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Abstract 12 

The release of chemicals such as chlorinated solvents, pesticides and other xenobiotic 13 
organic compounds to streams, either from contaminated sites, accidental or direct 14 

application/release, is a significant threat to water resources. In this paper, different 15 
methods for evaluating the impacts of chemical stressors on stream ecosystems are 16 
evaluated for a stream in Denmark where the effects of major physical habitat 17 

degradation can be disregarded. The methods are: (i) the Danish Stream Fauna Index, 18 

(ii) Toxic Units (TU), (iii) SPEAR indices, (iv) Hazard Quotient (HQ) index and (v) 19 

AQUATOX, an ecological model. The results showed that the hydromorphology, 20 
nutrients, biological oxygen demand and contaminants (pesticides and trichloroethylene 21 
from a contaminated site) originating from groundwater do not affect the good 22 

ecological status in the stream. In contrast, the evaluation by the novel SPEARpesticides 23 
index and TU indicated that the site is far from obtaining good ecological status - a 24 

direct contradiction to the ecological index currently in use in Denmark today - most 25 
likely due to stream sediment-bound pesticides arising from the spring spraying season. 26 
In order to generalise the findings of this case study, the HQ index and AQUATOX 27 

were extended for additional compounds, partly to identify potential compounds of 28 
concern, but also to determine thresholds where ecological impacts could be expected to 29 

occur. The results demonstrate that some commonly used methods for the assessment of 30 
ecological impact are not sufficient for capturing - and ideally separating - the effects of 31 
all anthropogenic stressors affecting ecosystems. Predictive modelling techniques can 32 
be especially useful in supporting early decisions on prioritising hot spots, serving to 33 
identify knowledge gaps and thereby direct future data collection. This case study 34 
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presents a strong argument for combining bioassessment and modelling techniques to 35 

multi-stressor field sites, especially before cost-intensive studies are conducted. 36 

Key words ecological status; EU Water Framework Directive; benthic macroinvertebrates; 37 
contaminated sites; SPEAR index; AQUATOX 38 

 39 

1. Introduction 40 

Due to increasing global exploitation of both stream water and groundwater resources, it 41 

is essential to obtain a better understanding of human impacts on, and the connections 42 

between these two systems and the roles they play in maintaining water quality. Society 43 

is becoming increasingly dependent on groundwater for meeting its industrial, 44 

agricultural and domestic water needs, and anthropogenic impacts due to the release of 45 

xenobiotic organic contaminants and intensive use of agricultural chemicals has led to 46 

the degradation of this resource (Hose, 2005). To address this, the EU Water 47 

Framework Directive (WFD) requires member states to evaluate all types of 48 

contamination sources within a watershed in order to assess their direct impact on water 49 

quality and ecosystem health (Hinsby et al., 2008; Theodoropoulos and Iliopoulou-50 

Georgudaki, 2010; von der Ohe et al., 2007; Whiteman et al., 2010). 51 

 Chlorinated solvents, such as trichloroethylene (TCE), and pesticides are among the 52 

most prevalent and serious contaminants of surface and groundwater resources, 53 

particularly in industrialised countries with intensive agriculture such as Denmark 54 

(Brüsch, 2007; Danish EPA, 2010; Henriksen et al., 2008; Janniche et al., 2011). 55 

However, multiple stressors often co-exist and may interact complicating the separation 56 

and evaluation of single stressor effects in natural environments (Rasmussen et al., 57 

2012, Wagenhoff et al., 2011; von der Ohe et al., 2011; Sánchez-Montoya et al., 2010; 58 

Thrush et al., 2008). Rasmussen et al. (2011a and 2012) showed that the effects of 59 
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diffuse source pesticide contamination on stream macroinvertebrate communities were 60 

clouded by the effects of physical habitat degradation in Danish streams. These findings 61 

emphasise the need for field sites with good physical conditions that do not confound 62 

evaluation of the impact of other anthropogenic stressors. A suitable field site in terms 63 

of physical habitat quality was identified in McKnight et al. (2010), involving a TCE 64 

groundwater plume discharging into a stream. The majority of the catchment is used for 65 

agricultural production making the site ideal for comparing different ecological 66 

evaluation tools.  67 

 Fulfilling the requirements of the EU WFD is challenging not only because multiple 68 

occurring stressors complicate the ability to interpret results, but also because traditional 69 

approaches for managing aquatic resources often fail to account for all the potential 70 

effects of anthropogenic disturbances on the biota. Thus, the applicability of current and 71 

novel methods for determining ecological status must be re-assessed. Here we focus 72 

specifically on benthic macroinvertebrates, one of the four EU WFD biological quality 73 

elements used to characterise the ecological quality and chemical toxicity of streams, 74 

and five methods are utilised: the (i) Danish Stream Fauna Index (DSFI), (ii) Toxic 75 

Units, (iii) SPEcies At Risk (SPEAR) indices, (iv) U.S. EPA Hazard Quotient (HQ) 76 

index, and (v) an ecological model, AQUATOX, also developed by the U.S. EPA. 77 

 The combined use of field indicator (bioassessment) methods and modelling 78 

techniques for the integrated assessment of anthropogenic stressors on surface water 79 

ecosystems supplies new and valuable knowledge, considering that most studies found 80 

in the literature typically encompass only one of the following: (i) results of 81 

bioassessment surveys utilizing biotic indices, such as SPEAR (see e.g.  Beketov et al. 82 

(2009); Schletterer et al. (2010)), (ii) results of laboratory/microcosm studies (see e.g. 83 
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Roessink et al. (2010); Weston et al. (2009)), or (iii) those which are purely modelling-84 

based studies (see e.g. Lu et al. (2003); Sourisseau et al. (2008)). Although a few studies 85 

do exist which combine field and modelling techniques (see e.g. Feio et al. (2009); 86 

Novotny et al. (2009)), it is our opinion that these are still few and far between.  87 

 Indeed, the U.S. clean water initiative of the 1990s gave a mandate for the 88 

restoration of 1000 watersheds; but the failure rate of those projects may be as high as 89 

60%, partly because they have not been based on a sound understanding of 90 

geomorphological and ecological processes (Pelley, 2000). Since predictive modelling 91 

assessments are based on changes in taxonomic composition, or deviations from 92 

“control” conditions, they may function as both early warning and compliance 93 

indicators (Norris and Hawkins, 2000). Moreover, it has long been recognized that a 94 

monitoring program should include a mechanism for determining the cause of 95 

noncompliance, and that not all diagnostic information needs to be gathered in situ 96 

especially at the stage of diagnosis (Cairns and McCormick, 1992). It is our belief that 97 

coupling “top-down” approaches (i.e. biological monitoring) with “bottom-up” 98 

strategies, such as predictive modelling techniques, can be especially useful in 99 

supporting early decisions on prioritising hot spots in time and space, and can ultimately 100 

serve to identify gaps and motivate future field work (Beketov and Liess, 2012). 101 

 The purpose of this study was to use both measured and modelled observations of 102 

contaminants and benthic macroinvertebrate communities to: (1) assess the applicability 103 

of different ecological evaluation methods for determining the impact of selected 104 

pollutants (eutrophicants, xenobiotic organic compounds and pesticides), and (2) 105 

determine threshold values and ranges for contaminant load for determining the 106 

ecological impact of pollutants by use of AQUATOX and the HQ index. We screened 107 
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for xenobiotic organic compounds and pesticides that are (i) frequently found in 108 

groundwater and (ii) frequently used in agricultural production. The dominating land 109 

use in Denmark is agriculture (62%) and the vast majority of streams are small in size 110 

(< 2 metres wide), and the catchment characteristics and physical stream dimensions of 111 

the study site therefore closely resemble the general landscape enabling us to generalise 112 

our findings. 113 

  114 

2. Materials and Methods 115 

This paper considers several specific contaminants from within some broader categories 116 

of pollutants: eutrophicants (defined as substances such as nutrients that lead to rapid 117 

growth of microorganisms in  surface water and resultant de-oxygenation (see e.g. 118 

Camargo and Alonso, 2006; Friberg et al., 2009); xenobiotic organic compounds 119 

(defined here as organic compounds such as chlorinated solvents and gasoline 120 

compounds originating in groundwater from contaminated sites); and pesticides 121 

(selected herbicides, insecticides and fungicides). 122 

2.1 Site description 123 

The study stream flows past the town of Lille Skensved located on Sjaelland, Denmark, 124 

with a catchment area of 25 km
2
, where the catchment is characterised by a low 125 

elevation, clayey/loamy soils, a temperate climate and an average regional precipitation 126 

of 500 mm yr
-1

. The secondary aquifer at Lille Skensved is contaminated by TCE 127 

originating from an auto lacquer shop, where a leaking storage tank, found in 1993, has 128 

resulted in a plume extending up to 1,000 m downstream (Fig. 1). Although little data 129 

exists regarding the contaminant source zone, measured TCE concentrations (in the 130 

mgL
-1

 range) reveal the presence of a separate phase contamination and indicate that the 131 
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source will persist for many decades. For more details on the field site geology, TCE 132 

plume and remediation history, see McKnight et al. (2010). 133 

 The stream is characterised by coarse substrate, high sinuosity and high turbulence 134 

