig. 2. Design domain VD and initial material distribution.
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should be emphasized that the CPU time per iteration is
almost independent of the design domain size (for the
given discretization).

We optimize the junction for ṽ=0.32, ṽ=0.38, and ṽ
=0.44 sṽ=v2pc /ad. This corresponds to two frequencies
near the extremal values of the guided-mode frequency
range and one center frequency. For an initial design, we
choose the unoptimized structure as depicted in Fig. 2.

Figures 3–5 show three optimized designs together
with the fields for the corresponding target frequencies.
In Figure 6 the transmission spectrum is depicted for the
three optimized designs as well as for the initial struc-
ture. The spectra have been normalized with the power
transmission through a straight waveguide, so that 0.5
corresponds to 50% transmission through both upper and
lower output ports of the symmetrical design, and hence
there is no reflection at the junction.

For all three designs, practically full transmission is
obtained at the specified target frequency. Except for the
design obtained for ṽ=0.32, a good performance is also
seen away from the target, which indicates that the con-
tinuation approach has been effective in eliminating local
maxima that are based on local resonances. These may
display high transmission at single frequencies but are
normally associated with excessive peaks and valleys in
the transmission spectrum. Starting from different initial
designs in most cases, we obtain different optimized de-
signs, which indicates the strong nonuniqueness of the
optimization problem. However, all designs obtained per-
form equally well (full transmission) at the target fre-
quency.

Owing to the long wavelength of the guided mode at
ṽ=0.32, the optimized structure for this frequency is not
well suited for higher frequencies at which the wave-
length is significantly shorter. Similarly, the optimized de-
sign for ṽ=0.44 performs poorly at lower frequencies.
However, the design for ṽ=0.38 gives a good transmission
in a large frequency range, and the transmission drops
significantly only for frequencies below ṽ=0.35 and above
ṽ=0.41.

4. FREQUENCY-RANGE OPTIMIZATION BY
USE OF ACTIVE SETS
To get a larger bandwidth with high transmission, we
need to optimize the junction for several frequencies in
the specified frequency range simultaneously. In Ref. 4
the sum of the transmission for a number of target fre-
quencies was considered. With this approach the frequen-
cies should be chosen carefully, and even then the trans-
mission may still drop significantly between these
frequencies. This problem could be partially remedied by
use of a large number of frequencies. However, this would
be CPU time expensive.

Instead, we introduce an active-set strategy in which
we no longer keep the target frequencies fixed but let
them vary according to the most critical frequencies, i.e.,
those with minimum transmission.

We now write the objective as

max
xe

o
v1,. . ., vN

min
viPIi

fJsvid/J*svidg,

Fig. 3. Optimized T-junction topology for target frequency ṽ
=0.32 and the corresponding field distribution.

Fig. 4. Optimized T-junction topology for target frequency ṽ
=0.38 and the corresponding field distribution.

Fig. 5. Optimized T-junction topology for target frequency ṽ
=0.44 and the corresponding field distribution.
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I1 = †ṽ1;ṽ2f, . . . , In = gṽN;ṽN+1‡, s20d

where N is the number of target frequencies and ṽN+1
− ṽ1 is the entire frequency range of interest, divided into
N equally sized intervals. The power transmission is nor-
malized for each frequency with the corresponding trans-
mission for the straight waveguide J*. In this way a
proper weighting of the different frequencies is ensured.

The implementation of the the active-set strategy is il-
lustrated in Fig. 7. A number N of target frequencies is
chosen, and the frequency interval is divided into N
equally sized sections. At regular intervals during the op-
timization, e.g., every 20 or 30 iterations, the transmis-
sion spectrum is computed, and the frequency with the
lowest transmission is identified in each interval. These
frequencies now become the new target frequencies in
subsequent iterations. It is important that the spectrum
is computed with high frequency resolution to accurately
detect the critical frequencies. Unfortunately, this re-
quires solving the direct problem [Eq. (4)] for many fre-
quencies, thus slowing down the optimization procedure
significantly. A way to overcome this is to compute the
spectrum with a fast-frequency-sweep technique with

Padé approximates.20 We then need to solve Eq. (4) only
once for each frequency interval and can then expand the
solution in the neighboring frequency range with high ac-
curacy at low computational cost. The transmission spec-
trum in Fig. 7 is computed with a fast frequency sweep,
and the solutions computed by our solving the direct prob-
lem, depicted with discrete markers, illustrate the accu-
racy of the expansion.

In the first example we use the original design domain
(Fig. 2) and attempt to design the junction with full trans-
mission in the entire frequency range from ṽ=0.32 to ṽ
=0.44. We start out with three target frequencies and in-
crease this number to 12 as the continuation parameter b
is reduced to its final value at b=0.00625. Throughout the
optimization we keep the pamping parameter e=0.1. Fig-
ure 8 shows the final design and the field computed for
ṽ=0.38. Figure 10 shows the corresponding transmission
spectrum. However, note that the transmission still drops
near the extremal frequencies.

It appears that the chosen design domain is unable to
provide a full transmission in the entire frequency range,
and therefore the domain is increased by an additional
eight unit cells near the corners of the junction. We repeat
the optimization procedure described above by using the
previous design as the initial design and obtain the struc-
ture displayed in Fig. 9 that shows also the field com-
puted for ṽ=0.38. As can be seen in the transmission dia-
gram (Fig. 10), the transmission is now improved and
especially increased near the limits of the frequency
range. By choosing even larger design domains, one can
expect further improvements.

5. CONCLUSIONS
We have developed a design method based on topology op-
timization and used it to design a T junction in a photonic
crystal waveguide with high transmission in a large fre-
quency range.

The optimization algorithm is based on a frequency-
domain finite-element model of 2D plane polarization. El-
ementwise constant design variables govern the distribu-

Fig. 6. Transmission through the top and bottom output ports.
Results for the standard junction is shown along with three op-
timized designs for three different frequencies.

Fig. 7. Illustration of update scheme for target frequencies. The
frequency curve is computed with Padé approximations to obtain
high frequency resolution at low computational cost. Discrete
markers indicate transmission values computed directly.

Fig. 8. Design optimized for frequency range ṽ=0.32–0.44. The
field is computed for ṽ=0.38.
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tion of material in a design domain near the junction. By
maximizing the power transmission through the two
waveguide output ports, we obtain designs with vanish-
ing reflection at the junction.

We obtained a high transmission locally by performing
the optimization for single frequencies. To get a larger
bandwidth with high transmission, we introduced an
active-set strategy in which the transmission is maxi-
mized for several frequencies simultaneously and in
which these target frequencies are repeatedly updated
with fast frequency sweeps to identify the most critical
frequencies with lowest transmission. It was shown that,
by increasing the design domain, we obtained a better
performance in a larger frequency range, approaching full
transmission for the entire frequency range under consid-
eration.

To avoid local maxima based on local resonance effects,
we applied a continuation method by convexifying the ob-
ject and response functions with artificial damping. Addi-
tionally, we introduced a scheme to avoid values of the
continuous design variable between 0 and 1, correspond-

ing to intermediate material. This was done by penalizing
these intermediate values with extra artificial damping.

The algorithm appears to be a robust and efficient de-
sign tool for PhC components. Although based on a 2D
model, recent experience with manufactured structures5

indicates that good performance of the actual devices can
be expected, and the optimization scheme can directly be
implemented with a three-dimensional computational
model to address the important issue of out-of-plane scat-
tering. Additionally, the objective function can easily be
modified to deal with other functionalities.

ACKNOWLEDGMENTS
The authors thank Martin P. Bendsøe for valuable com-

ments and suggestions. The work was supported by the
Danish Technical Research Council through the grant
“Designing bandgap materials and structures with opti-
mized dynamic properties.”

J. S. Jensen, the corresponding author, can be reached
by e-mail at jsj@mek.dtu.dk.

REFERENCES
1. E. Yablonovitch, “Inhibited spontaneous emission in solid-

state physics and electronics,” Phys. Rev. Lett. 58,
2059–2062 (1987).

2. S. John, “Strong localization of photons in certain
disordered dielectric superlattices,” Phys. Rev. Lett. 58,
2486–2489 (1987).

3. M. Burger, S. J. Osher, and E. Yablonovitch, “Inverse
problem techniques for the design of photonic crystals,”
IEICE Trans. Electron. E87-C, 258–265 (2004).

4. J. S. Jensen and O. Sigmund, “Systematic design of
photonic crystal structures using topology optimization:
low-loss waveguide bends,” Appl. Phys. Lett. 84, 2022–2024
(2004).

5. P. I. Borel, A. Harpøth, L. H. Frandsen, M. Kristensen, P.
Shi, J. S. Jensen, and O. Sigmund, “Topology optimization
and fabrication of photonic crystal structures,” Opt.
Express 12, 1996–2001 (2004).

6. K. B. Chung, J. S. Yoon, and G. H. Song, “Analysis of
optical splitters in photonic crystals,” in Photonic Bandgap
Material and Devices, A. Adibi, A. Scherer, and S.-Yu. Lin,
eds., Proc. SPIE 4655, 349–355 (2002).

7. J. Smajic, C. Hafner, and D. Erni, “Optimization of
photonic crystal structures,” J. Opt. Soc. Am. A 21,
2223–2232 (2004).

8. W. J. Kim and J. D. O’Brien, “Optimization of a two-
dimensional photonic-crystal waveguide branch by
simulated annealing and the finite-element method,” J.
Opt. Soc. Am. B 21, 289–295 (2004).

9. T. Felici and T. F. G. Gallagher, “Improved waveguide
structures derived from new rapid optimization
techniques,” in Physics and Simulation of Optoelectronic
Devices XI, M. Osinski, H. Amano, and P. Blood, eds., Proc.
SPIE 4986, 375–385 (2003).

10. M. P. Bendsøe and N. Kikuchi, “Generating optimal
topologies in structural design using a homogenization
method,” Comput. Methods Appl. Mech. Eng. 71, 197–224
(1988).

11. H. L. Thomas, M. Zhou, and U. Schramm, “Issues of
commercial optimization software development,” Struct.
Multidiscip. Optim. 23, 97–110 (2002).

12. M. P. Bendsøe and O. Sigmund, Topology Optimization—
Theory, Methods and Applications (Springer, Berlin, 2003).

13. O. Sigmund and J. S. Jensen, “Systematic design of
phononic band-gap materials and structures by topology

Fig. 9. Design optimized for frequency range ṽ=0.32–0.44 with
an enlarged design domain. The field is computed for ṽ=0.38.
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Abstract: Topology optimization is used to design a planar photonic crystal 
waveguide component resulting in significantly enhanced functionality. 
Exceptional transmission through a photonic crystal waveguide Z-bend is 
obtained using this inverse design strategy. The design has been realized in 
a silicon-on-insulator based photonic crystal waveguide. A large low loss 
bandwidth of more than 200 nm for the TE polarization is experimentally 
confirmed. 
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1. Introduction 

The planar photonic crystal (PhC) is an optical nano-material with periodic modulation of the 
refractive index. The modulation is designed to forbid propagation of light in certain 
wavelength ranges, so-called photonic bandgaps (PBGs) [1-3]. Breaking the crystal symmetry 
by introducing line defects and other discontinuities allows control of the light on a sub-
wavelength scale in the PhCs. Therefore, photonic devices based on the PBG effect may be up 
to one million times smaller than traditional integrated optical devices. PhC structures with 
20-40 nm useful optical bandwidths have previously been demonstrated [4-6]. Until now, 
however, no bandgap-based PhC components have been demonstrated with satisfactory 
performance in a broad wavelength range. A major reason for this has been the lack of 
efficient inverse design tools that can be applied irrespectively of the device under 
consideration. Therefore, most PhC design structures today are obtained either by intuition or 
by varying one or two design parameters—typically the position or size of a PhC element—
using the trial-and-error method. 

In this paper we show exceptional transmission through a Z-bend consisting of two 
successive 120° PhC waveguide bends. The design of the bends is obtained using an efficient 
inverse design strategy called topology optimization. The optimized design is experimentally 
realized in a silicon-based PhC. Measurements have confirmed a large low-loss bandwidth of 
more than 200 nm for TE polarized light. 

2. Topology optimization 

The systematic design method based on topology optimization allows creation of improved 
PhC components with previously unseen low transmission losses and high operational 
bandwidths, or with wavelength selective functionalities. The method was originally 
developed for structural optimization problems [7], but has recently been extended to a range 
of other design problems [8]. The method is based on repeated finite element analyses where 
the distribution of material in a given design area is iteratively modified in order to improve a 
chosen performance measure. The resulting designs are inherently free from geometrical 
restrictions such as the number of holes, hole shapes etc., thereby allowing the large potentials 
of PhC components to be exploited to hitherto unseen levels. Previously reported optimization 
tools for such components have all been restricted to deal with circular holes [9-11]. 

(C) 2004 OSA 3 May 2004 / Vol. 12  No. 9 / OPTICS EXPRESS  1997
#4140 - $15.00 US Received 30 March 2004; revised 23 April 2004; accepted 26 April 2004

http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1757
http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-234


           

Standard Modification 1 Modification 2

 

0.22 0.23 0.24 0.25 0.26 0.27
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 tr
an

sm
is

si
on

Normalized frequency

 Standard
 Modification 1
 Modification 2

 
Fig. 1. Top: Standard and two modified Z-bend waveguides. Bottom: Transmission through the 
bends calculated using a 2D frequency domain finite element model. 

To demonstrate the method, we have designed and fabricated an optimized PhC Z-bend 
consisting of two successive 120° waveguide bends [12]. The un-optimized Z-bend displays 
high bend losses except in narrow frequency bands. Although a Z-bend PhC may have limited 
practical applicability, it is a difficult and challenging design problem that serves as an 
excellent benchmark for our method. Intuitive attempts to improve the design by removing or 
displacing single holes in the bends do usually not lead to significant reduction of the bend 
loss as indicated in Fig. 1. Larger bandwidth with high transmission has previously been 
predicted for two 120° bends by displacing a larger number of holes [13], but this procedure is 
very time-consuming and does not guarantee acceptable solutions. 

We base our optimization procedure on a 2D frequency domain finite element model of 
the waveguide [14] and choose the outer parts of the two bend regions as design areas wherein 
the material distribution should be modified (see Fig. 2, Left).  

Wave
input

Design
domains

Poynting
vector
maximized
here

          
Fig. 2. Left: Schematic illustration of the topology optimization procedure. The yellow area 
sketches the design domain of one bend. Middle: (149 kB) Movie of how the material is 
redistributed in the design domain in the optimization procedure. In about 600 iteration steps a 
final design is obtained that has optimized transmission properties. Right: (482 kB) Movie of 
TE polarized light propagating through the topology optimized Z-bend. 
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Fig. 3. The transmission for TE polarized light through the un-optimized (standard) design 
(black) and the optimized design (blue). The transmission spectra are based on a 2D frequency 
domain finite element model. 

Although we could have chosen much larger design areas, the numerical experiments showed 
that relatively small design areas were enough to yield the wanted improvement in efficiency. 
Had the efficiency been unsatisfactory, the design areas could have been enlarged in order to 
introduce more freedom in the design. In order to reduce the bend loss we choose the 
transmitted energy flow (Poynting vector) through the Z bent waveguide to be maximized (see 
Fig. 2, left). Relatively short inlet, 120 degree and outlet channels were chosen for CPU time 
reasons. However, the results have been numerically verified to be insensitive to larger 
channel lengths. 

During the iterative optimization procedure the material distribution is changed based on 
analytical sensitivity analysis combined with the use of a mathematical programming tool 
[15]. For more information regarding the procedure we refer to Ref. [16] dealing with 
optimization of a 90° bend in a pillar-based waveguide. More details regarding sensitivity 
analysis etc. can be found in Ref. [17] where phononic bandgap materials and structures are 
optimized.  

The optimization can be performed for any number of frequencies simultaneously, also 
with min-max (or max-min) formulations. In the case of the Z-bend we find that the use of a 
single frequency in the optimization is sufficient to produce a large bandwidth with low loss. 
The algorithm is run on a personal computer requiring about 5 s per iteration and around 600 
iteration steps to reach a converged design.  

Figure 2 shows the optimized design along with the iterative material re-distribution in the 
design domains (middle) and the resulting wave propagation through the optimized 
waveguide (right). In Fig. 3 the transmission through an un-optimized (black) and an 
optimized (blue) Z-bend is shown. It is noticed how the operational bandwidth is dramatically 
improved by applying topology optimization to the design. 

3. Fabrication and characterization 

The PhC Z-bend has been fabricated in silicon-on-insulator material utilizing e-beam 
lithography (JEOL JBX-9300FS). The written patterns were transferred into the 
approximately 300 nm thick top silicon layer employing standard anisotropic reactive-ion etch 
as described in Ref. [18]. The Z-bend waveguide is realized in a triangular lattice of holes by 
removing rows of nearest-neighbor holes. The lattice constant Λ=430 nm and the diameter of 
the holes D=260 nm. A scanning electron micrograph of the fabricated Z-bend is shown in 
Fig. 4.  
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Fig. 4. Scanning electron micrograph of the fabricated Z-bend. The number, shape and size of 
the holes at each bend are designed using topology optimization. The inset shows a magnified 
view of the optimized holes as designed (white contour) and actually fabricated. 

The e-beam was slightly defocused during the lithography process due to imperfect filament 
conditions. Corrections to compensate for this deficiency were undertaken by appropriate 
modifications of the design files. Due to the finite e-beam spot-size, the fabricated structure is 
slightly different from the optimized design as shown in the inset. No special proximity 
corrections were applied for the irregular shaped holes. 

The fabricated components were characterized using the setup sketched in Fig. 5. Tapered 
lensed fibers were used to couple light in and out of the ridge waveguides connected to the 
PhC waveguides. The light sources were broadband light emitting diodes. Three polarization 
controllers and two polarizer crystals with extinction ratios better than 35 dB were used to 
control the polarization of the in-coupled light and to analyze the transmitted light from the 
device under test. The optical spectra for the transmitted light are recorded using an optical 
spectrum analyzer with a 10 nm resolution (ANDO AQ6315E). 
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Fig. 5. Experimental setup used to characterize the waveguide samples. 

4. Experimental results  

The measured loss per bend for TE polarized light sent through the fabricated Z-bend is 
shown in Fig. 6. The measured transmission spectrum has been normalized to a transmission 
spectrum for a straight PhC waveguide of the same length. The polarization of the light 
transmitted through the device containing the Z-bend was analyzed and found to be purely TE 
polarized. Hence, no significant TE-TM coupling is introduced by the Z-bend. 

Also shown in the figure are the calculated losses, obtained by employing 3D finite-
difference time-domain (FDTD) calculations [19], for the fabricated and the un-optimized Z-
bend. These spectra have also been normalized to spectra for straight PhC waveguides of the 
same length. The calculated FDTD spectra have been blue-shifted ~4% in wavelength. 

The most prominent feature of the spectra is the extremely broad wavelength range of 
more than 200 nm having a low bend loss of just above ~1 dB. This is to the best of our 
knowledge by far the largest bandwidth with low bend loss demonstrated for the TE 
polarization in a PhC waveguide. Without topology optimization 3D FDTD calculations show 
up to ~10 dB higher loss per bend.  
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Fig. 6. The measured (gray) and 3D FDTD calculated (red) loss per bend for TE polarized light 
in the fabricated structure. Also shown is the 3D FDTD calculated bend loss for the un-
optimized (black) Z-bend. 

It is worth noting that the low bend loss is obtained experimentally even though the fabricated 
structure deviates slightly from the optimized design shown in Fig. 2 (middle). This fact 
proves the robustness of the design for experimental fabrication tolerances. Using the min-
max formulation, this robustness may also hold for other applications. 

5. Conclusion 

We have reported the successful experimental realization of a planar photonic crystal 
component with functionalities that have been enhanced using the inverse design strategy 
topology optimization. As an example application of this new method we have chosen to 
design and fabricate a topology optimized photonic crystal bend consisting of two successive 
120° waveguide bends.  

The optimized photonic crystal waveguide Z-bend has experimentally been found to 
display a low bend loss of just more than ~1 dB in a broad wavelength range of more than 200 
nm for the TE polarization. The design is proven robust regarding fabrication tolerances. We 
believe topology optimization can be used as a general inverse design tool to design a wide 
range of photonic crystal waveguide components irrespectively of the device under 
consideration.  
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Abstract:  Topology optimization has been used to design a 60° bend in a 
single-mode planar photonic crystal waveguide. The design has been 
realized in a silicon-on-insulator material and we demonstrate a record-
breaking 200nm transmission bandwidth with an average bend loss of 
0.43±0.27 dB for the TE polarization. The experimental results agree well 
with 3D finite-difference-time-domain simulations. 
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1. Introduction 

Modulating the refractive index profile periodically in an optical material can create photonic 
bandgaps (PBGs) wherein no optical modes can exist [1-3]. Such structures are often referred 
to as photonic crystals (PhCs) and have attracted a lot of attention as they potentially allow 
ultra-compact photonic integrated circuits (PICs) to be realized [4-6].  Planar PhC structures 
are often defined as triangular arrangements of low dielectric pillars in a high dielectric 
material. This configuration gives rise to a large PBG for the transverse-electric (TE) 
polarization [7, 8]. Defects in the PhC can introduce modes in the PBG. In this way, photonic 
crystal waveguides (PhCWs) can be formed by locally breaking the periodicity along a 
specific direction of the PhC lattice. Due to the triangular lattice configuration, such PhCWs 
are naturally bent in steps of 60°, thus, making the 60° PhCW bend a key component in PhC-
based PICs.  

In the field of planar photonic crystals, research has within the last decade mostly relied on 
an Edisonian design approach combining physical arguments and experimental/numerical 
verifications [9, 10]. Further optimizations have typically been done in an iterative trial-and-
error procedure to improve a chosen performance measure of the PhC component. Such an 
approach is very time-consuming and does not guarantee optimal solutions. Recently, Smajic 
et al. [11] have shown that sensitivity analyses can be assistive in choosing the critical PhC 
rods/holes to be altered. A different approach was suggested in our previous work [12], in 
which we used an inverse design strategy called topology optimization to optimize the 
performance of a PhCW containing two consecutive 120° bends. This design method offers an 
effective and robust optimization of the photonic crystal structure irrespectively of the device 
under consideration. Here, we apply the topology optimization method to the much more 
important and commonly used PhCW 60° bend and demonstrate an experimental 1-dB 
transmission bandwidth of more than 200nm. Experimental transmission spectra are compared 
to spectra obtained from 3D finite-difference-time-domain (FDTD) calculations [13] and good 
agreement is found. 
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2. Design and fabrication 

Silicon-on-insulator (SOI) is an excellent choice of material for a monolithic integration of 
PhC-based PICs and electronic devices. We define the PhC structures in the top silicon layer 
of a SOI material by utilizing e-beam lithography and standard anisotropic reactive-ion etch 
[14]. The regular PhCs are defined as air holes arranged in a triangular lattice and the PhCWs 
are carved out as W1 waveguides by removing one row of holes in the nearest-neighbor 
direction of the crystal lattice. The lattice pitch is Λ≈400nm and the diameter of the holes 
D≈275nm. This configuration gives rise to a broad PBG below the silica-line from Λ/0.3463-
Λ/0.2592 and allows TE-like single-mode propagation in the PhCW. 

The optimization of the 60° PhCW bend has typically relied on attempts to smooth out the 
bend by altering, displacing, and/or removing holes in the bend region. However, the useful 
bandwidth (~30nm) of practical waveguide bends has usually been one order of magnitude 
smaller than the bandgap [9, 10, 15, 16]. Thus, a careful design, tolerant to fabrication 
deviations, is very important to utilize the full bandgap of the PhC.  

Figure 1 shows schematics of PhCWs defined in a triangular lattice and containing two 
consecutive 60° bends. The distance between the bends has been chosen arbitrarily, but 
sufficiently long to achieve steady-state behavior of the PBG mode in the waveguide section 
separating the bends so that these bends can be treated as separate components. The left image 
illustrates a PhCW with two simple 60° bends. Such generic bends form severe discontinuities 
in the PhCW and introduce large reflections and excite higher order modes, which are not 
necessarily guided in the PhCW. 

 

input 
port 

output 
port 

  
Fig. 1. Schematics of photonic crystal waveguides containing two consecutive 60° bends. Left: 
Generic bend configuration. The red areas illustrate the chosen design domains in the topology 
optimization procedure. Right: Topology-optimized bends. The green areas highlight the optimized 
structures showing that a non-trivial smoothening has been applied to the bend.  

 
We use the method of topology optimization (see e.g. [17]) to optimize the performance of the 
component. This is done by changing the material distribution in the designated design 
domains indicated by the two red areas in Fig. 1 (left). No geometrical restrictions are 
enforced so the resulting design in these domains may consist of an arbitrary number of holes 
of arbitrary sizes and shapes.  

