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Abstract 
 

Cell motility and migration are central to the development and maintenance of 
multicellular organisms, and errors during this process can lead to major diseases. Consequently, 
the mechanisms and phenomenology of cell motility are currently under intense study. In recent 
years, a new interdisciplinary field focusing on the study of biological processes at the nanoscale 
level, with a range of technological applications in medicine and biological research, has 
emerged. 

The work presented in this thesis is at the interface of cell biology, image 
processing, and stochastic modeling. The stochastic models introduced here are based on 
persistent random motion, which I apply to real-life studies of cell motility on flat and 
nanostructured surfaces. These models aim to predict the time-dependent position of cell 
centroids in a stochastic manner, and conversely determine directly from experimental recordings 
of cell motility the various motility parameters. This can aid the experimentalist to draw 
biologically relevant conclusions about cell-substrate interactions. 

The need to track cells in a large number of movies has raised the question of 
automation of cell tracking and that of reproducibility and robustness of cell centroid 
measurement. To address this, I wrote the PACT cell tracking program, which is optimized for 
uniform as well as non-uniform backgrounds such as nanostructured surfaces. Rapid progress in 
the field of the automation of cell tracking steered us into a comparative study of PACT’s 
performance against other cell tracking programs. We find that different programs yield 
somewhat different results when applied to the same movie of migrating cells but that the 
differences are not statistically significant. 

                      To introduce persistent random motion, I first present a study of idealized random 
motion in two dimensions. This finds direct application to experimental studies of cell membrane 
fluidity and membrane protein dynamics, and I improve on the methodology currently used in that 
field by showing how to assess the randomness of the motility and how to optimally determine the 
diffusion coefficient. By adding a persistence component to simple random motion I introduce the 
standard  Ornstein-Uhlenbeck process. I build on this commonly used cell motility model to 
address the challenges of working with real-life data: positional (centroid coordinate measuring) 
error and time discretization (due to finite frame rate in a movie of motile cells). This includes 
optimally measuring the motility parameters and balancing precision of measurement against the 
mathematical complexity of real-life models of cell motility. Finally, I expanded our 
understanding of cell response to surface topography by generalizing the Orstein-Uhlenbeck 
process to study cell motility on anisotropic substrates. I apply the general model to analyze cell 
motility on a series of anisotropic substrates and discuss the implications of our observations.  

                      This work is potentially useful to cell biologists by addressing their need for precise 
yet simple tools for studies of cell motility. The advances in the theoretical understanding of 
motility presented here bear the experimentalists’ needs in mind, and can find direct technological 
applications such as cell guidance and growth using nanotopography.  
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Resumé 
 

Cellemotilitet og -bevægelse er centrale for multicellulære organismers udvikling 
og opretholdelse, og fejl i disse processer kan føre til alvorlige sygdomme. Mekanismerne bag 
cellemotilitet og dens fænomenologi studeres derfor intenst. I de seneste år er et nyt 
interdisciplinært felt, med fokus på studiet af biologiske processer på nanoskala, og med en række 
teknologiske anvendelsesmuligheder i medicin og biologisk forskning, opstået.   

Arbejdet, der præsenteres i denne afhandling befinder sig på grænsefladen mellem 
cellebiologi, billedbehandling og stokastisk modellering. Jeg præsenterer stokastiske modeller, 
baseret på modeller for vedholdende tilfældig bevægelse (persistent random motion), og anvender 
dem på eksperimentelle real-life studier af cellemotilitet på glatte og nanostrukturerede 
overflader. Disse modeller bruges til at estimere den tidsafhængige position af cellers geometriske 
tyngdepunkt (centroid), og bestemme de forskellige motilitetsparametre direkte fra 
eksperimentelle målinger af cellemotilitet. Dette kan hjælpe eksperimentatorer med at drage 
biologisk relevante konklusioner om vekselvirkninger mellem celle og substrat. 

Behovet for at følge celler i stort antal har sat fokus på automatisering af 
celletracking (cell tracking) og reproducerbarheden og robustheden af bestemmelsen af 
positionen af cellers geometriske tyngdepunkt. For at håndtere dette, har jeg skrevet celletracking 
programmet PACT, som er optimeret for glatte såvel som nanostrukturerede overflader. Den 
hurtige udvikling indenfor feltet ledte os til et komparativt studie af PACT’s præstationsevne 
sammenlignet med andre celletracking programmer. Vi finder, at de forskellige programmer giver 
forskellige resultater, når de bruges på samme film af bevægende celler, men at forskellene ikke 
er statistik signifikante.  

For at introducere vedholdende tilfældig bevægelse, præsenterer jeg først et studie 
af idealiseret tilfældig bevægelse i to dimensioner. Dette finder direkte anvendelse i 
eksperimentelle studier af cellemembraners fluiditet og membranproteiners dynamik, og jeg 
forbedrer metodologien, som bruges i dette felt, ved at vise hvordan tilfældigheden i bevægelsen 
skal tolkes og hvordan diffusionskoefficienten estimeres optimalt. Ved at tilføje et vedholdende 
led (persistent component) til den simple tilfældige bevægelse introducerer jeg Ornstein-
Uhlenbeck processen, standardmodellen for vedholdende tilfældig bevægelse. Jeg bygger på 
denne model for at håndtere udfordringerne, som er til stede når eksperimentelle data håndteres: 
eksperimentel usikkerhed på den måle position og tids-diskretisering (pga. endelig frame rate i 
film af bevægende celler). Dette omfatter at måle motilitesparametrene optimalt og at vægte 
målepræcision mod den matematiske kompleksitet af real-life modeller for cellemotilitet. Endelig 
har jeg udvidet vores forståelse af cellers respons på overfladetopografi ved at generalisere 
Ornstein-Uhlenbeck processen for studie af cellemotilitet på anisotrope substrater. Jeg anvender 
den generaliserede model til at analysere cellemotilitet på en række anisotrope substrater og 
diskuterer betydningen af vores observationer. 

Dette arbejde har brugbarhed for cellebiologer, da det henvender sig til deres behov 
for præcise, men simple værktøjer til studier af cellemotilitet. Fremskridtene indenfor den 
teoretiske forståelse af cellemotilitet, som præsenteres her, tager hensyn til eksperimentatorers 
specifikke behov, og har direkte teknologiske anvendelsesmuligheder, såsom styring af cellers 
bevægelse og vækst vha. nanotopografi. 
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Abbreviation/Acronym Meaning 
  
PACT Program for Automated Cell Tracking 
TLA TimeLapseAnalyzer 
OU Ornstein-Uhlenbeck 
LSQ Least-squares fit 
wLSQ Weighted least-squares fit 
gLSQ Generalized least-squares fit 
 
Symbol 

 
Meaning 

  
r


 position vector 
m mss 
γ drag coefficient 

thermF


 thermal force 

D diffusion coefficient 
‹ … › expectation value 
δ(t) delta function 

)t(


 generalized white noise: ߦۃԦሺݐሻۄ ൌ ۄሻ′ݐԦሺߦሻݐԦሺߦۃ ,0 ൌ ݐሺߜ2 െ ݐ ′ሻ 
δt interval of time judged small relative to the persistence time 
N(μ,σ2) Gaussian distribution of mean μ and variance σ2 

j


 discrete, random, Gaussian-distributed 2D vector ( )1,0(N~j


 ) 

n  mean squared n-step displacement (see equation 1, section I.2.a) 

)D(est  estimator of D (function of measured quantities) 
N  number of ensemble elements 
Σ  [δn,m]: matrix with elements defined by equation 5, section I.2.a 

est  )D(estt4
maxn

gLSQ , simplifying notation 

Δ [δn]n=1,2..nmax: column vector with elements defined by equation 
2, section I.2.a 

N [j]j=1,2..nmax: column vector 
th

ir


  theoretical position vector (i.e. free from positional noise) 

σexp
2 variance of positional noise 

  time-average 

P Persistence time 

)t(v  instantaneous velocity: )t(v = d )t(r /dt 
(t)   Velocity autocovariance function:  )0(v)t(v(t)


 

ju


  secant velocity: ju

=    t/rr 1jj  


 

u
j  secant velocity autocovariance function:  )0(u)t(uu

j


 

δj,k
 

Kroneker-δ: 1 if j=k, 0 otherwise.

kP  power spectrum 

δj,k
 

Kroneker-δ: 1 if j=k, 0 otherwise.
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Cell motility and migration are central to the development and maintenance 

of multicellular organisms, and errors during this process can lead to major diseases that 
have been intensely scrutinized over the last decades, such as cancer (tumor formation 
and metastasis) (Hanahan and Weinberg 2000; Condeelis and Pollard 2006; Hanahan and 
Weinberg 2011), heart disease (accumulation of cholesterol and white blood cells on the 
arterial wall)(Saphir and Gore 1950; Prescott et al. 1989; Libby et al. 2002), and mental 
retardation (Golden 2001). Additionally, tissue formation during embryonic development, 
wound healing, and various immune responses involve synchronized cell migration 
(Detrich et al. 1995; Gurtner et al. 2008). It is clear that more insight into the basic 
mechanisms and phenomenology of cell motility may aid medical research and 
engineering to develop new therapeutic strategies for controlling conditions where 
mistakes do occur and thereby lead to disease.  

 
Recently, a new interdisciplinary field focusing on the study of biological 

processes at the nanoscale level, with a range of technological applications in medicine 
and biological research, has emerged. The work presented in this thesis is at the interface 
of cell biology, image processing, and stochastic modeling, aiming to theoretically 
characterize cell motility. Quantitative mathematical modeling of cell motility is a field 
that only recently has seen significant developments, both in terms of mathematical 
complexity of the models involved (Selmeczi et al. 2005; Tu and Grinstein 2005; 
Korobkova et al. 2006), but also in terms of discriminating between the motility patterns 
of different cell types (Grădinaru et al.; Selmeczi et al. 2005). The reason for this is, in 
part, that cell motility is a stochastic process and it has been challenging to model it based 
on experimental data (Selmeczi et al. 2005; Li et al. 2011). 

 
The stochastic models introduced here are based on persistent random 

motion (Li et al. 2008), which I apply to real-life studies of cell motility on flat and 
nanostructured surfaces. These models aim to predict the time-dependent position of cell 
centroids in a stochastic manner, and conversely determine directly from experimental 
recordings of cell motility the various motility parameters. This can aid the 
experimentalist to draw biological relevant conclusions about cell-substrate interactions. 

 



Chapter I  Introduction 

2 
 

1. Objective 
The objectives of this Ph.D. project have been to theoretically characterize cell 

motility, modeled as a stochastic process, and to implement this theoretical work in the 
form of computational tools directly useable by biologists interested in interpreting their 
experimental results. Additionally, the work presented herein attempts to show 
mathematicians and statisticians alike the underlying biological relevance of this 
theoretical study, and how their skills can be used to solve problems of current interest. It 
also aims to assist biologists in understanding the details and especially the caveats of the 
mathematical analyses performed, thereby helping them to correctly interpret the results 
of the statistical analysis performed by the tools provided. 

 
To that end, this work has focused on the following: 

 
 To expand the theoretical understanding of the persistent random motion models 

commonly employed to describe cell motility 
o by investigating how the positional measurement noise of the experimental 

data, as well as the discrete nature of the cell trajectories, affect the cell 
motility models and the parameters determined from the experimental 
data; 

o by proposing theoretical and computational methods to determine the 
motility models and related parameters directly from experimental data; 

o given prior observations (Selmeczi et al. 2005) of substrate-independence, 
but cell type-dependence of such persistent random motion models, by 
taking a step forward to understand the variation in motility within a group 
of cells belonging to the same cell type. This was done by assessing 
phylogenetic (species-of-origin dependent) effects on fibroblast motility 
models and related parameters; and 

o by determining the effect of substrate topography, and especially 
nanotopography, on cell motility. 

 To write a computer program, PACT, specifically optimized for tracking cells on 
the types of surfaces that have been investigated in this project. This is one of the 
computational tools that may be used to obtain quantitative data (cell centroid 
coordinate measurements) from experimental data (movies of motile cells). 

 To perform a comparative assessment of PACT versus other computer programs 
available commercially (Autozell (Baumann 2006)) or on an open-source basis 
(TLA (Huth et al. 2010; Huth et al. 2011)). This is a comprehensive study of 
reproducibility of results by quantitating the effect of using different cell tracking 
programs on the cell motility analysis and corresponding motility parameters 
values.  