(Supplementary material A.1 and A.2). The majority of the catchment is used for 135 

agriculture, and dominant crop types are wheat, barley and oilseed rape. In total, a 3.3 136 

km stretch of the Skensved stream was surveyed to determine hydromorphological and 137 

physicochemical parameters, including in-stream vegetation and flow (stream 138 

discharge), as well as characterise benthic macroinvertebrates and xenobiotic organic 139 

compounds, as described in the following sections. 140 

Figure 1 141 

2.2 Hydromorphology 142 

To characterise the hydromorphology of Skensved stream, for each sampling site, five 143 

cross-sectional transects at two meter intervals along the stream were surveyed and 144 

results are given in the Supplementary Material (Appendix A, Table A). At each 145 

transect, wetted width (W), depth (D) and water velocity (at 0.4 x depth) (U) were 146 

measured at four points corresponding to 25, 50, 75 and 100% of the wetted width using 147 

a flow-meter (Höntzsch μP-TAD). The discharge was calculated for each transect (D x 148 

W x U). Four rectangular plots were established between each pair of transects (2 m x 149 

25% of wetted width). In each plot, substratum type and the total macrophyte coverage 150 

were estimated. Submergent and emergent macrophytes were identified to the lowest 151 

possible taxonomical level and proportional coverage was estimated for each taxon. 152 

The physical habitat quality at each sampling site was assessed using the Danish 153 

Habitat Quality Index (DHQI) (Pedersen et al., 2006). The habitat survey was 154 

conducted on a 50 m reach that included the location for kick sampling. The DHQI 155 
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assesses the quality of physical habitats evaluating 17 descriptors, and the final score 156 

ranges from -12 to 63. The threshold level for good physical habitat quality is 26 157 

(Dunbar et al., 2010). We performed a t-test in order to statistically compare the DHQI 158 

scores for Skensved stream to those for the control sites (P<0.05). 159 

To characterise stream flow during the sampling period, we used the 2010 160 

hydrograph for the Lille Vejle stream (see Appendix A, Figure A) as a surrogate 161 

measure for daily discharge in Skensved stream, since no direct data for Skensved 162 

stream from 2010 exists. Lille Vejle stream is located just north (ca. 13.5 km) of 163 

Skensved stream, with a catchment area of 26 km
2
. The daily discharge has been 164 

normalised to the size of the catchment area. 165 

2.3 General water chemistry 166 

Concentrations of oxygen and macro- and micro-nutrients in the stream water, as well 167 

as biological oxygen demand (BOD5), conductivity, pH and temperature were measured 168 

at all sampling sites (see Fig. 1 and Table 1). Conductivity and oxygen concentrations 169 

were measured twice using a WTW multi-350i meter; pH was measured with a (YSI-170 

60) pH-meter. Water samples were collected twice in 2010 (June and August) in a well-171 

mixed part of the stream and analysed for general water chemistry parameters, as 172 

described in more detail below. 173 

The following parameters were analysed according to European standards: BOD5 174 

(DS/EN 1899 1999), ortho-phosphate (DS/EN 1189-1997) and ammonia-N (DS 11732 175 

2005). Nitrate-N was analysed using Lachat-methods (Lachat Instruments, USA, 176 

Quickchem. No. 10-107-06-33-A (Salycate method)). Chloride concentration was 177 

measured using silver nitrate (AgNO3) (Clesceri et al., 1989). Concentrations of total-N 178 
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and total-P were measured (unfiltered samples) by the Kjeldahl-N method (Kjeldahl, 179 

1883) and Danish standard (DS-291), respectively. 180 

 Water samples for cation analysis were immediately filtered in the field through a 181 

0.45 µm cellulose filter into 50 mL PE containers, preserved by addition of 4 M HNO3 182 

(pH<2), and stored at 4°C until analysis. A Varian Vista MPX Axial View Inductively 183 

Coupled Plasma (ICP) OES was used for all measurements, with a Varian SPS3 auto 184 

sampler used for sample introduction. The laboratory control was prepared from 1,000 185 

mgL
-1

 single element stock solution (Perkin-Elmer). Calibration solutions were prepared 186 

from 100 mgL
-1

 multi-element standards CCS-4 and CCS-6 (Inorganic Ventures), with 187 

a calibration range of 20 to 25 mgL
-1

. All solutions, including blanks and samples, were 188 

prepared from Milli-Q water and stabilized with 1% v/v concentrated nitric acid. The 189 

detection limit for calcium, magnesium and sodium was 7.05 µgL
-1

, 7.16 µgL
-1

 for iron 190 

and manganese, and 28.09 µgL
-1

 for potassium. 191 

2.4 Sampling of xenobiotic organic compounds and pesticides 192 

Samples for benzene, toluene, ethylbenzene, m-/p- and o-xylene (BTEX), naphthalene, 193 

and the chlorinated solvents PCE, TCE, trans- and cis-1,2-DCE, 1,1-DCE, 1,1-DCA and 194 

1,1,1-TCA, were collected in 40 mL glass vials, at 23 locations (Fig. 1). Samples were 195 

immediately preserved using 4 M H2SO4 and stored at 4°C. The analytes were separated 196 

and identified by GC/MS using an Agilent 7980 gas chromatograph system equipped 197 

with an Agilent 5975C electron impact (70 eV) triple-axis mass-selective detector. 198 

Detection and quantification limits were determined as described by Winslow et al. 199 

(2006). The detection limit for all BTEX compounds were 0.11 µgL
-1

, except m,p-200 

xylene (0.22 µgL
-1

), and 0.14 µgL
-1

 for naphthalene. Other detection limits were 0.1 201 

µgL
-1

 for TCE, 0.05 µgL
-1

 for cis-DCE, and ranged from 0.01-17.7 µgL
-1

 for all other 202 
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chlorinated compounds. 203 

 The event-triggered water sampler was deployed at sites 1 and 3 in 2010 and again 204 

at site 3 in 2011 (Fig. 1), and water samples were analysed for a broad selection of the 205 

most commonly applied herbicides, and for a series of banned herbicides most 206 

commonly found in groundwater (Table 3). During the main agricultural pesticide 207 

application season (May and June), event-controlled runoff sampling systems (Liess and 208 

von der Ohe, 2005) were used to characterise exposure to diffuse source pesticide 209 

contamination of the stream caused by heavy precipitation (defined as ≥10 mm). Each 210 

sampler consisted of a 1-L glass bottle mounted in the main flow channel of the stream 211 

with the tube top position 5 cm above the water level (Liess and von der Ohe, 2005). 212 

Rising water level triggered sampling, where the bottles were then filled passively 213 

through small (0.5 cm diameter) plastic tubes emerging from the bottle top. 214 

 The bottles were retrieved within 24 hours after each heavy precipitation event and 215 

stored at 4 
○
C until analysis. In total, four sampling events triggered the systems in 2010 216 

and 2011. The two events in 2010 occurred on May 15
th

 and May 30
th

 – to – June 1
st
, 217 

with 17.5 mm and 13 mm precipitation, respectively. Additionally in 2010, grab 218 

samples were collected on August 10
th

 during base-flow conditions in the streams in 219 

order to characterise pesticides mainly originating from base-flow groundwater 220 

discharge. The two events in 2011 occurred on May 22
nd

 and June 8
th

, on days having 221 

11 mm and 12 mm precipitation, respectively. 222 

 Time-integrated sampling of the bed sediment was conducted using a suspended 223 

particle sampler that was deployed in the main flow channel 10 cm above the stream 224 

bed at site 3 during the period from the beginning of May to the end of June 2011 (Fig. 225 

1).  The full description and mechanistic details are given in Laubel et al. (2001). 226 
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Pesticide analyses for the event-controlled samplers and grab sampling were conducted 227 

by Eurofins Miljoe A/S Laboratories, and the sediment sample was analysed at the 228 

Swedish University of Agriculture (Uppsala, Sweden; Phillips et al., 2000). Analyses of 229 

all the samples were based on solid phase extraction, and the final extract was analysed 230 

by GC-MS or LC-MS. The minimum detection limit was 0.01 μgL
-1

 for all pesticide 231 

compounds in water samples and 1 ng g
-1

 sediment (dry weight). 232 

2.5 Benthic macroinvertebrate sampling 233 

Benthic macroinvertebrates were sampled before (March) and after the main pesticide 234 

application season (August), using a standardised kick sampling procedure (25 × 25 cm 235 

hand net, 0.5 mm mesh size) (Danish EPA, 1998). Five locations were chosen along 236 

Skensved stream (Fig. 1). At each location, four kick samples were taken across each of 237 

three transects at positions located at distances 10 %, 50 %, 75 % and 100 % from the 238 

stream bank. The 12 sub-samples were pooled into one sample and preserved in 70 % 239 

ethanol. Macroinvertebrates were identified to the species level (when possible; 240 

otherwise genus) with only a few exceptions: Oligochaeta (order), Chironomidae (sub-241 

family), Ostracoda (order), Heteroptera (family), Simuliidae (family) and Psychodidae 242 

(family) (see also Tables B.2, B.3 and B.4 in the Supplementary Material for a complete 243 

species list). 244 

2.6 Control sites  245 

Control sites with “Least Disturbed Conditions” (Stoddard et al., 2006) in the region of 246 

Skensved stream from the Danish monitoring programme (NOVANA) were identified 247 

and data for them was extracted from the ODA database (https://oda.dk). Selection 248 

criteria were: (1) physically unmodified streams, (2) no contaminated sites or other 249 