The optimization algorithm is based on a 2D finite-element frequency-domain solver, 
which produces an accurate 2D field solution. The solver is used repeatedly in an iterative 
scheme, in which the material distribution is updated every iteration based on analytical 
sensitivity analysis and use of a mathematical programming tool [18]. On a standard 2.66GHz 
PC with 1 GB RAM each iteration takes about 10s. More details about the general method can 
be found in [17] and its application in optimization of photonic/phononic crystal structures in 
[12, 19, 20]. 

For the 60° bends in Fig. 1 (left) we optimize the component by modifying the material 
distribution so that the transmission through the waveguide is maximized. The transmission is 
evaluated as the power flow at the output port. In order to create a broadband component the 
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power flow is evaluated for several frequencies (up to 6) in the chosen frequency range. 
During the optimization procedure we maximize the output for all frequencies, and update 
these target frequencies every 10th or 20th iteration in order to eliminate transmission dips in 
the frequency range [21]. 

The optimized design is shown in Fig. 1 (right) where the green areas highlight the 
optimized design domains. This design was obtained after approximately 1000 iterations of 
the optimization algorithm, however, with the qualitative structure of the design appearing 
after about 200 iterations. Clearly, the bends have been smoothened by applying a soft 
curvature in the bend region and one hole has been removed on the inner side of the bend. 
However, the smoothening is not trivial as the design domain still contains complex 
structures. Note that the optimized 60° bend mostly resembles an etched mirror [22], whereas 
the topology-optimized 120° bend [12] retained its original crystal structure with deformed 
holes. The major strength of the topology optimization method is that the superior type of 
structure does not need to be known in advance; it will appear from the optimization 
procedure. 

 

 
Fig. 2. Scanning electron micrographs of fabricated photonic crystal waveguides containing 
two consecutive 60° bends. The pitch of the triangular lattice is Λ≈400nm with hole diameter 
D≈275nm. Left: Waveguide with generic. Right: Waveguide with topology-optimized bends. 
The number, shape and size of the holes at each bend are designed using topology 
optimization. The contrast and brightness of the images have been changed for clarity. 

 
Figure 2 shows scanning electron micrographs of the fabricated PhCWs containing two un-
optimized (left) and two topology-optimized (right) 60° bends. The PhC structures have been 
fabricated without applying any special proximity corrections to the irregular shaped holes 
during the e-beam patterning. Nonetheless, the fabricated topology-optimized structures 
nicely resemble those shown in Fig. 1 (right). 

3. Simulation and experimental results 

Figure 3 shows the steady-state magnetic field distribution for the fundamental PBG mode of 
the fabricated PhCWs simulated using 2D FDTD. The left image shows the mode behavior for 
light incident from the bottom-left through the PhCW with the generic bends. It is clearly seen 
that the generic bend forms a severe discontinuity in the straight PhCW and excite an odd 
mode, which is not well guided in the PhCW. Moreover, the lower bend introduces large 
reflections and scattering of light to the PhC structure. In contrast, the right image shows that 
the topology-optimized bend regions guide the fundamental PBG mode nicely through the 
two bends without disturbing the mode profile. 
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Fig. 3. Steady-state magnetic field distribution for the fundamental PBG mode simulated using 
2D FDTD. The mode is incident from the bottom-left part of the waveguide. Left: Mode profile 
through the generic bends. Right: Mode profile through the topology-optimized bends. 

 
The fabricated PhCWs shown in Fig. 2 have been optically characterized using broadband 
light emitting diodes (LEDs) as sources. To cover the full bandwidth of the fabricated 
components we used three different LEDs centered around 1310nm, 1414nm, and 1538nm. 
Tapered lensed fibers were used to couple light in and out of the ridge waveguides connected 
to the PhCWs. Two polarization controllers and a polarizer with an extinction ratio better than 
35 dB were used to control the polarization of the light sent into the device under test. The 
optical spectra for the transmitted light were recorded with a spectral resolution of 10nm using 
an optical spectrum analyzer. To extract the bend loss the transmission spectra have been 
normalized to the transmission spectrum for a straight PhCW of the same length. Figure 4 
shows the measured bend loss of TE polarized light for the un-optimized generic (red curve) 
and the topology-optimized (green curve) 60° bend. 
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Fig. 4. Measured loss per bend for the un-optimized 60º bends (red) and the topology-
optimized 60º bends (green). Both spectra have been normalized to the transmission through 
straight PhCWs of the same length to eliminate the coupling and the propagation loss in 
straight waveguides. Dotted line marks a bend loss of 1dB. 

 
The topology-optimized bend displays more than 200nm bandwidth with less than 1dB loss 
and an average bend loss of 0.43±0.27 dB. In the same wavelength range the un-optimized 
bend clearly shows a large bend loss, which only reduces in a narrow range near the cut-off of 
the fundamental mode at longer wavelengths. Thus, applying the two-dimensional topology 

(C) 2004 OSA 29 November 2004 / Vol. 12,  No. 24 / OPTICS EXPRESS  5920
#5520 - $15.00 US Received 19 October 2004; revised 12 November 2004; accepted 15 November 2004



optimization method has dramatically boosted the performance of the 60° bend and opened 
for a practical implementation of the bend without the need for delicately tuning a narrow 
operational bandwidth of the bend to the bandwidth of the rest of the PhC component. The 
high transmission bandwidth of the bend is obtained for the fundamental even mode in the 
PBG of the PhCW. Due to the fundamental properties of the SOI PhCW [7, 8] this bandwidth 
is above the silica-line but in the PBG and cannot be attributed to the optimization method, as 
this is a purely two-dimensional algorithm. 
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Fig. 5. Experimental bend loss (green) compared to 3D FDTD calculated bend loss (blue). The 
3D FDTD curve has been shifted 1.2% in absolute wavelength. 

 
Figure 5 shows a detailed comparison between the experimental and calculated loss of the 
optimized bend and a good agreement is found. The negative theoretical propagation losses 
are due to numerical artifacts when calculating near zero losses. The 3D FDTD spectrum has 
been shifted 1.2% in absolute wavelength and slightly undershoots the experimental values. 
These deviations are partly due to uncertainties in the experimental hole diameters, but more 
importantly due to the limited grid resolution in the calculations [13]. 

4. Conclusion 

We have optimized the performance of a 60° planar photonic crystal waveguide bend using a 
two-dimensional inverse design strategy called topology optimization. The design was 
fabricated in silicon-on-insulator material and we experimentally obtained a record-high 1-dB 
transmission bandwidth exceeding 200nm for the TE polarization. The experimental results 
agree well with 3D finite-difference-time-domain simulations. The broadband topology-
optimized 60° waveguide bend solves an important issue in designing planar photonic crystal 
components and opens for the realization of a wide range of ultra-compact, low-loss, and 
broadband optical devices. 
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Topology optimised broadband photonic
crystal Y-splitter

P.I. Borel, L.H. Frandsen, A. Harpøth, M. Kristensen,
J.S. Jensen and O. Sigmund

A planar photonic crystal waveguide Y-splitter that exhibits large-

bandwidth low-loss 3 dB splitting for TE-polarised light has been

fabricated in silicon-on-insulator material. The high performance is

achieved by utilising topology optimisation to design the Y-junction

and by using topology optimised low-loss 60� bends. The average

excess loss of the entire component is found to be 0.44� 0.29 dB for a

100 nm bandwidth, and the excess loss due to the Y-junction is found

to be 0.34� 0.30 dB in a 175 nm bandwidth.

Introduction: A photonic crystal (PhC) is an optical material in which the

refractive index is periodically modulated [1, 2]. Planar PhC structures are

often defined as triangular arrangements of air holes in a high dielectric

material, since this configuration may give rise to a large photonic bandgap

(PBG) for the transverse-electric (TE) polarisation. Such PhC structures

have recently gained a lot of consideration as they potentially allow for the

realisation of ultra-compact photonic integrated components [3–8]. Planar

PhC waveguides (PhCWs) are typically formed by locally breaking the

periodicity along a specific direction of the PhC lattice. Most of the

research within PhCs has hitherto relied on intuitive design approaches

based on physical arguments, possibly combined with iterative trial-and-

error procedures, to improve the performance of the PhC component.

Recently, we have proposed to use a systematic inverse design strategy

called topology optimisation [9] to optimise the performance of PhCW 60�

and 120� bends [10, 11]. In this Letter, we consider the important and

commonly encountered 50=50 Y-splitter and utilise topology optimisation

to design a silicon-on-insulator (SOI) based PhCW Y-splitter having a

smooth broadband spectral performance. A transmission bandwidth of

more than 100 nm with less than 1 dB excess loss is obtained for a

fabricated PhCW component with a size smaller than 10� 15 mm.

initial 50 500 final

1

2
1 mm

Fig. 1 Scanning electron micrograph of fabricated structure containing
topology-optimised Y-junction and 60� bends

Top panel shows material distribution in Y-junction design domain
during optimisation procedure after 0, 50, 500 iterations, and for final
topology-optimised structure

Design and fabrication: We utilise e-beam lithography and standard

anisotropic reactive-ion etch to define the PhC structures in the top

silicon layer of a SOI material. The PhC is defined by circular air

holes arranged in a triangular lattice and the PhCWs are formed by

removing one row of holes in the G-K direction of the crystal lattice.

The lattice period is L’ 400 nm and the diameter of the holes

D’ 275 nm.

Several PhCW based Y-splitters have previously been reported in the

literature [4–7]. Attempts have been made to improve the performance

by adding, removing and=or resizing holes in the splitting region.

However, the useful bandwidth (�30 –50 nm) of experimentally

realised Y-splitters has typically been almost one order of magnitude

smaller than the bandgap. The topology optimisation design method

implies that the distribution of silicon and air is freely interchanged in

the chosen design domain with no geometrically enforced restrictions.

The optimisation algorithm is based on a 2D frequency-domain finite-

element solver. The solver is used repeatedly in an iterative scheme, in

which the material distribution is updated every iteration based on

analytical sensitivity analysis and use of a mathematical programming

tool [9]. The Y-junction is optimised by modifying the material

distribution in such a way that the transmission (power flow) through

both output ports of the splitter is maximised. The material is only

redistributed in a small design area of approximately 1.5� 2.5 mm as

illustrated in the top panel of Fig. 1. During the optimisation procedure

the power flow is evaluated for six frequencies in a chosen frequency

range so that a broadband component is achieved. The optimised

splitter design was obtained after approximately 1200 iterations of the

optimisation algorithm. It is seen that the optimised splitter region has

been smoothened in both the inner and outer sides of the two waveguide

branches of the splitter region. However, the smoothening is not trivial

as the splitter region contains several separate complex structures.

Fig. 1 shows a scanning electron micrograph of the fabricated PhCW

Y-splitter containing the topology-optimised Y-junction followed by two

topology-optimised 60� bends [11]. The PhC structures have been

fabricated without applying any special proximity corrections to the

irregular shaped holes during the e-beam patterning. The designed

structure is symmetric and the minor asymmetries of the fabricated

splitter are due to fabrication tolerances.
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Fig. 2 Measured normalised transmission against normalised frequency
from two output ports for topology-optimised (TO) component shown in
Fig. 1 (solid and dashed lines, respectively) (in this case, normalised
frequency corresponds to wavelength scale at top of graph)

Also shown is measured normalised output against normalised frequency from
previously fabricated Y-junction with consecutive 60� bends (dotted lines)
[6]. For this component normalised frequency range roughly corresponds to
1350–1600 nm. Horizontal dotted line at �3 dB corresponds to zero excess
loss of component

Results: The fabricated Y-splitter has been optically characterised using a

setup described in detail in [10, 11]. Fig. 2 shows the normalised

transmission for TE polarised light from the two output ports of the

complete PhCW structure displayed in Fig. 1. The spectra have been

normalised to the transmission spectrum for a straight PhCW of same

length in order to extract the performance of the Y-junction and subsequent

60� bend. The topology-optimised splitter displays smooth, low-loss, and

nearly indistinguishable transmission spectra for the two output ports. The

complete component is experimentally found to have a 100 nm bandwidth

with an average loss of 0.44� 0.29 dB. This value includes excess losses

due to both the Y-junction and the subsequent 60� bend. Also shown in

Fig. 2 is the performance of a previously reported low-loss Y-splitter [4]

designed using intuitive design ideas and fabricated using deep UV (DUV)

lithography. In contrast to the topology-optimised splitter, the spectrum for

the DUV written Y-splitter is seen to be rather spiky, indicating resonant

and high-loss behaviour often observed for PhCW components.

Fig. 3 displays the normalised transmission of the topology-

optimised Y-splitter corrected for the loss introduced by the 60� bend

[11]. Hence, this graph presents the excess loss due to the Y-junction

itself. The excess loss is found to be 0.18� 0.20 and 0.34� 0.30 dB for

100 and 175 nm bandwidths, respectively. Hence, the topology opti-

mised design opens up for a practical implementation of the Y-splitter

without the need for delicately matching a narrow operational
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bandwidth of the Y-junction to the bandwidth of other parts of the PhC

component. It should be emphasised that the high transmission band-

width can be easily shifted to another wavelength range, e.g. around

1550 nm by changing the parameters D and=or L of the PhC.

Fig. 3 Normalised transmission (solid line) for Y-splitter corrected for
bend loss of subsequent 60� bend

Horizontal lines at �3 dB and �4 dB correspond to zero loss and
1 dB excess loss, respectively

Conclusion: The spectral smoothness and high transmission bandwidth

of a 50=50 planar photonic crystal waveguide Y-splitter has been vastly

improved by use of the inverse design method called topology optimisa-

tion. The Y-splitter was fabricated in silicon-on-insulator material and a

record-high 1 dB transmission bandwidth exceeding 100 nm for the TE

polarisation of the entire component consisting of a Y-junction and two

60� bends was experimentally obtained.
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Topology Design and Fabrication of an Efficient
Double 90 Photonic Crystal Waveguide Bend

J. S. Jensen, O. Sigmund, L. H. Frandsen, P. I. Borel, A. Harpøth, and M. Kristensen

Abstract—We have designed and fabricated a novel 90 bend
in a photonic crystal waveguide. The design was obtained using
topology optimization and the fabricated waveguide displays a
bend loss for transverse-electric-polarized light of less than 1 dB
per bend in a 200-nm wavelength range.

Index Terms—Planar photonic crystals (PhCs), topology opti-
mization, waveguide bends.

I. INTRODUCTION

I N THIS letter, we report on the performance of a fabri-
cated planar photonic crystal (PhC) waveguide with a new

type of double 90 bend that we have designed using topology
optimization.

Topology optimization is an inverse design method that al-
lows for manipulating the distribution of material in a structure
so that a quantified performance is systematically improved.
The method was originally developed to obtain the layout of
a limited amount of elastic material that gives the stiffest pos-
sible structure [1]. Since then, the method has been extended to
a variety of applications, such as design of mechanical mecha-
nisms, electrothermomechanical actuators, materials with pre-
scribed properties, conduction problems, and many others [2].

PhCs based on a triangular pattern of holes in a high refrac-
tive index material, such as silicon or GaAs, display large pho-
tonic bandgaps (PBGs) for transverse-electric (TE)-polarized
light [3] and are regarded as possible candidates for components
in photonic integrated circuits (PICs) [4]. Thus, the possibility
for improving the performance of PhCW bends and splitters has
recently received a lot of attention, e.g., [5]–[8]. We have pre-
viously reported on topology optimized components, such as a
120 bend [9], a 60 bend [10], and a Y-splitter [11]. All com-
ponents displayed the important characteristics of low loss and
a broad-band performance.

Here, we report on a new type of double 90 waveguide bend,
which may be used to provide an offset transition to a waveguide
over a very short distance. Such a type of bend is unnatural with
a triangular hole configuration due to the inherent lack of 90
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Fig. 1. (a) Initial configuration of the double 90 bend and (b) indication
of the design domain where the material distribution is to be modified by the
optimization algorithm.

Fig. 2. Loss per bend for the initial structure (dotted) and for the final
optimized structure (solid) calculated with the 2-D frequency-domain finite
element solver.

symmetry and a satisfactory performance is difficult to obtain.
Nevertheless, the component may be a useful supplement to the
standard 60 bends if its performance can be improved. We use
the initial structure shown in Fig. 1(a) as a basis for the optimiza-
tion procedure. This generic structure has, as expected, a poor
transmission for most wavelengths, as shown in Fig. 2. The key
advantage of the topology design method is, however, that there
is no geometrical restrictions on the design so the specific per-
formance of the initial structure is of little importance. In order
to improve the performance sufficiently, we must allow for the
entire bend region to be modified, as indicated by the shaded
area in Fig. 1(b). This approach is different from the previous ap-
plications of the method [9]–[11], where there was only a need
to modify a small part of the waveguide structure. Consequently,
the design that we obtain here has a very different appearance
compared to conventional PhC waveguide (PhCW) structures.

1041-1135/$20.00 © 2005 IEEE
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II. OPTIMIZATION

The method of topology optimization is used to modify the
distribution between the dielectric and air in the designated
design area shown in Fig. 1(b). The optimization algorithm is
based on a two-dimensional (2-D) frequency-domain solver
based on a finite element discretization that yields the following
equations for TE-polarized light:

(1)

in which is a wave input vector, is a vector containing the
discretized nodal values of the out-of-plane magnetic field ,
and is the system matrix with an explicit dependence on the
wave frequency , and the position-dependent dielectric con-
stant . Here, is the plane position vector.

Each unit cell is discretized using 14 12 four-noded quadri-
lateral elements. This discretization is sufficient for describing
the geometry satisfactorily, and for capturing the dynamic
behavior with adequate accuracy. The full computational model
consists of the domain shown in Fig. 1(a) as well as additional
perfectly matching layers [12] and comprises in total about
115 000 elements of which 6720 are within the design domain.

A single design variable is now introduced in each finite
element within the design domain, and is assumed to be ele-
ment-wise constant and to depend explicitly on as follows:

(2)

where

(3)

Thus, we let the design variable in each element govern the ma-
terial properties of the element, in such a way that if ,
the dielectric constant of that element is one, and with
it takes the value .

We use continuous design variables to allow for using a
gradient-based optimization strategy. The optimization method
is described in detail in [2] and [13] and will only be briefly
outlined here; as the goal for the optimization algorithm,
we wish to find the material distribution that maximizes the
transmitted power evaluated at the output port , which
is computed based on the solution to (1). Based on the sen-
sitivities , computed analytically, a mathematical
programming tool MMA [14] is then used to change the ma-
terial distribution in an iterative process until cannot be
further improved.

Since the design variables are continuous and not discrete, the
possibility for elements in the final design with values between
zero and one, so-called “gray” elements, is present. This corre-
sponds to an intermediate “porous” material which is not fea-
sible from a fabrication point of view. Several techniques have
been developed to remedy this problem [2], but here we use a
method specially designed for photonic waveguides [13], in that
we artificially make design variables between zero and one in-
duce additional conduction , in the following form:

(4)

which enters (1) as an additional imaginary term in the system
matrix and causes dissipation of energy. In this way, gray ele-
ments will be “un-economical” and will, thus, be forced toward

Fig. 3. Snapshots of the material distribution during the optimization process
at (a) 25, (b) 1000, and (c) 2300 iterations, and (d) the final design after about
2500 iterations.

either white or black ( or ), if the conduction pa-
rameter is sufficiently large.

The effect is seen in Fig. 3 that shows four snapshots of the
optimization iteration process. After about 1000 iterations with

, the basic structure is formed [Fig. 3(b)] but many gray
elements appear in the design. Then is slowly increased and
the gray elements gradually disappear as the final structure is
reached in about 2500 iterations. The computation time per it-
eration is less than 10 s on a standard PC.

A broad bandwidth operation is ensured by maximizing the
transmission through the waveguide for several frequencies si-
multaneously. We use a technique based on active sets [13] in
which we fix a number of target frequencies in the desired fre-
quency interval. During the optimization, these target frequen-
cies are repeatedly changed, according to the most critical fre-
quencies with lowest transmission. The critical frequencies are
found every 10th or 20th iteration by performing a fast fre-
quency sweep [15].

The final optimized design is seen in Fig. 3(d). This design is
quite different from traditional photonic crystal structures but,
nevertheless, shows a very good broad-band performance, as
shown in Fig. 2, computed using the 2-D frequency-domain fi-
nite element solver.

III. FABRICATION AND CHARACTERIZATION

We have fabricated the designed waveguide structure and
tested its performance. Silicon-on-insulator (SOI) is an ex-
cellent choice of material with low optical propagation loss
and with future possibilities for a monolithic integration of
PhC-based PICs and electronic devices. We define the PhC
structures in the top silicon layer of an SOI material using
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Fig. 4. (a) Fabricated generic structure and (b) the topology optimized double
90 waveguide bend.

Fig. 5. Measured bend loss for the fabricated generic and optimized waveguide
component.

e-beam lithography and standard anisotropic reactive-ion etch.
The PhCs are defined as air holes in a triangular lattice and
the PhCWs are carved out by removing a single row of holes
in the nearest-neighbor direction of the crystal lattice. We use
lattice pitch nm, diameter of the holes nm,
and thickness of the Si–SiO layers 340 nm/1 m. This con-
figuration displays a broad PBG below the silica-line from
0.2592 to 0.3436 (normalized frequency) and allows TE-po-
larized single-mode propagation in the PhCWs. The fabricated
topology-optimized structure is shown in Fig. 4(b) and it nicely
resembles the designed structure [Fig. 3(d)].

The fabricated PhCWs were optically characterized using
broad-band light-emitting diodes (LEDs) as sources. Three
different LEDs centered around 1310, 1414, and 1538 nm were
used to cover the full bandwidth of the fabricated components
and tapered lensed fibers were used to couple light in and
out of the ridge waveguides connected to the PhCWs. Two
polarization controllers and a polarizer with an extinction
ratio better than 35 dB were used to control the polarization
of the light sent into the device. The optical spectra for the
transmitted light were recorded with a spectral resolution of
10 nm using an optical spectrum analyzer. To extract the bend
loss, the transmission spectra have been normalized to the
transmission spectrum for a straight PhCW of similar length.
Fig. 5 shows the measured bend loss of TE-polarized light for

the generic structure and the topology-optimized structure. A
transmission loss of 1 dB/bend is obtained for the wavelength
range 1250–1450 nm.

IV. CONCLUSION

We have used the method of topology optimization to design
a double 90 bend in a photonic crystal waveguide based on a
triangular configuration of air holes. The waveguide was fabri-
cated in SOI and showed a very low bend loss for TE-polarized
light of less than 1 dB per bend in a broad wavelength range of
200 nm.

The fabricated device adds to the existing collection of high-
performance photonic crystal building blocks that display low-
loss over a broad wavelength. The good performance makes
these components natural parts of the realization of PICs based
on photonic crystals.
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Abstract:  We demonstrate and optically characterize silicon-on-insulator 
based nanophotonic devices fabricated by nanoimprint lithography. In our 
demonstration, we have realized ordinary and topology-optimized photonic 
crystal waveguide structures. The topology-optimized structures require 
lateral pattern definition on a sub 30-nm scale in combination with a deep 
vertical silicon etch of the order of ~300 nm. The nanoimprint method 
offers a cost-efficient parallel fabrication process with state-of-the-art 
replication fidelity, comparable to direct electron beam writing.  
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1. Introduction 

Within recent years the development of planar silicon-on-insulator (SOI) based nanophotonic 
structures such as photonic wires and 2D photonic crystal waveguides (PhCWs) [1-6] has 
progressed to a level of performance and functionality where technological applications 
within optical communication [7-10] and sensing [11,12] have become feasible. In the context 
of transferring SOI-based nanophotonics from research to applications it is of relevance to 
assess methods of volume manufacture of such components and systems. 

The optical performance of SOI-based nanophotonic components is highly sensitive to 
the nanometer feature size definition of the components. Even small deviations from the 
design may be devastating for the functionality and/or the target operating frequency. This 
calls for state-of-the-art nanofabrication technologies, where electron beam lithography (EBL) 
and deep-ultraviolet lithography (DUVL) have been successfully applied for device 
demonstration. EBL, in particular, provides nanophotonic structures with extremely high 
resolution, and this fabrication method is appropriate for many research investigations. 
However, being a serial fabrication process it is not optimal for mass fabrication of photonic 
devices. DUVL, on the other hand, is developed for mass fabrication. In this case, however, 
the production volume must be large enough to support the substantial costs affiliated with the 
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fabrication method. Furthermore, fabrication tolerances are currently pushed to their limits to 
obtain acceptable structures, leaving only little room for improvement.   

Fabrication of nanophotonic structures using nanoimprint lithography (NIL) [13] is 
emerging as a cost-efficient alternative capable of nanometer-to-micrometer-scale pattern 
definition in a parallel process. The resolution of NIL is currently limited by the resolution of 
the stamp, where e.g. 5-nm linewidth and 14-nm pitch line gratings have been demonstrated 
[14].  