 
 

2. Modeling cell motility 

a.  Biological mathematical modeling 
While mathematical applications in biology have a long history, there has been 

a significant increase in interest in the recent years. Most notable is the field of 
bioinformatics, fueled by the recent availability of whole-genome sequences and 
especially by the Human Genome Project (Venter et al. 2001). These advances provided 
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data-rich information sets which are difficult to understand without the use of analytical 
tools. Recent developments in the field of mathematics, especially chaos theory, have 
helped understanding complex and nonlinear biological processes (Skinner et al. 1992; 
Waldrop 1992). The intertwining of these two apparently separate fields has also been 
catalyzed by rapid developments in computer technology (both hardware and software), 
which enabled calculations and simulations that would have been prohibitive in the past. 
Finally, biology has seen a surge of interest in in silico experimentation due to various 
ethical concerns and unreliability or risk associated with animal and human research. 

 

b.  State of the art in modeling cell motility  
 Cell motility modeling has a long history, and has especially developed in the 
case of prokaryotic organisms (e.g. bacteria) (Berg and Brown 1972; Berg 2000; Gerbal 
et al. 2000; Mavroidis et al. 2004; Tu and Grinstein 2005; Korobkova et al. 2006; Lauga 
et al. 2006; Leoni et al. 2009). Part of the reason for that is that the biochemical 
mechanisms underlying prokaryote cell motility are very well established, and backed in 
some cases by a complete understanding of the structural and biochemical details of the 
molecular motors involved in flagellar movement, which in turn drives bacterial motility 
(Charon and Goldstein 2002; Berg 2003). 
 
 On the other hand, the mechanisms of eukaryotic motility are less well 
understood, despite a stronger interest from the medical community to elucidate its 
mechanisms. In parallel, modeling eukaryotic motility has generally remained simple, 
partly because of the lack of understanding of the underlying mechanistic details (Doob 
1942; Gail and Boone 1970; Schienbein and Gruler 1993; Shenderov and Sheetz 1997). 
However, recent advances in the field led to the development of increasingly complex 
motility models (Selmeczi et al. 2005; Li et al. 2008; Li et al. 2011). 
 
 The majority of the models proposed to model cell motility, be it prokaryotic or 
eukaryotic, are stochastic processes largely based on simple Brownian motion (Ornstein 
1919; Uhlenbeck and Ornstein 1930; Doob 1942). As described in section I.2.a, statistical 
analysis of biological data finds increasingly more applications as high-throughput, high-
sensitivity technologies become available. One such application is described in (Selmeczi 
et al. 2005), where the experimental time series for trajectories of motile cells are found 
to contain so much information that a systematic analysis yields cell-type specific motility 
models. 

 

c.  Advances made and outline 
This thesis presents research of an interdisciplinary nature, addressed to those with 

an interest and expertise in mathematical modeling of biological processes. As such, it 
has a strong statistics and modeling component, although I left most abstract concepts and 
various proofs in the appendices, so as to make it accessible to those in the biological 
sciences who have a primarily experimental interest. This work has been done constantly 
bearing in mind the experimentalists’ needs and indeed part of it has been done in 
collaboration with experimentalist colleagues at DTU and elsewhere. Consequently, I 
believe it would also be of value and a straightforward read to those in the biological 
sciences that have a minimal background in mathematics, but share an interest in 
modeling cell motility. 
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Chapter II sets the theoretical foundations for the types of cell motility studies 
described in the remainder of the thesis. It is structured by starting with the basic concepts 
of stochastic modeling (with an emphasis to biological applications and to the challenges 
encountered by experimentalists when dealing with real-life data). A layer of 
mathematical complexity is added to present the simplest stochastic process that is 
commonly used to describe cell motility, the standard Ornstein-Uhlenbeck (OU) process 
(Ornstein 1919; Uhlenbeck and Ornstein 1930). Again, I address the typical experimental 
challenges and propose several methods for handling them. These mathematical results 
are confirmed by in silico simulations of experimental-like data, which highlights the 
limitations and the strengths of the methods that I propose. 

 
Chapter III takes a step forward into experimental reality by presenting a program 

for automated cell tracking, PACT, which I wrote specifically for the type of cell motility 
data encountered by experimentalists. I make a comparative assessment of PACT against 
several other cell tracking programs available and draw conclusions on how the choice of 
program may affect the cell motility analysis results. I also take a step forward in this 
chapter to apply the purely theoretical concepts of chapter II to experimental data 
obtained with the use of PACT. The cell motility data (coordinates of cell centroids vs. 
time) allows for direct testing of the hypothesis that cell motility follows the standard OU 
process. I find, consistent with prior work in the field (Selmeczi et al. 2005), that 
deviations from the simplicity of the standard process exist, and given the large amount of 
experimental data available, I propose a variation of the standard OU process that models 
the observed data exactly and quantitate the relevant motility parameters. Following this 
proof-of-concept section, this method was applied to study cell motility on a range of 
nanostructured surfaces, and I draw preliminary conclusions on the effect of 
nanotopography on cell motility. 

 
Finally, in chapter IV I have generalized the standard OU process into a tensor 

form, which allows treatment of cell motility on anisotropic substrates. I develop the 
necessary theoretical concepts in parallel with analyzing experimental data of cell 
motility on substrates featuring nanogrooves. I determine the relevant motility parameters 
and draw a range of conclusions regarding differences between the isotropic motility 
encountered in chapters II and III and anisotropic motility. However, I underline that this 
research is preliminary and is purely meant to show the reader the future directions and to 
make recommendations for future analysis of experimental data of this type. 

 
Chapter V contains the concluding remarks, which sum up all of the results 

presented, take a step back to the Objective section of this thesis to show what has been 
accomplished, and present a number of other research avenues that this work opens. 

 

3. Future applications 
The work presented in this thesis has originally been intended to aid 

researchers in cell biology to better characterize the cellular response to a range of 
substrates (chemically modified or not, patterned with nanostructured elements or not, 
etc.), with the aim of identifying how the cell culture dishes used for cell culturing may 
affect their behavior. This research also aimed to ultimately lead to designing new micro- 
and nano-tools for mammalian cell cultures, such as microfluidic cell culture devices, 
which exhibit many advantages over 2-D monolayer cell cultures (Amatore et al. 2007-
2011). Long term applications on this type of research may be found in the field of 
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medical instrumentation engineering, where the basic research results of the type 
presented here can have direct and commercial applications. 
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This chapter is intended to give the reader an overview of some of the motility 
models most commonly used to study cell motility, and to present a methodology for 
extracting meaningful information from in silico-generated experimental-like data. This 
sets the foundation for dealing with real-life experimental data, which I will address in the 
ensuing part of this thesis. 

 
I will start with an introduction to the simplest stochastic process encountered in 

Nature, simple random motion (Doob 1942), which finds direct applications in biology in 
e.g. studies of membrane protein diffusion (Mueller et al. 2003) and cell membrane 
fluidity (Shinitzki and Henkart 1979). I digress on this topic to show how the method 
currently employed in the literature (Anderson et al. 1992a; Mueller et al. 2003) to 
determine the diffusion coefficients is suboptimal, and take a step forward by proposing 
an improved (and simpler!) method to determine the diffusion coefficient in 2D. Some of 
this research parallels work by Christian Vestergård (Vestergård 2009) which has focused 
on 1D diffusion. However, the extension from 1D to 2D diffusion is mathematically 
nontrivial, especially when particle positional read-out noise is taken into account (section 
II.3). 

 
Upon addition of a persistence term to simple random motion, I introduce simple 

persistent random motion (Campos et al.). This stochastic process has been commonly 
used to model cell motility where it is known as the standard Ornstein-Uhlenbeck (OU) 
process (Ornstein 1919; Uhlenbeck and Ornstein 1930). I introduce common challenges 
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that occur when dealing with experimental data, such as positional measuring noise of the 
cell centroids and discretization of cell tracks in time, and develop a method to account 
for these factors in the standard OU process. I also take a step forward by showing how to 
optimally measure the motility parameters from experimental-like data (i.e. generated in 
silico and subject to positional noise and time discretization effects) using power spectra 
analysis. While efficient, this method is mathematically cumbersome and not intuitive, so 
I develop and test on in silico-generated data a simplified (but suboptimal) method of 
extracting motility parameters from experimental data, which I will make use of in the 
remainder of this thesis (sections III.2.a, III.2.c, III.3.c, III.4, IV.2.c.iv). 

 

1. Brownian Motion 
Below I introduce Brownian motion as a starting point for modeling the (more 

complex) process of cell motility on surfaces. Brownian motion is known since the 19th 
century, its discovery credited to the botanist Robert Brown. Mathematically it is one of 
the simplest stochastic processes, and the solution to the problem was first proposed by 
Albert Einstein (Einstein 1905; Xiaodong Yang et al. 2006) and Marian Schmuluchovski 
(von Smoluchowski 1906). 

 
Since its discovery, Brownian motion found several practical applications, ranging 

from cosmology (stellar dynamics), economics (stock market fluctuations) to chemical 
technology (osmosis) and biological processes. In the ensuing section I introduce the 
mathematical formalism of Brownian motion and I take a step forward in the field by 
developing the methods currently used for determining the diffusion coefficient of a 
particle. In the biological sciences, this finds direct practical applications in studies of cell 
membrane fluidity and diffusion of membrane proteins (Shinitzki and Henkart 1979; 
Anderson et al. 1992a).  

 

a. Langevin Equation 
To mathematically define Brownian motion (which is the motion of a particle in a 

fluid under the approximation of low Reynolds numbers), I turn to Newtonian mechanics. 
The forces acting on the particle are the drag from the fluid, proportional to the particle 
velocity, and a stochastic term owing to the molecular collisions between the fluid 
molecules and the particle. Please refer to the table of symbols for the various notations 
below. 

 

)t(F
dt

rd

dt

rd
m therm2

2 

  

Equation 1 
 
At low Reynolds numbers the inertial forces are negligible relative to the drag 

forces (i.e. idealization of a massless particle) and since the fluid is isotropic and uniform, 
the collective of molecular collisions experiences by the particle with the fluid molecules 
(the thermal force) is simply a multiple of white noise. This defines Langevin’s equation 
in the Schmulukovski approximation (von Smoluchowski 1906):  
 

)t(D2
dt

rd


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Equation 2 

 
where  is a generalized white noise (see table of symbols). 
 
 Since on the average the particle does not move away from the origin: 
 

 
t

0

t

0

0dt)t(D2dt)t(D2)0(r)t(r
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Equation 3 

 
a different measurable property is used to relate to the value of D to be determined, 
namely the mean squared displacement of the particle from the starting point. This 
defines the scatter of particle positions from the origin: 
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which evaluates to  
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t

0

t
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Equation 4 
 

 

b. Simulating Brownian motion 
To compare and add to the different methods proposed in the literature for 

extracting the value of the diffusion coefficient from a given set of particle positions, I 
have simulated a particle undergoing Brownian motion. This controlled experiment has 
the advantage over experimental data of knowing with infinite precision the value of the 
diffusion coefficient used to generate the dataset, which becomes the gold standard in 
assessing the quality of the various estimators of the diffusion coefficients used to 
determine it.  Since Langevin’s equation can be integrated analytically, less numerically 
inexact Monte Carlo simulations are not needed. If the position measurement is 
performed at a fixed rate, δt: 
 

jjj tD2)t(r)tt(r 


 
Equation 1 

 
Note that in this integral version of Langevin’s equation )t(


 is no longer a 

continuous quantity (function of time). Instead, it is a discrete, random, Gaussian-
distributed 2D vector ( j


  ~ N(0,1)), which makes Equation 1 useable for in silico data 

production.  

The MATLAB code used to generate one such dataset may be found in Appendix 
4.a, and a sample trajectory (N=1000 data points recorded) is shown in figure 1 below. 
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Each individual particle progresses slowly (as n½ as seen previously) away from the 
starting position at (x,y)=(0,0), although the ensemble average of the particle 
displacement is zero. 