(known) discharges impacting the stream, (3) the majority of the catchment, i.e. > 90 %, 250 
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should be forest or (wet or dry) meadows and (4) the streams must have at least a good 251 

ecological status according to the DSFI score (see also section 2.7.1).  252 

 Six streams fulfilled these criteria, and available data from the NOVANA database 253 

consisted of macroinvertebrate samples, characterisation of substrate, vegetation, 254 

hydrological parameters and water chemistry (see Appendix A, Table A). Data from the 255 

most recent available year (2009) was selected and includes information on benthic 256 

fauna from April, substrate and vegetation from June, and hydrological parameters and 257 

water chemistry from 2-12 dates per year. In addition, the percent cultivated area for the 258 

control sites range from 0-68%, and from 13-97% for the 5 sampling sites at Skensved 259 

(see also Appendix A, Table A.1 in the supplementary material). 260 

2.7 Ecological assessment methods 261 

2.7.1 Danish stream fauna index 262 

The Danish Stream Fauna Index (DSFI) is currently the method used by Denmark for 263 

the biological assessment of running waters in compliance with the EU WFD, and 264 

reports the status of oxygen sensitive species in a stream (Skriver et al., 2000). Since 265 

oxygen levels are affected by a number of contaminants, e.g. increased BOD5 or high 266 

nutrient levels, the index also provides some indication of the chemical status of a 267 

stream. The index is based on the presence/absence of a series of select species that are 268 

known to be intolerant or very tolerant to oxygen depletion (e.g. facilitated by organic 269 

pollution) (Dall and Lindegaard, 1995). The sampling procedure for DSFI is 270 

standardised, endeavouring to sample all microhabitats at a site. A DSFI index-value of 271 

7 represents high ecological status (unpolluted conditions) under the EU WFD 272 

(European Commission, 2000); other water quality classes include good, with values of 273 

5-6; moderate, with a value of 4; poor, with a value of 3; and bad, with values of 1-2 274 
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(Danish EPA, 2011). It should be noted that the DSFI converts taxonomic data into 275 

index values by considering their physiological sensitivity to high BOD5, thus this 276 

bioassessment metric is probably only partly independent of taxon richness and 277 

diversity measures. 278 

2.7.2 Toxic units 279 

We applied toxic units (TU) as a measure for xenobiotic and pesticide toxicity, 280 

calculating TU for all compounds detected in each sample (Tomlin, 2001). TU are 281 

calculated according to equation 1: 282 

 

( . ) log( / 50 )D magna i iTU C LC  (1) 283 

where TU(D.magna) is the toxic unit for pesticide i, Ci is the measured concentration of 284 

pesticide i and LC50i is the corresponding 48 h LC50 value for D. magna exposed to 285 

pesticide i. Both the maximum TU and summed TU were calculated, the latter 286 

consisting of all the compounds detected in each water sample. For summed TU, the 287 

suggested threshold value for observed acute effects in the field is ≥-3.0 (Liess et al., 288 

2008), which is based on results from the SPEARpesticides index (Liess and von der Ohe, 289 

2005). The summation of all TUs is based on the principle of toxic additivity; as the 290 

number of components in a toxic mixture increases, the range of deviation from toxic 291 

additivity has been suggested to decrease (Warne and Hawker, 1995). Differences 292 

between summed concentrations of all compounds and summed TU in base-flow and 293 

storm-flow water samples were tested using t-tests. 294 

 In order to compare the potential toxicity of the pesticides that were sorbed to the 295 

sediment with the log summed TU for water samples, the log summed TU for the 296 

sediment sample was calculated. In the calculations it is necessary to account for the 297 

fact that the sorption of pesticides to organic micro-particles may reduce their acute 298 
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toxicity to macroinvertebrates, as stated by Hill (1989) who reviewed the toxicity of 299 

pyrethroid insecticides to aquatic organisms and found that the toxicity of pyrethroids 300 

sorbed to soil particles was reduced by a factor between100 and 600 compared to the 301 

toxicity of fully dissolved pesticides. These findings were subsequently confirmed in 302 

other studies (e.g. Maund et al., 2002; Maul et al., 2008; Schulz & Liess 2001a, b). We 303 

therefore calculated log summed TU for sediments using equation (1). Results are 304 

presented using this range for the safety factor, noting that the lower-bound estimate is 305 

the most conservative value for decreasing the estimated ecological effect of the 306 

measured sediment concentrations.  307 

2.7.3 SPEcies At Risk indices 308 

The SPEcies At Risk indicator for pesticide contamination (SPEARpesticides) was 309 

originally developed to detect the effects of periodic pesticide contamination on stream 310 

macroinvertebrates as a result of normal agricultural practice. Macroinvertebrates are 311 

classified as being at risk or not at risk due to pesticides according to their physiological 312 

sensitivity to pesticides, life-cycle characteristics and recovery potential (Liess and von 313 

der Ohe, 2005), and is therefore independent of taxon-based data. The sampling 314 

procedure is the same as used in the DSFI. The biological traits were compiled using the 315 

freely available online SPEAR calculator 316 

(http://www.systemecology.eu/SPEAR/index.php). After the “species at risk” were 317 

defined, the SPEARpesticides index was computed as the relative abundance of the fraction 318 

of sensitive taxa for each site, according to:  319 

 

1

1

log( 1) *
*100

log( 1)














n

jj

pesticides n

jj

x y
SPEAR

x
 (2) 320 

where n is the number of taxa, xj is the abundance of the taxon j, and y is equal to 1 if 321 
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taxon j is classified as “at risk”, otherwise 0 (Beketov et al., 2009). The SPEARpesticides 322 

index has been connected to the EU WFD categories for ecological status; the 323 

recommended threshold value characterising good ecological status is 33% SPEAR 324 

(Beketov et al., 2009). This has been demonstrated for a range of stream types, up to 5 325 

m, in three different biogeographical regions (Schäfer et al., 2007; Schäfer et al., 2012), 326 

and so is applicable to Skensved stream (compare Table A.1 in the Supplementary 327 

Material). 328 

 Additionally, a SPEARorganics index was computed as the arithmetic mean of the 329 

species sensitivities for all species in the sample relative to that of D. magna: 330 

 
.log( 50 / 50 )j D magna jS LC LC  (3) 331 

where Sj is the sensitivity of the taxon j.  These values reflect taxon-specific sensitivity 332 

to organic contaminants in general (including both xenobiotics and pesticides), but not 333 

to a particular chemical (Beketov and Liess, 2008). Since only the physiological 334 

sensitivity of a taxon is considered for a given chemical, and not the ecological traits of 335 

the taxon, the SPEARorganics index is designed for detecting chronic exposure. EU WFD 336 

ecological status categories are currently not available for the the SPEARorganics index. 337 

What is evident, however, is that the more negative this index value becomes, the more 338 

serious a pollution event is with respect to the existing benthic macroinvertebrate 339 

community structure. 340 

 The temporal difference in SPEARorganics and SPEARpesticides between the March and 341 

August samples were evaluated using a t-test (P < 0.05, n = 5). Furthermore, we used 342 

Pearson’s product moment to test the correlation between SPEARorganics and the 343 

summed TU in the August base-flow samples (for pesticides, TCE and DCE), the total 344 

concentration of pesticides, and TCE and DCE in the August samples (P < 0.05). 345 
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Conformity of data with a normal distribution and homogeneity of variance were 346 

confirmed prior to performing the statistical tests (P < 0.05). 347 

2.7.4 Hazard quotient index 348 

The HQ index is applied to assess the likelihood of ecological impacts for observed 349 

concentrations in Skensved stream. The HQ method utilises the ratio (or quotient) of an 350 

exposure concentration divided by an effect concentration (equation 4), where an HQ 351 

equal to one represents the potential threshold for ecological risk (U.S. EPA, 1998), and 352 

is particularly used for chemicals where benchmark toxicity values are widely available: 353 

 

/ 50i i iHQ C LC  (4) 354 

where HQi is the hazard quotient for compound i, Ci is the concentration measured or 355 

estimated at the point of exposure for compound i, and LC50i is the effect concentration 356 

for compound i, which is a benchmark aqueous-phase toxicity value (e.g. LC50, EC50, 357 

NOAEC), and represents the dose or lethal concentration where 50% of the test 358 

population is killed. Here, the LC50 for test species representing different taxonomic 359 

groups (fish, macroinvertebrates, macrophytes and micro-algae) was chosen, as this is 360 

the benchmark utilised to produce ecotoxicology data for unknown species. 361 

Where possible, acute (48 h) toxicity values were extracted from the ECOTOX 362 

(U.S. EPA, 2011) or PAN databases (Kegley et al., 2008). If data were not available for 363 

a particular species, the web-based (and freely available) interspecies correlation 364 

estimation calculator was used (Raimondo et al., 2010), which uses least square 365 

regression to predict acute toxicity (i.e. the LC50 value) to a species, genus or family 366 

from the known toxicity of the chemical to a surrogate species. As with the TU method, 367 

we calculated the HQ for the sediment sample using the acute LC50 values for 48 h 368 

exposure of D. magna, but multiplied by a factor of 400 in order to account for the 369 
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reduced toxicity with respect to expected reduced bioavailability of pesticides bound to 370 

micro-particles (see also section 2.7.2). 371 

The HQ index is also used to determine threshold concentrations at which 372 

contaminant impacts may be observed for a selected group of compounds typically 373 

found in groundwater. Furthermore, these values were calculated for a broader range of 374 

reference species. In addition to D. magna which is widely used as the standard 375 

ecotoxicological indicator organism for chemicals in the environment (Baird et al., 376 