Here, we demonstrate the feasibility of NIL for the fabrication of SOI-based 
nanophotonic components. In our fabrication process lateral resolution better than 30 nm is 
achieved on the NIL stamp by high resolution EBL in a thin film of negative resist and 
subsequent reactive ion etching (RIE). The pattern is imprinted in a thin film of NIL resist 
with a high etch resistance to silicon RIE, which facilitates device definition with the required 
high lateral resolution in combination with deep etching into the SOI substrate.  

In our device demonstrations, we have realized planar W1 PhCWs, i.e. where the defect 
is formed by removing one row of holes in the Γ-K direction of the crystal lattice as shown in 
Fig. 1(left). Furthermore, we demonstrate topology-optimized photonic structures [15,16], see 
Fig. 2. This type of structure is particular challenging to fabricate with NIL as the frequency 
response of the device is highly sensitive to the complicated non-circular features of the 
optimized structures and impose local variations in the pattern density. The pattern replication 
fidelity is assessed by comparing the measured frequency response with 3D finite-difference 
time-domain (FDTD) calculations [17].  

2. Nanoimprint lithography fabrication 

The fabrication of SOI-based nanophotonic devices is based on thermal NIL [13]. The desired 
pattern is defined as a surface relief on the stamp (a silicon wafer) by EBL and RIE. The 
pattern is transferred to a thin film of thermoplastic resist on the SOI device wafer by 
mechanical deformation as the stamp is embossed into the heated resist. Finally, the pattern is 
transferred into the top silicon layer of the SOI wafer by RIE. High resolution and high aspect 
ratio of the transferred pattern is obtained by exploiting a high-resolution negative EBL resist 
for silicon stamp fabrication in combination with NIL in the thermoplastic resist with high 
etching resistance. 

The silicon stamp is fabricated by 100 kV EBL (JEOL JBX9300FS) in a 50 nm thin film 
of TEBN-1 [18] on a silicon substrate (100 mm diameter and 0.5 mm thick) at an exposure 
dose of 9 mC/cm2 [19]. The written structures are developed in methyl isobutyl ketone 
(MIBK) for 20 seconds, rinsed in isopropyl alcohol (IPA), and subsequently transferred 100 
nm into the silicon substrate by a highly anisotropic RIE [20]. After etching the silicon, any 
remaining resist is removed in oxygen plasma prior to deposition of an anti-sticking layer 
formed from a C4F8 plasma and imprinting.  

The passivation layer deposition capability of a deep reactive ion etching tool is used to 
plasma deposit an anti-sticking layer on the stamp, as originally suggested by Ayón et al [21]. 
A few monolayers of PTFE-like fluorocarbon polymer is deposited from C4F8 precursor gas, 
which is dissociated by plasma to form ions and radical species [22]. The dissociated species 
subsequently polymerize on the surface and form a layer of polymerized nCF2. The thickness 
of such a fluorocarbon film has been measured to around 5 nm [22]. Without the anti-sticking 
layer, the polymer will stick to the stamp, and parts of the polymer pattern are peeled off the 
substrate when the stamp and substrate are separated.  

The nanophotonic devices are fabricated in a SOI wafer from Soitec (100 mm diameter 
and 340 nm silicon on top of 1 μm buried oxide). An 80 nm thin film of mr-I T85 (4 wt%) 
[23] is spin coated onto the SOI substrate at a spin speed of 3000 rpm and baked at 150°C for 
5 min on a hotplate. The stamp is imprinted in the mr-I T85 film using a pressure of 13 bar for 
10 minutes in a parallel plate imprint tool (EVG 520HE) under vacuum (0.01 mbar) and at a 
temperature of 140°C.. The stamp and the SOI wafer are separated at a lowered temperature 
of 60°C. The imprint parameters result in a complete filling situation of the stamp in the 
photonic-crystal structured areas, resulting in 80 nm deep holes in the mr-I T85 resist. The 
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nanoimprinted patterns are transferred into the top 340 nm thick silicon layer of the SOI wafer 
by using an optimized SF6-based inductively coupled plasma (ICP) RIE. The etch-selectivity 
is 9:1 (silicon:mr-I T85) [24] which allows for pattern transfer of the imprinted holes through 
the device silicon layer of the SOI wafer. 

3. Straight photonic crystal waveguides 

Figure 1 (left) shows a scanning electron microscope (SEM) image of the central part of a 
NIL fabricated SOI device consisting of a W1 PhCW connected to ordinary tapered ridge 
waveguides. The photonic crystal part of the waveguide is 10 μm long, the pitch of the 
hexagonal crystal lattice 400 nm, and the hole diameter 250 nm. The width of the ridge 
waveguides are adiabatically tapered over 450 μm from 4 μm at the end facets of the sample 
down to 1 μm at the interface to the crystal waveguide. The etch patterns seen to the right and 
left of the PhCW are caused by the controlled flow of excess polymer during the imprint 
process. The excess polymer is a result from the large variation in pattern density between the 
PhCW area and the surrounding un-patterned regions. The polymer flow does not represent an 
issue in the fabrication of high-quality photonic circuits with more complex design. The 
excess polymer flow can easily be controlled by adding dummy structures to equalize the 
pattern density. Also, the fabrication of more complex and/or high-density photonic circuits 
will typically reduce the variation in the pattern density, and thus simplify the control of the 
polymer flow.  

The fabricated waveguides have been characterized by optical transmission 
measurements using quasi-transverse electric (TE) polarized light from a laser source in the 
wavelength region from 1520–1620 nm (ANDO AQ4321D) and broadband light emitting 
diodes (ANDO AQ4222) covering the wavelength range 1360–1620 nm. Figure 1 (right) 
shows the resulting laser transmission spectrum. The spectrum exhibits the characteristics of a 
W1 PhCW having a sharp and well-defined transition (around 1590 nm) between the low-loss 
guided defect mode and the photonic band gap. The observed sharp cut-off and the high and 
uniform transmission level below the cut-off wavelength of the spectrum are similar to results 
obtained for PhCWs of similar designs fabricated by EBL [17] and DUVL [6]. The ripples in 
the spectrum (zoom-in shown in the inset) are due to Fabry-Pérot oscillations caused by 
reflections from the end facets of the sample.  
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Fig. 1. (Left) SEM image of a photonic wire adjacent to a 10 μm long W1 PhCW fabricated in 
SOI by NIL. The etch patterns seen on the outer sides are caused by the controlled flow of 
excess polymer during the imprint process. (Right): Measured transmission spectrum for quasi-
TE polarized laser light through the structure. Inset shows a zoom-in on the spectrum. 

4. Topology optimized nanophotonic devices 

Recently, we have proposed a novel inverse design strategy called topology optimization 
(TO), which allows for designing nanophotonic structures with enhanced functionalities [25]. 
In some cases, this inverse design method proposes optimized designs with feature sizes down 
to ~30 nm. Hence, such structures are very challenging to fabricate even with EBL and will 
serve as excellent benchmarks for pattern replication fidelity in the NIL fabrication process. 
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In our demonstrations, we have chosen a topology-optimized PhCW coarse wavelength 
selective Y-splitter as shown in Fig. 2 (right). Such a device is challenging for NIL fabrication 
since the frequency response of the device is highly sensitive to small variations in the 
complex structures in the central part of the Y-branch. These structures also impose local 
variations in the pattern density, which complicate the polymer flow during imprint. 

The device optimization is illustrated in Fig. 2. The topology optimization methods 
redistribute material in a given design domain in order to maximize a certain objective 
function [25,26]. This method has successfully been applied within mechanical and electrical 
engineering and, recently, also in fabrication of nanophotonic structures [15,16]. Figure 2 
illustrates the evolution of the iterative optimization process, where the material in the design 
domain (the central Y-branch) is redistributed using the simulated spectral features of the 
signals transmitted in the upper and lower arms as feedback. The initial structure (Fig. 2 
(leftmost)) has the same frequency response in the upper and lower output arms. The 
optimization criterion was that the longer wavelengths are transmitted through the upper arm 
whereas the shorter wavelengths are transmitted through the lower arm, see also Fig. 3. 
  

       
Fig. 2. Leftmost: (587 kB) Movie of how the material is redistributed in the design domain 
during the topology optimization procedure. The figure shows four frames from the movie of 
the topology optimization process. The leftmost frame shows the initial un-optimized structure 
and the rightmost frame the final topology-optimized design obtained after 760 iterations. The 
two middle frames show intermediate stages (iteration steps 10 and 200, respectively) before 
the optimization process has converged. 

 
Figure 3 shows the fabrication results and optical performance of the NIL fabricated TO 
PhCW wavelength selective Y-splitter. 

Figure 3 (left) shows the design layout of the converged TO structure. The red and blue 
arrows indicate the wavelength-selective transmission of longer (red) and shorter (blue) 
wavelengths to the upper and lower arms, respectively. The circles and squares in the right 
panel of the figure show the 3D FDTD simulations of a perfectly fabricated device, i.e. the 
black and white structure in Fig. 3 (leftmost). The middle panel shows a SEM image of the 
fabricated structure, which closely resembles the TO design. Deviations between the 
fabricated and designed structures are partly caused by limitations in the resolution of the 
lithography and partly caused by line broadening in the RIE. The solid red and blue lines in 
the right panel show the measured optical transmission performance of the fabricated structure 
for the upper and lower arms, respectively. The transmission in the upper and lower arms of 
the Y-splitter is normalized to the measured transmission level of a straight PhCW of same 
length. The measured spectra are seen to closely resemble to the 3D FDTD simulations both 
regarding transmission levels and spectral distributions.  

The optical response of the structure critically depends on the precise fabrication of small 
features of sizes down below 30 nm. This was underlined by a series of 3D FDTD 
calculations, where an increasing number of the ~30-50 nm sized oddly shaped holes in 
succession were removed from the optimized Y-splitter region. The transmission levels 
changed typically 1-2 dB in the corresponding pass band when only two features were 
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removed and the spectra changed drastically when nearly all the details were removed. In 
general the transmission level in the upper arm of the Y-splitter was more affected than in the 
lower arm. Furthermore, we observed that absence of the small details in the splitter region 
did not lead to improvement of the transmission in the pass bands. Hence, the small details in 
the design do not contribute significantly in scattered losses of the Y-splitter. From the above 
observations and comments, we infer that these small details play an important role in the 
optimized structure and that they cannot be removed without hampering the performance of 
the splitter in spite of their negligible size. 

The good agreement between the calculated spectra of the designed structure and the 
optical measurements on the fabricated structure confirms that the NIL fabrication of the 
challenging nanophotonic TO design has been successful. It should be noted though that the 
crosstalk is less suppressed in the fabricated structure, illustrating that there still is room for 
improvement in the fabrication process.  

Finally, it is remarked that the TO compact wavelength splitter functions as designed, 
namely as a fairly efficient and coarse high-pass/low-pass wavelength filter.  

 

  
1340 1380 1420 1460 1500 1540 1580 1620

-30

-25

-20

-15

-10

-5

0

 

Upper arm :
 Measured 
 3D FDTD

Lower arm :
 Measured
 3D FDTD

N
O

R
M

A
L

IS
E

D
 T

R
A

N
S

M
IS

S
IO

N
 (

dB
)

WAVELENGTH (nm)  
Fig. 3. (Left) The original TO design. Light enters the component from the left side and is split 
into the two arms dependent on the wavelength. (Middle) SEM image of the fabricated splitter 
using NIL. (Right) Normalized measured transmission below the cut-off wavelength for quasi-
TE polarized light from the two output arms. Also shown are 3D FDTD calculations for the 
transmission through the output arms of the originally designed structure. The 3D FDTD 
calculations have been blue-shifted by 0.5% in wavelength to match the experimental 
wavelength scale. 

5. Conclusions 

We have used NIL to fabricate SOI-based nanophotonic structures with feature sizes down 
below 30 nm. The NIL fabricated devices perform comparably to the direct EBL defined 
devices and the obtained results are in good agreement with 3D FDTD calculations. Thus, we 
have demonstrated the feasibility of NIL as a cost-efficient fabrication technique for silicon-
based nanophotonics. 
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1. Abstract
Photonic integrated circuits are likely candidates as high speed replacements for the standard electrical
integrated circuits of today. However, in order to obtain a satisfactorily performance many design prob-
lems that up until now have resulted in too high losses must be resolved. In this work we demonstrate
how the method of topology optimization can be used to design a variety of high performance building
blocks for the future circuits.
2. Keywords: photonic crystals and wires, integrated circuits, topology optimization.

3. Introduction
A key component in photonic integrated circuits (PICs) [1] is the photonic crystal (PhC). A PhC is an
optical material that has a periodic modulation of the refractive index, e.g. obtained by a dielectric base
material such as silicon perforated with circular air holes in a triangular pattern. Such materials may
display large band gaps, i.e. frequency ranges for which light cannot propagate. Functional components
can be created from the PhCs, e.g. by removing a single hole to form a resonating cavity, removing a line of
holes to create a waveguide, and by combining cavities and waveguides in order to design more advanced
functionality such as frequency selective components, dispersion compensators, etc. Basic PhC waveguide
components such as various bends and splitters have recently been designed using topology optimization
(e.g. [2]), which led to a significant (up to orders of magnitude) increase in component performance.
Another candidate for basic signal transmission is photonic wires (PhWs), created by making simple
waveguide strips of high refractive material surrounded by air. These PhWs have been reported to have
superior loss characteristics for straight waveguides compared to PhC straight waveguides [3].

In this paper we demonstrate new topology optimized splitters based on PhWs that display a good
performance compared to the optimized bend and splitters in PhC waveguides. Additionally we demon-
strate a new optimized PhC-based component with advanced functionality that includes bends, splitters
and crossings. The optimization is based on a topology optimization algorithm [4] using a SIMP-like
material model to distribute two material phases (dielectric and air), using analytical sensitivity analy-
sis and the mathematical programming software MMA [5]. As the objective we wish to distribute the
two materials in a designated design domain at various trouble spots in the component, such that the
energy flow through the component is maximized. In order to create broadband components we can
maximize for several wave frequencies simultaneously using a strategy in which we repeatedly update
the target frequencies to be the most critical ones. The update is based on using Padé approximants
to facilitate fast frequency sweeps with high resolution. In order to avoid gray elements in the final
design we introduce a penalization method (PAMPING) in which elements with densities between 0 and
1 artificially cause dissipation and thus cause undesired loss of energy. Although developed for photonics
[6] the methods directly apply to elastic vibration and wave propagation problems as well.

4. Photonic Crystal Waveguides: Bends and Splitters
Since the primary publications ([7], [8]), PhCs have received large attention primarily due to their
potential application in photonic integrated circuits.

PhCs are optical materials that have a periodic modulation of their refractive indices [9]. The
periodicity gives rise to gaps in the band structure that characterizes the wave propagation in the
material, i.e. the so-called band gaps. Within the band gap frequency range, light cannot propagate
regardless of direction so that the material acts as a perfect omnidirectional mirror.

Photonic crystals that consist of dielectric columns placed in a rectangular or triangular pattern
display large band gaps and have been subjected to numerous theoretical investigations [9]. However,

1



120-degree bend

60-degree bend

Y-splitter
90-degree bends

photonic crystal
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Figure 1: Schematic overview of a photonic circuit made from a photonic crystal with circular air holes
in a dielectric including W1 waveguides and various bends and splitters.

due to a large out-of-plane loss of light, these structures seem to be less efficient than structures that
are based on photonic crystals with air holes drilled in a periodic pattern in a dielectric material.

Figure 1 shows a schematic photonic circuit created from a PhC base material consisting of circular
air holes in a triangular pattern in the dielectric. With a sufficiently high refractive index of the dielectric
and sufficiently large diameter of holes this configuration gives rise to a large band gap for plane TE-
polarized waves. The basic circuit component in the PhC is the waveguide, exemplified in the figure
in form of so-called W1-waveguides. This means that the waveguide is created by removing a single
row of air holes. The behavior of PhC waveguides is intricate [10], but most importantly the W1
waveguide with this PhC configuration supports wave propagation in a certain frequency interval within
the band gap range. However, dealing only with straight waveguides is not enough to enable sufficient
manipulation of the light in a circuit and additional building blocks like bends and splitters are needed.
In Figure 1 examples of bends (60-, 90-, and 120-degree) as well as a Y-splitter are shown. Without
modification of the straightforward material distribution shown in the figure, these bends and splitters
display huge excess losses due wave reflection at the discontinuities. This difficulty has been tried solved
by introducing various geometry modifications, such as changed radius and displacement of holes near
the highly reflective bend regions - however, with limited success [11].

In recent publications ([2], [12], [13], [14]) it has been shown how the excess loss of such building blocks
can be minimized by using topology optimization to redistribute the material in the critical regions. The
topology optimized designs have odd-shaped holes and are qualitatively very different looking than the
usual designs, but they nevertheless display a very good performance also for the actual fabricated
structures.

Here, we demonstrate the design of a complicated photonic crystal circuit that possesses many of
the basic building blocks that can be encountered in real circuits; bends, splittes and crossings - the PP
component∗.

4.1. The PP component (dedicated to Professor Pauli Pedersen)
Figure 2 illustrates the desired functionality for the PP component. A single mode wave is sent into the
component at the lower portion of the left boundary. The energy flow direction inside the structure is

∗The PP component was designed (and later fabricated) in honor of Professor Pauli Pedersen’s retirement from the

Department of Mechanical Engineering, Technical University of Denmark in April 2005. The PP symbolizes Pauli’s initials.
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Figure 2: The desired functionality for the PP component.
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Figure 3: Left: the designed structure and the wave pattern for a single frequency, right: the transmitted
energy through the output ports relative to the input wave energy.

designated to follow the arrows and two output wave ports are specified at the lower boundary. The
desired performance is to have 50% transmitted energy in each output port measured relative to the
input wave energy.

The designed component and the wave pattern is shown in Figure 3(left) and the corresponding
performance is shown in Figure 3(right). In order to obtain a high performance in a broad frequency
range the transmission is maximized for several frequencies in the range Ω = 0.295 − 0.305 (normalized
frequencies) by using a max-min formulation. The 2D performance of the designed structure is seen
to have a high total transmission of more than 90% of the input energy and a fairly even distribution
between the two output channels.

But, even when the excess loss at various waveguide discontinuities are minimized, as in the case of
the PP component, PhC waveguides still display large propagation losses. These losses are e.g. due to
out-of-plane scattering in the air holes. It has been shown that with respect to pure propagation loss
(usually measured in dB/cm or dB/mm) PhC waveguides are inferior to the performance of photonic
wires (PhW) [3] which are simple strip or ridge waveguides that can be created from the same high
refractive dielectric as used in the PhCs.

In the following sections we show examples of the design of a basic building block for PhW waveguides:
the T-splitter.
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5. Photonic Wire Waveguides
Figure 4 shows a schematic setup of a PhW waveguide T-splitter. A straight waveguide with width w
and of dielectric constant ε = n2, carries an incoming wave that propagates from left towards right. The
input signal is to be split into two equal waves so that 50% of the incoming wave energy is transmitted
through both the upper and lower output ports. We use a two-dimensional model of plane polarized
light that for time-harmonic waves is governed by the Helmholtz equation:

∇ · (A∇u) + Bω2u = 0, (1)

where A = ε−1 and B = c−2 for TE-polarized waves, and A = 1 and B = εc−2 for TM-polarized waves.
The frequency of the wave is denoted ω and the unknown magnetic or electric field is u.

The boundary condition specifies an incoming wave at the left waveguide port:

n · (A∇u) = 2iω
√

ABu0, (2)

where u0 is the specified amplitude of the incoming wave. In addition to the wave source, the computa-
tional domain in Figure 4 is embedded in a perfectly matched layer (PML) [15] that ensures a minimized
reflection of outgoing waves. The governing equation in the PML is:

∂

∂x
(
sy

sx

A
∂u

∂x
) +

∂

∂y
(
sx

sy

A
∂u

∂y
) + Bω2sxsyu = 0, (3)

where the two complex functions sx and sy specify the absorbing properties in the x- and y−direction,
respectively. At the interface to the computational domain, sx = sy = 1 which transforms Eq. (3) into
the original Eq. (1), thus creating a perfectly matching interface.

5.1. Topology optimization
We use the method of topology optimization [4] to find a suitable material distribution in the design
domain (the area indicated with a question mark in Figure 4).

The optimization problem is formulated as:






max min Φ1, Φ2

subject to : S(̺, ω)p = f(ω)
0 ≤ ̺e ≤ 1 e = 1, . . . , Nd.

(4)

w

n=1

n
w

n=1

n

?

Figure 4: Design problem for a photonic wire waveguide T-splitter. The material distribution in the area
indicated with a question mark is found using topology optimization. The objective is to distribute 50%
of the input energy into the top and bottom output ports and thus eliminate reflection and radiation at
the waveguide junction.
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The optimization problem in Eq. (4) is based on a Galerkin finite element discretization of Eqs. (1)-
(3) which leads to the system equation consisting of a set of linear complex equations. A single design
variable ̺e is assigned to each finite element within the chosen design domain (Nd elements). This design
variable is then used with a SIMP-like model to control the material properties in the corresponding
elements:

Ae = A1 + ̺e(A2 − A1)
Be = B1 + ̺e(B2 − B1).

(5)

The optimization problem is formulated as a max-min problem aiming to maximize both objectives Φ1

and Φ2. As objective we wish to maximize the wave transmission at the two output ports, so we specify
the two objectives as the time-averaged Poynting vector integrated over these ports, which quantifies
the corresponding energy flux. The point-wise time-averaged Poynting vector is given as:

P(x) = {Px Py}T = 1

2
ωAℜ

(

iu∇u
)

. (6)

For further details regarding the discretization of Eq. (6) see [6]. Analytical sensitivity analysis is facil-
itated by the adjoint method ([4], [6]), and the optimization problem stated in Eq. (4) is solved using
the mathematical programming software MMA [5].

5.2. Penalization - PAMPING
We relate the element design variables to the element material properties using Eq. (5). Since we do
not impose a volume constraint, which does not make sense in this problem, we cannot rely on using
a penalization factor as in the usual SIMP model to ensure a well defined binary structure. Thus, we
use a simple linear interpolation (Eq. (5)) and introduce instead a penalization of intermediate design
variables based on artificial dissipation [6].

This is done by adding an extra conduction (or dissipation) term in each element within the design
domain:

σe ∼ α̺e(1 − ̺e), (7)

where α is a scaling factor. Thus, elements with intermediate values of ̺e dissipate energy and conse-
quently reduce the objective function. In this way the element design variables will be forced towards 0
and 1, if α is sufficiently large.

We now exemplify results of applying the optimization algorithm to the model problem in Figure 4.

5.3. T-splitter - TM polarization
The first example is for TM-polarized waves. We use the setup described in [16], using straight waveguides
of width w = 200nm and a dielectric material with refractive index n = 3.2. A similar system was
recently studied in [17]. As previously reported the reflection in the wavelength range around 1.55µm is
about 25% for a plain simple T-junction.

Figure 5 shows the optimized waveguide for a single frequency corresponding to a wavelength of
1.55µm. In this case we have chosen a very small design domain allowing only for small modifications of
the material distribution and thus giving limited possibilities for improving the performance. In Figure
5 two different designs are shown along with the corresponding wave patterns. The structure at the top
(structure 1) has the better performance and has been obtained by a straightforward implementation
of the optimization algorithm. It is noticeable that the designed waveguide is discontinuous and the
waves has to cross an air bridge. In the 2D loss-free model this leads to a good performance (see Figure
7), but for a real 3D structure large out-of-plane scattering losses can be expected. To avoid this, we
have designed the bottom structure (structure 2) with simulated dissipation in the air. Consequently
discontinuities are less favorable since the waves have to travel a distance in the lossy medium. The
resulting structure performs worse with the loss-free 2D model, but we anticipate that it will perform
better than structure 1 using 3D simulations and also in experiments. This is ongoing work.

We now attempt to improve the performance by increasing the design domain. Figure 6 shows two
examples of optimized structures with larger design domains. Both designs have been obtained with
dissipation in the air. Figure 6 (top) (structure 3) has been obtained by enlarging the design domain in
a straightforward manner with a very good performance as a results (see Figure 7), showing practically
full transmission near the target frequency. In Figure 6 (bottom) (structure 4) the design domain from

5



Figure 5: Optimized designs and corresponding wave patterns for a small design domain. Top: structure
1 obtained with straightforward optimization and bottom: structure 2 obtained by simulating dissipation
in the air.

Figure 6: Optimized designs and corresponding wave patterns with enlarged design domains. Top:
structure 3 and bottom: structure 4.
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Figure 7: Total energy transmitted through top and bottom output ports relative to the input wave
energy for the 4 structures in Figures 5 and 6.

the first two structures is basically kept but enlarged aft of the structure. As can been seen this allows
for placing an extra reflector aft of the waveguide at a distance commensurable with the wavelength.
By comparing the response for structure 4 and structure 2 in Figure 7, it is noticed that this difference
of the otherwise quite similar structures has caused a considerable improvement of the 2D transmission.