 

 

Figure 1. Sample trajectory of a bead undergoing Brownian motion in 2D (N=1000) 
 

2. Least squares method for determining the diffusion coefficient 
The current methodology used to determine the diffusion coefficient is briefly 

reviewed, and improved ways to estimate it are introduced. To determine the diffusion 
coefficient D, the mean squared displacements of the particle are commonly determined: 
 

  tD4tD2)t(r)tt(r 2
j

2
jj 

  

Equation 1 
 

and in general for an n-step displacement: 
 

  tnD4)t(r)tnt(r 2
jj 



 
Equation 2 

 
From this results that D can be determined from the noise amplitude of the data by 

plotting the expectation value of the mean squared displacement as a function of n and 
measuring the slope of the resulting line, and this has traditionally been used to determine 
the diffusion coefficient (Anderson et al. 1992a; Mueller et al. 2003). This is the approach 
currently employed in the literature, which I show to be suboptimal. By comparing the 
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variances of various LSQ-based estimators, I determine that to determine optimally the 
diffusion coefficient it is sufficient to use the mean squared one-step displacement of 
positions only, and that adding the two-step, three-step etc. displacement terms into a 
LSQ fit as done currently in the literature is actually detrimental to the procedure. 
Moreover, this method of estimation also reaches the limit that maximizes the use of the 
information provided by the dataset (the Cramer-Rao limit) (Rao 1973). 

 
These results are tested with and supported by data generated in silico (section 

II.1.b). 

a. Simple least squares fitting 
In real life many repetitions of the experiment are not always practical, and a more 

usual way (Anderson et al. 1992a; Mueller et al. 2003) to estimate the expectation value 
of the mean squared displacement from the origin is to calculate a different quantity, 
which I will refer to here as the mean squared n-step displacement, from a single 
experiment: 

 

 








1nN

1j

2
jjn )t(r)tnt(r

1nN

1 

 

Equation 1 
 

To estimate D from this type of data, a simple one-parameter LSQ fit of a straight 
line passing through the origin to δn is typically done (Anderson et al. 1992a; Mueller et 
al. 2003). Namely, the quantity below must be minimized with respect to D: 

  mintnD4
maxn

1n

2
n 



 

Equation 2 
 
This is done using as many as all of the N-1 δn values available (n=1,2..N-1), 

where N is the number of coordinate pairs recorded. The caveat is that as n increases and 
approaches N there are increasingly fewer distinct n-step displacements that can be 
included in the average used to evaluate δn which leads substantial deviation from 
linearity at large values of n as seen in Figure 2. Since an unweighted least-squares fitting 
is performed at this point, the error bars are not shown below. 
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Figure 2. Black circles: mean n-th order displacement δn versus n. Blue line: line passing 

through origin and the first point, which provides the best estimate of D. 
 

For generality, I have derived the expression for the estimator of D (Appendix 1.a) 
by fitting up to the first nmax-step displacement: 

   t21n21nn

n3
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Equation 3 

 This is an unbiased estimator of D (Appendix 1.a). In order to assess the 
efficiency of this estimator, its variance was determined (Appendix 1.a): 
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Equation 4 

where 
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Equation 5 

While the expression above is only applicable for n≥m, due to the symmetry of the 
covariance matrix one can simply obtain the n<m elements by exchanging the values of m 
and n. Note that var δn can be identified in the above by setting m=n. 

To illustrate and check the accuracy of this formula, a simulation of Brownian 
motion (N=1000) was run N =10000 times, thus generating an ensemble large enough to 
accurately (1/ N ½≈1% error) calculate actual expectation values such as ‹ δn › with the 
corresponding ±1σ (red traces in figure 3). As seen, these are precisely overlaid (i.e. 
within the 1% error expected) to the blue traces which are the theoretically-derived 
expectation values (equation 1, section II.2.a). 
 

 
Figure 3. Black: several ensemble elements (δn’s from select experiments); Blue: 

expectation values and ± 1σ determined analytically using input value of the D parameter; 
Red: ensemble-averaged δn and ± 1σ. 

The expression for the variance of the estimator of D may seem daunting; 
however, it is perhaps more informative to look at family of curves showing var 
est(D)nmax as a function of N for increasingly large values of of nmax (figure 4). The 
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variance of this estimator of D increases with larger nmax, partly due to the larger error at 
large nmax, partly due to correlation of the δn values (which means that the larger-order 
displacements don’t bring much more additional information to the problem). Thus, only 
several small values of nmax are shown.  

 
Figure 4. Family of curves showing var est(D)nmax as a function of N for increasingly 

large values of of nmax. 

It is clear from the graph that the most accurate estimation of D is achieved for 
nmax=1 i.e. by only using the one-step displacements (only one data point: δ1) which really 
amounts to not doing an LSQ fit at all. From equation 2.a.3 this estimator is 

 
;
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Equation 6
 

This surprising result shows that using the larger-step displacement information 
actually worsens the result, as a consequence of redundancy (correlation of δn values) and 
of increased error introduced with larger values of n.  

b. Weighted least squares fitting 

The unweighted LSQ method introduced in the previous section disregards the 
actual error bars of the δn values and effectively assigns equal weight to them. An 
improvement to the method is weighted LSQ (wLSQ), which uses the theoretical 
expression for the variance of δn (equation 5, section II.2.a, setting m=n). I note here that 
due to the data redundancy involved in calculating the δn values (equation 1, section 
II.2.a), these variances are underestimated . 
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from which follows (Appendix 1.a): 
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Equation 2 

This is an unbiased estimator as well (Appendix 1.a). The sums needed to evaluate 
the estimator above do not have a closed form and they must therefore be evaluated 
numerically. I have determined the expression for the variance of this estimator of D 
(Appendix 1.a): 
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Equation 3 

which also contains sums that may only be evaluated numerically. 

A plot of var est(D)nmax using these two methods (unweighted LSQ, red trace, and 
wLSQ, blue trace) is shown in figure 5. While they are expected to and do intersect at 
nmax=1 (no fit performed, system not overdetermined), there is a visible and substantial 
reduction in the variance of the estimator as the weights are included (from ~0.7 in the 
unweighted case, nmax=N-1, to ~0.1 in the weighted case). The variance of estwLSQ (D)nmax 
still increases monotonically, though slowly, with nmax, which indicates that the 
correlation between the δn values still overshadows the effect of potentially having more 
information by including the larger-step displacements.  

 
Figure 5. var estwLSQ(D)nmax as a function of nmax as obtained with unweighted LSQ (red 

trace) and respectively weighted LSQ (blue trace). 
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c. Generalized least squares fitting 

Finally, the last improvement to the LSQ estimator that I will present uses the 
generalized LSQ (gLSQ) method (Takeaki and Kurata 2004). The Gauss-Markov 
theorem ensures this approach always finds the best linear unbiased estimator (i.e. that 
with the lowest variance among all linear unbiased estimators). While that minimal 
variance may or may not equal the Cramér-Rao bound (the minimal variance theoretically 
attainable of all estimators) (Rao 1973), since a non-linear estimator may perform better 
than gLSQ, it is instructive to see how this method compares to the two other LSQ 
estimators discussed above. For practical purposes, the gLSQ method is equivalent to 
decorrelating the δn values by use of the full covariance matrix (matrix elements defined 
by Equation 1, section I.2.a), then by performing a LSQ fit on the resulting decorrelated 
data. The resulting equation that needs to be solved to determine the estimator is: 
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Equation 1 

Using exclusively matrix notation, this expression can be rewritten as (see table of 
symbols for notations): 

est
1T1T   NΣNΔΣN  

Equation 2 

Following mathematical manipulation to simplify this expression (Appendix 1.a), this 
becomes: 

t4
)D(est 1

n
gLSQ

max 


  

Equation 3 

Since this is identical to the unweighted LSQ fit estimator (nmax = 1), it is also unbiased. 
Its variance remains: 

1N

D
)D(estvar

2

n
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Equation 4 
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d. Comparison of least squares fitting methods and concluding 
remarks. 

It is noteworthy that the generalized LSQ estimator is identical with the 
unweighted LSQ estimator of D for nmax = 1. As stated before, the generalized LSQ 
method yields the best linear unbiased estimator, and these results indicate that the best 
estimate of D will not be obtained by doing a linear fit to this plot, but rather by taking the 
more simplistic, yet more accurate, approach of using the δ1/4δt as the estimator of 
choice. Certainly, the asymptotic linearity of a plot similar to that shown in figure 2 is a 
clear indication of Brownian behavior and should still be used to prove it. Work by 
Christian Vestergård (Vestergård 2009) also confirms that this estimator is also efficient 
as defined by the Cramér-Rao criterion (i.e. it has the least variance of all, not just linear, 
unbiased estimators). 

3. Handling real­life data 

a. Introduction 

An additional complication to the model, which nonetheless brings it more in line 
with the experimental reality, is the inclusion of experimental noise (Mortensen et al.; 
Anderson et al. 1992b, 1992a; Mueller et al. 2003). As an approximation, this is modeled 
as a Gaussian-distributed misreading of the particle coordinates: 

 

 
Equation 1 

thus: 
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Equation 2 

where th
in r


  is the n-step displacement discussed above in the absence of measurement 
error, and i
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 is the measurement error, presumed Gaussian distributed with mean zero 

and variance σexp
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Equation 3
 

 Hence, just as before, when δn is plotted against n a straight line with a slope of 
4Dδt is expected. Due to the measurement error, however, the y-intercept is no longer 0, 
but rather it is 2σexp

2. 

b. Comparison of the various LSQ methods 

 As before I will consider increasingly complex LSQ estimators of D: unweighted 
(uwLSQ), weighted (wLSQ), and generalized (gLSQ). They are easily shown to be 
unbiased, but to determine the variance (and thus the efficiency of the estimator) the 
covariance matrix is first needed. This is just the covariance matrix derived above in the 
σexp=0 case with a few extra σexp-dependent terms added (Appendix 1.a): 
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Equation 1

 

 As before, this expression only provides the covariance matrix elements for m≤n; 
the symmetry of the covariance matrix is to be used to derive the other half. As expected, 
this expression reduces to the previously derived covariance matrix when σexp is set to 
zero. To calculate the unweighted LSQ estimators for D and σexp

2, it follows from 
Equation 3 that the expression to be minimized is: 

  min2tnD4r
maxn

1n

2
2
expest

2
n 



 

thus (Appendix 1.a): 

 



































maxmax

n

1n

2
n

n

1n

2
nmax

2
exp

n
uwLSQ

maxmaxmax

n

1n

2
n

max
n

1n

2
n

n
uwLSQ

n)1n(

rn3r1n2
)(est

t)1n(n)1n(

r
2

1n
rn

3)D(est

maxmax

max

maxmax

max

 

Equation 2 

 Similarly (Appendix 1.a): 
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Equation 3

 

 Finally, using the matrix notation to derive the expression for the gLSQ estimators 
of D and σexp

2: 
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As before, 
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 The variances of the estimators of D above are: 
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and 
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 Finally, 
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Equation 7
 

c. Conclusion 

To conclude, in a practical setting, the various estimates of D and σexp and their 
corresponding variances can only be evaluated numerically due to the dependence of the 
covariance matrix on these two parameters. However, as in the previous sections, it 
remains true that a full-scale LSQ fit to the entire dataset is unnecessary, and that the 
slope and the intercept of a straight line passing through δ1 and δ2 is sufficient to 
optimally determine the σpos and D parameters from an unweighted LSQ fit (based on 
numerical simulations). 
 

4. Simple persistent random motion 
 

In this section I introduce persistent random motion, which adds to the simple 
Brownian motion discussed above a layer of complexity: persistent motion. This simply 
means that overlaid to the random displacements due to thermal forces, which 
characterize with Brownian motion, is an additional non-random, systematic 
displacement due to inertia. Below I introduce the mathematical formalism of the 
standard Orstein-Uhlenbeck (OU) process, proposed in 1919 (Ornstein 1919; Uhlenbeck 
and Ornstein 1930). This process has been used with great success in modeling cell 
motility and current studies add various subtleties to it to account for cell- or surface-
specific behavior (Grădinaru et al.; Selmeczi et al. 2005). The types of cell motility 
models proposed in the remainder of this thesis all build up on the standard OU process. 

a. The standard Ornstein­Uhlenbeck (OU) process 
 

Mathematical motility models of cell behaviour have remained relatively simple 
over many decades. The standard model still used today is the Ornstein-Uhlenbeck (OU) 
process (Ornstein 1919; Uhlenbeck and Ornstein 1930), an old model inspired by 
Brownian motion. It is formally equivalent to the Langevin equation describing Brownian 
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motion [equation 1, section II.1.a] in the case where the inertial forces are no longer 
negligible: 
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Equation 1 
 

Dividing by γ yields the differential stochastic equation that defines the OU process: 
 

)t(D2)t(v
dt

)t(vd
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Equation 2 

 
Here P is the persistence time of the motion and D is the diffusion coefficient of 

the OU process. In the context of cell motility, where the random component of the 
motion is due to factors internal to the cell (cytoskeleton rearrangements such as those 
associated with fillopodia and lamellipodia extensions), D is called the motility 
coefficient of the microorganism. Similarly, the first term of the right-hand side describes 
how the cell is slowed down in the direction opposite to that of its motility due to 
adhesion and retraction of focal adhesion sites. Unlike the process described by equation 
1, this is also not due to factors external to the cell (such as friction or drag force), but due 
to a “memory kernel” of the cell cytoskeleton (Selmeczi et al. 2005). In this 
interpretation, the persistence time P refers to the rate of cytoskeleton “memory” loss 
during cell migration.  