1989; Vandenbrouck et al., 2010), we also included sediment feeding chironomids, 377 

predatory stoneflies (Plecoptera), and the game fish Brown trout (Salmo trutta), the 378 

latter three being found in Skensved stream whereas D. magna are normally associated 379 

with slow moving or standing waters (Allen, 1995). 380 

2.7.5 AQUATOX 381 

AQUATOX is a comprehensive, process-based ecological model for simulation of an 382 

aquatic ecosystem together with the environmental fate and effects of various pollutants, 383 

such as nutrients and organic chemicals (see Park and Clough, 2004; Park et al.,2008; 384 

Sourisseau et al., 2008, and references therein). Here the model is used to determine if 385 

measured contaminant levels result in notable changes from a control (no contaminant) 386 

system, thereby evaluating ecological impacts for the 300 m section of the Skensved 387 

stream impacted by the TCE groundwater plume (see also Fig. 1). AQUATOX is also 388 

used to determine threshold concentrations, specifically, concentrations where a 389 

detectable change to the modelled ecosystem occurs. 390 

 The model was calibrated to the 10-year average stream discharge data (1995-391 

2004), 2005 measured TCE concentration (compare Fig. 7a in McKnight et al. (2010); 392 

Appendix C, Fig. C.1 in the supplementary material), and observed average BOD5 in 393 
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2010 (compare Sites 2-4 in Table 1 with Fig. C.2 in Appendix C). The BOD5 calibration 394 

was done by converting the measured BOD5 value into detritus loadings for organic 395 

matter in the water column, following equation 148b in Park and Clough (2010), then 396 

multiplying by 5 assuming 80 % refractory detritus (BOD5 represents labile detritus). It 397 

should be noted that D. magna was replaced by a compartment containing a 398 

representative species that is expected to be present at Skensved i.e. Gammarus pulex, 399 

and which fills this ecological niche (suspended feeder). 400 

 In order to better compare the AQUATOX results with actual concentrations in 401 

stream water and the HQ index, a “biomass perturbation concentration” was also 402 

determined. This value is the lowest concentration causing the predicted biomass pattern 403 

to differ significantly from the control simulation (i.e. no toxicant present), as shown by 404 

the positioning of the arrow in Fig. 4. Finally, a pseudo-sensitivity analysis – in the 405 

form of a scenario analysis – was conducted (only for TCE) to assess the dominant 406 

controls potentially affecting stream ecosystems, particularly the hydromorphological 407 

parameters. The results are available in the Supplementary Material (Appendix D). 408 

 409 

3. Results and Discussion 410 

3.1 Field surveys of linkages between pressures and ecological quality 411 

3.1.1 Hydromorphological conditions 412 

There was no significant difference between the average Danish Habitat Quality Index 413 

score (DHQI) for the Skensved sites compared to control sites (P > 0.05). The site-414 

specific DHQI score for the Skensved sites ranged from 27 to 44, which are all above 415 

the threshold value characterising good physical habitat quality. Reduced physical 416 

habitat quality and heterogeneity, caused by heavy stream maintenance such as dredging 417 
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and channelization that are side-effects of agricultural production, reduces the number 418 

of available types of physical habitats for macroinvertebrates (Friberg et al., 2009). The 419 

influence of poor physical habitat quality is known to reduce macroinvertebrate 420 

diversity and index scores for several macroinvertebrate indices (e.g. the ASPT and 421 

DSFI indices) (Dunbar et al., 2010; Friberg et al., 2009). Moreover, poor physical 422 

conditions has been shown to directly or indirectly reduce the SPEAR index score 423 

(Rasmussen et al., 2012). However, a DHQI score of 26 or above has been shown to be 424 

indicative of good ecological status using the DSFI index (DSFI score ≥ 5) (Wiberg-425 

Larsen et al., 2010). Since the substratum composition and flow characteristics were not 426 

significantly different between study sites and control sites, these parameters are 427 

unlikely to be a constraining factor for high SPEAR scores at the study sites 428 

(Rasmussen et al., 2012). Consequently, the physical conditions in Skensved stream are 429 

not considered to be a constraining factor for achieving good ecological status. 430 

 431 

3.1.2 General water chemistry 432 

In general, concentrations of measured macro- and micro- nutrients along the stream 433 

stretch were comparable to control conditions (Table 1) (Boutrup et al., 2007). 434 

Table 1 435 

 Specifically, concentrations of nitrate-N were highest in early summer probably due 436 

to tile drainage from loamy agricultural fields. Nitrate-N concentrations were lower 437 

during summer and early autumn when tile drain flow ceased and base-flow conditions 438 

were dominating (Fig. 2) (Kronvang and Bruhn, 1996). In contrast to the nitrate 439 

observations, phosphate-P concentrations were higher in the late summer, i.e. during 440 

low or base-flow conditions (Fig. 2), indicating that the main source of phosphate-P was 441 
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local point sources (e.g. septic tanks from urban settlements) (Kronvang and Bruhn, 442 

1996). 443 

 BOD5 was highest (maximum 2.4 mgL
-1

) in August at sites 3 and 4 (Fig. 1), where 444 

the system is dominated by base-flow. This most likely reflects transport from the 445 

groundwater deposits to the stream at these sites. In consequence, BOD5 briefly 446 

increased when dilution was reduced due to the decreased discharge in August. 447 

Consequently, high BOD5 at sites 3 and 4 probably only persisted for 4 to 6 weeks 448 

during the summer (see Table 1, Supplementary material A, Fig. A). Friberg et al. 449 

(2010) showed that increasing BOD5 reduced the abundance of a series of 450 

macroinvertebrate taxon groups, especially species of stoneflies (Plecoptera) and caddis 451 

flies (Trichoptera). Despite a clear reduction of these species at BOD5 concentrations of 452 

2 to 3 mg L
-1

, all species remained present at BOD5 concentrations around 2 mg L
-1

. We 453 

therefore suggest that concentrations of BOD5 and nutrients at the study sites were of 454 

limited importance and therefore should not affect the aim of obtaining good ecological 455 

status at any of the Skensved stream sites. 456 

 The site-specific DSFI scores confirm this, as all sites were characterised by DSFI 457 

scores of 4 in March and August (Table 2) indicating no site-specific or temporal effects 458 

of BOD5. However, a DSFI score of 4 is indicative of moderate ecological status 459 

probably reflecting effects of other stressors. Since the DSFI is intended for detecting 460 

effects of organic pollution (BOD5), and because it only employs a categorization into 461 

seven groups, the DSFI index is only poorly suited to capture the effects of other 462 

stressors (see e.g. Friberg et al., 2009). 463 

Table 2 464 

 465 
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3.1.3 Xenobiotic organic compounds and pesticides from groundwater 466 

The results of the 2010 field campaign produced comparable results to the 2005 studies 467 

for TCE concentration in stream water (McKnight et al., 2010) albeit with the maximum 468 

concentration being approximately 20 times lower, peaking at 0.76 ugL
-1

 (Fig. 2), and 469 

the peak location being shifted ca. 200 m downstream. The fact that these values are 470 

much lower compared to the 2005 campaign is not surprising as the field site has been 471 

under hydraulic containment (pump-and-treat) since 1999. 472 

Figure 2 473 

 In total ten different pesticides (herbicides) were detected during August base-flow 474 

conditions reflecting pesticide entry mainly via groundwater inflow (see also Appendix 475 

B, Table B for the complete list of compounds screened, detected, and their 476 

concentrations). Of the sixteen herbicides detected in total (both base-flow and storm-477 

flow water samples), five had maximum concentrations in August during base-flow, 478 

indicating groundwater inflow as an important source for pesticides in Skensved stream. 479 

Table 3 480 

 To evaluate the chemical toxicity, the log summed TU for the groundwater-based 481 

pollutants (TCE, cis-1,2-DCE and pesticides) ranged from -4.0 to -3.7, which is an order 482 

of magnitude below the suggested threshold value (-3.0) where acute effects in the field 483 

can be expected (compare August data, Table 3). Due to the continuous input of 484 

groundwater-based pollutants, we additionally used the SPEARorganics index to evaluate 485 

potential ecological effects (Beketov and Liess, 2008). SPEARorganics ranged from -0.52 486 

to -0.32 at the five sampling sites. SPEARorganics showed no significant correlation with 487 

the log summed TU for the respective sites, and there was no significant difference in 488 

SPEARorganics between March and August samples (Table 2). Moreover, the observed 489 
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SPEARorganics values for the Skensved sites are within the range previously found in 490 

uncontaminated streams (Beketov and Liess, 2008). Consequently, groundwater-based 491 

inflow of TCE, cis-1,2-DCE and pesticides should not show any detectable effects on 492 

the macroinvertebrate communities in Skensved stream. 493 

 The results of both the log summed TU and SPEARorganics are consistent with the 494 

results of the HQ index (Table 3), utilising the maximum concentration detected for all 495 

compounds in stream water (see Appendix B for pesticides; Fig. 3 for xenobiotics) – for 496 

D. magna. Specifically, the HQ values for all detected concentrations were orders of 497 

magnitude below the threshold of potential for ecological risk. The herbicide dinoseb 498 

had the highest value (HQ = 2.4E-04), and this was still four orders of magnitude below 499 

the threshold. These results showed that observed concentrations at Skensved stream for 500 

compounds originating in groundwater are far below those required for an ecological 501 

impact according to the HQ index. 502 

3.1.4 Pesticides related to spring spraying 503 

In total, 18 of the 35 pesticides screened were detected in the event-triggered water 504 

samples (Appendix B). Sixteen of the detected compounds were herbicides, the other 505 

two were fungicides; no insecticides were detected in either year. The average summed 506 

concentration of pesticides for all storm-flow samples in May/June 2010 and 2011 (0.85 507 