5.4. T-splitter - TE polarization
The second example is for TE-polarized waves. The basic system dimensions and material properties
are taken from [3] in which propagation losses in straight waveguides with simple bends were studied
experimentally. In this case w = 445nm and n = 3.5. The optimized structures in Figure 8 are both
obtained by simulating dissipation in the air.

Figure 8 (top) (structure 1) shows the optimized structure obtained by maximizing the transmission
for a wavelength of 1.55µm. For TE waves this corresponds to a significantly shorter wavelength com-
pared to the width of the waveguide than for the TM wave example. This difference is noticeable in
the optimized structures which possess structural details at a corresponding smaller scale. It is noted
that the transmission is almost 100% near the target frequency. The design shown in Figure 8 (bottom)
(structure 2) was obtained by attempting to get a high transmission for a broader frequency range. This
was done by modifying the objective in the optimization problem (Eq. (4)) to include the transmission
at two distinct frequencies:

max min Φ1(ω1), Φ1(ω2), Φ2(ω1), Φ2(ω2). (8)

The two target frequencies ω1 and ω2 are not kept fixed during the optimization procedure, but are
repeatedly updated (e.g. every 10-20 iterations) so that they correspond to the critical frequencies with
minimum transmission. The critical frequencies are identifying by fast-frequency-sweeps using Padé
approximants [6]. Naturally, the number of frequencies in Eq. (8) can be increased which is necessary if
a larger frequency range is considered.

Figure 9 shows a comparison of the performance of the two designs. As noted the bandwidth of
structure 2 is slightly better than that of structure 1, but this has been obtained at the expense of the
high transmission near 1.55µm. Including more frequencies in the optimization does not change this
significantly.

6. Conclusions
We have demonstrated the use of topology optimization to design low-loss photonic circuit components
such as bends and splitters.

Previously it has been shown that such components in photonic crystal waveguides can effectively
be designed with topology optimization, leading to low losses in large frequency ranges. In this paper
we have demonstrated design of similar low loss components also in photonic wire waveguides. These
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Figure 8: Optimized designs and corresponding wave patterns for TE-polarized waves. Top: structure
1 obtained by maximizing transmission for a single frequency and bottom: structure 2 obtained by
maximizing transmission for two distinct frequencies that are repeatedly updated during the optimization
procedure.
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Figure 9: Transmission for the two optimized structures in Figure 8.
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waveguides have inherently lower propagation losses than the photonic crystal waveguides, and may be
alternatives/supplements to these in future photonic integrated circuits.

Our topology optimization algorithm is based on a two-dimensional finite element model of the
Helmholtz equation that models propagation of plane polarized light. The finite element model is used
to compute the energy transmission through the waveguides and the optimization algorithm is used to
redistribute air and dielectric in the trouble regions in order to maximize the transmission. A SIMP-like
material model is used together with analytical sensitivity analysis and the mathematical programming
software MMA. We use a penalization method based on artificial damping (PAMPING) to ensure a
feasible binary design, and perform optimization for several frequencies by exploiting fast-frequency-
sweeps using Padé approximants.

The photonic wire components are currently being analyzed using a 3D finite-difference-time-domain
code and will soon be tested experimentally. Additionally, other components such as a wavelength split-
ters in photonic crystal and photonic wire waveguides are currently being developed as well as directional
couplers. Future research include also optimization based on 3D finite element models.
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Topology optimization of dynamics problems
with Padé approximants
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SUMMARY

An efficient procedure for topology optimization of dynamics problems is proposed. The method is based
on frequency responses represented by Padé approximants and analytical sensitivity analysis derived using
the adjoint method. This gives an accurate approximation of the frequency response over wide frequency
ranges and a formulation that allows for design sensitivities to be computed at low computational cost
also for a large number of design variables. Two examples that deal with optimization of forced vibrations
are included. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The solution to a discretized linear vibration problem with harmonic excitation can be expressed
in the exact form

u=
∑2Nd−2

i=0 ãi (� − �0)
i∑2Nd

i=0 b̃i (� − �0)i
(1)

in which Nd is the number of degrees of freedom in the model, ãi and b̃i are expansion coefficients,
� is the excitation frequency, and �0 is an arbitrary expansion frequency. This representation of
the solution is rarely used except for systems with only few degrees of freedom for which the
corresponding small number of expansion coefficients can be found analytically. Solutions for larger
problems are usually obtained numerically with a factorization method or an iterative method.
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To compute a frequency response with a fine frequency resolution can be computationally costly
since a numerical solution must be obtained for each considered frequency. Furthermore, if the
analysis is the basis for an iterative optimization procedure this approach will in most cases be
unfeasible. In this work, an efficient approach for obtaining the frequency response based on the
solution form in Equation (1) is used and applied in a topology optimization procedure. Other
methods can be used to reduce computational costs, e.g. the modal expansion technique which is
especially applicable to lower frequency ranges where only a few modes influence the response [1].
However, optimization of eigenvalues and eigenvectors often leads to non-smooth problems that
might pose difficulties for optimization algorithms. Thus, the investigation of alternatives seems
justified.

In the proposed procedure, the expression in Equation (1) is used with fewer expansion terms
in the numerator and denominator so that a good approximation for u is obtained only in a
neighbourhood of �0. It will be demonstrated how the coefficients ãi and b̃i can be computed by
performing only a single factorizing of the system matrix S= −�2M + i�C + K for a chosen
expansion frequency� =�0, followed by relatively inexpensive forward-/back substitution in order
to obtain gradients at �0. The rational polynomial expansion in Equation (1) can be recognized as
the Padé approximant (PA) associated with an infinite power series of the form

∑∞
i=0 ci (� − �0)

i

[2]. This paper will not go into the theory behind the PA. But due to the connection between the
solution form in Equation (1) and a PA, the term PA is used throughout this work to describe the
approximation and to characterize the proposed method.

PA approximants have been popular as means for computing the frequency response of different
dynamic systems at a low computational cost. They are the backbone of the so-called asymptotic
waveform evaluation (AWE) methods [3], used for circuit analysis and for electromagnetic wave
scattering problems, e.g. [4, 5]. In [6] the application to electromagnetic problems was extended
to treat problems in bounded and open domains and in [7] PAs were used to obtain the response
of vibro-acoustic systems over wide ranges of frequencies.

The pure acoustic problem was considered by Djellouli et al. [8]. They used the PA to compute
scattering of acoustic fields and compared the results to those obtained by a standard Taylor
expansion. The PA algorithm was shown to outperform the Taylor expansion and give a good
approximation over wide frequency ranges. The acoustic problem was treated also by Malhotra
and Pinsky [9] and the work was extended in [10] by using a Krylov subspace projection method.
In fact, the Krylov method has a strong link to matrix-valued PAs [11], also referred to as the
Padé-via-Lanczos connection (PVL) [12].

The possibility for using PA approximants to compute frequency responses with a high-frequency
resolution was utilized in a previous optimization study by the author [13]. In that work, a pho-
tonic crystal waveguide was designed with a topology optimization approach. The PAs were
used to accurately pinpoint a number of the most critical frequencies in the operational fre-
quency range at a low computational cost. The optimization considered the performance for these
critical frequencies which were repeatedly updated during the optimization process. Another op-
timization study was reported in [14], in which a PA was used to approximate the dynamic
response for large variations of a design variable and used as a basis for finite element-based size
optimization

Only few works have considered direct optimization of the frequency response based on its
PA. In [15] a procedure was developed for sensitivity analysis of PAs for 3-D microwave device
applications. The formulation was suitable for shape/size optimization with a few design variables
and was implemented in [16] to optimize microwave devices with up to four geometry design
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variables. The present paper is related to these works [15, 16] but focuses on optimization problems
with a large number of design variables such as found in topology optimization.

In Section 2 it is shown how the PA is computed and the validity of the approximation is demon-
strated with simple examples along with a discussion of the importance of numerical precision.
In Section 3 the sensitivity analysis of a PA response function with respect to a set of de-
sign variables is treated in detail. The approach is based on adjoint analysis which makes the
method suitable for the case of many design variables. Two examples of topology optimization of
forced vibration problems with PAs are presented in Section 4. Finally, conclusions are given in
Section 5.

2. FREQUENCY RESPONSES WITH PADÉ APPROXIMANTS

The basis of the proposed method is the computation of the frequency response using a PA. The
proposed procedure differs slightly from what appears to be the standard implementation of method
(see e.g. [5]). The difference will be pointed out in the following.

Time-harmonic motion of a linear damped dynamic system is governed by the discretized set
of equations

Su= f (2)

in which the system matrix S is defined as

S=−�2M + i�C + K (3)

M is the mass matrix, C the damping matrix, K the stiffness matrix, and f is the loading vector.
The frequency of excitation is denoted � and u is a vector containing the discretized nodal values
of the complex amplitude function.

An approximate solution for u is now sought in the vicinity of some expansion frequency �0.
The de-tuning parameter:

�= � − �0 (4)

is used to define the closeness of the excitation frequency � to this expansion frequency.
Equation (2) is rewritten as

(P0 + P1�
1 + P2�

2)u= f (5)

in which the new matrices are defined as

P0 = S(�0) = −�2
0M + i�0C + K (6)

P1 = �S
��

(�0) =−2�0M + iC (7)

P2 = 1

2

�2S

��2
(�0) =−M (8)
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Cramer’s rule [17] is applied to Equation (5):

u=
∑2Nd−2

i=0 ãi�i∑2Nd
i=0 b̃i�

i
(9)

where Nd is the total number of degrees of freedom in the discretized model. It should be noted
that Equation (9) is an exact representation of u. But for normal finite element models this
formulation requires the computation of a large number of expansion coefficients. This is not
only inconvenient but also practically impossible due to numerical errors (as will be discussed
in Section 2.3). However, an accurate approximation in the vicinity of the expansion frequency
(� = 0) can be obtained with series containing fewer expansion terms in both the numerator and
the denominator:

u≈
∑N

i=0 ãi�
i∑N

i=0 b̃i�
i
= ã0 + ã1� + · · · + ãN�N

b̃0 + b̃1� + · · · + b̃N�N
(10)

where N terms have been used in the expansion. It should be noted that the choice of retaining the
same number of terms in the numerator and denominator is not the only possible one. For further
details the reader is referred to a separate publication on PAs, e.g. [2].

Finite response for �= 0 ensures that b̃0 �= 0 (can be ensured by non-zero damping in the system).
Hence, all coefficients can be divided by b̃0 to obtain a new set of coefficients b1, . . . , bN and
a1, . . . , aN

u= a0 + a1� + · · · + aN�N

1 + b1� + · · · + bN�N
(11)

in which the approximation sign has now been replaced by an equality sign for simplicity. Thus, u
now represents the expansion in Equation (11) and not the exact solution of the original equation.

The coefficient a0 is easily determined by considering the system at the expansion frequency
(� = 0). Equation (11) reduces for �= 0 to

u(� = 0)= a0 (12)

so that this coefficient is recognized as the solution at the expansion frequency �0 (for clarity
referred to as u0). Thus, the final expression for the expansion is

u= u0 +∑N
i=1 ai�

i

1 +∑N
i=1 bi�

i
(13)

2.1. Gradients at � = 0

The gradients at � = 0 are used to determine the unknown coefficients. To do this u is written in
form of its truncated Taylor series (with Nt terms)

u= u0 + u′
0� + 1

2!u
′′
0�

2 + · · · + 1

Nt!u
(′Nt)
0 �Nt (14)
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A set of Taylor expansion coefficients are defined: ui = (1/i !)u(′i)
0 , so that Equation (14) can be

written as

u=u0 +
Nt∑
i=1

ui�i (15)

In order to find ui , Equation (15) is inserted into Equation (5)

(P0 + P1�
1 + P2�

2)

(
u0 +

Nt∑
i=1

ui�i
)

= f (16)

and the terms are matched by the order of the de-tuning parameter �. This gives the following set
of equations:

P0u0 = f (17)

P0u1 = −P1u0 (18)

P0ui = −P1ui−1 − P2ui−2, i = 2, Nt (19)

The zeroth order equation (Equation (17)) is equivalent to the original Equation (5) for � = 0. It is
assumed that this equation is solved by a factorization method so that P0 is available in factorized
form. The benefit of this is evident from Equations (18)–(19) since the coefficients u1, u2 and so
forth can be computed simply by forward-/back substitutions. The factorized P0 will be used also
to compute design sensitivities.

2.2. Coefficients ai and bi

The combination of Equations (15) and (13) can now be utilized to find the unknown PA coefficients:

u0 +
Nt∑
i=1

ui�i = u0 +∑N
i=1 ai�

i

1 +∑N
i=1 bi�

i
(20)

Both sides of Equation (20) are multiplied with the denominator(
u0 +

Nt∑
i=1

ui�i
)(

1 +
N∑
i=1

bi�
i
)

=u0 +
N∑
i=1

ai�i (21)

and terms are matched by the order of �i

a1 = u1 + b1u0 (22)

ai = ui +
i−1∑
j=1

b jui− j + biu0, i = 2, . . . , N (23)

from which the ai coefficients can be computed if the bi coefficients are known. Equating the
terms of order �N+1 gives

0=uN+1 +
N∑
j=1

b juN+1− j (24)

in which the bi coefficients are the only unknowns.
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The following procedure used to obtain bi is limited to the case where the number of degrees
of freedom Nd is higher than the chosen number of expansion terms N . As mentioned previously,
this is a practical necessity when dealing with large finite element models and hence poses no
real limitation on the method. With this assumption the equation system in Equation (24) is over-
determined and can be used to find a common set of bi coefficients for all degrees of freedom in
the model. This approach differs from many previous implementations (e.g. [5]) where additional
equations of the form in (24) are created by matching terms of order �N+2 up to �2N .

Equation (24) can be written as

[uN uN−1 · · · u1]

⎛
⎜⎜⎜⎜⎜⎝

b1

b2

...

bN

⎞
⎟⎟⎟⎟⎟⎠= −uN+1 (25)

and is solved by finding the least-squares solution with the use of the pseudoinverse matrix [17]:⎛
⎜⎜⎜⎜⎜⎝

b1

b2

...

bN

⎞
⎟⎟⎟⎟⎟⎠=−

⎡
⎢⎢⎢⎢⎢⎢⎣

u+
1

u+
2

...

u+
N

⎤
⎥⎥⎥⎥⎥⎥⎦
uN+1 (26)

in which u+
i denotes a row vector in the pseudoinverse matrix. The pseudoinverse matrix can in

this case be explicitly computed as⎡
⎢⎢⎢⎢⎢⎢⎣

u+
1

u+
2

...

u+
N

⎤
⎥⎥⎥⎥⎥⎥⎦

=Q

⎡
⎢⎢⎢⎢⎢⎣

u∗
N

u∗
N−1

...

u∗
1

⎤
⎥⎥⎥⎥⎥⎦ (27)

in which Q=P−1 and

P=

⎡
⎢⎢⎢⎢⎢⎣

u∗
N

u∗
N−1

...

u∗
1

⎤
⎥⎥⎥⎥⎥⎦ [uN uN−1 . . . u1] (28)

with u∗
i denoting the conjugate transpose of the ui vector. The procedure is justified by numerical

experiments showing that P is of full rank so that the matrix inversion is possible.
However, P turns out to be ill-conditioned if N is large setting a limit to the order of approxima-

tion that can be constructed. As pointed out in [10], this problem can be circumvented by using the
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k fcosΩt

u1 u8

Figure 1. A simple mass–spring chain with a harmonic load.

related Krylov subspace projection method since the bi coefficients are not directly computed with
this method. To determine if the Krylov method is suitable for a design optimization procedure
is left for future studies. The problems with ill-conditioning can be significantly reduced if the
computations are carried out with higher precision numerics (e.g. quad precision as available on
some 64-bit platforms). Apart from the simple test case analysed in Section 2.3, the use of higher
precision numerics is also left for future work.

To conclude the analysis the individual steps involved in constructing the PA are listed:

• Solve the original equation at the chosen expansion frequency (�= 0) by a factorization
method (Equation (17)) and compute N + 1 gradients (w.r.t. � at �= 0) by forward-/back
substitutions (Equations (18)–(19)).

• Compute the bi coefficients by solving the over-determined system of equations in
Equation (25).

• Compute the coefficients ai with Equations (22)–(23).

2.3. Analytical example: forced vibrations of a mass–spring chain

In this example the accuracy of the numerical scheme is demonstrated and the issue of numerical
precision is addressed. The simple mass–spring chain in Figure 1 is considered which allows for
analytical computation of the PA.

The steady-state vibration amplitudes of the masses are governed by a set of equations of the
form Equations (2)–(3), in which the load vector is

f= {0 0 0 0 0 0 0 f }T (29)

if the harmonic load of magnitude f acts on the rightmost mass.
In order to compare with the numerical scheme, the de-tuning parameter �= � − �0

(cf. Equation (4)) is introduced. With � introduced, S can be written as

S= (−�2
0M + i�0C + K) + (−2�0M + iC)� + (−M)�2 (30)

in which simple mass-proportional damping C= cM is assumed.
The solution is written as

u=Hf (31)

in which H=S−1. The amplitude of the rightmost mass is

u8 = H88 f (32)
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Table I. Coefficients ai and bi computed for m = k = f = 1,
c= 0.01 and for the centrefrequency �0 = 1.

i bi ai

0 — −0.997905−0.0598893i
1 5.98175+0.628924i 6.00628−0.209591i
2 −45.0048+0.449545i 38.9141+2.42528i
3 −119.742−9.18382i −84.0400+2.49613i
4 280.119−9.43850i −250.510−13.2525i
5 712.978+32.9055i 230.125−11.5939i
6 −385.688+46.9032i 616.065+20.4211i
7 −1670.33−30.2742i −56.4125+23.7608i
8 −493.363−79.0623i −636.239−5.67282i
9 1428.97−21.4553i −297.395−16.6529i

10 1285.16+38.5100i 154.880−6.12446i
11 −0.339896+32.7067i 195.702+1.25137i
12 −545.314+6.37730i 76.8638+1.39493i
13 −349.447−3.13286i 13.9728+0.348890i
14 −104.813−1.94300i 0.997905+0.0299102i
15 −15.9689−0.398731i —
16 −0.997905−0.0299102i —

and by inserting the found expression for H88 this leads to the exact form of u8

u8 = a0 + a1� + a2�2 + · · · + a14�14

1 + b1� + b2�2 + · · · + b16�16
(33)

in which the solution a0 at the expansion frequency and the 30 additional expansion coefficients
a1 −a14 and b1 −b16 are complicated functions of the system parameters and �0. The expressions
are formidable even for this simple system so only numerical approximate values are given in
Table I for a specific set of parameters (m = k = f = �0 = 1 and c= 0.01).

The vibration amplitude of the rightmost mass is illustrated in Figure 2. The response ln(u8ū8),
in which the bar denotes the complex conjugate, is plotted versus the excitation frequency �. The
response shows the eight peaks that correspond to the natural frequencies of the system as well
as seven anti-resonances. For �>2 the response drops off rapidly.

In Figure 2 the exact response is also compared to results obtained with the proposed numerical
scheme. Even with a small number of expansion terms (N = 3) the accuracy of the approximation is
remarkably good in a large frequency interval and visually indistinguishable from the exact solution
in the range from � = 0.75–1.25. With two additional terms in the numerator and denominator
the high-accuracy frequency range is increased and three anti-resonances and 3–4 resonances are
well captured. However, with N = 7 the accuracy significantly deteriorates. The reason is that the
P matrix in Equation (28) becomes severely ill-conditioned.

The problem with ill-conditioning can be overcome if higher precision numerical procedures
are available. In Figure 2 the response with N = 7 is shown when computed with quad precision
numerics (32 significant digits). The accuracy of the approximation is significantly improved,
whereas for N = 3 and 5 the responses are practically unchanged (not shown in the figure). The
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Figure 3. Error of the bi coefficients versus the numerical precision in the computations.

approximation with N = 7 is generally superior to lower-order approximations but it is noted that
the improvement when going from N = 5 to 7 is limited.

The error introduced by insufficient numerical precision is illustrated in Figure 3. The
ill-conditioning of the P matrix leads to inaccurate computations of the bi coefficients. This
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Figure 4. An unsupported 2-D elastic body (plane stress) subjected to a harmonic load.

error is measured as

error=
√

1

N

N∑
i=1

(
bi − (bi )ref

(bi )ref

)2

(34)

in which the reference values have been computed with 100 significant digits in the computations.
Figure 3 reveals a close to direct relation between the choice of numerical precision and log(error)

of the bi coefficients. For this specific system and choice of parameters the high-order expansion
(N = 7) leads to a significant error also for computations with standard double-precision variables
(16 significant digits). If quad precision variables (32 significant digits) are used, the error is seen
to be reduced to a sufficiently small level.

2.4. Numerical example: 2-D forced vibration

The second example demonstrates the numerical scheme for a structure with many degrees of
freedom. An unsupported 2-D elastic body (Figure 4) is subjected to a harmonic load in the
middle point of the lower boundary and the response is computed in the middle point A of the
upper boundary. The following material parameters are used for the elastic body:

E = 1, �= 1, � = 0.3

with a plane stress model and unit thickness. A Rayleigh damping model is assumed so that the
damping matrix C is a linear combination of the mass- and the stiffness-matrices:

C= �M + �K (35)

with damping coefficients � = 0.5 and � = 0.005.
The body is discretized with 40× 20 bi-linear quadratic elements and the size of the body

is normalized so that the total mass is unity. All computations are carried out with standard
double-precision numerics.

The response ln(uAū A) is plotted in Figure 5 versus the excitation frequency �. The expansion
frequency is �0 = 1. As reference, the direct solution is computed for a high number of frequencies
and shown with a thick solid line. As appears from the figure an accurate approximation of the
response is obtained in the frequency range from � ≈ 0.7 to 1.3 if a sufficient number of expansion
terms are included (N = 9). However, if N is chosen larger than 9, the accuracy can be shown
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to deteriorate, again due to an ill-conditioned P matrix. To demonstrate the accuracy of the PA a
standard Taylor-expansion with 10 terms has been included in the figure for comparison.

As mentioned in Section 2.3 the problem with ill-conditioning can be overcome with higher
precision numerics. Another possibility is to construct the frequency response with several PAs
each with a different expansion frequency. This is illustrated in Figure 5 in which seven separate PA
expansions (with N = 6) have been computed with equidistant frequency spacing and then patched
together. This multiplies the computational time accordingly, but offers an implicit control of the
accuracy of the PA expansions by requiring that two patches should coincide at their midpoint
frequency.

3. DESIGN SENSITIVITY ANALYSIS

The core of this work is to use the PA directly for optimization of the dynamic response. The first
step is to compute the sensitivity of a chosen objective function, denoted c, w.r.t. a set of design
variables. Analytical expressions for the sensitivities are obtained using the adjoint method.

A real-valued objective function with the general form

c= c(u, x) (36)

is considered. The function depends on the PA (u) and may also explicitly depend on the set of
design variables defined in the vector x={x1, x2, . . . , xNx }T.

In the general case with non-zero damping u is complex and conveniently split up in the real
and imaginary parts

c= c(uR, uI, x) (37)
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The derivative of c w.r.t. a single design variable xi is then

c′ = �c
�xi

+ �c
�uR

u′
R + �c

�uI
u′
I (38)

in which ()′ = d/dxi and the scalar �c/�xi and the row vectors �c/�uR, �c/�uI can be found
directly for a given objective function.

To facilitate the computation of u′
R and u′

I it is exploited that u′ can be expressed in terms of
the derivative of the Taylor expansion coefficients ui in the following form:

u′ =
N+1∑
i=0

(Diu′
i + Ei ū′

i ) (39)

The derivation of the matrices Di and Ei is lengthy and given in the Appendix.
Equation (39) is written out in terms of the real and imaginary parts u′

R and u′
I

u′
R = 1

2

N+1∑
i=0

((Di + Ēi )u′
i + (D̄i + Ei )ū′

i

)
(40)

u′
I = − i

2

N+1∑
i=0

((Di − Ēi )u′
i − (D̄i − Ei )ū′

i ) (41)

and Equations (40)–(41) are inserted into Equation (38):

c′ = �c
�xi

+ �c
�u

N+1∑
i=0

(Diu′
i + D̄i ū′

i ) + �c
�ū

N+1∑
i=0

(Ēiu′
i + Ei ū′

i ) (42)

in which the derivative-like terms �c/�u and �c/�ū are defined as

�c
�u

= 1

2

(
�c
�uR

− i
�c
�uI

)
(43)

�c
�ū

= 1

2

(
�c

�uR
+ i

�c
�uI

)
(44)

The adjoint approach [18] is now used to replace the terms u′
i and ū′

i in Equation (42) with
terms that are easier to compute. The expression for c′ is augmented with two series of additional
terms

c′
0 = c′ +

N+1∑
i=0
kTi R

′
i +

N+1∑
i=0
k̄
T
i R̄

′
i (45)

where kTi are vectors of Lagrangian multipliers and Ri are the residuals defined from Equations
(17)–(19) as

R0 = P0u0 − f (46)

R1 = P0u1 + P1u0 (47)

Ri = P0ui + P1ui−1 + P2ui−2, i = 2, N + 1 (48)

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 72:1605–1630
DOI: 10.1002/nme



TOPOLOGY OPTIMIZATION WITH PADÉ APPROXIMANTS 1617

that all vanish at equilibrium so that c′
0 = c′. Equation (45) is rewritten with Equations (46)–(48)

inserted

c′
0 = c′ +

N+1∑
i=0

(kTi P0 + kTi+1P1 + kTi+2P2)u′
i +

N+1∑
i=0

(kTi P
′
0 + kTi+1P

′
1 + kTi+2P

′
2)ui

+
N+1∑
i=0

(k̄
T
i P̄0 + k̄Ti+1P̄1 + k̄Ti+2P̄2)ū′

i +
N+1∑
i=0

(k̄
T
i P̄

′
0 + k̄Ti+1P̄

′
1 + k̄Ti+2P̄

′
2)ūi (49)

where kN+2 = kN+3 = 0 have been introduced for simplicity and it has been assumed that the load
f is independent of the design.