 
A quantity frequently encountered when dealing with persistent random motion is 

the velocity autocovariance (autocovariance) function, defined by: 
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Equation 3 

 
By integrating Equation 2 twice the velocity autocovariance for an OU process is 

(Selmeczi et al. 2005): 
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Equation 4 

 
Here n is the dimension of the space which supports motility, which in the case of this 
study is 2, and  [m2/s2] is the auto-correlation, which describes the correlation between 
the velocity at time 0 and the velocity at time t. 
 

5. Estimation of motility parameters from experimental­like data 
 

This section bridges the theory presented insofar with real-life experiments and 
shows how experimental data should be handled, and what type of information can be 
extracted from it. As before, real-life experimental effects such as the discretization of 
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time and positional noise are taken into account. A method for optimally determining the 
motility parameters, which makes use of power spectra analysis, is introduced. 
Additionally, a simplified procedure (however, not as accurate as the power spectra 
method), is described in detail. For simplicity, as well as to allow for the possibility to 
check the results against simulations, most of the results below refer directly to the 
standard OU process. The last item of this section introduces some of the variants of the 
OU process that best describe real-life cell motility data, and how to handle them. 

a. Time discretization and positional noise 
 
Since much of the parameter estimation is done using velocity, rather than positional 

data (see sections b. and c. below), care must be taken when considering another effect: 
time discretization. Experimental data is available in the form of particle positions 
recorded in time. Typically this is done by collecting time-lapse videos of a set of 
particles with a constant recording rate (e.g. a finite Δt between successive frames). In 
this case, the instantaneous velocities of the particle, v(t) are not available and they can be 
determined only to an approximation: 
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 I call these quantities secant velocities and use the letter u to denote them. The use 
of secant, instead of instantaneous velocity, has a direct effect on the velocity 
autocovariance function. Defining the discrete (and experimentally available) quantity: 
 

11j
u
j uu


 

 
Equation 1 

 

and noting that ,)(and)(
0

1

1

dttvudttvu
tt

t

j

j

j









 
 

')(')()'(
11

00

11 dtdttdtdttvtvuu
j

j

j

j

t

t

tt

t

t

j
u
j   

 

   

 

Equation 2 
 

 Since for the standard OU process the analytical expression for (t) is given by eq. 
4, section I.4.a, the integral can be evaluated analytically.  
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Equation 3 

 

 Here δj,0 is the Kroneker-δ. Plots of φj
u and φ(tj) are shown in figure 1, which 

illustrates how φj
u is proportional to φ(tj), with a proportionality factor directly related to 

the c=Δt/P ratio: 2(cosh c - 1)/c2. The only exception arises for the first point of the 



Chapter II Developments to the theory of 2D motion 

23 
 

velocity autocovariance, where a constant offset of -2(c - sinh c)/c2 is applied. Indeed, in 

the limit Δt → 0, u → v and φj
u → φ(tj). This remains true in the case of non-OU 

processes where φ(t) follows monoexponential behavior, as that is all that is needed to 

evaluate the integral in equation 2. 
 

 
Figure 1: Instantaneous velocity autocovariance function (black dots and connecting solid 

line) and secant velocity autocovariance function (hollow dots). 

 
The complication of positional noise has already been introduced in section II.3.a. 

Here, too, this is modeled as a Gaussian-distributed misreading of the particle 
coordinates: 

 

 
Equation 4 

 
I describe below a simple method for estimating the positional noise for a standard 

OU process which involves the use of Fürth’s formula (Fürth 1920). This is an expression 
for the mean square displacement of a motile cell, which has been routinely used to 
describe cell motility. It is not limited to motility models following the standard OU 
process; instead, it is generally applicable to motility models whose velocity 
autocovariance function follows a simple mono-exponential dependence such as those 
encountered in chapter III of this thesis. 

 
On a two-dimensional surface, Fürth’s formula takes the following form: 
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Equation 5 

 
Figure 2: Fürth’s formula for the mean squared displacement of persistent random motion 

described by the OU-process. Full line: Mean squared displacement from equation 2; 
Dotted line: Asymptotic behavior. The dotted line intersects the time axis at t = P. 

 
Here I expand Fürth’s formula to account for the effect of positional noise on the 

motility data: 
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Equation 6 
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Figure 3: Fürth’s formula for the mean squared displacement of persistent random motion 

described by the OU-process. Full line: Mean squared displacement from equation 2; 
Dotted line: Asymptotic behavior at t→∞. The dotted line intersects the time axis at t = P. 

Dashed line: Asymptotic behavior at t→0. The dashed line intersects the rmsd axis at 
4σpos

2. 
 

Weigthed LSQ-fitting a plot of mean square displacement of a motile cell to 
Equation 3 provides a reliable measure of the positional noise. To test this, the trajectories 
of 50 independent motile cells following a standard OU process with parameters typical 
of fibroblasts have been simulated over 2 hours as described in Appendix D of 
(Nørrelykke and Flyvbjerg 2010), yielding experimental-like data from 128 frames. The 
MATLAB code used to generate this dataset may be found in Appendix 4.b. While the 
estimates for P and D are imprecise (25% error for P, 28% for D), the positional error can 
be determined remarkably accurately from this fit (0.9978 ± 0.0008 µm vs. 1 µm input). 

This is because the error bars of  2expexp )0(r)t(r


  are correlated, thus the fit to Fürth’s 

formula is not correctly weighed. As an asymptote of Fürth’s formula as t→0 (where the 
data is the least correlated and thus the fit most precise), σpos can be determined much 
more accurately. 

 
The positional measurement error also has an effect on the autocovariance 

velocity function. From equation 4,  
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In this case, the velocity  autocovariance function becomes: 
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Equation 7 

 

Plots of φj
u, φj

th,u and φ(tj) are shown in figure 4, which differs from figure 1 by 

the addition of the φj
u with positional noise (upward triangles). The positional noise’s 

only effect on the autocovariance function is to raise the first point of by 4σpos
2/(Δt)2 and 

to lower the second point by 2σpos
2/(Δt)2. This is true for the case of non-OU processes, 

and in general for all forms of the autocovariance function where it is uncorrelated with 

the positional noise.  

 
Figure 4: Instantaneous velocity autocovariance function (black dots and connecting solid 

line) and secant velocity autocovariance function (hollow dots). The secant velocity 

autocovariance function for data subject to positional noise is shown as hollow triangles. 
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It is important to note here that, the first two points of the autocovariance function 

aside, all the remaining points follow the behavior of the instantaneous velocity 

autocovariance function, except for a factor which depends on Δt/P: 
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Equation 8 

 
Since the amplitude of φ(t) is <v2>, the mean squared velocity of the cells 

(equation 4.a.4), the amplitude of φu is proportional to <v2>, the proportionality constant 
dependent on the Δt/P ratio. As this ratio vanishes, uj → v(tj) and φu → φ(j·Δt), the 
proportionality factor becomes 1.  
 

b. Optimizing the estimators: Power spectral analysis 
 

I have developed a new method that provides optimal accuracy and precision for 
extracting the motility parameters P and D from experimental-like motility data that 
follows the simple Ornstein-Uhlenbeck process. Since the experimentally measured data 
is cell position, )(tr


, a theoretical expression relating these positions with the parameters 

of interest D and P is needed. The defining equation of the standard OU process (equation 
2, section II.4.a) and the definition of instant velocity dtrdv /


  form a system of 

differential equations. 
 

 Appendix D of (Nørrelykke and Flyvbjerg 2010) shows the general solutions for 
the trajectory of a Einstein-OU process, namely one that involves Hookean as well as 
Stokes forces and Brownian motion, and that shown here adapted for the specific case of 
a simple OU process (i.e. no Hookean component): 
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Equation 1 
 

A constant recording frequency t between successive frames is assumed, and the 
shorthand notation c=exp(-t/P) is also employed. For simplicity a 1-D model has been 
considered, so the vector signs of the position x has been dropped. Equation 1 is thus a 
stochastic difference equation which relates the position-velocity vector in frame j with 
that in the following frame j+1. The stochastic component is present in the last term of 
equation 1: 
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where xj,± are stochastic variables defined as follows: 
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Hence they are random, correlated Gaussian variables, with expectation value zero 

and covariance matrix: 
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They can be decorrelated by introducing the random uncorrelated Gaussian 

variables j
(a), j

(b) ~N(0,1): 
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Equation 3 
 
where the shorthand notations  
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have been introduced. This allows in silico numerically exact simulations of a process 
following the standard OU process (MATLAB code shown in Appendix 4.b). 
 
 Since experimental data consists of cell coordinates xj, the instantaneous velocities 
vj are not available, but the secant velocities can be defined as uj=(xj+1-xj)/t. Substituting 
this into the difference equation 1 the following difference stochastic equation in uj 
results: 
 

jj1j ucuu   
Equation 4 

 
where uj is now the stochastic term: 
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Equation 5 

 
The theoretical power spectrum in terms of secant velocities is derived by noting 

that 
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Applying the Fourier transform to evaluate Pk

v,th: 
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Similarly, 
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Equation 7 

 
 This shows the effect of discretization on the shape of the power spectrum curve. 
The original Lorentzian is multiplied by a Δt/P-dependent factor (the same that marks the 
difference between φu (t) and φu (t), equation 8, section II.5.a) and shifted up by an 
amount proportional to D. In this case, since discretization effects are modeled 
completely, as I do here, they are no longer “errors.” As can be seen in figure 1 below, 
based on a simulation of the standard OU process, ignoring the discretization errors can 
lead to significant bias in estimating the parameters D and P, especially when the 
persistence time is comparable to the measurement frequency Δt (as is the case in all of 
the preliminary data presented above). 
 

 
Figure 1: Comparison of Pu(fk) with Pv(fk) for a simulation of an OU-process with Δt/P = 

1/2. The frequency axis is discrete because the measurement time is finite, Δf = 1=tmsr. 
The black traces are the theoretical expressions which overlay perfectly (noise aside) to 

the simulated data (red (Pu(fk)) and blue (Pv(fk)) traces) 
 
 The fact that positions are not recorded continuously does not affect Furth’s 
formula in any way, except that the experimental data with is available only at discrete 
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lapses of time, integer multiples of Δt. This is an advantage of the mean squared 
displacement: This statistics has no discretization “errors.” On the other hand, if 
discretization effects can be modeled completely, then discretization effects are no longer 
to be seen as “errors.” In that situation, one can do better than using the mean squared 
displacement. As can be seen in figure 1 above, ignoring the discretization errors can lead 
to significant bias in estimating the parameters D and P, especially when the persistence 
time is comparable to the measurement frequency Δt (as is the case in all of the 
preliminary data presented above).  

 
Figure 2: Effects of positional noise on the power spectra of a standard OU process. As 

expected, since positional noise is a high-frequency noise, it only affects the high-
frequency domain of the power spectrum. 

 
 

c. Simplified method for estimating motility parameters 
 

Although the power spectra method for determining the motility parameters 
provides the optimal estimators, it suffers from mathematical complexity. Below I 
propose a more intuitive and simplified data analysis procedure, which entails estimating 
the motility parameters by a weighted fit of a simple exponential function to the velocity 
autocovariance function. This has the advantage of simplicity and time of analysis over 
the iterative method proposed in (Selmeczi et al. 2005). However, since the values of the 
autocovariance velocity calculated from experimental data are correlated and their error 
bars are underestimated, this procedure will necessarily yield a less accurate estimate of 
the persistence time.  