± 0.38 μgL
-1

) was not significantly different from the average summed concentration for 508 

the 2010 August base-flow samples (0.55 ± 0.32 μgL
-1

) (P = 0.212). Moreover, the 509 

average log summed TU for all storm-flow samples (ranging from -4.9 to -3.6) was not 510 

significantly different from the average log summed TU for the August base-flow 511 

samples (P = 0.714), and were below the threshold for expected impacts (log TU ≥ -512 

3.0). The log summed TU results were again consistent with the results of the HQ index, 513 
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calculated specifically for the pesticides detected during the spring spraying season in 514 

the stream water (May-June), indicating that the observed concentrations are orders of 515 

magnitude below the threshold of potential for ecological risk (Table 3). 516 

However, application of the SPEARpesticides index resulted in values ranging from 517 

11.1 % to 19.9 % SPEAR abundance in March and from 4.3 % to 12.8 % SPEAR 518 

abundance in August. The decrease in average % SPEARpesticides abundance from before 519 

the spring pesticide spraying season (March) to after (August) was significant (P = 520 

0.002). Moreover, the %SPEARpesticides abundance in the six control streams (ranging 521 

from 32.2 % to 49.6 %, Table 2) was significantly higher than all SPEARpesticides values 522 

in both the March and August samples from Skensved stream (P < 0.001). Using 523 

SPEARpesticides as an ecological indicator tool, the temporal dynamics in the 524 

macroinvertebrate community structure clearly showed a response to the pesticide 525 

contamination, which is in direct contradiction to the results found for log summed TU 526 

and HQ for the pesticides detected in the storm-flow samples.  527 

 The results of the SPEARpesticide index corroborate, however, the results found in the 528 

sediment sampler. Six pesticides were detected in the sediment sampled during May-529 

June in 2011 (Table 3); one herbicide, one fungicide and four insecticides. Both the 530 

fungicide hexachlorobenzene and the insecticide HCH-gamma (lindane) are EU priority 531 

pollutants. The pesticides that were detected with the suspended sediment sampler have 532 

moderate to highly lipophilic physicochemical properties suggesting that they were 533 

sorbed to organic particles (Liess et al., 1996) and transported from adjacent fields, 534 

either along preferential fracture flow paths or drainage systems during heavy rain falls. 535 

The lipophilic nature of the pesticides, in conjunction with the low half-lives associated 536 

with these compounds (U.S. EPA, 2011), supports our conjecture that they have most 537 
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likely originated from spraying in the spring season or slow release from strongly-bound 538 

pesticide residues. 539 

 Moreover, the chemical toxicity calculated as the log summed TU for the sediment 540 

sample ranged from -0.14 using the most conservative factor (= 100) to -0.92 (factor = 541 

600), values which are more than two orders of magnitude above the threshold for 542 

expecting ecological effects in the field. In fact, this is the highest summed TU ever 543 

observed for Danish streams (compare with Rasmussen et al. 2011b, Friberg et al., 544 

2003). Notably, the result of the TU calculation for sediment contrasted markedly with 545 

those determined by the HQ index, where values were between two and six orders of 546 

magnitude below the potential threshold for risk (Table 3). The reason for this lies in the 547 

method used to define threshold values: the HQ index threshold is based on the  LC50 548 

48h acute toxicity test values for D. magna, whereas the log TU threshold was defined 549 

via the SPEARpesticides index which is based on fully-integrated population responses in 550 

the field and therefore will be more sensitive. 551 

Notably, the SPEARpesticides scores correspond to poor ecological status for all 552 

March samples and to poor-to-bad status for the August samples. Considering that the 553 

currently-used ecological indicator (DSFI) showed no temporal changes, nor a response 554 

to pesticide pollution, our results indicate that its usefulness as a bioassessment metric 555 

may be limited for xenobiotic compounds, a conclusion also reached by Friberg et al. 556 

(2009). Moreover, our results highlight the importance of considering the sediment in 557 

the evaluation of pesticides in streams. 558 

The low SPEARpesticides values in March (before the main pesticide application 559 

season) could reflect the fact that the macroinvertebrate community structure has 560 

adapted to several decades of agriculture in the catchment, which may have slowly 561 
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reduced the abundance of sensitive species. Such long-lasting effects have been 562 

documented in two previous studies (Liess and von der Ohe, 2005 and von der Ohe et 563 

al., 2009). However, more field studies with high levels of temporal detail are needed to 564 

further document the long-term effects of the agricultural past. 565 

3.2 Evaluating the ecological impact with AQUATOX 566 

3.2.1 TCE model results 567 

The application of the AQUATOX model in this section is undertaken to improve the 568 

understanding of TCE on the stream ecology. This forms the basis for determination of 569 

the “loading threshold range” (section 3.2.2) and extension of our results to a broader 570 

group of contaminants (section 3.3.3). Figures 3 and 4 present the ecological impact 571 

results for TCE for a variety of parameters. The calculated bioaccumulation factor 572 

(BAF) as a function of time for five species (Chironomid, Caddisfly, Mayfly, Stonefly 573 

and Brown trout) is presented and can be compared with the TCE concentration in 574 

stream water in Fig. 3a, and the TCE half-life in sediment in Fig. 3b, for a modelled 575 

timeframe of three years. Most BAF values stayed constant over the entire 3 year 576 

simulation period with two notable exceptions. The modelled fish species Brown trout 577 

consistently had an elevated value during the summer months. This was only slight for 578 

the adult species (ca. 7 L kg
-1

, Fig. 3a), but was quite large for the juvenile species 579 

(maximum of ca. 240 L kg
-1

, only depicted in Fig. 3a), corresponding to the elevated 580 

TCE concentration in stream water. 581 

 In contrast, the modelled sediment feeder Chironomid had an elevated BAF during 582 

the winter months (of ca. 35 L kg
-1

, Fig. 3a). The reason for this can be seen in Fig. 3b, 583 

which plots BAF versus TCE half-life in the sediment and clearly shows an elevated 584 

TCE concentration in the streambed sediment during the winter months. It should be 585 
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noted that these results (i.e. including BOD5 calibration) are slightly different to those of 586 

McKnight et al. (2010) who presented somewhat elevated BAF values for all modelled 587 

species. However, the overall conclusions are similar to those of the earlier work. 588 

Notably, the sensitivity analysis revealed that stream discharge was found to be the 589 

factor most limiting the modelled biomass concentration for all species – pointing to the 590 

importance of hydromorphology in the obtainment of good ecological status (see also 591 

Appendix D for more specific details). 592 

Figure 3 593 

3.2.2 Threshold findings for TCE 594 

The simulated base-case chemical loading (using the point-source loading option to 595 

input the chemical into the model) was increased (or decreased) from 5.5 kg yr
-1

 – as 596 

measured at the site and resulting in maximum modelled TCE stream water 597 

concentrations of 10 gL
-1

 – by factors of ten in order to establish the “loading 598 

threshold range” at which toxicant stress could perturb the modelled AQUATOX 599 

ecosystem. Figure 4 presents the stream discharge and predicted biomass pattern for two 600 

species – chironomid (Fig. 4a) and stonefly (Fig. 4b) – for a modelled timeframe of 601 

three years.  602 

 The results show that there was little deviation between the control and loading 603 

scenarios for the biomass patterns of both species up to 55 kg yr
-1

. Thus, the threshold 604 

for impact for TCE lies between 55 and 550 kg yr
-1

 for both species, where the 605 

predicted biomass decreased by ca. 50 %. Results also show that stream discharge was 606 

the limiting factor most influencing the modelled biomass concentration for all species. 607 

The model thus supports the evaluation in section 3.1 by the other four methods, 608 

indicating that TCE does not affect the attainment of good ecological status in Skensved 609 
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stream. 610 

Figure 4 611 

3.2.3 Threshold findings for other compounds 612 

Both the AQUATOX model and the HQ index were used to generalise the findings in 613 

the case study to other compounds of interest, as well as to evaluate chemical impacts 614 

from a species-specific perspective. Specifically, the models were extended to 615 

contaminants that are typically arising from contaminated sites (benzene, PCE, and 616 

naphthalene), or pesticides found in Danish groundwater. The AQUATOX results for 617 

all compounds are presentedfor three selected organisms: Chironomid, Stonefly and 618 

Brown trout (Table 4). With respect to TCE, the “loading threshold” for all organisms 619 

ranged from 55 – 550 kg yr
-1

, which is well above the actual site-specific loading 620 

determined for the site. However, PCE and naphthalene produced lower “loading 621 

threshold ranges” than TCE for at least one modelled organism. It is interesting to note 622 

that, in general, the thresholds determined for benzene, TCE, naphthalene and PCE 623 

corresponded to typical contaminant mass discharge ranges that could be expected at 624 

contaminated sites leaching into groundwater (ITRC, 2010). 625 

 The results for the “biomass perturbation concentrations” are given in Table 4. 626 

These values can be compared with examples of concentration values currently 627 

measured in the field and reported in the literature (Table 4) and range from 0.001 to 628 