Inserting Equation (42) into Equation (49) yields

c′
0 = �c

�xi
+ �c

�u

N+1∑
i=0

(Diu′
i + D̄i ū′

i ) + �c
�ū

N+1∑
i=0

(Ēiu′
i + Ei ū′

i )

+
N+1∑
i=0

(kTi P0 + kTi+1P1 + kTi+2P2)u′
i +

N+1∑
i=0

(kTi P
′
0 + kTi+1P

′
1 + kTi+2P

′
2)ui

+
N+1∑
i=0

(k̄
T
i P̄0 + k̄Ti+1P̄1 + k̄Ti+2P̄2)ū′

i +
N+1∑
i=0

(k̄
T
i P̄

′
0 + k̄Ti+1P̄

′
1 + k̄Ti+2P̄

′
2)ūi (50)

The Lagrangian multipliers are now chosen so that the terms that involve u′
i and ū′

i vanish. This
condition is fulfilled if

�c
�u

N+1∑
i=0

Diu′
i + �c

�ū

N+1∑
i=0

Ēiu′
i +

N+1∑
i=0

(kTi P0 + kTi+1P1 + kTi+2P2)u′
i = 0 (51)

which assures that the complex conjugate of this equation is also fulfilled and consequently that
all terms in Equation (50) with u′

i and ū′
i disappear. The terms in Equation (51) are collected

N+1∑
i=0

(
�c
�u

Di + �c
�ū

Ēi + kTi P0 + kTi+1P1 + kTi+2P2

)
u′
i = 0 (52)

which holds if the following conditions for ki are satisfied:

kTi P0 + kTi+1P1 + kTi+2P2 = − �c
�u

Di − �c
�ū

Ēi , i = 0, N + 1 (53)

Equation (53) is conveniently solved for ki by starting with i = N + 1

PT
0kN+1 =−

(
�c
�u

DN+1

)T

−
(

�c
�ū

ĒN+1

)T

(54)
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which is solved for kN+1, and then carrying on to solve the remaining equations

PT
0kN = −

(
�c
�u

DN

)T

−
(

�c
�ū

ĒN

)T

− P1kN+1 (55)

PT
0ki = −

(
�c
�u

Di

)T

−
(

�c
�ū

Ēi

)T

− P1ki+1 − P2ki+2, i = N − 1, 0 (56)

It is noted that with P0 already factorized all Lagrangian multipliers can be computed by forward-
/back-substitutions.

With ki given from Equations (54)–(56) the final expression for c′ becomes

c′ = c′
0 = �c

�xi
+ 2Re

(
N+1∑
i=0

(kTi P
′
0 + kTi+1P

′
1 + kTi+2P

′
2)ui

)
(57)

4. TOPOLOGY OPTIMIZATION OF FORCED VIBRATIONS

A formulation has been developed that allows for the design sensitivities to be computed without
overwhelming computational effort regardless of the number of design variables. This makes the
present method well suited for optimization problems with many design variables such as in
topology optimization [19]. In a standard topology optimization implementation with the density
approach, a single design variable is used for each finite element in the model, typically leading
to thousands of variables. Therefore, a fast sensitivity analysis procedure is essential for practical
applications.

Two forced vibration problems are considered as application examples. Topology optimization
of forced vibrations has been studied previously, e.g. by [1, 19–22]. All studies considered the
dynamic performance at single or multiple excitation frequencies. With the proposed method the
performance of the structure can be optimized in entire frequency ranges at little extra cost.

The average response in the frequency range from �1 to �2 is considered:

c= 1

�2 − �1

∫ �2

�1

uTLū d� ≈ 1

N�

N�∑
k=1

uTLū (58)

in which L is a diagonal matrix that is used to indicate the degrees of freedom that are considered in
the optimization. The integral is well approximated by the sum if a sufficient number of evaluation
points N� is used (50–100 points are typically used in the examples). The objective function is
written in terms of real and imaginary parts:

c= 1

N�

N�∑
k=1

(uTRLuR + uTI LuI) (59)

so that the complex derivatives can be computed

�c
�u

= 1

2

(
�c
�uR

− i
�c
�uI

)
= 1

N�

N�∑
k=1

ūTL (60)
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�c
�ū

= 1

2

(
�c
�uR

+ i
�c
�uI

)
= 1

N�

N�∑
k=1

uTL (61)

which leads to the expressions

�c
�u

Di = 1

N�

N�∑
k=1

ūTLDi (62)

�c
�ū

Ēi = 1

N�

N�∑
k=1

uTLĒi (63)

Large savings in computational time and memory use are obtained if Di and Ei are not explicitly
computed. Instead, the formulas for Di and Ēi are inserted into Equations (62)–(63)

�c
�u

D0 = 1

N�

N�∑
k=1

ūTL (64)

�c
�u

DN+1 = − 1

N�

N�∑
k=1

(
1

B

N∑
j=1

(ūTLũ j )u
+
j

)
(65)

in which B = 1 +∑N
i=1 bi�

i is the denominator of the PA and

�c
�u

Di = 1

N�

N�∑
k=1

1

B
(b̃i (ūTL) + u+

N+1−iuN+1

N∑
j=1

(ūTLũ j )Q̃T
j ) (66)

�c
�ū

Ēi = − 1

N�

N�∑
k=1

1

B̄

N∑
j=1

Q̄ j,N+1−i (ūTLũ j )h̄T (67)

for i = 1, N . In Equation (66)–(67) the following symbols have been introduced

hT = uTN+1 −
N∑
l=1

u+
l uN+1uTN+1−l (68)

Q̃T
j =

N∑
l=1

Q j,N+1−lu∗
l (69)

which are independent of the frequency and must be computed only once for each optimization
iteration. This is also the case for the scalar u+

N+1−iuN+1. The following quantities that appear in
Equations (64)–(67) should be computed for each frequency evaluation point k:

b̃i =
N∑
j=i

b j−i�
j (70)

ũ j =
N∑
l= j

ul− j�
l − u� j (71)
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Based on the expressions given in Equations (64)–(67) the adjoint fields can be computed from
Equations (54)–(56) and finally the design sensitivities from Equation (57).

4.1. Optimized reinforcement of a 2-D elastic body

As the first example, the dynamic response of the 2-D elastic body in Figure 4 (with mate-
rial properties E = 1, � = 1, � = 0.3) is optimized by distributing a maximum amount of 25%
reinforcement material. The material properties of the reinforcement material are:

E = 2, �= 2, � = 0.3

and the plane stress model with unit thickness is considered. The structure is discretized using
80× 40 bi-linear quadratic elements and the load is applied in three nodes in the middle of the
lower boundary.

A standard Matlab implementation of the topology optimization algorithm is used. Specific
details are not included here and the reader is referred to [23] for implementation details and
to [19] for a general presentation of the method. Design updates are found with the method of
moving asymptotes (MMA) [24]. As material interpolation the RAMP-model [25] is implemented
with penalization parameter p= 5. A sensitivity filter is not used and the symmetry of the designs
is explicitly enforced by averaging the left–right sensitivities. In the initial design the 25% rein-
forcement material is uniformly distributed in the entire body and 100–150 iterations have been
used in the examples.

The damping coefficients � = 0.5 and � = 0.005 are reused from the analysis example in
Section 2.4 with the important note that the damping is kept independent of the design by being
proportional only to the constant part of the mass- and stiffness-matrix.

The first objective is to minimize the response in point A (Figure 4), averaged over a finite
frequency range. Equation (58) becomes

c1 = 1

N�

N�∑
k=1

uAū A (72)

by specifying L to have one unit entry in the diagonal that corresponds to the vertical amplitude
in A.

Figure 6 shows four examples of optimized material distribution. Figure 6(a) shows the dis-
tribution when the response is minimized for a single frequency �= 1, whereas the designs in
Figure 6(b)–(d) are obtained when the response is minimized for larger frequency ranges. The
number of PA expansion terms is N = 7 and the number of frequency evaluation points for the
objective function is N� = 100. For the smallest optimization interval (� = 0.9−1.1) a single PA is
used but in order to obtain good approximations for the larger intervals the number of patched PA
expansions is increased to two and three for the intervals �= 0.8–1.2 and � = 0.7–1.3, respectively.

Figure 7 shows the PA for the initial structure and the PA for the optimized body corresponding to
the optimization interval�= 0.9–1.1 (Figure 6(b)). A low response is seen in the entire optimization
interval, which is accomplished by the creation of several closely spaced anti-resonances. The
frequency responses for the initial and the optimized designs are also computed using a standard
direct approach for a high number of frequencies (thin solid lines) to illustrate the validity of the
PA approximations.

Figure 8 shows the response for the other optimized designs in Figure 6. The structures and their
corresponding responses are very dependent on the optimization interval. The structure optimized
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Figure 6. Optimized distribution of base material (grey) and 25% reinforcement material (black) for
minimized response in point A for: (a) �= 1 and for 3 different frequency intervals; (b) �= 0.9–1.1;

(c) �= 0.8–1.2; and (d) �= 0.7–1.3.
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Figure 7. Response in point A for the initial structure and the structure in Figure 6(b) optimized
for �= 0.9–1.1. The PAs are indicated by discrete markers and directly computed responses

are plotted as thin solid lines.

for the single excitation frequency �= 1 (Figure 6(a)) has a very low response exactly at the target
frequency but a high response if the frequency is only slightly de-tuned from that target. Much
more robust designs with broadband low response are obtained when the response is minimized
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Figure 8. Response in point A for the optimized structures in Figure 6(a), (c), (d). Dashed lines
indicate the optimization frequency interval.

in larger frequency ranges. Additionally, it is evident that the optimized material distribution for
the single frequency optimization is dominated by intermediate material properties. Not all of the
allowed reinforcement material is used in this case. The designs in Figure 6(b)–(d) show a much
more well-defined material distribution, and all of the allowed reinforcement material is utilized
to create the best possible performance.

All optimized designs have been obtained from an initial design with a uniform material distri-
bution. Different optimized designs (local optima) appear with other initial designs. Actually, by
using the structures in Figures 6(c) and (d) as the initial design for the optimization problem with
the frequency interval � = 0.9–1.1, designs with a slightly better performance were obtained.

The same optimization set-up is now used to minimize the response in the entire body instead
of just in a single output point. The second objective function

c2 = 1

N�

N�∑
k=1

uTū (73)

is obtained by setting L to be the unit matrix. Figure 9 shows the optimized designs for two
different optimization frequency intervals and Figure 10 shows the responses for the two designs
as well as for the initial design. In this case, the anti-resonance mechanism cannot be used since
this is a local phenomenon. Instead, a low response is created by moving resonances away from
the optimization interval. For the small interval it is seen that all resonances have been removed
and a very low response is obtained in the entire interval. For the large interval, not all resonances
are removed and two response peaks remain near �= 1. However, all other nearby resonances are
moved either below or above the interval and consequently a low average response is obtained.
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Figure 9. Optimized material distribution (25% reinforcement material) for minimized response of the
entire body for two different frequency intervals: (a) �= 0.9–1.1 and (b) �= 0.7–1.3.
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Figure 10. Total response for the body for the two different optimized structures in Figure 9
and for the initial structure with 25% material uniformly distributed in the domain. Dashed

lines indicate the optimization interval.

4.2. Structural optimization of a tip-loaded cantilever

The tip-loaded cantilever shown in Figure 11 is a classical benchmark problem in structural
topology optimization with static loads [19]. A few works have considered similar optimization
problems for harmonic loads [20, 22] but only for single frequencies. Here, the proposed method is
used to optimize the distribution of solid and void in the cantilever so that the dynamic compliance
in the lower frequency range is minimized.

The problem is defined as a standard structural topology optimization problem in which a limited
amount of material (50%) with material parameters:

E = 1, �= 1, � = 0.3
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fcos Ω t

2h

h

Figure 11. A short cantilever subjected to a harmonic tip-load with frequency �.

is to be distributed so that a chosen objective function is minimized. The objective function is

c3 = 1

N�

N�∑
k=1

utipūtip (74)

so that the response of the tip is chosen as a measure of the dynamic compliance.
A plane stress model with unit thickness is considered and the cantilever is discretized using

80× 40 bi-linear quadratic elements. The load is applied in three nodes in middle of the right
boundary. Damping coefficients are � = 0.05 and � = 0.002. The Matlab implementation from
Section 4.1 is used, and a sensitivity filter (filter-size: 1.5×element-size) is included to avoid
mesh-dependent solutions and checkerboard formation [23]. The initial design has 50% material
uniformly distributed in the domain.

Figure 12 shows the cantilever optimized for four different frequency intervals. If the frequency
interval is in the low range (� = 0–0.02) well below the first resonance frequency of the initial
design, then the optimized cantilever (Figure 12(a)) resembles the structure that is obtained for a
static tip-load. The increased static and low-frequency dynamic stiffness is obtained by moving
the first resonance frequency up in the frequency range. Figure 12(b) shows that if the frequency
range is increased to �= 0–0.04, the material is slightly redistributed so that the first resonance
frequency is further increased and the high stiffness frequency range broadened. If the optimization
interval is increased to higher frequency ranges, the optimized structures (Figure 12(c), (d)) change
qualitatively.

Figure 13 shows the corresponding responses for the four optimized structures as well as for
the initial design. As mentioned before, the structures in Figure 12(a) and (b) have responses in
which the first resonance frequency is moved up in the frequency range. Similar observations were
made in [22]. However, the structures in Figure 12(c) and (d) obtain a low average response by
a different mechanism: the static and low-frequency stiffness is lower (higher response) but an
anti-resonance is introduced in the optimization interval. At the anti-resonance the tip response is
small whereas the response of the rest of the structure is high. Thus, if a different measure of the
dynamic compliance had been used, e.g. the total energy, these designs would not be optimal.

It should be mentioned that the choice of N (number of expansion terms) is critical for this
example. The initial problem in which the structure is homogeneous is very ill-conditioned and if
N>2 the errors introduced in the PA computation and the corresponding sensitivities become too
large with a double-precision implementation. Therefore, in the shown examples the first iterations
are done with N = 2 and up to eight PA expansions. After a few iterations, say 15–20, N is
increased (up to N = 5) and the number of expansions reduced to one or two.
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Figure 12. Optimized distribution of 50% solid (black) for four different frequency intervals:
(a) �= 0–0.02; (b) �= 0–0.04; (c) �= 0–0.06; and (d) �= 0–0.08.
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Figure 13. Tip response of the four different optimized structures in Figure 12 and for the
initial structure with 50% material uniformly distributed in the domain. Dashed lines indicate

optimization frequency intervals.

Additionally, it appears that many local optima exists for this optimization problem especially
for larger optimization intervals. Different optima are obtained with variations in the optimization
procedure, e.g. the small differences due the choice of N and number of PA expansions (see
paragraph above) and also the choice of initial design. However, the designs differ only in structural
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details and have a similar overall appearance and performance. The presented designs are the best
that could be obtained with the specific initial design, however, it is perfectly possible that these
are not global optima.

5. CONCLUSIONS

This paper proposes an alternative approach to topology optimization of dynamics problems.
The method addresses the need for considering the response in frequency ranges rather than for
single frequencies. With a traditional approach the system matrix needs to be factorized for each
considered frequency which leads to high computational costs and the alternative modal approach
typically leads to non-smooth optimization problems.

The proposed method uses PAs to rapidly compute frequency response functions with high
accuracy over a wide range of frequencies. Formulas for the sensitivity of the response with
respect to design variables are derived using analytical methods. The derivation is based on the
adjoint approach which provides the design sensitivities for a large number of design variables at
low computational cost. This makes the formulation particularly suited for topology optimization
that typically involves thousands of design variables.

The accuracy of the PAs is studied for simple 1-D and 2-D systems. It is shown that the numerical
procedure yields an accurate approximation to the frequency response also for a relatively a small
number of terms in the Padé expansion. Due to ill-conditioning the effect of numerical precision
in the computations is critical and if many terms are included in the expansion an implementation
of the algorithm with higher precision numerics (e.g. quad precision) should be considered.

Two examples of topology optimization of forced vibrations are included to demonstrate the
proposed optimization procedure. In the first example, a 2-D elastic body is optimized by dis-
tributing a limited amount of reinforcement material so that the average response in medium-range
frequency intervals is minimized. By optimizing for frequency intervals rather than single fre-
quencies a good broadband performance can be obtained rather than a narrow band performance
that is very sensitive to slight frequency de-tuning. In the second example, structural optimization
of a tip-loaded cantilever is considered and the distribution of solid and void optimized so that
the average dynamic response is minimized in the low-frequency range. Different optimization
frequency intervals result in qualitatively different optimized designs that rely on qualitatively
different mechanisms to obtain a low value of the objective function.

APPENDIX A

In this Appendix it is shown that u′ can be expressed in the following form:

u′ =
N+1∑
i=0

(Diu′
i + Ei ū′

i ) (A1)

where ()′ is the derivative w.r.t. a design variable.
To determine Di and Ei the PA is written as

u= A
B

(A2)
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in which

A= u0 +
N∑
i=1

ai�i (A3)

B = 1 +
N∑
i=1

bi�
i (A4)

Equation (A2) is differentiated w.r.t. a design variable

Bu′ =A′ − B ′u (A5)

and by differentiating the expressions for A and B

Bu′ =
N∑
i=0

a′
i�

i −
(

N∑
i=1

b′
i�

i
)
u (A6)

in which the notation u′
0 = a′

0 is used for simplicity.
From Equations (22)–(23) a′

i can be expressed as

a′
i =

i∑
j=0

b ju′
i− j +

i∑
j=1

b′
jui− j (A7)

and this expression is inserted into Equation (A6) to yield

Bu′ =
N∑
i=0

(
i∑

j=0
b ju′

i− j +
i∑

j=1
b′
jui− j

)
�i −

(
N∑
i=1

b′
i�

i
)
u (A8)

which after reorganizing terms is given as

Bu′ =
N∑
i=0

(
i∑

j=0
b ju′

i− j

)
�i +

N∑
i=1

((
i∑

j=1
b′
jui− j

)
− b′

iu

)
�i (A9)

After some index manipulation we can write this expression as

Bu′ =
N∑
i=0

b̃iu′
i +

N∑
i=1

ũi b′
i (A10)

with

b̃i =
N∑
j=i

b j−i�
j (A11)

ũi =
N∑
j=i

u j−i�
j − u�i (A12)
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Equation (A10) contains terms that depend on b′
i . By differentiating Equation (26) b′

i can be
expressed in terms of u′

i⎛
⎜⎜⎜⎜⎜⎝

b′
1

b′
2

...

b′
N

⎞
⎟⎟⎟⎟⎟⎠ =−

⎡
⎢⎢⎢⎢⎢⎢⎣

(u+
1 )′

(u+
2 )′

...

(u+
N )′

⎤
⎥⎥⎥⎥⎥⎥⎦
uN+1 −

⎡
⎢⎢⎢⎢⎢⎢⎣

u+
1

u+
2

...

u+
N

⎤
⎥⎥⎥⎥⎥⎥⎦
u′
N+1 (A13)

An expression for (u+
i )′ is now needed. Differentiating Equation (27) gives

P

⎡
⎢⎢⎢⎢⎢⎢⎣

(u+
1 )′

(u+
2 )′

...

(u+
N )′

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

(u∗
N )′

(u∗
N−1)

′

...

(u∗
1)

′

⎤
⎥⎥⎥⎥⎥⎦−

⎡
⎢⎢⎢⎢⎢⎣

(u∗
N )′

(u∗
N−1)

′

...

(u∗
1)

′

⎤
⎥⎥⎥⎥⎥⎦ [uN uN−1 . . . u1]

⎡
⎢⎢⎢⎢⎢⎢⎣

u+
1

u+
2

...

u+
N

⎤
⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎣

u∗
N

u∗
N−1

...

u∗
1

⎤
⎥⎥⎥⎥⎥⎦ [u′

N u′
N−1 . . . u′

1]

⎡
⎢⎢⎢⎢⎢⎢⎣

u+
1

u+
2

...

u+
N

⎤
⎥⎥⎥⎥⎥⎥⎦

(A14)

where it is recalled that P is defined as

P=

⎡
⎢⎢⎢⎢⎢⎣

u∗
N

u∗
N−1

...

u∗
1

⎤
⎥⎥⎥⎥⎥⎦ [uN uN−1 · · · u1] (A15)

and ()∗ is the conjugate transpose vector.
Thus, if both sides of Equation (A14) is multiplied by Q=P−1 an expression for (u+

i )′ is
obtained which can be inserted into Equation (A13) to find b′

i . This is then used to build an
expression for ũi b′

i

ũi b′
i =−ũiu

+
i u

′
N+1 −

(
N∑
j=1

Q j,N+1−i ũ j

)
h̃Tū′

i + u+
N+1−iuN+1

(
N∑
j=1

ũ j Q̃T
j

)
u′
i (A16)

in which

hT = uTN+1 −
N∑

k=1
u+
k uN+1uTN+1−k (A17)
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Q̃T
j =

N∑
k=1

Q j,N+1−ku∗
k (A18)

Equation (A16) is inserted into Equation (A10)

Bu′ = Bu′
0 −

(
N∑
j=1

ũ ju
+
j

)
u′
N+1

+
N∑
i=1

((
b̃i I + u+

N+1−iuN+1

N∑
j=1

ũ j Q̃T
j

)
u′
i −

(
N∑
j=1

Q j,N+1−i ũ j

)
hTū′

i

)
(A19)

in which it has been used that b̃0 = B.
Equation (A19) can now be used to identify the components of the matrices Di and Ei

D0 = I, E0 = 0 (A20)

DN+1 = − 1

B

N∑
j=1

ũ ju
+
j , EN+1 = 0 (A21)

and

Di = 1

B

(
b̃i I + u+

N+1−iuN+1

N∑
j=1

ũ j Q̃T
j

)
(A22)

Ei = − 1

B

(
N∑
j=1

Q j,N+1−i ũ j

)
hT (A23)

for i = 1, N .
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12. Freund RW. Computation of matrix Padé approximations of transfer functions via a Lanczos-type process.
Approximation and Interpolation of Approximation Theory VIII, vol. 1. World Scientific: Singapore, 1995;
215–222.

13. Jensen JS, Sigmund O. Topology optimization of photonic crystal structures: a high-bandwidth low-loss T-junction
waveguide. Journal of the Optical Society of America B 2005; 22(6):1191–1198.

14. Kwon SK, Bernard JE. Design optimization based on Padé expansions. Finite Elements in Analysis and Design
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Abstract
We optimize the parameters of multiple non-linear

mass dampers based on numerical simulation of tran-
sient wave propagation through a linear mass-spring
carrier structure. Topology optimization is used to ob-
tain optimized distributions of damper mass ratio, nat-
ural frequency, damping ratio and nonlinear stiffness
coefficient. Large improvements in performance is ob-
tained with optimized parameters and it is shown that
nonlinear mass dampers can be more effective for wave
attenuation than linear mass dampers.

Key words
Non-linear mass dampers, wave propagation, topol-

ogy optimization.