 
To assess the loss of precision when using this simplified method, I generated 

experimental-like motility data in silico following the procedure described in Appendix D 
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of (Norrelykke and Flyvbjerg 2009; Nørrelykke and Flyvbjerg 2010), and estimated the 
motility parameters as described above. The dataset from section 5.a. was reused, where 
the motility of 50 independent cells was simulated in accordance to the standard OU 
process, and with input parameters similar to those characteristic of the motility of real 
life NIH 3T3 fibroblasts on glass (see section III.2.a) : P = 40 min, D = 7.3 μm2/min (or 
σ0 = (2D)1/2/P = 0.0955 μm/min3/2 and σ1┴ = σ1|| = 0), Δt = 1 min, and σpos = 1 μm. The 
motility of these cells was followed over nearly 2 hours, yielding experimental-like data 
from 128 frames. Note that in the remainder of this section I will be using a set of 
parameters σ0 = (2D)1/2/P and σ1┴ = σ1|| = 0 in preparation for characterizing the motility 
of NIH 3T3 done in section III.2.a. For the purposes of this chapter, however, the usage 
of σ0 instead of D may only be regarded as change of notations. 

 

 The statistical analysis of cell motility been automated by way of a MATLAB 
program, data_analysis_exp.m,  whose MATLAB source code is listed in Appendix 6. It 
reads in a list of cell centroid coordinates and calculates the motility parameters. 

 

 Below I describe how the data analysis program calculates the motility parameters 
in detail, as well as the other information that it outputs. The significance of these results, 
as well as their interpretation and possible caveats are also discussed.  

As a note to the user, it is important that two parameters be changed in the body of 
the data_analysis_exp.m file before data processing can start. These may be found under 
the “Conversion parameters” section and are dt, which should be set to the frame rate of 
the movies, in minutes, and um2pix, which should be set to the size of a pixel in μm (this 
is microscope-dependent). 

The filename containing the post-processed version of the cell trajectories is 
requested as an input. If a file named “trajectories-fixed.txt” which contains coordinates 
of fiduciary marks exists in the current directory, it will be used to perform a stage drift 
correction on the data. The corrected data (or the original data if no stage drift correction 
is performed) is then plotted as shown in Figure 1. 
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Figure 1: Graphical representation of the trajectories simulated using a standard OU 

process. 
 

The value of the rsd filter is requested from the user, and I have used 15-20 μm 
(about half of a typical cell’s diameter) as an rsd cutoff. All the trajectories passed the rsd 
filter. Another plot of all remaining trajectories is generated, which in this case is 
identical to the one shown in Figure 2. 

An additional test to check that the data is drift-free is performed by calculating a 
frame-average secant velocity (<ux

2> and <uy
2>). A plot of each <ux

2> and <uy
2> with 

their respective error bars vs. time is shown such as the one shown in Figure 2.  
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Figure 2: Average secant velocities (x component shown) in each frame, data simulated 
using a standard OU process. 

 

Provided sufficiently many cells are in each frame, and given that they all move 
independently of one another, this should average out to zero, as seen in Figure 3. The 
program outputs the mean <ux

2> and <uy
2> over all frames and this is indeed reasonably 

close to zero within several standard deviations. Note that these are secant velocities 
calculated from data affected by positional noise, so it is not uncommon to see a deviation 
from zero by 3-4σ: 

 
Time-averaged ux_mean =  0.0101 ± 0.0275 um/min 

Time-averaged uy_mean =  0.0119 ± 0.0283 um/min 

 

A preliminary analysis of the dataset involves plotting and fitting  2)0()( rtr j  to 

Fürth’s formula. While the estimates for P and D are somewhat imprecise (24.5% error 
for P, 28.2% for D), the positional error can be determined remarkably accurately from 

this fit (0.9978 ± 0.0008 vs. 1 input). This is because the error bars of  2)0()( rtr j   are 

correlated and thus the fit to Fürth’s formula is not correctly weighed. As an asymptote of 
Fürth’s formula as t0 (where the data is least correlated and thus the fit most precise), 
σpos can be determined much more accurately from this fit.  

 
Figure 3: Average rmsd of cell centroids (black) and fit to Fürth’s formula (red), data 

simulated using a standard OU process. 
 

The compliance of the data set with the OU model is tested by plotting the 
perpendicular and respectively parallel components of the acceleration vs. speed. As per 
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the standard OU process <a┴> = 0 and <a||> = -v/P are expected, which can be seen to 
hold true in both Figure 4 and 5. 

 
Figure 4: Acceleration vs. speed: components perpendicular (top) and parallel (bottom), 

data simulated using a standard OU process. 
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Figure 5: Acceleration vs. speed: components perpendicular (top) and parallel (bottom), 
binned in bins of 0.5 μm/min for visualization purposes; data simulated using a standard 

OU process. 
 

The spread of the acceleration from its expectation value is related to σ0 and as 
expected to be a constant, velocity-independent dispersion of the acceleration is seen in 
Figure 6. A linear fit to this data may be used to determine the σ parameters. 

 

 
Figure 7: Standard deviations of acceleration vs. speed: components perpendicular 

(purple) and parallel (blue), binned in bins of 0.5 μm/min, and fit with ±1σ shown in 
continuous lines; data simulated using a standard OU process. 

 

As expected for a standard OU process, σ1┴ and σ1|| are zero within the error bars 
(see equation 5, section III.2.a). The y-intercepts are also equal within the error bars; 
however, they are substantially different from the input value of 0.0955. 

 

std(a_perp): y-intercept sigma0 =  1.3527 ± 0.0284 um/min^(3/2) 

std(a_perp) slope sigma1= -0.0068 ± 0.0137 1/min^(1/2) 

sigma_perp(u) =  1.3527 + -0.0068*u um/min^(3/2) 

Theoretical sigma_perp(u) =  0.0955 + 0*u um/min^(3/2) 

 

std(a_parallel) y-intercept sigma0=  1.3847 ± 0.0253 um/min^(3/2) 

std(a_parallel) slope sigma1= -0.0077 ± 0.0124 1/min^(1/2) 

sigma_par(u) =  1.3847 + -0.0077*u um/min^(3/2) 

Theoretical sigma_perp(u) =  0.0955 + 0*u um/min^(3/2) 
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This is to be expected since I am not plotting instantaneous velocities vs. 
accelerations, and the data is subject to positional noise. As a test of the relative 
contributions of each of these factors, I have re-run this simulation with the same 
parameters except for σpos which has now been set to zero.  

 
std(a_perp): y-intercept sigma0 =  0.0763 ± 0.0015 um/min^(3/2) 

std(a_perp) slope sigma1=  0.0006 ± 0.0023 1/min^(1/2) 

sigma_perp(u) =  0.0763 +  0.0006*u um/min^(3/2) 

Theoretical sigma_perp(u) =  0.0955 + 0*u um/min^(3/2) 

 

std(a_parallel) y-intercept sigma0=  0.0790 ± 0.0000 um/min^(3/2) 

std(a_parallel) slope sigma1= -0.0054 ± 0.0000 1/min^(1/2) 

sigma_par(u) =  0.0790 + -0.0054*u um/min^(3/2) 

Theoretical sigma_perp(u) =  0.0955 + 0*u um/min^(3/2) 

 

While some discrepancy remains (-20% error) which I attribute to finite, but small 
Δt/P = 1/40, it is significantly improved from the previous result. Indeed, this is an 
expected result because adding positional noise to the data increases the variance of the 
secant accelerations by a constant term proportional to σpos

2/(Δt)2 in the absence of 
discretization effects.  

Additionally, for larger Δt/P values such as those typically used in these 
experiments (Δt = 4 min, P = 40 min) and in the absence of positional noise, the σ 
parameters can also be significantly affected: 

 
std(a_perp): y-intercept sigma0 =  0.3194 ± 0.0081 um/min^(3/2) 

std(a_perp) slope sigma1= -0.0051 ± 0.0036 1/min^(1/2) 

sigma_perp(u) =  0.3194 + -0.0051*u um/min^(3/2) 

Theoretical sigma_perp(u) =  0.0955 + 0*u um/min^(3/2) 

 

std(a_parallel) y-intercept sigma0=  0.3134 ± 0.0047 um/min^(3/2) 

std(a_parallel) slope sigma1= -0.0001 ± 0.0021 1/min^(1/2) 

sigma_par(u) =  0.3134 + -0.0001*u um/min^(3/2) 

Theoretical sigma_perp(u) =  0.0955 + 0*u um/min^(3/2) 

 

A fitting method based on power spectral analysis would allow optimal estimation 
of all parameters. The current version of the data analysis software, however, is unable to 
obtain more reliable estimates of the σ parameters. 

 
An initial weighted fit of the velocity autocovariance to a function of the form 

φ0•exp(-tj/P)+baseline was performed. This method provides an additional check as the 
baseline is expected to be zero within its own error bars, and the fit result of -0.0 ± 0.1 
μm2/min2 confirms this. Following this check, the baseline was set to 0 and a weighted 
LSQ fit of the autocovariance function to a simple mono-exponential function was done 
to determine the persistence time (Figure 8). The result of the fit was P = 42 ± 4 min 
which agrees well with P value used to generate this dataset, 40 minutes. Similarly, the 
input value of φ0 = 0.362 μm2/min2 agrees with the fit results of 0.37 ± 0.02 μm2/min2. As 
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noted before (equation 8, section II.5.a), this parameter is nearly equal to the expectation 
value of the squared instantaneous velocity <v2> (the slight difference is dependent on the 
magnitude of Δt/P and is less than 10% for Δt/P<1/2, which is typically encountered in 
experimental data). 
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Figure 1  - Simulated data. Top: Mono-exponential fit (red trace) to the autocovariance 
velocity function of 50 cells following a standard OU process generated in silico. This 
data was generated with a frame rate of 1 min and a positional noise of 1 μm. Bottom: 

Binned autocovariance velocity (black) and monoexponential fit (red trace). 
 

To conclude, I recommend using this fitting method when ~10% errors in the 
value of P and φ0 are acceptable. I conclude that the data analysis software in its current 
form can provide highly reliable measures of the persistence time of cells following the 
standard OU process; however, the cell motility coefficient is extremely sensitive to 
positional noise and discretization effects, and a more involved theoretical method is 
necessary to reliably determine that parameter. 

 

6. Conclusions and outlook 
This section has provided the reader with the theoretical tools needed to 

characterize cell motility, which will be done in chapters III and IV of this thesis. Simple 
Brownian motion has been introduced first, and I have highlighted my contribution to 
optimizing the methodology of determining the diffusion coefficient from 2D diffusion 
data, with potential applications in membrane protein mobility and cell membrane fluidity 
studies.  

 A layer of mathematical complexity has been added by considering the case where 
the inertial effects are not negligible (as it is the case with simple Brownian motion), and 
the mathematical formalism of the standard OU process is built upon this. I have 
developed the theoretical tools needed for modeling cells that follow the standard OU 
process by taking into account experimentally-relevant factors, such as cell centroid 
positional measurement noise and trajectory discretization effects. I have also proposed 
an optimal method for determining the motility parameters P and D from experimental-
like motility data, thereby setting the path (and validating the method against computer 
simulations of motility) for interpreting real experimental data. Further research in this 
area is needed, however, to deal with the velocity-dependence of the sigma parameters 
introduced in section III.2.a of this thesis. 

 
Finally, a trade-off between mathematical complexity and computing speed on the 

one hand, and precision on the other, was needed for practical reasons, which led me to 
develop a simplified method of analysis of experimental data, again validated by testing 
on computer simulations of motility. 
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Parts of this chapter have been directly adapted from a paper intended to be 
submitted to Plos computational biology, the software section, on which I figure as first 
author: Grădinaru, C.; Lopacinska, J. M., Flyvbjerg, H.; Huth, J.; Kestler, H. A.; 
Mølhave K. “Automated Analysis of Cell Migration on Flat and Nanostructured 
Surfaces.”  