0.023 mgL
-1

 for xenobiotics (see e.g. Conant et al., 2004; Gomez-Belinchon et al., 1991; 629 

McKnight et al., 2010; Yamamoto et al., 1997) and from 0.001 to 0.3 mgL
-1

 for 630 

pesticides (McKnight et al., 2011; Styczen et al., 2003). The results indicate that the 631 

compounds PCE, naphthalene and glyphosate had perturbation concentrations close to 632 

or below values actually measured in surface water. 633 
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Table 4 634 

 For comparison purposes, Table 4 also presents the HQ index results for the same 635 

subset of compounds and species considered above. We first calculated HQ using a 636 

concentration that is at the high end of the range reported in the literature. MCPA and 637 

glyphosate had the highest values (HQ = 0.1), but these were still an order of magnitude 638 

below the recommended threshold value of one. We then calculated the concentration 639 

values needed to reach the threshold and compared them to the values reported in the 640 

literature. Naphthalene had a threshold value of 0.011 mgL
-1

, and was thereby also the 641 

closest to the actual measured and reported values in the literature, although again, it 642 

differed by an order of magnitude. PCE, MCPA, metamitron and glyphosate also had 643 

fairly low thresholds for at least one species (ranging from 0.02 to 3.0 mgL
-1

), but these 644 

are still at least one order of magnitude below the threshold (MCPA), and in most cases, 645 

far below actual measured concentrations in surface water. These results suggest that 646 

contaminant concentrations have to be well above the values being reported in the 647 

literature before the HQ index will predict an ecological impact. 648 

 It is interesting to note that the HQ index results discussed above are species-649 

dependent. For example, the lowest threshold concentrations for naphthalene, PCE, 650 

MCPA and metamitron were obtained either for the predatory invertebrate Stonefly or 651 

for the sediment feeder Chironomid, and not for (the suspended feeder) D. magna. In 652 

fact, the pesticide glyphosate was the only compound for which the D. magna HQ 653 

threshold concentration provided the lowest (i.e. most conservative) value. This finding 654 

is worrying, considering that D. magna is often used as a standard ecotoxicological 655 

indicator. 656 

 When comparing the HQ index results to AQUATOX, it should be mentioned that, 657 
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although the modelling in AQUATOX employs the same LC50 values that are used in 658 

the HQ calculations, the model also includes more sensitive values (i.e. EC50 growth 659 

and reproduction) to assess food web interactions. Not surprisingly, the perturbation 660 

concentrations were significantly lower than the HQ index threshold values. In about 661 

half the cases, the AQUATOX concentration thresholds were about 100 times lower 662 

than those obtained using the HQ index (compare Table 4). 663 

 664 

4. Implications for the EU WFD 665 

The results in this paper clearly demonstrate the need for re-evaluating existing 666 

ecological indices and ensuring that the best available methods are used to determine 667 

the ecological status of streams. It is essential that the indices are capable of capturing 668 

all the effects of anthropogenic stressors that could be (or have been) impacting 669 

ecosystems. 670 

This study demonstrated that the SPEARpesticides index, when evaluated in 671 

conjunction with TU, was capable of distinguishing stressor effects, i.e. for xenobiotic 672 

organic compounds and pesticides. Furthermore, SPEARpesticides was additionally able to 673 

capture seasonal trends for pesticide application. Further work is still needed in order to 674 

connect the SPEARorganics index to the EU WFD ecological classes. In contrast, the 675 

DSFI index could neither distinguish stressor effects, nor capture seasonal effects, 676 

perhaps due to the fact that its’ intended use is for detecting the effects of organic-677 

caused oxygen depletion. Others have obtained similar results, for example, the German 678 

Saprobic index – which was also constructed to detect the effects of organic pollution – 679 

was less successful in capturing the effects of contaminants than SPEARpesticides 680 

(Schletterer et al., 2010).  681 
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It is interesting that the TU results, which are only a measure of chemical toxicity, 682 

were also capable of distinguishing stressor effects, identifying the compounds found in 683 

the sediment sample as being the only significant factor for ecological status. In 684 

contrast, the HQ index and the DSFI index were not capable of isolating this stressor. 685 

More work is needed, however, to determine whether the calculation method applied to 686 

determine the HQ is appropriate for contaminants bound to sediment. 687 

 Our study emphasized that contaminated sites may also impact streams; although 688 

no ecological effects were found, the AQUATOX model simulations showed that 689 

stream ecology may be more sensitive to changing flow conditions and other 690 

contaminants. Accordingly, it may be challenging to find an index that can truly 691 

separate and identify the most important stressors on a stream environment, but given 692 

the link between science and policy – where such indices are used by policy makers in 693 

defining water quality limits – it becomes a crucial issue (Kitsiou and Karydis, 2011).  694 

Finally, the overall results are similar to other studies which demonstrate ecological 695 

degradation due to agro-industrial runoffs and hydromorphological alterations in 696 

streams. However, in contrast to other studies we have shown that for river restoration 697 

to be successful, risk-mitigation procedures are needed not only along the mid- and 698 

lower reaches of rivers, but also on the upper reaches. To date, the upper parts of 699 

catchments have not been considered under the WFD in most EU countries. 700 

 701 

5. Conclusions 702 

This study has shown that traditional approaches for determining ecological impact 703 

fail to account for all potential stressors affecting benthic macroinvertebrate 704 

populations in streams. In particular: 705 
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 The hydromorphology and other general water chemistry parameters were 706 

comparable to control conditions, so these pressures are not likely to have 707 

obstructed the obtainment of good ecological status at Skensved stream. The 708 

DSFI results indicated only moderate ecological conditions, probably reflecting 709 

the effects of other stressors. 710 

 All methods applied in this study confirmed that the xenobiotic stressor TCE, 711 

discharging into the stream from a contaminated site, did not impact benthic 712 

macroinvertebrates at measured stream concentration levels.  713 

 Many pesticides were measured under stream base-flow conditions, indicating 714 

that groundwater inflow is an important source of pesticides to the Skensved 715 

stream. However, the methods applied (TU, SPEARorganics, HQ index, 716 

AQUATOX) could detect no significant effects to the macroinvertebrate 717 

communities. Similar results were obtained (TU, HQ index, AQUATOX) for 718 

pesticides thought to originate from the spring spraying season, at observed 719 

concentrations in the stream water. 720 

 The SPEARpesticides index, however, indicated that Skensved stream was far from 721 

obtaining good ecological status due to pesticide contamination. We found a 722 

reduction in the abundance of species characterised as sensitive to periodic 723 

pesticide pollution (SPEAR) from before to after the main pesticide application 724 

season. Moreover, the %SPEAR abundance was low also before the main 725 

pesticide application season, which could indicate that the macroinvertebrate 726 

communities have partly adapted to frequent disturbances in the form of 727 

pesticide input in the catchments’ long history of agricultural 728 

activity.Specifically, the SPEARpesticides scores corresponded to poor ecological 729 
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status before the pesticide spraying season (March samples), and to poor-to-bad 730 

status after (August samples). 731 

 Predictive modelling indicated that the threshold values for the investigated 732 

compounds in the water phase are much higher than the actual concentrations 733 

detected in Skensved stream (i.e. not bound to sediment). These results were 734 

suggestive that most likely the peak concentrations for pesticides in the water 735 

phase had not simply been missed, pointing to the presence of another source for 736 

the ecotoxicity. Sediment sampling at the site was motivated by these modelling 737 

observations. 738 

 Chemical toxicity, evaluated using the TU approach in conjunction with the 739 

SPEARpesticides index, identified the sediment-bound pesticides as the source for 740 

ecotoxicity, i.e. log summed TU ranged from -0.14 to -0.92, values which are 741 

more than two orders of magnitude above the threshold for expecting ecological 742 

effects in the field; the highest ever observed value for a Danish stream.   743 

We suggest that these results can be generalized to other sites, and although 744 

these findings are specific for the particular stream reach studied at Skensved, we 745 

believe it may be indicative for a response at the catchment-scale. However, further 746 

investigation is necessary to confirm the generality of the conclusions. In addition, a 747 

thorough analysis of historic stressors is still needed to confirm that chemical 748 

stressors dominate the ecotoxicity at this field site. 749 

The results presented reflect the importance for identifying and implementing 750 

suitable ecological assessment methods that are capable of capturing (and ideally 751 

separating) the effects of all anthropogenic stressors potentially affecting 752 

ecosystems, in order to assess compliance with the goals of the EU WFD. Results 753 
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demonstrate that some commonly used methods for the assessment of ecological 754 

impacts are not sufficient for this purpose. Alternatives must be considered and may 755 

lead to a determination of poorer ecological status in many surface water bodies. 756 

Predictive modelling techniques can be especially useful in supporting early 757 

decisions on prioritising contaminated sites or streams, serving to identify 758 

knowledge gaps and thereby direct future data collection. These results are a strong 759 

argument for combining both bioassessment and modelling techniques to multi-760 

stressor field sites, especially before cost-intensive studies – such as sediment 761 

sampling – are conducted. 762 

 763 

Acknowledgements 764 

The authors gratefully acknowledge the support of the Danish Research Council project 765 

RiskPoint (grant no. 2104-07-0035). We also thank Jonathan Clough, Dr. Richard Park 766 

and Marjorie C. Wellman for their timely advice and support with AQUATOX. We 767 

would also like to acknowledge Uffe Mensberg and Henrik Stenholt (NERI field 768 

technicians), Mikael E. Olsson and Morton Andreasen (DTU lab technicians) and Bent 769 