1 Introduction
In this paper we report on a systematic approach

for optimizing the individual parameters of local non-
linear oscillators attached to a linear mass-spring chain.
The optimization procedure is based on transient sim-
ulation of wave propagation through the linear carrier
structure. The work follows a recent theoretical and nu-
merical study (Lazarov and Jensen, 2007) of band gap
formation in this non-linear system.
Band gaps are frequency ranges in which waves can-

not propagate through the structure (Brillouin, 1953).
They occur in infinite periodic systems and also in
mass-spring chains with attached oscillators (Liuet
al., 2000). In a finite structure excitation with a fre-
quency within the band gap results in a localized re-
sponse near the point of excitation or at the bound-
ary of the structure (Jensen, 2003). The attached os-
cillators act as multiple mass dampers (Strasberg and
Feit, 1996) that ”absorb” waves that propagate in the
main chain and can thus be used to reduce the trans-
mission of waves in the chain.
In (Lazarov and Jensen, 2007) it was demonstrated

that non-linear oscillators can be used to shift band

gap frequencies and control the propagation of waves
in the main chain. Additionally, it was demonstrated
that a non-uniform distribution of non-linear coeffi-
cients could be used to improve the attenuation prop-
erties of the structure. In this paper we apply a system-
atic design procedure based on the method of topology
optimization (Bendsøe and Sigmund, 2003) to find op-
timized sets of oscillators parameters that minimize the
transmission of waves.
The paper is organized as follows. In Section 2 we

introduce the physical and numerical model. Typi-
cal transient behavior is illustrated in Section 3. Sec-
tion 4 presents the optimization algorithm including
sensitivity analysis. In Section 5 we show examples
of optimized oscillator parameters for mono-frequency
steady-state behavior as well as full transient behavior.
In Section 6 we give conclusions.

2 A mass-spring chain with attached nonlinear os-
cillators

Fig. 1 illustrates the basic unit cell. The coupled equa-
tions for the displacement of a mass in the chain, de-
noteduj, and the displacement of the attached oscilla-
tor read:

üj + 2uj − uj−1 − uj+1 = β(ω2q + γq3 + 2ζωq̇)(1)

q̈ + 2ζωq̇ + ω2q + γq3 = −üj(2)

Non-dimensional parameters in (1)–(2) areβ = M/m
which is the ratio between the mass of the oscillator
and the mass to which it is attached,ω is the natural
frequency of the oscillator relative to a characteristic
frequency of the main chain denotedω0 =

√

k/m,
ζ is the damping ratio of the oscillator andγ is the
non-linear stiffness coefficient. Additionally, the non-
dimensional time measureτ = ω0t has been intro-
duced.
We consider a finite system based on the building

block unit cell in Fig. 1. Fig. 2 shows this finite system.



The number of masses in the chain that carry an oscil-
lator is denotedN . Additionally, a number of masses
without attached oscillators are connected to the chain
at both ends;Nin to the left, andNout to the right of the
section with oscillators. All oscillators may have differ-
ent parameters, denotedβi, ωi, γi andζi, whereas the
main chain consist of equal springs with stiffnessk and
equal massesm. By setting both end masses tom/2
and adding viscous dampers (c =

√
mk) we mimic

transparent boundaries at both ends of the chain.
Wave motion is imposed by a time-dependent force

f(t) acting on the leftmost mass in the chain. The spe-
cific force is to be specified in the forthcoming example
sections.
Eqs. (1)–(2) are rewritten in matrix form. We intro-

duce a vector of the unknown displacements:

u = {u1 u2 . . . uN+Nin+Nout
q1 q2 . . . qN}T (3)

and can write the model equations as:

ü + Cu̇ + Ku + Fnon(u) = Fext (4)

In (4) C is a damping matrix,K is a stiffness matrix,
Fnon is a vector of nonlinear forces and the vectorFext

contains the external load.

3 Numerical simulation of system behavior
The optimization algorithm is based on repeated anal-

yses of (4), sometimes several hundred, thus a fast and
robust numerical solver is essential. We use a central-
difference explicit scheme (Cooket al., 2002) that is
very fast and stable with a sufficiently small time step.
In all numerical simulations we use trivial initial con-

ditions u = u̇ = 0 and the total simulation time is
denotedT .

M

m

j

kk

Figure 1. Basic unit cell with a mass in the linear main chain and

an attached non-linear oscillator.

f(t)

Figure 2. Finite chain consisting ofN masses with attached oscil-

lators,Nin andNout masses without oscillators in the left and right

end. Viscous dampers are added in the ends to simulate transparent

boundaries.

Figure 3. Typical transient response. Figures shows (from top and

down): Response of the leftmost and rightmost mass in the main

chain, response of the first and last attached oscillator.

Fig. 3 shows typical simulation results for transient
response of the system – here for the following set of
system parameters:

β = 0.1, ζ = 0.01, ω = Ω = 0.0625, γ = 0
N = 26, Nin = Nout = 1
f(t) = sin(Ω(t − t0))e

−δ(t−t0)
2

t0 = 1500, δ = 0.000004

In Fig. 3 the response of the rightmost mass in the chain
is depicted (second plot from top). This illustrates the
signal actually transmitted through the chain. It is seen
that the transmitted signal is composed of a main signal
transmitted instantly followed by a trailing signal due
to reflections in the structure.

4 Optimization of mass damper parameters
We will in the following quantify the mass damper

performance by considering the response of the right-
most mass in the chain integrated over a certain time
interval. We consider the general objective function:

Φ =

∫

T2

T1

c(u)dt (5)

in whichc(u) is a positive real function of the displace-
ment vector. The smallerΦ is, the more effective the
attached mass dampers.



We wish to minimize the functionalΦ by manipulat-
ing the parameters of each of theN attached oscilla-
tors. We may vary all 4 parametersβi, ωi, γi andζi

and have in total4 × N design variables which are de-
fined by the following relations:

βi = βmin + xβ
i (βmax − βmin) (6)

ωi = ωmin + xω
i (ωmax − ωmin) (7)

γi = γmin + xγ
i (γmax − γmin) (8)

ζi = ζmin + xζ
i (ζmax − ζmin) (9)

in which the subscript min and max refer to upper and
lower bounds on the parameters that are specifieda pri-
ori. Thus, continuous design variables varying between
0 and 1 let the material parameters take any value be-
tween these min and max values.
A higher mass of the oscillators generally leads to in-

creased wave attenuation. In order to give a fair com-
parison between the performance of different structures
we therefore introduce a limit on the maximum average
mass ratiõβ, such that:

1

N

N
∑

i=1

βi < β̃ (10)

The continuous design variables allow us to apply a
gradient-based optimization algorithm to optimize the
performance of the structure. In order to do this we
need to compute the gradient ofΦ with respect toxβ

i ,
xω

i , xγ
i andxζ

i . Let x denote any design variable, then
by using the chain rule we obtain:

dΦ

dx
=

∫

T2

T1

dc

du

du

dx
dt =

∫

T2

0

dc

du

du

dx
dt −

∫

T1

0

dc

du

du

dx
dt (11)

In order to eliminate the termdu
dx

we use the adjoint
method that has previously been applied to transient
design problems (Bendsøe and Sigmund, 2003). We
rewrite (11) as:

dΦ

dx
=

∫

T2

0

(
dc

du

du

dx
+ λ

T
1

dR

dx
)dt

−
∫

T1

0

(
dc

du

du

dx
+ λ

T
2

dR

dx
)dt (12)

in which

R = ü + Cu̇ + Ku + Fnon(u) − Fext (13)

is the residual that vanishes at equilibrium.

We compute

dR

dx
=

dü

dx
+

dC

dx
ü + C

du̇

dx
+

dK

dx
u + K

du

dx

+
dFnon

dx
+

dFnon

du

du

dx
(14)

since we assume that the external force (wave input) is
independent of the design. By inserting (14) and per-
forming partial integration we rewrite (12) into:

dΦ

dx
=

∫

T2

0

(

(
dc

du
+λ̈

T

1
−λ̇

T

1
C+λ

T
1
(K+

dFnon

du
))

du

dx

+ λ
T
1
(
dC

dx
ü +

dK

dx
u +

dFnon

dx
)
)

dt

−
∫

T1

0

(

(
dc

du
+ λ̈

T

2
− λ̇

T

2
C + λ

T
2
(K +

dFnon

du
))

du

dx

+ λ
T
2
(
dC

dx
ü +

dK

dx
u +

dFnon

dx
)
)

dt

+
[

λ
T
1
C

du

dx
+ λ

T
1

du̇

dx
− λ̇

T

1

du

dx

]

T2

0

−
[

λ
T
2
C

du

dx
+ λ

T
2

du̇

dx
− λ̇

T

2

du

dx

]

T1

0

(15)

By choosing the following conditions:

λ1(T2) = λ̇1(T2) = 0 (16)

λ2(T1) = λ̇2(T1) = 0 (17)

and by requiring the initial response of the structure to
be independent of the design the terms in the square
brackets vanish.
We now require the terms inside the integration terms

that are coefficients todu
dx

to vanish:

λ̈
T

1
− λ̇

T

1
C + λ

T
1
(K +

dFnon

du
) = − dc

du
(18)

λ̈
T

2
− λ̇

T

2
C + λ

T
2
(K +

dFnon

du
) = − dc

du
(19)

These two new transient problems are solved forλ1

andλ1 and we can compute the sensitivities by the final
expression:

dΦ

dx
=

∫

T2

0

λ
T
1
(
dC

dx
ü +

dK

dx
u +

dFnon

dx
)dt

−
∫

T1

0

λ
T
2
(
dC

dx
ü +

dK

dx
u +

dFnon

dx
)dt (20)

Our strategy for optimizing the oscillator parameters
can be summarized as: perform repeated analyses of
(4), with each analysis followed by a computation of
the sensitivities by solving (18), (19) and (20), and the
sensitivities provided to a mathematical programming
software MMA (Svanberg, 1987) to obtain a design up-
date. This iterative procedure is continued until design
converges within a specified threshold.



5 Results
The optimization algorithm is demonstrated by two

examples where we consider steady-state and transient
response. In both examples we find optimized sets
of oscillator parameters that minimize the transmitted
wave.

5.1 Steady-state mono-frequency behavior
As the first example we optimize the system param-

eters for mono-frequency steady-state behavior. The
system parameters and excitation is:

N = 26, Nin = Nout = 1,Ω = 0.0625
f(t) = sin(Ω(t − t0))e

−δ(t−t0)
2

, t < t0
f(t) = sin(Ω(t − t0)), t > t0
t0 = 2500, δ = 0.000002

and the objective function is evaluated in the time in-
terval specified byT1 = 15000 andT2 = 20000. In
this way we ensure that the response has reached steady
state.
First we consider linear oscillators (γi = 0) and op-

timize the distribution of natural frequencies and mass
ratios. The damping ratio is fixed atζ = 0.01. We
allow the parameters to vary as follows:

ωmin = 0.0615, ωmax = 0.0630
βmin = 0.0, βmax = 0.2

and keep the maximum average mass ratio atβ̃ = 0.1.
Fig. 4 shows the oscillator parameters for the optimized
design and Fig. 5 displays the response of the leftmost
and rightmost mass in the chain (two top plots) as well
as the response of the first and last oscillator (two bot-
tom plots). An almost uniform distribution of natu-
ral frequencies is obtained, close to the excitation fre-
quency. This is expected for mono-frequency excita-
tion (cf. working principles of standard mass dampers).
The slight detuning between the excitation and natural
frequencies is due to the presence of damping. The op-
timized design is composed mainly of oscillators with
the maximum mass ratio (β = 0.2) and minimum mass
ratio (β = 0 - corresponding to no oscillator). A physi-
cal interpretation of the effects of this mass distribution
is difficult due to the complexity of the wave motion,
but the effect is a reduction of the objective with about
22% compared to an optimized design with a fixed uni-
form mass ratio ofβ = 0.1.
If we allow the non-linear stiffness coefficients to vary

the performance of the mass dampers can be further
improved. The minimum and maximum coefficients
are chosen as:

γmin = −0.00006, γmax = 0.00006

As seen in Fig. 6 the the distribution of natural frequen-
cies and mass ratios is qualitatively similar to the linear
case. However, the distribution is no longer symmetric
around the chain center and more irregular. The nat-
ural frequencies are lower than for the linear case but
this is combined with positive (hardening) non-linear

Figure 4. Optimized distribution of natural frequencies andmass

ratios for steady-state response. Zero nonlinearity and uniform

damping ratio.

Figure 5. Response for optimized design shown in Fig. 4.



Figure 6. Optimized distribution of natural frequencies, mass ra-

tios and non-linear coefficients for steady-state response. Uniform

damping ratio.

Figure 7. Response for optimized design shown in Fig. 6.

Figure 8. Optimized distribution of natural frequencies andmass

ratios for transient response. Zero nonlinearity and uniform damping

ratio.

stiffness that increases along the chain length. The ob-
jective function is reduced by2.4% compared to the
linear case.
It should be noted that a reduction of the damping ratio

ζ always cause a further reduction ofΦ. No beneficial
effects of a non-uniform damping distribution has been
observed.

5.2 Transient response
We now consider the full transient response of the

chain. The system parameters and excitation are:

N = 26,Nin = Nout = 1,Ω = 0.0625
f(t) = sin(Ω(t − t0))e

−δ(t−t0)
2

t0 = 2500, δ = 0.000002

and the objective function evaluates the response in the
entire simulation time interval:T1 = 0 and T2 =
20000.
Fig. 8 shows the optimized design with zero non-

linearity and uniform damping ratioζ = 0.01. The
minimum and maximum values of the natural fre-
quency and mass ratio are:

ωmin = 0.060, ωmax = 0.064
βmin = 0.0, βmax = 0.2

with a constraint on the average mass ratio ofβ̃ = 0.1.
Fig. 8 shows a larger variation of the natural frequen-



Figure 9. Response for optimized design shown in Fig. 8.

cies than for the steady-state case. This is a results of
the broader frequency content of the wave pulse, and
thus a broader spectrum of oscillator frequencies are
needed to quench the signal effectively. The response
shown in Fig. 9 reveals that the output signal consists
of a main signal followed by smaller trailing pulses.
We now allow the nonlinear stiffness to vary between:

γmin = −0.00006, γmax = 0.00006

Interestingly, theγ−distribution shows alternating sec-
tions of softening and hardening non-linearities in the
optimized design. This is combined with an irregular
ω−distribution. As a result the trailing pulses in the
output signal (Fig. 11) are now significantly reduced
in magnitude, leading to a further reduction of the ob-
jective function by21%. Thus, adding nonlinearities
allow for a significant extra reduction of the transmis-
sion of a pulse, whereas for the steady-state response
the effect was smaller.

6 Conclusion
We have used topology optimization based on tran-

sient simulation to design the individual parameters
of nonlinear oscillators attached to linear mass-spring
chain. The optimized parameters minimize the trans-
mission of wave pulses through the main chain.
The natural frequency, mass ratio, nonlinear stiffness

and damping ratio of each oscillator were optimized.

Figure 10. Optimized distribution of natural frequencies, mass ra-

tios and non-linear coefficients for transient response. Zero nonlin-

earity and uniform damping ratio.

Figure 11. Response for optimized design shown in Fig. 10.



Non-trivial parameter distributions were obtained lead-
ing to a significant reduction of the transmitted wave
signal. Two examples were considered. For a mono-
frequency steady-state response it was noted that a
hardening but non-uniform nonlinearity was favored
whereas for a full transient simulation combinations
of softening and hardening nonlinearities appeared in
the optimized design. It was shown also that including
non-linear stiffness was beneficial compared to having
only a linear oscillator. This was most pronounced for
when considering the full transient response.
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A space–time extension of the topology optimization method is presented. The formulation, with design
variables in both the spatial and temporal domains, is used to create structures with an optimized distri-
bution of material properties that can vary in time. The method is outlined for one-dimensional transient
wave propagation in an elastic rod with time dependent Young’s modulus. By two simulation examples it
is demonstrated how dynamic structures can display rich dynamic behavior such as wavenumber/fre-
quency shifts and lack of energy conservation. The optimization method’s potential for creating
structures with novel dynamic behavior is illustrated by a simple example; it is shown that an elastic
rod in which the optimized stiffness distribution is allowed to vary in time can be much more efficient
in prohibiting wave propagation compared to a static bandgap structure. Optimized designs in form of
spatio-temporal laminates and checkerboards are generated and discussed. The example lays the founda-
tion for creating designs with more advanced functionalities in future work.
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1. Introduction

Topology or material layout optimization has gained popularity
as a design tool in academics and industry. This is mainly due to
the large design freedom and the use of adjoint sensitivity analysis
that allows for efficient handling of the many element design
variables usually appearing in the discretized models. Topology
optimization was originally introduced to design stiff lightweight
mechanical structures [2] and has since been extended to a variety
of different settings. A fairly recent overview of applications can be
found in [4] and new applications appear regularly, e.g. the recent
works on optimization of ferromagnetic materials [9], incompress-
ible materials [7], electrostatically actuated devices [38], acousto-
structural interaction [37], and damage detection [20].

A number of papers have considered optimization of structures
based on its transient response, see, e.g. [17] for a review, and re-
cently there has been an increasing interest in using topological
design variables for these transient problems, e.g. in structural
dynamics [27,34], for thermal problems [33,21], crashworthiness
[29], electromagnetics [10,28], and structural wave propagation
[13]. In this paper, the topology optimization concept for transient
loads is extended with design variables in the temporal domain, in
order to allow for the optimized material properties to vary in
time. The extended method is demonstrated for wave propagation
in a one-dimensional (1D) model of an elastic rod with time depen-
dent Young’s modulus. The present study is closely related to
recent works [25,26] that present a solid mathematical foundation

for spatio-temporal design problems for the 1D and 2D wave
equation.

By including design variables in the time domain the optimiza-
tion problem becomes equivalent to the classical problem of
optimal control [18]. Holtz and Arora [14] solved an optimal con-
trol problem by using adjoint sensitivity analysis and mathemati-
cal programming and exemplified the method with obtaining
optimized trajectories for a scalar control force. The contribution
of the present work can be viewed as an extension to [14] by con-
sidering the material layout problem with topological design
variables.

The dynamics of structures with time varying material parame-
ters have been studied in a number of works. Clark [11] demon-
strated numerically the possibility for vibration control by using
stiffness switching induced by piezoelectric materials, Ramarat-
nam and Jalili [30] considered a bi-stiffness spring setting and
demonstrated vibration control theoretically and experimentally,
and Issa et al. [16] considered a similar problem with stiffness
switching induced by a controllable hinge and showed vibration
attenuation numerically and experimentally. Other examples of
geometric stiffness control have been demonstrated in [19,31]
and alternatively magneto- or electro-rheological fluids can be
used to obtain a similar control of the stiffness in the temporal do-
main. Recently reported is the possibility for using a combination
of non-linear materials and external high-frequency excitation that
results in an effective change of the material stiffness [6].

General properties of space–time varying materials (denoted
‘‘dynamic materials”) has been studied, e.g. in [22,5]. The recent
monograph [24] gives an extensive coverage of the subject with
a special emphasis on space–time variation of electromagnetic
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material properties. Means for realization of time varying proper-
ties (such as the dielectric constant) is the use of non-linear optic
material or with the use of ferroelectric/ferromagnetic materials.

In order to keep the derivations simple and at the same time
consider structures that are realizable as mechanical systems, it
is chosen to consider the case of time varying stiffness and a con-
stant material density. The starting point is a dynamic FE model:

M€uþ C _uþ KðtÞu ¼ fðtÞ; ð1Þ

in which M and C are constant mass and damping matrices and KðtÞ
is the time dependent stiffness matrix. The vector u contain the no-
dal displacements and fðtÞ is the time dependent load.

The paper is organized as follows. Section 2 introduces the
space–time design variables and the basic notation is defined. In
Section 3, the time integration algorithm is described and basic
simulation results are presented and compared to exact results
from literature. Section 4 covers sensitivity analysis w.r.t. space–
time design variables. In Section 5, an example of an optimized dy-
namic structure is given. The space–time distribution of stiffness in
a 1D elastic rod is optimized in order to minimize wave transmis-
sion; a so-called dynamic bandgap structure. In Section 6, the re-
sults are summarized and conclusions are given.

2. Space–time design variables for a one-dimensional problem

In traditional topology optimization with the density approach
[1], a single design variable is introduced for each element in the
finite element model. This is illustrated in Fig. 1 for a single spatial
dimension.

The design variables are denoted x1; x2; . . . ; xN where N is the
number of elements in the model. The design variables are col-
lected in the vector x. The value of xi governs the material proper-
ties of the corresponding element according to a specified material
interpolation model [3].

In the proposed formulation, we extend the traditional ap-
proach by allowing the material properties in a spatial element
to change in time. This is facilitated by introducing a two-dimen-
sional design element grid (for one spatial dimension), see Fig. 2.

An array of design variable vectors is introduced:

X ¼ fx1; x2; . . . ;xMg; ð2Þ

in which each design vector in the array contains the element-wise
design variables for a specific time interval. For time interval j, the
design vector components are specified as

xj ¼ fxj
1; x

j
2; . . . ; xj

Ng
T : ð3Þ

In (2) M is the number of time intervals in which the material prop-
erties can attain different values. The temporal design starts at
t ¼T1 and continues to t ¼T2 ¼T1 þMDT. For simplicity, uni-
form intervals DT are specified but non-uniform intervals can read-
ily be used with the presented formulation.

The choice of DT should depend on the specific problem con-
sidered, such as the frequency of the wave, but should also take
into account the temporal discretization used in the time integra-
tion algorithm. In the present work a central-difference explicit
scheme with a fixed time step Dt is applied. In this case it is neces-
sary that Dt � DT in order for the numerical results to be accu-
rate. Another and perhaps more natural choice, could be to use a
space–time finite element formulation, e.g. [15]. This will be sub-
ject for future work.

3. Numerical simulation of dynamic structures

A standard central-difference explicit scheme is used to solve
(1) (see, e.g. [12]). Based on the displacement vector un at the cur-
rent time step and at the previous time step un�1, the displacement
vector at the next time step unþ1 is approximated as

1

ðDtÞ2
Munþ1 � fn � Knun þ

2

ðDtÞ2
M� 1

Dt
C

 !
un

� 1

ðDtÞ2
M� 1

Dt
C

 !
un�1; ð4Þ

in which fn and Kn is the load vector and stiffness matrix at the cur-
rent time step. The scheme in (4) is efficient, especially if M is diag-
onal (this simplification is made throughout the examples in this
paper). However, one has to ensure that the time step Dt is suffi-
ciently small (CFL-condition [12]) to ensure stability of the scheme.

In the following sections, (4) is used to simulate the behavior of
structures with a time dependent stiffness matrix. The examples
will serve both as an illustration of typical behavior observed when
the material properties vary in time, as well as documentation for
the applicability (and limitations) of the proposed time integration
scheme.

3.1. Instant change of material properties

The propagation of a wave in a medium that experiences an in-
stant change of the material parameters was studied theoretically
in [36], in which it is shown that a forward travelling wave splits
up in a ‘‘transmitted” forward travelling wave and a ‘‘reflected”
backward travelling wave, and that they both retain the shape of
the original wave. Fig. 3 shows a 1D elastic rod in which the mate-
rial properties for t < t0 are q ¼ E ¼ 1 and for t ¼ t0 the stiffness is
changed to E ¼ E0 whereas the density is unchanged. Shown also
are snapshots of the simulated wave motion.

Weekes [36] predicts the amplitudes of the forward travelling
wave, T , and the backward travelling wave, R:

T ¼
ffiffiffiffiffi
E0
p

þ 1
2
ffiffiffiffiffi
E0
p ; R ¼

ffiffiffiffiffi
E0
p

� 1
2
ffiffiffiffiffi
E0
p : ð5Þ

In Fig. 4 the amplitude of the forward and backward travelling
waves are estimated based on simulation of the wave propagation
with (4). The amplitudes are given relative to the input amplitude
and are computed for different values of E0. The results are com-
pared to the exact values in (5) and the agreement is seen to be very

x = { x1  x2  x3  x4  x5  x6  x7  x8  x9                   xN }T

Fig. 1. Traditional design variable concept for topology optimization with the
density approach for one spatial dimension.

x1 = { x1  x2  x3  x4  x5  x6  x7  x8  x9                   xN }T

xj = { x1  x2  x3  x4  x5  x6  x7  x8  x9                   xN }T

xM = { x1  x2  x3  x4  x5  x6  x7  x8  x9                   xN }T

1 1

M

j

1 1 1 1 1 1 1 1

j j j j j j j j j

M M M M M M M M M

T1

T1+ΔT

T1+(j-1)ΔT
T1+jΔT

T1+(M-1)ΔT
T1+MΔT

t

Fig. 2. Extended topology optimization approach with space–time design variables
for one spatial dimension.
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good for low to moderate stiffness contrasts (E0 < 50). Interestingly,
as the material contrast grows to infinity the wave splits up in a for-
ward and backward travelling wave of equal magnitude.

An external force is generally required to change the material
properties, hence the mechanical energy in the wave is not con-
served. Based on the formulas for the forward and backward trav-
elling waves in [36] the relative change of mechanical energy
occurring at t ¼ t0 is found as

DEmek

Emek
¼ 1

2
ðE0 � 1Þ; ð6Þ

thus, if the stiffness of the medium is increased (E0 > 1) energy is
supplied to the wave, whereas for E0 < 1 energy is taken out of
the wave. Simulation results show excellent agreement with the
analytical result.

Fig. 7 shows simulated values for Emek and also Ekin and Epot ver-
sus time for the case of E0 ¼ 3. The instant doubling of the mechan-
ical energy is noted at the time of instant material property change
– as predicted by (6). Furthermore, oscillations in the kinetic and
potential energy are seen in the short time interval after the mate-
rial change for which the forward and backward travelling waves
have a spatial overlap.