 
 

1. Cell tracking and centroid measurement  

a. Introduction 
Cell migration plays an essential role in many biological processes: e.g. wound 

healing, embryogenesis, inflammation, and metastasis where uncontrolled cell migration 
can lead to tumor spreading and hence can cause cancer progression. Studying these 
processes frequently require cell tracking, and most motility studies of monolayer cultures 
involve fluorescent labeling of cells, which allows for fluorescence microscopy studies 
(Van Haastert and Devreotes 2004; Dufour et al. 2005). This technique either requires 
extensive mutagenesis to have fluorescent protein expressed by the studied cell-type, or is 
limited by the fact that membrane-attached or permeable fluorescent drugs often alter cell 
behavior (Presley 2005). In sparse cultures, cells can have sufficiently good contrast 
against the background that their boundaries can be identified with bright field 
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microscopy without labeling (Keren et al. 2008). This can be done manually with point-
and-click methods at great expense of time and labor (Michl et al. 2005; Selmeczi et al. 
2005; Tang et al. 2006; Wolf et al. 2007; Boldajipour et al. 2008; Henrickson et al. 2008). 
When cells in only a few images have to be tracked, this is not a challenge. However, 
when long time-lapse sequences of motile cells need to be analyzed, this approach is 
impractical, raising the need for a reliable automated cell tracking program. 
 
Table 1  -  Overview of representative programs for cell tracking by time-lapse light 
microscopy. 
 
Program Publisher/Seller Commercial Open 

sourc
e 

Coordinate 
output format 

Volocity Improvision Yes No Text 
Imaris Bitplane Yes No Excel 
Autozell 
 (Baumann 2006) 

Universität Bremen Yes No Text 

TLA  
 (Huth et al. 2010) 

University of Ulm No Yes Excel/Text 

CellTrack 
 (Sacan et al. 2008) 

Ohio State 
University 

No Yes Text 

ImageJ plugins 
(Stuurman; Sbalzarini 
and Koumoutsakos 
2005) 

ETH & UCSF No Yes Text 

 
Representative programs are listed in Table 1. The majority of such programs (not 

included in Table 1) are designed for tracking fluorescently labeled cells (Pal and Pal 
1993; Van Haastert and Devreotes 2004; Dufour et al. 2005; Dormann and Weijer 2006;; 
Ali et al. 2008; Meijering et al. 2009). The programs designed for use with light 
microscopy images track either the cell nucleus (Xiaodong Yang et al. 2006; Xiaowei et 
al. 2006) or the entire cell (O. Debeir 2005; Baumann 2006; Li et al. 2008; Huth et al. 
2010).  The cell position can be defined as: (i) the center of the nucleus (e.g. (Selmeczi et 
al. 2005)); (ii) the centroid of the cell’s perimeter as seen in the light microscope (Li et 
al.2011); (iii) the centroid of the cell’s footprint as seen in the light microscope (Keren et 
al. 2008); and (iv) the centroid of the actin cytoskeleton of fluorescently labeled cells 
(Yumura and Fukui 1998). Most of these programs are not open source, and may be 
difficult to adapt to the specific purposes of a given experiment. In other cases the 
complexity of the mathematical procedures used for boundary identification may be a 
hurdle to adapting the code to a specific purpose (Dufour et al. 2005; Xiaowei et al. 2006; 
Ali et al. 2008).  

 
There are two main approaches to cell tracking in the current state-of-the-art 

(Gerlich et al. 2003; O. Debeir 2005; Dormann and Weijer 2006; Xiaowei et al. 2006; 
Hand et al. 2009; Meijering et al. 2009). One approach is frame-by-frame image 
segmentation and tracking (Pal and Pal 1993; Althoff 2005). In the first step, the object 
candidates are detected in a given frame on the basis of their specific properties (border, 
texture, color). This approach is efficient when object borders are sharp, and it is 
commonly used with fluorescently labeled cells and other high-contrast images. The other 
approach consists in optimizing a parameterized model shape to fit the model to the cells 
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in a frame. Instead of tracking all objects in the frame, this method focuses on those 
candidates which correspond to the chosen model shape (Leymarie and Levine 1993; 
Sethian 1999).  As with the first approach, detected objects are paired between 
consecutive frames in order to produce tracks. 

 
In this chapter I introduce a new cell tracking program, PACT (Program for 

Automated Cell Tracking). PACT is suitable for tracking motile cells on flat and 
nanostructured surfaces, and is simple enough for users to freely modify it according to 
their experimental needs.  Since nanostructured surfaces are currently of great interest as 
cell-culture substrates and can appear as a highly non-uniform background in the image, I 
emphasize the use of a reliable spatial image filter here – see details in the materials and 
methods section, and supp. info 2 for the code. 

 
 Test results are presented for the performance of PACT, which is also compared 

to other programs’s performance (TLA (Huth et al. 2010) and Autozell (Baumann 2006)): 
efficiency with regard to object detection, accuracy of centroid positioning, and 
segmentation performance in the context of time-lapse analysis. A statistical analysis is 
then performed on the ensemble of individual tracks of cells to determine the overall cell 
population motility statistics in a movie of NIH 3T3 fibroblasts on glass. From the tracks, 
the velocity auto-covariance function (or auto-covariance of the velocity) is estimated 
(Equation S1, Appendix 3.a). It is well described by a simple exponential function with 
characteristic time, P, the persistence time of the motility (data shown in Appendix 3.a). 
We also determine the amplitude of the velocity autocovariance function, φ0, which is 
approximately equal to the mean squared velocity of the cells. Results from PACT, TLA 
and Autozell are compared by this analysis. 

 
Despite the need for cell tracking programs and algorithms, there are only few 

studies evaluating their performance (Baumann 2006; Huth et al. 2010). In this chapter I 
make an extensive comparative analysis of tracking programs. I find considerable 
sensitivity of results to the specific algorithm/software employed.  Thus, the tracking 
algorithm and its effect on results should be well documented in future studies.  I 
conclude that cell biologists intending to track independent migrating cells on a wide 
variety of surfaces may find in PACT an efficient choice.  

 

b. PACT – Program for Automated Cell Tracking  
 

To assess the reliability of automated tracking, I evaluated the cell segmentation 
performance at the single-frame level. To that end I did the following: 

(i) Tested the segmentation efficiency of our code, namely how well it 
locates individual cells in comparison to the other programs available. 

(ii) Assessed how changes in focus can affect the accuracy of cell centroid 
positioning.  

(iii) Compared PACT’s accuracy of centroid positioning in bright-field 
imaging and fluorescence imaging. 

(iv) Evaluated the background removal efficiency on nanostructured 
surfaces by comparing segmentation and centroid position results from 
bright-field and fluorescence microscopy of the same sample. 

 
In the subsections below, I elaborate on these points and the ensuing discussion 
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section deals with how these observations relate to each other.  
 

i. Segmentation efficiency  
 
I tested segmentation on a movie frame of HeLa cells on a glass substrate, NIH 

3T3 on a flat silicon substrate, and NIH 3T3 on a silicon black substrate with PACT, 
TimeLapseAnalyzer (TLA) (Huth et al. 2010), Autozell (Baumann 2006), and CellTrack 
(Sacan et al. 2008). A comparison of the number of objects identified by each program vs. 
the actual number, as determined by manual counting i.e. segmentation efficiency, is 
shown in Table 2. 

PACT has a cell segmentation efficiency comparable to that of TLA, and both are 
better than Autozell and CellTrack for HeLa/glass, while CellTrack performs better for 
3T3/Si. The cell selection efficiency is very dependent on the software used and on the 
settings used in the segmentation. With training in how to use software, users can achieve 
80-90% count rates compared to manual counting. 

 
Table 2 – Number of objects segmented by the various cell tracking programs in bright 
field images before manual post-processing 
 
 PACT Autozell TLA CellTrack Manual count 
HeLa/glass 199 124 197 1571 206 
NIH 3T3/flat 
Si 

1072 104 1323 1601 158 

NIH 3T3/Si 
black 

40 0 754 0 48 

 
The tracking efficiency was assessed by counting the objects picked in the representative 
images used in Table 2. A section of such a frame processed in the different programs is 
shown in Figure 1 for visual comparison. 

                                                 
1 In my experience, Celltrack often picks spurious objects  in the background, which are not cells, and this 

artificially inflates the cell count in Table 2. 

2 The cell count for NIH 3T3/flat Si by PACM is underestimated due to this data being cumulated from five 

different images, as the band -pass filter of PACM removes the edge of the image prior to processing. This 

effect makes the cells on the edge inaccessible to segmentation. This is less obvious in the case of the 

HeLa/glass or NIH 3T3/Si black samples where the count was performed on a single image. 

3 TLA occasionally assigns multiple centroids to one cell, and I have counted such instances as just one 

object in Table 2. 

4 Wiener-filter noise-parameter lowered to 0.03 from the default of 0.05 for non-uniform background 

removal. 
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Figure 1  - Section of a typical frame of HeLa/glass after segmentation  in Autozell,  
CellTrack, TLA and PACT. Autozell shows red contours around the tracked objects, 
CellTrack shows blue contours around the tracked objects, TLA marks the centroid of the 
object with a yellow marker, and PACT shows blue contours around the tracked object 
and a red cross at the brightest spot in the image. The settings for each program were 
optimized so as to reach a balance between minimizing the number of cells missed by the 
tracking process and the number of false positives (segmented objects that were not cells). 
 

ii. Focus Influence on Centroid Positioning  
PACT was able to identify cell boundaries even when the cells were imaged 

slightly out of focus.  Imaging out of focus in bright field microscopy has the advantage 
of enhancing the contrast between cells and background.  This is due to light interference 
effects and blurring of details of cell organelles, which are visible in focus and can 
interfere with cell identification. We did not employ a blurring method (such as a 
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Gaussian blur) to remove the fine-structure of cells, as that procedure would also 
negatively affect the sharpness of contrast between cell and background. 

 
Long-term time-lapse recordings may lead to drift and variable focus. Another 

source of noise can be the light conditions and also variations in threshold and filter 
settings for the image processing which in PACT also can influence the cell centroid 
measurement. The following experiment estimates the combined effect of these 
influences by varying focus, which changes the cell contour and light levels 

 
NIH 3T3 fibroblasts fixed on a glass slide were imaged in overfocus at 2, 4, 6, 8, 

10, 15, and 20 μm, respectively, as well as in focus (z=0 μm), which we consider a fairly 
wide range of focus fluctuations for a time lapse experiment. After segmentation and 
post-processing, 92 cells were found in all frames. I calculated the individual cell 
centroids throughout the stack. From these positions I subtracted average centroid value 
of each frame to remove stage drift, and then evaluated the average root- mean-square 
displacements of all 92 cells segmented, as a function of z (Figure 2). Typical samples of 
segmented cells are shown in Figure 2 next to the corresponding points: z=0, 4, and 20 
μm, respectively. The overall average root mean square displacement from the z-stack 
mean was 1.0 ± 0.1 µm. 

 
Figure 2 - NIH3T3 fibroblasts fixed on glass. Plot of the root mean square displacement 
of the centroids from their mean in the stack of images of NIH 3T3 imaged increasingly 
out of focus shows the effect of defocusing on the centroid tracking accuracy. For 
illustration, a representative cell as viewed in the light microscope is shown at z=0 (in 
focus), z=4 μm and z=20 μm. 

iii. Precison of Centroid Positioning 
In order to test the precision of the method, I compared the performance of our 
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program with bright field images to images of dyed cells visualized by fluorescence 
microscopy. Images of fluorescently dyed NIH 3T3 fibroblasts fixed on glass and flat Si 
were recorded in both the bright field and fluorescence mode, Fig. 4. 22 cells on flat Si 
were identified in both bright-field and fluorescence images after post-processing. A pair-
wise comparison of centroids between the two imaging modes was done by translational 
alignment (applying a constant offset to all centroids from one imaging mode such that 
the mean of all centroids common to both imagining modes is exactly the same). This 
procedure was necessary to account for the slight light path offset due to inserting the 
fluorescence filter, and was followed by calculating the pair-wise RMSD of all centroids 
common to both imaging modes. This yielded an RMSD of 2.8 µm for the flat Si 
substrate (Table 3). I tested whether the orientations of the segments that connect the 
centroid pairs are random by plotting a histogram of the distribution of their polar angles 
(data not shown) which was indeed uniform within error bars. I thus conclude that the 
source of this discrepancy is random (white) noise. 