Skov (DTU field technician). In addition, field data was collected and supported by 770 

Nanna I. Thomsen, Maria C. Loinaz and Daniele Promio. Furthermore, we thank the 771 

three anonymous reviewers who have greatly helped to improve this manuscript. 772 

773 



33 
 

References 774 

Allen JD. Stream Ecology. Structure and function of running waters. Dordrecht, The 775 
Netherlands: Kluwer Academic Publishers; 1995. 776 

Baird DJ, Barber I, Bradley M, Calow P, Soares AMVM. The Daphnia bioassay: a critique. 777 
Hydrobiologia 1989; 188/189: 403-6. 778 

Beketov MA, Liess M. An indicator for effects of organic toxicants on lotic invertebrate 779 
communities: Independence of confounding environmental factors over an extensive 780 
river continuum. Environ Pollut 2008; 156: 980-87. 781 

Beketov MA, Foit K, Schäfer RB, Schriever CA, Sacchi A, Capri E, et al. SPEAR indicates 782 
pesticide effects in streams - Comparative use of species- and family-level 783 
biomonitoring data. Environ Pollut 2009; 157: 1841-48. 784 

Beketov M, Liess M. 2012. Ecotoxicology and macroecology – Time for integration. Environ 785 
Pollut 2012; 162: 247-254. 786 

Boutrup S, van der Bijl L, Jensen PN, Svendsen LM, Grant R, Bøgestrand J, Jørgensen TB, 787 
Ellemann T, Ærtebjerg G, Bruus M, Søgaard B, Thorling L, Dahlgren, K. Water quality 788 
and Nature:  Condition, development and scientific compilation. National 789 
Environmental Research Institute, Aarhus University: Faglig report fra DMU Nr 646; 790 
2007 [In Danish]. 791 

Brüsch W. Almene vandvaerkers boringskontrol af pesticider og nedbrydningsprodukter. 792 
Danish EPA: Technical Report Nr. 26; 2007 [In Danish]. 793 

Cairns J, McCormick P.V. Developing an Ecosystem-based Capability for Ecological Risk 794 
Assessments. The Environmental Professional 1992; 14, 186-196. 795 

Camargo JA, Alonso Ãl. Ecological and toxicological effects of inorganic nitrogen pollution in 796 
aquatic ecosystems: A global assessment. Environ Int 2006; 32: 831-49. 797 

Clesceri LS, Greenberg AE, Eaton AD. Standard methods for the examination of water and 798 
wastewater. 20th edition. Washington, DC, USA: American Public Health Association; 799 
1989. 800 

Conant B, Cherry JA, Gillham RW. A PCE groundwater plume discharging to a river: influence 801 
of the streambed and near-river zone on contaminant distributions. J Contam Hydrol 802 
2004; 73: 249-79. 803 

Dall PC, Lindegaard C. An overview of Danish freshwater macroinvertebrates for the 804 
evaluation of pollution effects in lakes and streams. Copenhagen University, Denmark: 805 
Ferskvandsbiologisk Laboratorium; 1995. 806 

Danish EPA. Biological assessment of stream water quality. Danish EPA, Ministry of 807 
Environment and Energy: Guidelines, Nr. 5; 1998 [In Danish]. 808 

Danish EPA. Bekaempelsesmiddelstatistik 2009. Danish EPA: Orientering fra Miljøstyrelsen; 809 
2010 [In Danish]. 810 

Danish EPA. Bekendtgørelse om fastsættelse af miljømål for vandløb, søer, kystvande, 811 
overgangsvande og grundvand. Accessed: 812 
(https://www.retsinformation.dk/Forms/R0710.aspx?id=127762#K1); November 2, 813 
2011 [In Danish]. 814 

Dunbar MJ, Pedersen ML, Cadman D, Extence C, Waddingham J, Chadd R, Larsen SE. River 815 
discharge and local-scale physical habitat influence macroinvertebrate LIFE scores. 816 
Freshwater Biol 2010; 55:226-42. 817 

European Commission. Establishing a framework for community action in the field of water 818 
policy. European Commission: Directive 2006/06/EC, October; 2000. 819 

Feio MJ, Almeida SFP, Craveiro SC, Calado AJ. A comparison between biotic indices and 820 
predictive models in stream water quality assessment based on benthic diatom 821 
communities. Ecol Indic 2009; 9, 497-507. 822 



34 
 

Friberg N, Sandin L, Pedersen ML. Assessing the Effects of Hydromorphological Degradation 823 
on Macroinvertebrate Indicators in Rivers: Examples, Constraints, and Outlook. 824 
Integrated Environmental Assessment and Management 2009; 5: 86-96. 825 

Friberg N, Skriver J, Larsen SE, Pedersen ML, Buffagni A. Stream macroinvertebrate 826 
occurrence along gradients in organic pollution and eutrophication. Freshwater Biol 827 
2010; 55: 1405-19. 828 

Gomez-Belinchon JI, Grimalt JO, Albaigès J. Volatile organic compounds in two polluted rivers 829 
in Barcelona (Catalonia, Spain). Water Res 1991; 25: 577-89. 830 

Hill, IR. Aquatic organisms and pyrethroids. Pesticide Science 1989; 27: 429-57. 831 
Henriksen HJ, Troldborg L, Hoejberg AL, Refsgaard JC. Assessment of exploitable 832 

groundwater resources of Denmark by use of ensemble resource indicators and a 833 
numerical groundwater-surface water model. J Hydrol 2008; 348: 224-40. 834 

Hinsby K, Condesso de Melo MT, Dahl M. European case studies supporting the derivation of 835 
natural background levels and groundwater threshold values for the protection of 836 
dependent ecosystems and human health. Sci Total Environ 2008; 401: 1-20. 837 

Hose GC. Assessing the Need for Groundwater Quality Guidelines for Pesticides Using the 838 
Species Sensitivity Distribution Approach. Hum Ecol Risk Assess 2005; 11: 951-66. 839 

ITRC. Use and Measurement of Mass Flux and Mass Discharge. Washington, D.C.: Interstate 840 
Technology & Regulatory Council, Integrated DNAPL Site Strategy Team, 841 
www.itrcweb.org; 2010. 842 

Janniche GS, Mouvet C, Albrechtsen HJ. Vertical small scale variations of sorption and 843 
mineralization of three herbicides in subsurface limestone and sandy aquifer. J Contam 844 
Hydrol 2011; 123: 167-77. 845 

Kegley SE, Hill BR, Orme S, Choi AH. PAN Pesticide Database. North America, San 846 
Francisco, CA: Pesticide Action Network; 2008. 847 

Kitsiou D, Karydis M. Coastal marine eutrophication assessment: A review on data analysis. 848 
Environ Int 2011; 37: 778-801. 849 

Kronvang B, Bruhn AJ. Choice of sampling strategy and estimation method for calculating 850 
nitrogen and phosphorus transport in small lowland streams Hydrol Process 1996; 10: 851 
1483-1501. 852 

Laubel A, Kronvang B, Fjordback C, Larsen S. Time-integrated suspended sediment sampling 853 
from a small lowland stream. International Association of Theoretical and Applied 854 
Limnology 2001; 28: 1420-24. 855 

Liess M, Schulz R, Neumann M. A method for monitoring pesticides bound to suspended 856 
particles in small streams. Chemosphere 1996; 32:1963-69. 857 

Liess M, von der Ohe PC. Analyzing Effects of Pesticides on Invertebrate Communities in 858 
Streams. Environ Toxicol Chem 2005; 24: 954-65. 859 

Liess M, Schäfer RB, Schriever CA. The footprint of pesticide stress in communities - Species 860 
traits reveal community effects of toxicants. Sci Total Environ 2008; 406:484-90. 861 

Lu H, Axe L, Tyson TA. Development and applications of computer simulation tools for 862 
ecological risk assessment. Environmental Modeling and Assessment 2003; 8, 311-322. 863 

Maul JD, Brennan AA, Harwood AD, Lydy MJ. Effect of sediment-associated pyrethroids, 864 
fipronil, and metabolites on Chironomus tentans growth rate, body mass, condition 865 
index, immobilization and survival. Environ Toxicol Chem 2008; 27: 2582-2590. 866 

Maund SJ, Hamer MJ, Lane MCG, Farrelly E, Rapley JH, Goggin UM, Gentle WE. 867 
Partitioning, bioavailability, and toxicity of the pyrethroid insecticide cypermethrin in 868 
sediments. Environ Toxicol Chem 2002; 21: 9-15. 869 

McKnight US, Funder SG, Rasmussen JJ, Finkel M, Binning PJ, Bjerg PL. An integrated model 870 
for assessing the risk of TCE groundwater contamination to human receptors and 871 
surface water ecosystems. Ecol Eng 2010; 36: 1126-37. 872 

McKnight US, Rasmussen JJ, Kronvang B, Bjerg PL, Binning PJ. Occurrence of pesticides in 873 
surface and groundwater in two catchments on Sjaelland, Denmark. Vandkvalitet I 874 



35 
 

grundvand/overfladevane – hvordan griber vi det an? ATV Jord og Grundvand, 875 
Mødenr. 76; 2011: 25-32. ISBN 978-87-913-13585 [In English]. 876 

Norris RH, Hawkins CP. Monitoring river health. Hydrobiologia 2000; 435, 5-17. 877 
Novotny V, Bedoya D, Virani H, Manolakos E. Linking indices of biotic integrity to 878 

environmental and land use variables: multimetric clustering and predictive models. 879 
Water Science & Technology 2009; 59, 1-8. 880 