Thus, it has been demonstrated that the simple time integration
algorithm produces accurate results in the case of instant material
properties changes, at least in the case of low to moderate stiffness
contrasts.

3.2. Moving material interface

Weekes [35] studied wave propagation in structures with a
moving material interface. Exact results were provided for the
example illustrated in Fig. 5.

Here, the interface between a material with stiffness E ¼ 1 and a
material with stiffness E ¼ E0 moves with constant speed V to-
wards left. A wave that propagates towards right meets the moving
interface and is partly transmitted and partly reflected at the inter-
face. It was shown in [35] that the relative amplitudes of the trans-
mitted wave T and the reflected wave R are independent of the
material interface speed

T ¼ 2ffiffiffiffiffi
E0
p

þ 1
; R ¼

ffiffiffiffiffi
E0
p

� 1ffiffiffiffiffi
E0
p

þ 1
; ð7Þ

which correspond to the known results for transmission and reflec-
tion of waves at an immovable interface.

However, the interface speed V causes a shift in the wavenum-
ber (or frequency) of the transmitted and reflected waves (Doppler
shift). The relative wavenumber shift of the reflected wave is found
as

Dc
c0

� �
R

¼ 1þ V
1� V

; ð8Þ

i.e. the shift depends only on the interface speed. Here, it should be
noted that V is given relative to the wave speed in the material in
which the incoming wave propagates ðc ¼

ffiffiffiffiffiffiffiffiffi
E=q

p
¼ 1Þ. The shift

E = 1 ρ

ρ

 = 1

E = E0  = 1

t < t0

t > t0

t = 0.750 s

t = 0.975 s

Fig. 3. Top: one-dimensional medium with an instant change in the stiffness for
t ¼ t0. Bottom: two snapshots of the wave motion with indication of the
propagation direction.
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E0. Comparison between exact (solid lines) and numerical results (discrete
markers).
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Fig. 5. Top: one-dimensional elastic rod with a moving material interface. Bottom:
two snapshots of the wave motion indicating the propagation direction.
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does not depend on the material properties of the second material
(i.e. E0).

Fig. 6 shows the computed wavenumber shift compared to the
exact value (8). A good accuracy of the numerical results is noted
for values of the interface speed up to about V ¼ 0:5, but for higher
values the numerical simulations overestimate the shift. This is
due to an insufficient number of elements per wavelength result-
ing from the increase in wavenumber (decrease in wavelength).
The presented results have been computed with 80 elements per
wavelength in material 1 (for V ¼ 0). For V ¼ 0:6 this has de-
creased to only 20 elements per wavelength thereby leading to
inaccurate results. The shift in wavenumber is seen to approach
infinity when V ! 1. This corresponds to the case when the inter-
face speed approaches the wave speed.

Similarly to the previous example, the energy in the wave is not
conserved and the increase in energy can be computed based on
the results in [35]. The exact results are shown in Fig. 8 (the
lengthy but explicit formula is not given) and compared to the
numerical results for four different values of E0. As seen in Fig. 8
the results deviate significantly even for relative small values of
E0 (such as E0 ¼ 1:25) also for V � 0:5. Thus, the reason for this dis-
crepancy is not insufficient discretization of the wave.

The reason for the overestimation of the energy increase is the
time integration scheme and the origin of the problem is illus-
trated in Fig. 9. The plots show the computed wave velocities for
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V ¼ 0:3 at a given time instant for two values of E0. Spurious high-
frequency oscillations in the velocities are noted which add sub-
stantially to the computed energies and these grow stronger with
increasing stiffness contrast E0. The oscillations are a result of the
fact that the simple time integration scheme is incapable of treat-
ing finite time-discontinuous materials properties properly.

The oscillations not only lead to inaccurate predictions of the
energy change, but more importantly, to instabilities in the optimi-
zation algorithm. Thus, the problem should be resolved. A natural
way is to use a more advanced time integration scheme. Special-
ized schemes have been developed for temporal laminates in
[36] and for structures with moving material interfaces in [35],
but these cannot be directly applied in this case since the appear-
ance of the structure is not known a priori. Alternatively, the use of
a space–time finite element scheme could probably overcome this
problem. Another, simpler, way to reduce the presence of spurious
oscillations, while still preserving the overall behavior, is to add
stiffness dependent damping that dissipates mainly the high-fre-
quency oscillations

C ¼ b

x2
0

eK; ð9Þ

in which b is a damping coefficient, x0 is the center-frequency of
the wave and eK is a constant stiffness matrix corresponding to
the normalized background material. The scaling of the damping
coefficient with x�2

0 gives b the unit ðkg mÞ�1.
In Fig. 10, the effect of adding damping with b ¼ 0:1 is illus-

trated. As noted the overall behavior is retained while the spurious

oscillations are eliminated. Still, for higher values of E0 the problem
persists and only a better numerical procedure will allow for sim-
ulation and optimization of dynamic structures with higher mate-
rial contrasts. But for a basic illustration of the method and its
potentials, the simple fix will suffice.

4. Design sensitivity analysis

After these examples, illustrating the rich dynamic behavior of
structures with space–time varying properties, focus is now put
on the design problem. For this purpose analytical expressions
for the design sensitivities are derived.

The optimization scheme is based on the minimization of an
objective function that is assumed to be written on the following
form:

U ¼
Z T

0
cðu;X; tÞdt: ð10Þ

The derivative of a given quantity w.r.t. a single design variable that
corresponds to the j0th time interval and the i0th spatial variable is
denoted

ðÞ0ji ¼
@

@xj
i

ð11Þ

and thus the sensitivity of U w.r.t. the design variable xj
i is

U0ji ¼
Z T

0

@c
@u

u0ji þ c0ji

� �
dt: ð12Þ

Eq. (12) involves the term u0ji and since u is an implicit function of
the design variables this term is not easily evaluated. To overcome
this difficulty, the adjoint method can be used to replace this term
with one that is more easily computed. For this purpose, the resid-
ual vector R is introduced

R ¼M€uþ C _uþ Ku� f ¼ 0 ð13Þ

and differentiated w.r.t. xj
i

R0ji ¼M€u0ji þ C _u0ji þ K0ji uþ Ku0ji ¼ 0; ð14Þ

in which it has been used that M, C, and f are assumed to indepen-
dent of the design.

With the aid of (14) and (12) is reformulated as

U0ji ¼
Z T

0

@c
@u

u0ji þ c0ji þ kT
j R0ji

� �
dt; ð15Þ

in which kj is an arbitrary Lagrangian vector belonging to j0th time
interval.

Eq. (14) is inserted into (15)

U0ji ¼
Z T

0
kT

j M€u0ji þ kT
j C _u0ji þ kT

j Kþ @c
@u

� �
u0ji þ kT

j K0ji uþ c0ji

� �
dt:

ð16Þ

The terms involving €u0ji and _u0ji are rewritten using integration by
partsZ T

0
kT

j M€u0ji dt ¼ ½kT
j M _u0ji �

T
0 �

Z T

0

_kT
j M _u0ji dt

¼ ½kT
j M _u0ji �

T
0 � ½ _kT

j Mu0ji �
T
0 þ

Z T

0

€kT
j Mu0ji dt;Z T

0
kT

j C _u0ji dt ¼ ½kT
j Cu0ji �

T
0 �

Z T

0

_kT
j Cu0ji dt:

ð17Þ

All boundary contributions in (17) vanish if we impose the follow-
ing terminal conditions for k:

kjðTÞ ¼ _kjðTÞ ¼ 0 ð18Þ
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Fig. 10. Wave velocities for V ¼ 0:3 and b ¼ 0:1 for two different values of E0, left:
E0 ¼ 1:05 and right: E0 ¼ 1:5.
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and further require that the initial response at t ¼ 0 is independent
of the design such that

u0ji ð0Þ ¼ _u0ji ð0Þ ¼ 0: ð19Þ

Inserting (17)–(19) into (16) yields

U0ji ¼
Z T

0

€kT
j M� _kT

j Cþ kT
j Kþ @c

@u

� �
u0ji þ kT

j K0ji uþ c0ji

� �
dt: ð20Þ

The arbitrary adjoint vectors kj are now chosen so that the first
parenthesis in (20) vanishes

€kT
j M� _kT

j Cþ kT
j Kþ @c

@u
¼ 0; ð21Þ

which, after transposing, can be rewritten as

MT€kj � CT _kj þ KT
kj ¼ �

@c
@u

� �T

: ð22Þ

As appears from (22) all adjoint equations are identical since the
r.h.s. does not depend on j. Thus only one equation needs to be
solved and the substitution kj ¼ k is made.

Eq. (22) is conveniently rewritten by introducing the new time
variable s ¼T� t

MT€kþ CT _kþ KT
k ¼ � @c

@u

� �T

T�s
: ð23Þ

Thus, with symmetric matrices, MT ¼M, CT ¼ C, KT ¼ K, the l.h.s. of
(23) is identical to that of the original model equation (1), the only
difference being the new adjoint load that appears on the r.h.s.
However, it should be noted that the two equations cannot be
solved simultaneously due the r.h.s. of (23) that requires an evalu-
ation of @c=@u at time T� s.

When k fulfills (23) the expression for the sensitivities reduces
to

U0ji ¼
Z T

0
ðkTðT� tÞK0ji uþ c0ji Þdt; ð24Þ

in which it is specified that k should be evaluated at s ¼T� t. The
term K0ji denotes the derivative of the stiffness matrix w.r.t. the i0th
element design variable in the j0th time interval, thus

K0ji ¼ 0 for t <T�
j and t > Tþ

j ; ð25Þ

in which T�
j and Tþ

j is the start and finish point for the j0th time
interval. Thus,

U0ji ¼
Z T

0
c0ji dt þ

Z Tþ
j

T�j

kTðT� tÞðKjÞ0iudt; ð26Þ

in which Kj is the stiffness matrix in the j0th time interval.
It is assumed that the stiffness matrix KðtÞ can be written in the

following form:

KðtÞ ¼
XN

i¼1

EiðtÞKi; ð27Þ

in which EiðtÞ is the element-wise and time dependent Young’s
modulus and Ki is a local element matrix. With the temporal dis-
cretization of the design space

Kj ¼
XN

i¼1

Eðxj
iÞK

i ð28Þ

such that

ðKjÞ0i ¼
dE

dxj
i

Ki ð29Þ

and the expression for the sensitivities becomes

U0ji ¼
Z T

0
c0ji dt þ dE

dxj
i

Z Tþ
j

T�j

ðkiÞTðT� tÞKiuidt; ð30Þ

in which ki and ui are local element vectors.

4.1. Material interpolation and optimization algorithm

The material properties in the design elements are interpolated
linearly based on the design variables. Thus, the stiffness of ele-
ment i in time interval j is

E ¼ 1þ xj
iðE0 � 1Þ; ð31Þ

in which the stiffness of the ‘‘background” material is set to unity as
in the numerical examples in Section 3. Thus, the expression in (30)
can be further reduced to

U0ji ¼
Z T

0
c0ji dt þ ðE0 � 1Þ

Z Tþ
j

T�j

ðkiÞTðT� tÞKiuidt: ð32Þ

Thus, sensitivities w.r.t. all design variables are obtained by solving
the additional problem (23) followed, for each variable, by the inte-
gration in (32) which is carried out numerically. If the objective
function does not depend explicitly on the design variables the first
integral in (32) vanishes and no extra computational effort is re-
quired to handle the space–time design variables compared to the
case of static design variables. However, the need to store u and k

at each time step can be a significant computational burden, but
has been solved previously for a 3D problem in [28].

Optimized space–time structures are generated on the basis of
the computed sensitivities by using a gradient-based algorithm.
A mathematical programming software, MMA [32], is used to ob-
tain the design updates and forward analysis, sensitivity analysis
and design updates are continued in an iterative fashion until the
design converges. See, e.g. [4] for a detailed description of the iter-
ative optimization algorithm.

5. Optimization example: dynamic bandgap structures

The design problem is illustrated in Fig. 11.
A sinusoidal Gauss-modulated pulse is sent through a one-

dimensional elastic rod and the transmitted wave is recorded at
the output point. The purpose of the study is to design the struc-
ture so that the transmission is minimized. The following objective
function is considered:

min U ¼
Z T

0
u2

outdt; ð33Þ

in which uout is the displacement of the output point and T is the
total simulation time. Thus, the considered objective function is
proportional to the total transmitted wave energy.

The wave pulse is generated by applying the the following force
at the input point:

f1ðtÞ ¼ �2u0x0 sinðx0ðt � t0ÞÞe�dðt�t0Þ2 ; ð34Þ

in which u0 is the amplitude of the generated pulse, x0 is the cen-
ter-frequency of excitation and d determines the width of the pulse.

design
domain

output
input

2m 2m

1m

Fig. 11. Design problem. The transmission of a sinusoidal Gauss-modulated pulse is
minimized.
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The parameters used in this example are given as

T ¼ 10 s; u0 ¼ 1 m; t0 ¼ 2:5 s; N ¼ 150;

x0 ¼ 15:7 rad=s; Dt ¼ 0:06 s; b ¼ 0:1ðkg mÞ�1;

d ¼ 1:5 s�2; E0 ¼ 1:25 N=m2:

To be able to clearly separate input and reflected waves in the time
series, inlet and outlet sections of 2 m with constant material prop-
erties are added on each side of the design domain of length 1 m.
The material properties of the inlet and outlet sections are normal-
ized to E ¼ 1 N=m2 and q ¼ 1 kg=m3, so that the incoming wave
propagates with the speed c ¼ 1 m=s. In order to simulate wave
propagation in this finite structure, fully absorbing boundaries are
added at the input and output points by appropriate viscous
dampers.

Two materials can be distributed in the design domain: the nor-
malized material used for the the inlet and output sections, and a
material with a slightly higher stiffness E0 ¼ 1:25. The relatively
small stiffness contrast is used in order to avoid problems with
spurious oscillations (cf. Section 3.2). The presence of oscillations
leads to incorrect sensitivity calculations that destabilize the opti-
mization process. A small stiffness contrast combined with added
stiffness proportional damping (b ¼ 0:1 used throughout this
example) eliminate these problems while still displaying the main
qualitative features.

5.1. Static bandgap structure

For comparison the structure is optimized for the static case, i.e.
a spatial material distribution is obtained which cannot change in
time. Similar design problems were considered recently for tran-
sient loading in [13]. Fig. 12 shows the optimized design and
Fig. 13 shows the nodal displacements as a function of time at
the input and the output points. In the time plots one can easily
identify the input and reflected waves at the input point (top fig-
ure) and the transmitted wave at the output point (bottom figure).

The optimized structure in Fig. 12 is a bandgap structure [8]
with periodically layered inclusions of the stiffer material. Such a
structure reflects the waves maximally and reduces the objective
function to 76% compared to the undisturbed wave. For compari-
son it can be mentioned that in the case in which the design do-
main is completely filled with the stiffer material the objective
function is only reduced to 93%. These computations have been
performed with stiffness proportional damping corresponding to
b ¼ 0:1. Without damping (b ¼ 0) the transmissions are 81% and
99%, respectively.

With a static structure the only way to further reduce U would
be to either increase the material contrast or to increase the length
of the design domain relative to the wavelength of the pulse. The
latter choice would results in more inclusion layers that lead to
an increased reflection of the wave.

5.2. Space–time bandgap structure

The design is now allowed to change in time as well as in space.
The optimized static bandgap structure in Fig. 12 is used as a start-
ing point for the dynamic structure. This is illustrated in Fig. 14
where the space–time design domain is indicated. A temporal de-
sign interval of DT ¼ 1:5 s is chosen, which is sufficiently long to

significantly modify the wave motion but still keeps the total num-
ber of design variables at a manageable level. The start and finish
point for the optimization is chosen as T1 ¼ 4:25 s and
T2 ¼ 5:75 s and the number of sub-intervals is M ¼ 225, thus
the material properties in each element are allowed to change
150 times per second. The spatial discretization is unchanged from
the static case with 150 elements in the design domain. Thus, the
two-dimensional design grid is composed of ‘‘square” elements
with the dimensions 1

150 s� 1
150 m and a total of 33750 design

variables.
The initial value of all design variables is chosen as xe ¼ 0:5,

implying that the stiffness in all design elements is initially
E ¼ 1:125 N=m2. The optimized design is obtained after about
100 iterations and is shown in Fig. 15. The structure is seen to be
a kind of spatio-temporal laminate with space–time layered inclu-
sions. Properties of spatio-temporal laminates are discussed, e.g. in
[22,35,24].

At each time instance the structure is layered in a similar way as
the static bandgap structure. However, the inclusion layers move
with a constant speed corresponding to the wave speed in the lay-
ered medium so that the wave peaks and valleys actually move to-
gether with the front of the inclusions. This is illustrated in Fig. 16,
in which the material distribution is shown together with the wave
motion at the two time instances t ¼ 5:0s and t ¼ 5:4s.

Fig. 17 shows the input and output point time responses. The
objective is reduced to 23% relative to the undisturbed input signal
– thus, a significant reduction is noted compared to the static case
(76%). The large reduction is not a consequence of an increasedFig. 12. Optimized structure for the ‘‘static” wave propagation problem.

Fig. 13. Response for the optimized structure shown in Fig. 12. Top: input point
displacement showing the input and reflected wave, bottom: output point
displacement showing the transmitted wave.
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reflection (as appears from the input point response). Actually, the
reflected energy is reduced to only about 1% of the input compared

to about 17% for the static bandgap structure. Instead the main part
of the energy (about 75%) is extracted from the system via the time
dependent force that is needed to change the stiffness in time (cf.
the discussion on energy conservation in Section 3). Only a small
fraction (about 1%) is dissipated by the stiffness proportional
damping. However, without the presence of damping the optimi-
zation procedure becomes unstable after only a few iterations.

The output time response in Fig. 17 indicates that the frequency
content of the wave has changed. This is confirmed by an FFT-anal-
ysis shown in Fig. 18. In addition to the main frequency component
x0 ¼ 15:7rad=s, higher order components at � 3x0 and � 5x0

(and more further up in the spectrum) are seen as well. This might
seem surprising since the system is completely linear. However, as
mentioned, the material properties can only be changed in time
with a time dependent external force acting on the system, and
this force contributes to the signal with these higher order fre-
quency components.

Similar structures as the one shown, can be obtained with dif-
ferent values of the material contrast E0. Only the wave speed in
the layered medium changes and thereby also the speed of the
bandgap material front which leads to a different ‘‘slope” of the
spatio-temporal laminates. Additionally, the ratio of the two mate-
rials in the structure depends on the choice of E0 in such a way that
the inclusion layers become thicker with increasing contrast.

5.3. Realizable structures – patches and checkerboards

The optimized structure in the previous section would be a
challenge if it came to a practical realization. In order to generate

t

x

 design
domain1.5

 
s

1 m

Fig. 14. Design domain for the space–time optimization problem.

Fig. 15. Optimized space–time structure for minimum transmission of the wave
pulse.

Fig. 16. Instantaneous material distribution and wave motion at t = 5.0 s and
t = 5.4 s for the structure in Fig. 15.

Fig. 17. Response for the optimized structure shown in Fig. 15. Top: displacement
of input point, bottom: displacement of output point.
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structures that could more easily be realized, the number of design
variables is reduced. This is done by lumping spatial elements to-
gether in patches and reducing the number of temporal design
intervals as well.

Fig. 19 shows two examples of simplified optimized structures.
Both structures have 30 spatial design elements (patches of 5 ele-
ments). Using fewer design variables than this, makes it impossible
to resolve the layered structures adequately. The two structures
have M ¼ 45 and M ¼ 15 time design intervals, respectively. The fi-
ner structure (1350 design variables in total) displays the same
spatio-temporal laminate structure as the fully discretized struc-
ture in Fig. 15 and the corresponding objective function is only
marginally higher (27% compared to 23%). For the coarse design
with only 15 time design variables (total of 450 design variables)
the laminated structure can no longer be created. Instead the struc-
ture has a checkerboard appearance. The objective is increased to
45% which is significantly higher than for the laminated structure,
but still much better than for the static bandgap structure.

The checkerboard structure is an example of a space–time
material pattern that is easier to realize in practice than the spa-
tio-temporal laminate. A detailed analysis of the properties of such
structures can be found in [23,24]. A design parametrization is now
constructed that ensures a checkerboard structure as outcome. This
is done by replacing the material interpolation model in (31) by

E ¼ 1þ ð~xi � ~xjÞ2ðE0 � 1Þ; ð35Þ

in which ~xi is a vector of spatial design variables and ~xj is a vector of
temporal design variables. The computation of the design sensitivi-
ties should now be done directly based on (24) since the simplifica-
tion in (25) no longer holds. This increases the computation time for

each design variable but the number of variables is correspondingly
smaller. The fully discretized optimized structure in Fig. 15 has
150� 225 ¼ 33750 variables, but with the new parametrization,
the same discretization results in 150þ 225 ¼ 375 variables. The
resulting checkerboard structure is seen in Fig. 20 and the resulting
response in Fig. 21. The structure is seen to qualitatively resemble
the structure in Fig. 19(bottom) with the same number (15) of tem-
poral inclusions. The objective is also similar (40% compared to
45%). Compared to the response for the fully discretized structure
in Fig. 17 the response peaks are now higher but the qualitative nat-
ure of the response is unchanged.

5.4. Long wavelengths – temporal laminates

The appearance of the optimized spatio-temporal laminates de-
pends strongly on the frequency and wavelength contents of the
wave. In the previous examples the main wavelength of the wave
was k ¼ 0:4 m for a wave with center frequency x0 ¼ 15:7 rad=s
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Fig. 18. FFT-analysis of the output point time response shown in Fig. 17.

Fig. 19. Simplified optimized structures with a reduced number of design variables.
Top: 30� 45 and bottom 30� 15 variables.

Fig. 20. Optimized checkerboard structure with checkerboard design variable
model.

Fig. 21. Response for the optimized structure shown in Fig. 20. Top: displacement
of input point, bottom: displacement of output point.
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propagating in the material with c ¼ 1 m=s. Thus, the design do-
main had a spatial extent corresponding to 2.5 wavelengths.

If the design domain length is short compared to the main
wavelength, a spatially layered structure is no longer efficient for
minimizing the wave transmission. Fig. 22 shows two optimized
structures for k ¼ 2:5 m and k ¼ 10 m, respectively. The temporal
design intervals have been increased accordingly to 5 s and 10 s.
As appears, longer wavelengths result in structures that are spa-
tially more homogeneous at any given time. In the long wave-
length limit, the optimized structure approaches that of a pure
temporal laminate with instant simultaneous switching of the
material properties in the entire rod (cf. the analysis in Section
3.1). For a discussion of temporal laminates see [36,24].

5.5. Stability of structural response – shifted wave pulses

The optimized dynamic bandgap structures have been demon-
strated to be effective in prohibiting the propagation of waves.
But a significant drawback compared to the static structures is that
they are sensitive to the operating conditions and rely on a timely
activation of the spatio-temporal material variation.

This is illustrated by simulating the response of the structure
with an input pulse that is delayed compared to the reference
pulse for which the structure is optimized. Fig. 23 shows the
instantaneous material distribution and wave motion as in
Fig. 16(top), but with the wave pulse delayed 0.1 s, so that the
wave peaks and valleys follow the rear side of the inclusions in-
stead of the inclusion fronts. The effect on the response is signifi-
cant and the resulting output wave pulse is actually magnified
compared to the input pulse.

A shifted (delayed or advanced) pulse will in general cause the
structure to perform worse than optimal. However, the deteriora-

tion occurs smoothly with small perturbations only resulting in
small changes in the performance and with maximum deteriora-
tion for this example occurring with the 0.1 s shift shown in
Fig. 23. If the pulse is delayed another 0.1 s (0.2 s in total) the
waves will again follow the inclusion fronts and the optimal situa-
tion is reestablished.

6. Summary and conclusions

This paper describes an extension of the topology optimization
method to facilitate optimization of material distributions in space
and time.

The established topology optimization formulation is extended
with design variables in the temporal domain that allows the
point-wise optimized material properties to change in time. The
extended method is described for one-dimensional wave propaga-
tion in elastic rods with time dependent Young’s modulus and sub-
jected to transient loading.

A gradient-based optimization algorithm is applied based on
explicit time integration of the discretized model equation. Gradi-
ents are obtained using the adjoint method which requires just one
additional transient problem to be solved irrespectively of the
number of design variables.

A simulation study of two simple problems illustrate the rich
behavior of structures with dynamic material distributions. Instant
changes in Young’s modulus or a moving interface between two
material phases, result in phenomena such as increase or decrease
in the total mechanical wave energy and shifts in the wavenumber/
frequency of waves. The shortcomings of the numerical integration
scheme are outlined and a simple remedy in form of stiffness pro-
portional damping is proposed.