 
Table 3 – Fixed cell results. The columns PACT and Manual Count show the fraction of 
objects tracked after/before post-processing in bright-field images. Co-identified shows 
pairs of cells that were co-identified in fluorescence and bright field post-processed data 
and their corresponding RMSD 
 PACT Manual count Co-identified 
NIH 3T3/flat Si 26 / 32 (81%) 35 / 42 (83%) 22 pairs: RMSD 2.8 μm 
NIH 3T3/Si black 21 / 40 (52%) 40 / 48 (83%) 14 pairs: RMSD 4.3 μm 
 

iv. Nanostructure Background Removal  
To process images with grainy backgrounds, such as images recorded on a 

substrate of silicon black, the band-pass filter used by PACT (see materials and methods) 
to process images is of critical importance. By setting the high-frequency limit to 5-10 
pixels, i.e., higher than the recommended value of 1-3 pixels that is appropriate for 
removal of pixel noise, grainy images can be analyzed. On this substrate, cells appear as 
shadows on a very noisy background and I was unable to detect cells with other cell 
tracking programs (Table 1), with the exception of TLA, which can employ a Wiener 
filter as a pre-processing step to cell detection. I compared the fluorescence image with 
the bright-field images of individual NIH 3T3 fibroblasts fixed on silicon black; see 
Figure 3 and Table 3. The mismatch was larger than what was found on flat substrates, as 
expected on these highly grainy images: 4.3 µm for the 14 cells found co-localized after 
post-processing in both the bright-field and fluorescence out of 21 cells in bright-field and 
25 cells in fluorescence. The mismatch of centroid pairs was randomly oriented with 
uniform distribution of directions within errors due to finite statistics (data not shown).  
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Figure 3  - Fixed NIH 3T3 cells on silicon black. Left: Bright field image of NIH3T3/Si 
black after tracking in PACT and SEM image of the Si black substrate used viewed at a 
30º angle (inset). Right: Fluorescence image of the same sample imaged in the exact same 
position, showing the actin cytoskeleton, also processed in PACT. 
 
 

2. Analyzing real­life data  

a. Modeling real­life data using OU­like processes  

Chapter II of this thesis dealt extensively with the theoretical aspects of persistent 
random motion and explored methods for coping with the challenges presented by 
experimental data, such as positional noise and time discretization. Using PACT 
introduced in section 1 above, which provides a method for reliably determining cell 
centroids from experimental data, I take a step forward to explore how the theoretical 
tools introduced in the earlier chapter can be applied to analyze real-life data.  

Several extensions of the standard OU process have been proposed in the literature 
to model the observed motility of various cells on a range of substrates (Grădinaru et al.; 
Selmeczi et al. 2005). Here I will introduce some of the features of one such model which 
is applicable to the motility of NIH 3T3 fibroblasts. The cell motility parameters were 
extracted from five movies recorded at different positions on the same NIH3T3/glass 
sample. The cumulative motility data collected from these movies (58 trajectories) as 
accelerations vs. velocity is shown in Figure 1. The procedure described by (Selmeczi et 
al. 2005) was followed to assess whether NIH 3T3 fibroblast motility can be described by 
the standard OU process or an extension thereof.  

The dataset consists of time lapse movies of the cells, with images recorded at 
constant time intervals t. The individual cell positions in images jr


=[x(tj), y(tj)] were 

determined using PACT. From the observed positions, the secant velocities ju


 and secant 

accelerations j


can be determined: 

t

uu
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Equation 1 

 
I remind the reader here of the distinction between these quantities and the 

instantaneous velocities and accelerations, for which I keep the traditional notation )(tv


and )(ta


. The secant velocities ju


 and secant accelerations j


 are discrete time series, 
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whereas )(tv


and )(ta


 are continuous functions of time. Only the secant quantities are 
available from a real experiment and differ from )(tv


and )(ta


 due to discretization 

effects owing to the finite frame rate ∆t (II.5.a). They also include contributions from the 
positional noise, which is the inherent measurement error that affects each cell centroid 
values output by the tracking program. In the limit where the positional noise and ∆t 
become vanishingly small, the secant quantities equal their instantaneous counterparts. 

 

 

Figure 1  - Plot of components of acceleration and of RMSD of accelerations versus 
speed. Red and green data points are the mean values of the parallel and perpendicular 
components of the secant acceleration, respectively, as a function of secant speed. Blue 
and magenta data points show RMSD of the same quantities, parallel and perpendicular 

components respectively. The lines show theoretical expectation values of the same 
quantities, according to the NIH 3T3 model, fitted to these data points. 

 
Below I will describe how to analyze the data to derive an OU-like model that 

best describes the corresponding cell motility. Cell motility models are often described as 
OU-like processes. The standard OU process follows the following equation (Equation 2, 
II.4.a), rewritten here with the shorthand notation √2D = s: 

)t(s)t(v
P

1
)t(

dt

vd





 

Equation 2 

where 


 is a normalized generalized Gaussian white noise as described before (I.1.a).  
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In the standard OU model the parameter P is interpreted as the persistence time of 
the motility and s is the cell motility coefficient. Using secant quantities, this becomes: 

jj
j

def

j u
t
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  
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







 

Equation 3 

where j


 is a vector whose components are Gaussian distributed random numbers of 

mean 0 and variance 1 as described before (II.1.b). In the absence of discretization effects 
and positional noise equation 3 can be derived directly from equation 1 by integration 
followed by division by ∆t. However, in the case of data subject to this type of effects, 
such as real experimental data, this is only an approximation: 
 

β-1= P + O(σpos) + O’(∆t) 
Equation 4 

 
and similarly  

σ√∆t = s + O(σpos) + O’(∆t) 
Equation 5 

 
The β and σ parameters can be determined directly from plots of α and RMSD(α) 

vs. u, and  depend on the experimental setup through the  positional noise and 
discretization of time (III.5.a). A system-specific set of parameters, P and s, require 
indirect methods to determine them (II.5.b and II.5.c).  
 

As a reminder, for the OU process, the secant velocities can be used to calculate P 
as the characteristic time of the velocity autocorrelation function. This can be estimated 
from the cell tracks as follows, essentially replacing the expectation value in equation 3, 
section II.4.a with an averaging over cell trajectories and time: 
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where Nα denotes the number of points in track α, tj = jΔt and tk = kΔt as all of our movies 
were recorded at a fixed frame rate. By fitting a monoexponential function to the 
remaining values of φ, the persistence time P can be determined accurately as the 
characteristic time of the monoexponential fit (II.5.c). I also point out to the reader that 
the first two points of the autocorrelation velocity function are also affected by more 
subtle effects (e.g. the fine oscillations in trajectory due to pseudopod action) (Li et al., 
Phys Biol), which makes using them to determine positional noise an imprecise method. 

 

The standard OU model predicts that the perpendicular projection of the cell 
acceleration to the trajectory would be zero, the noise term aside (equation 2). This can be 
seen to hold true in Figure 1 (green trace). Similarly, the parallel component is expected 
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to show linear dependence on velocity for cells following the standard OU process and 
the data in Figure 1 (red trace) shows deviation from linearity of a|| at high speeds. 
Additionally, in the standard OU process the RMSD of the two components of the 
acceleration are expected to be v-independent, which is clearly not the case (purple and 
blue traces). These deviations from the behavior expected of the standard OU process led 
us to propose the following extension of the OU process to describe the motility of NIH 
3T3 fibroblasts: 

jjjj10

j
)u(u)u(

t

u



 

σ
  

Equation 6 

It is important to highlight at this point the distinction between the β parameters 
and the persistence time, P, on the one hand, and between the σ parameters and the cell 
motility coefficient s, on the other hand.  

The process described by equation 6 is similar to the normal human derman 
fibroblast (NHDF) model proposed by Selmeczi et al (Selmeczi et al. 2005). The noise 
term was modeled in the same manner as in that paper, namely, as a velocity-dependent 
tensor times a white noise term. Similarly, to account for the non-linearity of a||, the P-1 
factor in equation 2 was replaced with a linear function of speed, β0+β1v, which is 
consistent with a 2nd degree polynomial dependence of a|| on speed as our data indicate 
(Figure 1, red trace). Following fitting these parameters were β0 = 0.32 ± 0.02 min-1 and 
β1 = 0.051 ± 0.007 μm-1.  

The notable difference between the behavior of NIH 3T3 cells presented here and 
that of NHDF cells is that the former do not display the initial fast decrease of the 
velocity autocorrelation function (defined by equation 2) to its slower exponential 
decrease at larger time-separations (Figure 2, top panel), which is characteristic of the 
NHDF model. This is more easily seen in the binned autocorrelation velocity, shown in 
Figure 2 (bottom panel).  
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Figure 2  - Motility of NIH 3T3 on glass Top: Data points are the experimental velocity 

autocorrelation function. The error bars underestimate the true scatter as they were 
computed from experimental data that are correlated due to persistence of cell motion. 

The red line shows a mono-exponential fit to these data. Bottom: Binned velocity 
autocorrelation (black) and monoexponential fit (red). 

 
One possible explanation for this difference between human (NHDF) and 

mouse (NIH 3T3) fibroblasts, which brings the motility of NIH 3T3 fibroblasts closer to 
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the standard OU process, is that the β1v term in equation 6, although present, is relatively 
small as compared to the β0 term. In this case, equation 6 can be approximated to: 
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Equation 8 
 

which is the same as the difference form of the standard OU process (equation 3), noise 
term aside. Hence, its solution φ(t) is expected to be mono-exponential. The perturbation 
induced by the presence of a small β1v term may be buried in the noise in the case of NIH 
3T3 cells, but not NHDF. Indeed, the β1<v>/β0 ratio is 0.156 for NIH 3T3, but 
significantly larger, 0.429, for NHDF (Selmeczi et al. 2005). I also underline here the 
fundamental difference between the persistence time, P, defined here as the lifetime of the 
velocity autocorrelation function, and the β0 parameter. Since the β0 parameter is 
determined from a polynomial fit to the parallel component of the acceleration as a 
function of speed as in Figure 1, and the instantaneous cell acceleration and speed are 
unavailable in real experimental settings due to the finite frame rate time (Δt = 2 min), the 
relationship P-1 = β0 only holds in the limit Δt/P → 0 and σpos → 0. Indeed, in the case of 
NIH 3T3 cells, P = 36 ± 4 min, which is substantially larger than β0

-1 ≈ 3 min. The 
significant discrepancy between the two parameters highlights the importance of 
positional noise and trajectory discretization effect in interpreting these results (equations 
4, 5). To conclude, the NIH 3T3 model’s most significant departure from the NHDH 
model proposed in [Selmeczi et al.] is a mono-exponential dependence of the velocity 
autocorrelation function on time. Thus in the NIH 3T3 model I omit the memory kernel of 
the NHDF model.  

 Because of the monoexponential nature of the velocity autocovariance 
function, Fürth’s formula will remain formally identical to its standard OU counterpart, 
inclusive of the case where positional noise is accounted for, making equation 6, section 
II.5.a generally applicable not only to the standard OU process but also to the NIH 3T3 
model. I will make use of that feature in the following chapter to assess the positional 
noise in various datasets. Likewise, the simplified fitting method proposed in II.5.c is also 
applicable here, unlike in the case of the NHDF model. It is important to note, however, 
that the amplitude of that exponential is no longer 2D/P as in the standard OU process, as 
the D parameter is no longer defined. Instead, its relationship to the other motility 
parameters can be determined by numerical integration. 

The method presented in this section is generally applicable to any sparse cell 
culture undergoing isotropic motility, and I have employed the data_analysis_exp.m 
program (Appendix 6), which allows for automating the plot generation (see section 
II.5.c). Following the proof-of-the-method test on NIH3T3 fibroblasts described above, 
this program has also been extensively used for analyzing cell motility on Si black 
substrates (section 4 of this chapter). All the fits presented above have been performed in 
Origin 8.0 using data output by data_analysis_exp.m. 