Park RA, Clough JS. AQUATOX (Release 2): Modeling Environmental Fate and Ecological 881 
Effects in Aquatic Ecosystems. Technical Documentation. U.S. EPA: Office of Water, 882 
Nr. EPA/823/R-04/002; 2004. 883 

Park RA, Clough JS, Wellman MC. AQUATOX: Modeling environmental fate and ecological 884 
effects in aquatic ecosystems. Ecol Model 2008; 213: 1-15. 885 

Park RA, Clough JS. AQUATOX (Release 3.1 Beta) Modeling Environmental Fate and 886 
Ecological Effects in Aquatic Ecosystems - DRAFT - Volume 2: Technical 887 
Documentation. U.S. EPA: Office of Water, Office of Science and Technology; 2010. 888 

Pedersen ML, Sode A, Kaarup P, Bundgaard P. Habitat Quality in Danish Streams. Testing of 889 
Two Indices and Development of a National Physical Habitat Quality Index. Silkeborg: 890 
National Environmental Research Institute, Scientific Report Nr. 590; 2006 [In Danish]. 891 

Pelley J. Restoring our rivers. Envir Sci Technol 2000; February 1, 87A-90A. 892 
Phillips JM, Russell MA, Walling DE. Time-integrated sampling of fluvial suspended sediment: 893 

a simple methodology for small catchments. Hydrol Process 2000; 14: 2589-2602. 894 
Raimondo S, Vivian DN, Barron MG. Web-based Interspecies Correlation Estimation (Web-895 

ICE) for Acute Toxicity: User Manual. Version 3.1. Gulf Breeze, FL: U.S. EPA, Office 896 
of Research and Development; 2010. 897 

Rasmussen JJ, Baattrup-Pedersen A, Larsen SE, Kronvang B. Local physical habitat quality 898 
cloud the effect of predicted pesticide runoff from agricultural land in Danish streams. J 899 
Environ Monitor 2011a; 13: 943-50. 900 

Rasmussen JJ, Baattrup-Pedersen A, McKnight US, Wiberg-Larsen P, Kronvang B. Buffer strip 901 
width and agricultural pesticide contamination in Danish lowland streams: Implications 902 
for stream and riparian management. Ecol Eng 2011b; 37: 1990-97. 903 

Rasmussen JJ, Wiberg-Larsen P, Baattrup-Pedersen A, Friberg N, Kronvang B. Physical 904 
structure of stream microhabitats influences the response of stream macroinvertebrate 905 
communities to pesticide stress. Environ Pollut 2012; 164: 142-149. 906 

Roessink I, Moermond CTA, Gillissen F, Koelmans AA. Impacts of manipulated regime shifts 907 
in shallow lake model ecosystems on the fate of hydrophobic organic compounds. 908 
Water Res 2010; 44, 6153-6163. 909 

Sánchez-Montoya MM, Vidal-Abarca MR, Suárez ML. Comparing the sensitivity of diverse 910 
macroinvertebrate metrics to a multiple stressor gradient in Mediterranean streams and 911 
its influence on the assessment of ecological status. Ecol Indic 2010; 10: 896-904. 912 

Schäfer RB, Caquet T, Siimes K, Mueller R, Lagadic L, Liess M. Effects of pesticides on 913 
community structure and ecosystem functions in agricultural streams of three 914 
biogeographical regions of Europe. Sci Total Environ 2007; 382: 272-85. 915 

Schäfer R, von der Ohe P, Rasmussen J, Kefford BJ, Beketov M, Schulz R, Liess M. Thresholds 916 
for the effects of pesticides on invertebrate communities and leaf breakdown in stream 917 
ecosystems. Environ Sci Technol 2012; DOI: 10.1021/es2039882. 918 

Schletterer M, Füreder L, Kuzovlev VV, Beketov MA. Testing the coherence of several 919 
macroinvertebrate indices and environmental factors in a large lowland river system 920 
(Volga River, Russia). Ecol Indic 2010; 10: 1083-92. 921 

Skriver J, Friberg N, Kirkegaard J. Biological assessment of running waters in Denmark: 922 
introdution of the Danish Stream Fauna Index (DSFI). Verhandlungen des 923 
Internationalen Verein Limnologie 2000; 27: 1822-30. 924 

Schulz R, Liess M. Toxicity of aqueous-phase and suspended particle-associated fenvalerate: 925 
Chronic effects after pulse-dosed exposure of Limnephilus lunatus (Trichoptera). 926 
Environ Toxicol Chem 2001a; 20: 185-190. 927 



36 
 

Schulz R, Liess M. Acute and chronic effects of particle-associated fenvalerate on stream 928 
macroinvertebrates: A runoff simulation study using outdoor microcosms. Arch Environ 929 
Con Tox 2001b; 40: 481-488. 930 

Sourisseau S, Basseres A, Perie F, Caquet T. Calibration, validation and sensitivity analysis of 931 
an ecosystem model applied to artificial streams. Water Res 2008; 42: 1167-81. 932 

Stoddard JL, Larsen DP, Hawkins CP, Johnson RK, Norris RH. Setting Expectations for the 933 
Ecological Condition of Streams: The Concept of Reference Condition. Ecol Appl 934 
2006; 16:1267-76. 935 

Styczen M, Wiberg-Larsen P, Aagaard A. Tag pulsen på pesticiderne i vandmiljøet. Vand & 936 
Jord 2003; 10(3): 84-7. 937 

Theodoropoulos C, Iliopoulou-Georgudaki J. Response of biota to land use changes and water 938 
quality degradation in two medium-sized river basins in southwestern Greece. Ecol 939 
Indic 2010; 10: 1231-38. 940 

Thrush SF, Hewitt JE, Hickey CW, Kelly S. Multiple stressor effects identified from species 941 
abundance distributions: Interactions between urban contaminants and species habitat 942 
relationships. J Exp Mar Bio Ecol 2008; 366: 160-68. 943 

Tomlin CDS. The pesticide manual, a world compendium. Farnham, Surrey, UK: Crop 944 
Protection Publications; 2001. 945 

U.S. EPA. Guidelines for Ecological Risk Assessment. Washington, DC: U.S. EPA, Risk 946 
Assessment Forum; 1998. 947 

U.S. EPA. ECOTOX database. U.S. EPA; 2011. 948 
Vandenbrouck T, Jones OAH, Dom N, Griffin JL, De Coen W. Mixtures of similarly acting 949 

compounds in Daphnia magna: From gene to metabolite and beyond. Environ Int 2010; 950 
36: 254-68. 951 

von der Ohe PC, Prüss A, Schäfer RB, Liess M, de Deckere E, Brack W. Water quality indices 952 
across Europe—a comparison of the good ecological status of five river basins. J 953 
Environ Monitor 2007; 9: 970-78. 954 

von der Ohe PC, De Deckere E, Prüss A, Munoz I, Wolfram G, Villagrasa M, Hein M, Brack 955 
W. Toward an integrated assessment of the ecological and chemical status of European 956 
river basins. Integrated Environmental Assessment and Management 2009; 5: 50-61. 957 

von der Ohe PC, Dulio V, Slobodnik J, De Deckere E, Kühne R, Ebert RU, Ginebreda A, De 958 
Cooman W, Schüürmann G, Brack W. A new risk assessment approach for the 959 
prioritization of 500 classical and emerging organic microcontaminants as potential 960 
river basin specific pollutants under the European Water Framework Directive. Sci 961 
Total Environ 2011; 409: 2064-77. 962 

Wagenhoff, A, Townsend, CR, Phillips, N, Matthaei, CD. Subsidy-stress and multiple-stressor 963 
effects along gradients of deposited fine sediment and dissolved nutrients in a regional 964 
set of streams and rivers. Freshwater Biol 2011; 56: 1916-1936. 965 

Warne MSJ, Hawker DW. The number of components in a mixture determines whether 966 
synergistic and antagonistic or additive toxicity predominate: The Funnel hypothesis. 967 
Ecotox Environ Safe 1995; 31: 23-8. 968 

Weston DP, Holmes RW, Lydy MJ. Residential runoff as a source of pyrethroid pesticides to 969 
urban creeks. Environ Pollut 2009; 157, 287-294. 970 

Whiteman M, Brooks A, Skinner A, Hulme P. Determining significant damage to groundwater-971 
dependent terrestrial ecosystems in England and Wales for use in implementation of the 972 
Water Framework Directive. Ecol Eng 2010; 36: 1118-25. 973 

Wiberg-Larsen P, Windolf J, Baattrup-Pedersen A, Ovesen NB, Larsen SE, Thodsen H, Sode A, 974 
Kristensen E, Kjeldgaard A. Danish stream conditions, 2009. Danish EPA: Faglig 975 
raport fra DMU Nr. 804, Danmarks Miljkøundersøgelser; 2010 [In Danish]. 976 

Winslow SD, V. PB, Martin JJ, Hallberg GR, Munch DJ, Frebis CP, et al. Statistical procedures 977 
for determination and verification of minimum reporting levels for drinking water 978 
methods. Environ Sci Technol 2006; 40: 281-88. 979 



37 
 

Yamamoto K, Fukushima M, Kakutani N, Kuroda K. Volatile organic compounds in urban 980 
rivers and their estuaries in Osaka, Japan. Environ Pollut 1997; 95: 135-43. 981 