These dynamic phenomena are reflected in the optimization
example. The objective is to design a structure that minimizes
the transmission of a sinusoidal Gauss-modulated pulse. The best
static structure is a bandgap structure with periodically placed
inclusion layers of the stiffer material. It is demonstrated that
structures in which the inclusion layers move with the propagating
waves, so-called spatio-temporal laminates, can be much more
effective in minimizing the transmission. The improvement is facil-
itated by removal of mechanical energy via the external force that
is required to change the stiffness.

Additionally, it is demonstrated that if we allow the stiffness to
change less often, the optimized design change qualitatively and
attain a checkerboard appearance. A special design parametriza-
tion was constructed that ensures a checkerboard structure and
the resulting design was compared to the other designs. The per-
formance of the checkerboard structure is not a good as the lami-
nated structure but still significantly better than the static bandgap
structure.

The sensitivity of the optimized designs were analyzed with re-
spect to changes in the operating conditions. It was demonstrated
that the performance depends on a timely activation of the space–
time material pattern and if the pulse is delayed w.r.t. the optimi-
zation conditions the performance is significantly deteriorated.

The ability of supply/extract energy and change the frequency
contents of the wave opens up for more advanced pulse manipula-
tion than demonstrated in this relatively simple example. Cur-
rently, the possibility to compress pulses is being investigated
and will be reported elsewhere.
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Abstract: Results are presented for optimal layout of materials
in the spatial and temporal domains for a 1D structure subjected
to transient wave propagation. A general optimization procedure is
outlined including derivation of design sensitivities for the case when
the mass density and stiffness vary in time. The outlined optimiza-
tion procedure is exemplified on a 1D wave propagation problem
in which a single gaussian pulse is compressed when propagating
through the optimized structure. Special emphasis is put on the use
of a time-discontinuous Galerkin integration scheme that facilitates
analysis of a system with a time-varying mass matrix.
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1. Introduction

The method of topology optimization is a popular method for obtaining the op-
timal layout of one or several material constituents in structures and materials
(Bendsøe and Kikuchi, 1988; Bendsøe and Sigmund, 2003). The methodology
has within the last two decades evolved into a mature and diverse research field
involving advanced numerical procedures and various application areas such as
fluids (Borrvall and Petersson, 2003), waves (Sigmund and Jensen, 2003), elec-
tromagnetism (Cox and Dobson, 1999), as well as various coupled problems
such as e.g. fluid-structure interaction (Yoon, Jensen and Sigmund, 2007). Ad-
ditionally, industrial applications in the automotive and aerospace industries are
established and widespread. The success has been facilitated by the large design
freedom inherently associated with the concept, but also by efficient numerical
techniques such as adjoint sensitivity analysis for rapid computation of gradi-
ents (Tortorelli and Michaleris, 1994), various penalization and regularization
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techniques for obtaining both meaningful and useful designs (Sigmund and Pe-
tersson, 1998) and the close integration with mathematical programming tools,
such as the method of moving asymptotes (MMA) (Svanberg, 1987).

Recently it was suggested to apply (and somewhat extend) the standard
topology optimization framework to design a 1D structure in which the stiffness
could change both in space and time (Jensen, 2009). As an example, an opti-
mized “dynamic structure” that prohibits wave propagation was designed and
manifested itself as a moving bandgap structure with layers of stiff inclusions
moving with the propagating wave. The dynamic structure was demonstrated
to reduce the transmission of a wave pulse by about a factor of three compared
to an optimized static structure. The present paper extends the described work
by allowing materials that have not only time-varying stiffness but also a time-
varying mass density. This extension requires special attention to the choice of
time-integration scheme since many standard schemes fail. However, it allows
for extended manipulation of the wave propagation as illustrated in the exam-
ple in the present paper, in which a single gaussian wave pulse is compressed
when propagating through the optimized structure. Preliminary results for this
design problem in the case of time-varying stiffness were presented in Jensen
(2008).

The basic setting for obtaining optimal space and time distributions of mate-
rials for problems governed by the wave equation was first presented in Maestre,
Münch and Pedregal (2007), Maestre and Pedregal (2009). These papers an-
alyze 1D and 2D problems with a strong focus on the mathematical aspects
of the optimization problem. Both the present paper and the aforementioned
works root in the fundamental concept of dynamic materials. This concept was
introduced by Lurie and Blekhman (Lurie, 1997; Blekhman and Lurie, 2000;
Blekhman, 2008) who unfolded the rich and complex behavior of materials with
properties that vary in space and time. The dynamics of structures with space
and time varying properties was also studied in the work by Krylov and Sorokin
(Krylov and Sorokin, 1997) and later in Sorokin, Ershova and Grishina (2000),
Sorokin and Grishina (2004).

The basis for the presented optimization problem is time-integration of the
transient model equation coupled with adjoint sensitivity analysis. Thus, the
problem closely resembles previous studies that have been carried out for topol-
ogy optimization of static structures using a transient formulation, e.g. Min et
al., (1999), Turteltaub (2005), Dahl, Jensen and Sigmund (2008).

The outline of the paper is as follows. In Section 2 the governing equation is
presented and the basic setup defined. In Section 3 the design parametrization
is defined and design sensitivities are derived. Section 4 is devoted to numerical
analysis of the transient direct and adjoint equations and numerical simulation
results are presented. In Section 5 an optimization problem is defined and
examples of optimized designs are presented. Section 6 summarizes and gives
conclusions.
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2. Governing equation

The starting point for the analysis and subsequent optimization study is a time-
dependent FE model in which the mass matrix (M(t)) and the stiffness matrix
(K(t)) are allowed to vary in time:

∂

∂t

(

M(t)v
)

+ Cv + K(t)u = f(t) (1)

in which C is a constant damping matrix and f(t) is the transient load. The
vector u(t) contains the unknown nodal displacements and the notation v =
∂u/∂t has been used to denote the unknown velocities. It is assumed that the
mass matrix is diagonal, e.g. obtained by a standard lumping procedure. This
will be of importance when choosing a proper time-integration routine but it
should be emphasized that all formulas derived in the following hold also for
the case of M being non-diagonal.

The governing equation is solved in the time domain with the trivial initial
conditions:

u(t) = v(t) = 0 (2)

which imposes only limited loss of generality and facilitates the sensitivity anal-
ysis as shown later.

It should be noted that although the terms mass matrix/mass density and
stiffness matrix/stiffness are used here and in the following presentation, the
equations could just as well apply to an electromagnetic or an acoustic problem
with proper renaming of involved parameters. However, the terminology from
elasticity will be kept throughout this paper.

3. Parameterization and sensitivities

The density approach to topology optimization (Bendsøe, 1989) is adapted to
the present problem. With this approach a single design variable xe (”den-
sity”) is assigned to each element in the FE model. As in Jensen (2009) this
is expanded to the space-time case by defining a vector of continuous design
variables:

xj = {x1
j , x2

j , . . . , xN
j }T (3)

for each of a predefined number M of time intervals (such that j ∈ [1, M ]), for
which the design will be allowed to change. In Eq. (3) N is the number of spatial
elements in the FE model. Thus, for a 1D spatial structure, as considered in the
example in Section 5, the corresponding design space is two-dimensional with
dimension N × M .

The value of the density variable xe
j will determine the material properties of

that space-time element by an interpolation between two predefined materials
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1 and 2, where the variable is allowed to take any value from 0 to 1 (xe
j ∈ [0; 1]).

By rescaling the equations with respect to the material properties of material
1, the mass and stiffness matrices can be written as:

Mj =

N
∑

e=1

(1 + xe
j(ρ − 1))Me (4)

Kj =

N
∑

e=1

(1 + xe
j(E − 1))Ke (5)

such that ρ, E denote the contrast between the two materials for the mass
density and stiffness, respectively. In Eqs. (4)–(5), Me and Ke are local mass
and stiffness matrices expressed in global coordinates.

Analytical expressions for the design sensitivities are now derived. The op-
timization is based on an objective that is assumed to be written as:

φ =

∫

T

0

c(u)dt (6)

in which c is a real scalar function of the time-dependent displacement vector
and T is the total simulation time. It should emphasized that more complicated
objective functions, e.g. with a dependence on the velocities or an integration
different from the total simulation time, can be treated with minor modification
of the following derivation.

The derivative wrt. a single design variable in the j’th time-interval and e’th
spatial variable is denoted ()′ = ∂/∂xe

j and thus the sensitivity of φ wrt. to xe
j

is:

φ′ =

∫

T

0

∂c

∂u
u′dt (7)

Eq. (7) involves the term u′ which is difficult to evaluate explicitly. However,
the adjoint method can be used to circumvent this problem in an efficient way
(Arora and Holtz, 1997). For this purpose the residual vector R:

R =
∂

∂t
(Mv) + Cv + Ku− f(t) (8)

is differentiated wrt. xe
j :

R′ =
∂

∂t
(M′v + Mv′) + Cv′ + K′u + Ku′ (9)

in which it has been used that f (the transient load) and C (the damping matrix)
are both independent of the design.
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With the aid of Eq. (9), Eq. (7) is reformulated as:

φ′ =

∫

T

0

(
∂c

∂u
u′ + λTR′)dt (10)

in which λ denote an unknown vector of Lagrangian multipliers to be determined
in the following.

Expanding the expression in Eq. (10) and using integration by parts leads
to the following equation:

φ′ =

∫

T

0

(λTK′u−γTM′v)dt +

∫

T

0

(
∂c

∂u
+

∂

∂t
(γTM)−γTC+ λT K)u′dt

+
[

λT (M′v + Mv′ + Cu′) − γTMu′
]

T

0
(11)

in which the notation γ = ∂λ/∂t has been introduced.

Now the unknowns (λ, γ) can be chosen so that the last integral in expression
(11) vanishes along with the bracketed term that originates in the boundary
contribution from integrating by parts (if the trivial initial conditions in Eq. (2)
are applied as well). This leads to the following adjoint equation:

∂

∂t
(MT γ) − CT γ + KT λ = −(

∂c

∂u
)T (12)

along with the following terminal conditions:

λ(T ) = γ(T ) = 0. (13)

The sensitivities can then be computed from the remaining expression:

φ′ =

∫

T

0

(λTK′u− γT M′v)dt =

∫

T
+

j

T
−

j

(λT K′u− γTM′v)dt (14)

in which the integral can be reduced to the j′th time interval ranging from T −

j

to T +
j simply because K′ and M′ vanish outside the interval belonging to the

specific design variable.

The expression can be further reduced to element level as follows:

φ′ =

∫

T
+

j

T
−

j

(

(E − 1)(λe)T Keue − (ρ − 1)(γe)T Meve
)

dt (15)

by using the material interpolations defined in Eqs. (4)–(5).
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4. Numerical analysis

Special care has to be taken to solve the direct and adjoint problems in Eqs. (1)–
(2) and Eqs. (12)–(13) in the case where M is not constant. In this case, v and γ

are not continuous and the numerical integration scheme must be able to handle
this difficulty. A time-discontinuous Galerkin procedure (Wiberg and Li, 1999)
allows for discontinuous field variables in time domain and is applicable for this
case. An explicit version of the scheme is applied. The choice of an explicit
solver (in combination with a lumped mass matrix) is essential for an efficient
solution of the equations.

The basic numerical procedure is described shortly in the following for the
direct problem of solving for u(t),v(t). The adjoint problem for λ(t), γ(t) is
solved in a similar way. The total simulation time T is divided into Nt equidis-
tant intervals and a discrete set of displacement and velocity vectors ui,vi is
obtained for i ∈ [1, Nt + 1] including the initial conditions. Each time interval
(k ∈ [1, Nt]) is treated as a time element and an inner-loop iterative procedure
is used to obtain a velocity vector at the beginning of the interval denoted vk

1

and one at the end of the interval denoted vk
2 . For the nth inner-loop iteration

the updates of vk
1 and vk

2 are:

M(vk
1)n = (Mv2)

k−1 + ∆t
6 (f1 − f2)

+ (∆t)2

18 K(vk
1 − 2vk

2)n−1 − ∆t
6 C(vk

1 − vk
2 )n−1 (16)

M(vk
2)n = ((Mv2)

k−1 − ∆t(Ku)k−1) + ∆t
2 (f1 + f2)

− (∆t)2

6 K(2vk
1 − vk

2)n−1 − ∆t
2 C(vk

1 + vk
2 )n−1 (17)

in which f1 and f2 is the load vector evaluated at the beginning and end of the
time interval, respectively. The values of (vk

1 )n−1 and (vk
2 )n−1 for the initial

iteration (n = 1) are taken to be equal to the value of vk−1
2 . These inner

loop iterations are continued until vk
1 and vk

2 do not change more than some
predefined small tolerance (usually 2-3 iterations are performed).

Based on the converged time element values the recorded velocity and dis-
placement vector at discrete time i is then:

vi = vk
2 (18)

ui = ui−1 + ∆t
2 (vk

1 + vk
2). (19)

4.1. Test problem

The explicit time-discontinuous Galerkin formulation is now compared to a stan-
dard explicit central difference scheme as previously employed in Jensen (2009).
The model problem is depicted in Fig. 1 and the setting is described in the fol-
lowing. A sine-modulated gaussian pulse propagates in a homogeneous medium
with material properties ρ = E = 1 and at t = t0 the material properties change
instantaneously to ρ = ρ0 and E = E0. As a result the propagating wave splits
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E = 1

ρ = 1

E = E0

t < t0

t > t0
ρ = ρ0

Figure 1. Propagation of a sine-modulated gaussian pulse in a homogeneous
medium with an instant change of material properties at t = t0.

up into a forward and a backward travelling wave. It can be shown analytically
that the relative change in wave energy at the moment of change of material
properties is given as:

∆E

E
= 1

2 (E0 +
1

ρ0
) − 1. (20)

In Fig. 2 the wave energy is plotted as a function of time. Both plots in
the figure correspond to the case where the material properties are changed at
t0 = 0.85 s. In the first plot the material properties are ρ0 = 1 and E0 = 1.5,
which correspond to a relative energy jump of 0.25 and as appears from the plot,
this jump is accurately predicted by the time-discontinuous Galerkin procedure
but also with a normal central difference scheme. In the second plot ρ0 = 2 and
E0 = 1.5 are chosen and thus zero energy jump should occur. From the plot we
can see that the time-discontinuous scheme correctly captures the behavior as
opposed to the central difference scheme.

It should be mentioned that the time-discontinuous scheme is computation-
ally more expensive than the straightforward central-difference scheme, since
it involves inner loop iterations. The computational overhead depends on the
specific value of the tolerance set for the inner-loop iterations (see Wiberg and
Li, 1999, for more details). It is possible that more efficient schemes could be
developed.

5. Example: pulse compression

The optimization algorithm is now demonstrated on the particular design prob-
lem illustrated in Fig. 3. A single gaussian pulse is sent through a one-
dimensional structure and the transmitted wave is recorded. Wave propagation
in the bar is simulated by applying a time-dependent load at the left boundary
and adding absorbing boundary conditions in the form of simple dampers at
both ends.
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Figure 2. Simulation values of the wave energy in the homogeneous structure
with an instantaneous change of material properties at t0 = 0.85 s. a) ρ0 = 1
and E0 = 1.5 and b) ρ0 = 2 and E0 = 1.5.

design

domain

Figure 3. Design problem. A single gaussian pulse is to be compressed when
propagating through the design domain by a suitable stiffness and mass density
distribution in space and time.
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The purpose of the optimization problem is to design the structure so that
that the difference between the recorded output and a specified target is mini-
mized. Thus, the following objective function is considered:

φ =

∫

T

0

(uout − u∗

out)
2dt (21)

in which uout is the displacement history of the output point, u∗

out is the output
point target, and T is the total simulation time.

The wave pulse is generated by applying the following force at the input
point:

f(t) = −4u0δ(t − t0)e
−δ(t−t0)2 (22)

in which δ determines the width of the pulse, t0 is the time center for the pulse,
and u0 is the amplitude of the resulting input wave pulse:

u(t) = u0e
−δ(t−t0)

2

. (23)

As the target output pulse we choose

u∗

out(t) = ũ0e
−c̃δ(t−t̃0)2 (24)

in which c̃ represents the specified compression of the pulse.

5.1. Auxiliary design variables

In Eq. (24) the pulse time center at the output point is specified as t̃0 and the
amplitude of the output wave is specified to be ũ0. Instead of fixing these values,
they are included in the optimization problem via extra design variables.

It is obvious that a reshaping of the wave leads to some delay of the pulse
and the best value of t̃0 is not known a priori and it is thus natural to include
it in the design problem. The value of t̃0 is given as:

t̃0 = (t̃0)min + x1((t̃0)max − (t̃0)min) (25)

so that the corresponding extra design variable x1 takes values from 0 to 1.
The minimum and maximum values are simply chosen large enough so that the
value of x1 does not reach the 0 or 1 limit during the optimization process.

The extra design variable x2 associated with the output wave amplitude ũ0

is defined as follows:

ũ0 = (ũ0)min + x2((ũ0)max − (ũ0)min) (26)

where the minimum and maximum values are specified as values close to u0, e.g.
(ũ0)min = 0.8u0 and (ũ0)max = 1.2u0. In this way the optimization problem is
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relaxed somewhat in order to allow the optimization algorithm to find an optimal
compression of the pulse without a too strict constraint on the pulse amplitude.
It should be emphasized that obtaining an output pulse with an amplitude larger
than the input pulse is possible also for an uncompressed pulse, since the energy
is not conserved due to the external control of the material properties.

The sensitivities with respect to the auxiliary design variables can be ob-
tained in a straightforward manner from Eqs. (21), (24)–(26).

5.2. Optimization problem

The optimization problem can now be written as:

minxj ,x1,x2
φ =

∫

T

0
(uout − u∗

out)
2dt

s.t. : ∂
∂t

(

M(t)v
)

+ Cv + K(t)u = f(t)

t ∈ [0; T ]

u(0) = v(0) = 0

0 ≤ xj ≤ 1, j ∈ [1, M ]
0 ≤ x1 ≤ 1
0 ≤ x2 ≤ 1

(27)

and is solved using the derived expressions for the design sensitivities in combi-
nation with the method of moving asymptotes (Svanberg, 1987).

5.3. Results and discussion

In the following, results are presented for the optimization problem described
above. The model and simulation details are as follows. A unit length design
domain is split into N = 500 spatial elements. The total simulation time is
chosen to be T = 1.8 s and the numerical time-integration is performed using
Nt = 9000 time steps. The input pulse is defined via the parameters u0 = 1,
δ = 100 s−2 and t0 = 0.3 s.

The optimization problem is defined by specifying the target pulse with
a compression corresponding to c̃ = 3.5. The limits for the auxiliary design
variables are chosen to be (t̃0)min = 1.2 s, (t̃0)max = 1.35 s, (ũ0)min = 0.8u0 and
(ũ0)max = 1.2u0. The design is allowed to change M = 36 times during the
simulation time and in order to keep the designs simpler, the spatial elements
are grouped into 20 patches. Thus, the total number of design variables in the
model becomes 20 × 36 + 2 = 722.

Fig. 4 shows an example of a pulse that is compressed when propagating
through a space-time optimized structure obtained with material parameters
ρ = 1 and E = 1.75. The curves in Fig. 4 additionally illustrate how the
pulse, apart from being compressed, is delayed in the optimized structure when
compared to the pulse propagating in the homogeneous structure. In this case
the optimized value of the delay parameter is t̃0 ≈ 1.25 s, whereas the optimized
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Figure 4. Left: input wave pulse. Right: optimized compressed wave pulse and
for comparison the uncompressed output wave pulse.
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Figure 5. Four examples of output pulse through the optimized structure and the
corresponding target pulse. The material parameters are: a) ρ = 1, E = 1.25,
b) ρ = 1, E = 1.75, c) ρ = 1.33, E = 1.25, d) ρ = 0.75, E = 1.25.

value of the output pulse amplitude ũ0 is very close to the input pulse amplitude
u0 = 1.

In Fig. 5 four plots are presented, each showing a compressed output pulse
compared to the target output pulse, each for a different set of material param-
eter contrasts ρ and E. Note that the targets are different for the four plots
since they depend on the optimized values of the auxiliary design variables x1

and x2.

Figs. 5a,b are obtained for structures that are optimized with a constant
value of ρ = 1 but two different values of E (stiffness contrast). For low E
(E = 1.25) it is evident that the target compression of the pulse cannot be
obtained. There is a discrepancy between the curves near the tip and at the
pulse front and tail where the pulse has not been compressed enough. However,
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when the contrast is increased (E = 1.75), a much better match to the target is
obtained. The pulse front (corresponding to the part of the curve near t = 1.1 s)
is still somewhat off the target.

In Figs. 5c,d the stiffness contrast is kept at the lower value (E = 1.25), but
now the mass density contrast is changed to ρ = 1.33 and ρ = 0.75, respectively.
It is evident from Fig. 5c that for this material property combination (ρ = 1.33)
the targeted pulse compression is not possible at all, whereas for ρ = 0.75 the
compression of the pulse is nearly perfect (with the pulse front still being slightly
off). Thus, it is clear that the combined effect of the two material parameters
is very important and they should be chosen carefully in order to obtain the
desired compression effect.

In the examples shown, the corresponding design variables range broadly
from 0 to 1 (see Fig. 6a) which implies that the corresponding material properties
in the structure should be interpolations of material 1 and material 2. There is
nothing in the optimization formulation as stated that forces a binary 0-1 design
that could be created with only the two materials available. If it is required
that the structure can be fabricated with only the two specified sets of material
properties, an explicit penalization scheme can be employed (e.g. Borrvall and
Petersson, 2001). Hence, the objective is appended with a penalizing term:

φ =

∫

T

0

(uout − u∗

out)
2dt + ǫ

M
∑

j=1

N
∑

e=1

xe
j(1 − xe

j) (28)

and in this way intermediate values of the design variables (between 0 and 1) are
expensive and the design will inevitably be pushed toward a binary 0-1 design
if the parameter ǫ is sufficiently large.

In Fig. 6a the space-time design variables in the optimized designs are plotted
for the case of ρ = 0.75, E = 1.25, and in Fig. 6b the design variables are
plotted with the optimization performed on the new objective function with
explicit penalization from Eq. (28). The penalization has been employed by
using the non-penalized structure as a staring point and increasing the value of
ǫ in a number of steps using a continuation approach until most of the design
variables take values that are 0 or 1. As it appears from the figure only a few of
the design variables are now intermediate. However, Fig. 7 shows that the almost
perfect 0-1 design has been obtained at some cost in terms of performance of the
structure. Especially, near the pulse tail the output pulse for the 0-1 optimized
structure is quite different from the target.

Finally, in order to further illustrate the space-time distribution of the ma-
terial properties, Fig. 8 show snapshots of the design variables along with the
wave profile at four different time instances. The plots are for the non-penalized
structure of Fig. 6a.
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a) b)

Figure 6. Space-time plot of the material distribution in the optimized struc-
ture. a) without penalization of intermediate densities, b) with penalization of
intermediate densities.
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Figure 7. Target output pulse and output pulse for the optimized design without
and with penalization of intermediate design variables.

Figure 8. Illustration of pulse compression as the pulse propagates through the
optimized dynamic structure corresponding to Fig. 6a.
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6. Summary and conclusions

This paper reports on a topology optimization procedure for the distribution
of material in space and time. The procedure is applied to a 1D transient
wave propagation problem in which a gaussian wave pulse is compressed when
propagating through the structure which is composed of materials with different
mass and stiffness parameters.

Expressions for the design sensitivities are derived using the adjoint method.
This leads to a terminal value transient problem. The direct and the adjoint
discretized equations are solved using a time-discontinuous Galerkin procedure.
This allows for the correct simulation of the system when the mass matrix is not
constant in time, however, at the expense of extra computational effort. The
performance of the numerical scheme is demonstrated on a wave propagation
problem in which the material properties change instantly. It is shown that the
time-discontinuous scheme correctly simulates the problem, whereas a standard
central difference scheme fails if the mass matrix is not constant in time.

The optimization procedure is demonstrated on a 1D wave propagation prob-
lem in which a single gaussian pulse is compressed through an optimized space
and time distribution of two materials with different mass density and stiffness.
The optimization problem is formulated as a minimization problem in which the
difference between the output pulse and a specified target output is minimized.
Two auxiliary design parameters are introduced to relax the problem. They
control the temporal location of the output pulse and its amplitude, which are
allowed to vary within some predefined limits. The optimization problem is
solved with the mathematical programming tool MMA.

It is shown that is it possible to compress the pulse depending on the specific
values of mass and stiffness contrasts but that the designs will be composed of
material properties that are mixtures of two predefined materials. An explicit
penalization scheme is finally introduced in order to eliminate intermediate de-
sign variables so that the designs are primarily composed of the two available
materials. This is shown to compromise the performance to some extend. The
example clearly demonstrates that the pulse compression can be accomplished
by using the presented scheme and indicates promising perspectives for using
space-time topology optimization to create devices for more complex pulse shap-
ing.
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