 

b. Effect of RMSD filtering  
In order to remove all fixed objects automatically, an additional, RMSD-based 

filter is applied to the tracks prior to their analysis. For each track, both 
data_analysis_exp.m (in case a program other than PACT is used for cell tracking) and 



Chapter III                                                Cell tracking and motility on isotropic substrates 

54 
 

PACT calculate the root-mean-squared deviation of the tracked point from its mean (i.e., 
time averaged) value: 
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Equation 1 

 
This is a small quantity if a cell does not move. In our experience, an RMSD 

threshold of approximately half a typical cell diameter (15 pixels in our images) is 
optimal for the exclusion of non-moving cells. This ensures that only cells that move at 
least one cell diameter over the course of a time-lapse experiment are used for further 
analyses. Most of the cells discarded this way (~30% of all tracked immobilized objects) 
appear to be mechanically immobilized, attached permanently to the surface, or lysed, 
and they should not be included in the motility analysis.  The few cells that are not lysed 
or immobile, but simply happen to move very little for the duration of the observation, are 
also removed by this filter.  This causes negligible error because their contribution to the 
velocity autocovariance function would be nearly zero if they were allowed to contribute 
to its statistics, while inclusion of a large number of non-moving cells and other objects 
would skew the statistics. Consequently, the RMSD-filter’s elimination of these cells has 
minimal effect on our estimates for persistence times. Specifically, in our movies the 
RMSD filter only discarded two to three biologically relevant cells out of a full dataset of 
70. I found that the convenience of having all fixed objects removed automatically greatly 
outweighs the negligible effect of their exclusion on statistics. In general, however, since 
the parameter φ0 is nearly equal to the mean squared velocity of the cells, one should 
clearly state the use of the RMSD filter and estimate its effect, since its elimination of the 
slow-moving cells has the potential of artificially inflating φ0. 
 

  

c. Reproducibility of Statistical Data Analysis 
 

Before testing whether different cell tracking programs yield the same velocity 
autocovariance statistics for the tracks that they find for a given movie of motile cells, we 
assessed the reproducibility of the results obtained using PACT. Five movies were 
recorded on different positions on the same sample and each movie and the combined 
dataset were statistically analyzed. PACT found 8 to 15 tracks per movie, each movie 
recording ~12 hours of NIH 3T3 motility on glass, with t=2 min between successive 
frames. Results are shown in Figure 4 below and in Table S1 in Appendix 3.a. 

 
The 5 pairs of parameters were determined from a weighted least-squares fit to 

velocity autocovariance function data points. We note that the error bars of the 
autocovariance data points, shown in Figure S2, Appendix 3.a, become increasingly 
underestimated as recording time goes by, due to data redundancy in the method used to 
calculate them (Equation S1, Appendix 3.a). This leads to artificially low weighing 
factors in the least-squares algorithm, which lowers the error bars of the fit parameters P 
and especially φ0. Additionally, the autocovariance data points themselves are correlated 
(i.e. not statistically independent) as they are calculated from the same set of cell centroid 
coordinates. This factor also has the effect to artificially deflating the error bars of the fit 
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parameters P and φ0 (fit results reported in Table S1, Appendix 3.a and Figure 4). To 
account for these data overdispersion effects while assessing the reproducibility of our 
results, we quantitated the degree of this artifact in our data (Appendix 3.b). This 
procedure allows the estimation of the motility parameters from all 5 movies as a 

weighted average of the parameters measured from individual movies: P = 35 ± 4 min 

and 0 = 0.18 ± 0.02 μm2/min2. This matches nearly exactly the parameters determined 

by combining the 5 sets of centroid coordinates and analyzing those coordinates as one 
set (“combined dataset,” Table S1, Appendix 3.a): P = 36 ± 4 min and φ0 = 0.18 ± 0.02 
μm2/min2. We conclude that the observed discrepancy between the motility parameters 
determined from the five movies is statistically insignificant: 4/5 parameter pairs match 
within 1σ (68.3% expected to match) after correction. This shows that this method of 
analysis is reproducible. 
 

 
Figure 4  - Motility parameters for NIH 3T3 cells on glass analyzed with PACT. Each of 
the 5 movies is depicted as a point in the associated P-φ0 space. The black error bars show 
the overdispersion-uncorrected 1σ (i.e. original fit results), while the corrected 1σ levels 
are shown as color-matched ellipsoids around each point. Color code: blue - movie 1 (9 
tracks after post-processing); purple - movie 2 (12 tracks); orange - movie 3 (15 tracks); 
green - movie 4 (8 tracks); and red - movie 5 (14 tracks). The black point shows the 
weighted mean of parameters from the 5 movies and corresponding overdispersion-
corrected 1σ error bars.  
 

3. On the choice of cell centroid 
I have tested the performance of PACT and other programs at tracking motile 

cells by performing a statistical analysis of tracks: 
 
a. I compared pair-wise the statistics obtained by tracking with different 
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programs. 
b. I compared the positional noise as function of software. 
c. I compared the velocity autocovariance functions calculated from tracks 

obtained with different programs 
 

a. Pair­wise Comparison of Tracks  
 

Following the post-processing step, for the purpose of assessing the relative 
performance of the various programs with regards to centroid positioning error, I have 
compared pair-wise the tracks of cells tracked by each of the three programs (forming 3 
datasets), TLA, Autozell, and PACT, so as to avoid cell selection bias due to the differing 
tracking methods implemented. The difference between the tracks of the same cell 
obtained with two different tracking programs is due to a conglomerate of errors arising 
from of differences in the spatial filtering, thresholding and tracking algorithm employed 
by each program. To remove systematic error, the tracks common to all three datasets (the 
subsets) were first translationally aligned to minimize the pair-wise RMSD (Eq. 3) of the 
three subsets. This minimal pair-wise RMDS was used as a measure of the mismatch 
between the coordinates output by each program. 
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Equation 2 

 
The magnitude of pair-wise mismatches between the three programs may be 

found in Table 4 (off-diagonal elements). We attribute the higher RMSD between the 
Autozell subset and the subsets generated by the other two programs to the fact that 
Autozell rounds the coordinates of centroids to the nearest integer, which necessarily 
introduces an additional random error. Also note that the default settings of TLA, which 
have been used in this and the following section unless explicitly stated otherwise, 
involve a special smoothing procedure of the tracks which slightly alters centroid 
coordinates (see section vii below). 

 

b. Centroid Positional Error  
I have also evaluated the mean square displacements of cell centroids as a 

function of time for each of the three subsets to assess the centroid positional error for 
each of the three cell tracking programs. By fitting to the extended Fürth’s formula 
(equation 6, section II.5.a), we determined the centroid positional measurement error, 
σpos. These values are listed in Table 4.  

 
Table 4 – Positional error effects. The diagonal elements show the centroid 

positional measurement error as determined from a fit to Fürth’s formula. The off-
diagonal elements show the pair-wise RMSD between the programs. All values in μm. 

 
Positional 
error/µm 

PACT TLA Autozell 

PACT 1.40 ± 0.05 1.9 2.6 
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TLA - 0.36 ± 0.03 2.7 
Autozell - - 1.36 ± 0.04 
 
The results in Table 4 are interpretable in light of Equation 3 which relates each 

tracking algorithm’s intrinsic noise (denoted as the white noise term ξi with variance 
2pos,i

2
 ) with the measured centroid coordinate value ri. The i subscript refers to the 

algorithm/program used: 
 

Ԧ௜ݎ ൌ Ԧ௜ݎ
௧௛ ൅  Ԧiߟ
 

Equation 3 
 
In the limit of large N, the measured value of the centroid is biased by the choice 

of algorithm due to positional noise (random error, variance 2ߪ௣௢௦,௜
ଶ ), as well as any 

systematic, algorithm-specific, centroid positioning error. Thus the pair-wise RMSD is: 
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Equation 4 

 
 Indeed, the difference between the mean squared pair-wise displacement 
(square of RMSD from Table 4) and the corresponding sum of the variances (2ߪ௣௢௦,௜

ଶ ൅
௣௢௦,௝ߪ2

ଶ ) is very similar to the variances themselves (-0.6 to 3.3 μm2). Thus, the relative 
centroid tracking accuracy of the different programs does not differ significantly from the 
positional noise level itself.  

 
While Autozell and PACT appear to track cells with similar positional noise 

levels, the TLA dataset has a much lower positional noise. I attribute this effect to the 
Kalman filter employed for noise reduction and subsequent smoothing of cell tracks using 
a moving average filter as provided in the standard procedure for processing bright field 
images in TLA (Kalman 1960). Indeed, reprocessing this movie in TLA with the moving 
average filter switched off and the Kalman filter adjusted so that no prediction is made, 
yields σpos = 0.61 ± 0.07 μm, nearly twice that determined with this program’s standard 
procedure, but still lower than PACT and Autozell’s.  

 
 

c. Comparing Velocity Autocovariance Functions  
 

I have assessed the reliability of various cell tracking programs by testing 
them on NIH 3T3 cells recorded on a glass substrate (movie #3). The cells in this movie 
were tracked by Autozell, MATLAB, and TLA, and following post-processing, the tracks 
found by each of the three programs (the original datasets) were analyzed. I have named 
the resulting tracks the original datasets: 15 tracks identified by PACT following post-
processing, 9 tracks identified by Autozell, and 14 tracks identified by TLA using the 
default settings. I have also included the motility parameters obtained from TLA with the 
moving average smoothing option turned off and adjusted to prevent any Kalman filter 
prediction (“TLA/raw”) such that the position measurement is accepted as the true object 
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position (15 tracks). The results are shown in figure 5 and in Table S3 in Appendix 3.a. 
 

 
Figure 5A  - Comparison of PACT, Autozell, and TLA for the purpose of cell motility 
analysis. Each of the datasets is depicted as a point in the associated P-φ0 space. The 
black error bars show the overdispersion-uncorrected 1σ (i.e. original fit results). Both the 
corrected 1σ (red ellipsoid) and 2σ levels (light red ellipsoid) are shown around the PACT 
point. In the absence of overdispersion information, the uncorrected 1σ levels are shown 
as color-matched ellipsoids around the Autozell (blue) and TLA (green) points. The 
Kalman-filtered and moving-average smoothed P-φ0 point is shown as a green circle, to 
distinguish it from the unfiltered, unsmoothed result, shown as a green square. 

 
The motility parameters thus determined with Autozell and/or TLA differ 

substantially (φ0 nearly halved, P nearly doubled) from the results obtained using PACT. 
The Autozell and PACT results are statistically equivalent as there is a clear overlap 
between the blue (Autozell, uncorrected 1σ) and light red ellipsoid (PACT, corrected 2σ), 
and a possible overlap within 1σ between the two programs if the Autozell results were 
data overdispersion-corrected. However, both TLA ellipsoids (1σ)  remain well outside 
the range of overlap with the other two programs. We speculated that the Kalman filter or 
the moving average filter was the culprit; however, the results do not change much upon 
removal of these effects. This is perhaps the best illustration of the increase in fit 
imprecision due to the correlation of the velocity autocovariance data points. Indeed, the 
velocity autocovariance functions determined using the TLA datasets show significant 
structure (Table S4, Appendix 3.a), which would indeed lead to significant 
underestimation of the error bars, manifested as the substantially smaller green ellipsoids 
in figure 5. I am uncertain of the cause of the high correlation of the velocity 
autocovariance values as determined with TLA. 

 
To account for the possible effects of not having used the tracks of the exact same 

cells in this analysis, we have also separately analyzed the common subset of tracks of the 
cells detected by all three programs (hereafter referred to as the subset). The results are 
shown in Figure 5B below and in Table S4 in Appendix 3.a. 
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Figure 5B  - Comparison of PACT, Autozell, and TLA for the purpose of cell motility 
analysis. Each of the subsets is depicted as a point in the associated P-φ0 space. The black 
error bars show the overdispersion-uncorrected 1σ (i.e. original fit results). In the absence 
of overdispersion information, the uncorrected 1σ levels are shown as color-matched 
ellipsoids around the PACT (red), Autozell (blue), and TLA (green) points. The Kalman-
filtered and moving-average smoothed P-φ0 point is shown as a green circle, to 
distinguish it from the unfiltered, unsmoothed result, shown as a green square. 
 

Only 3 of the tracks correspond to cells that were identified and tracked by all 
three programs. A comparison of cell motility parameters determined from raw data (i.e. 
without any filtering/smoothing procedure applied to the data) in fig 5B shows that there 
is no significant variation in the motility parameters, φ0 and P. I conclude that the 
observed discrepancy between the motility parameters determined with the three 
programs is statistically insignificant: 2/3 persistence times match within 1σ and all (3/3) 
φ0 parameters do as well (at most 68.3% expected to match), despite the shown error bars 
being underestimates of the real error bar levels.  

 
I note, however, that the Kalman filtered- and moving average smoothed-subset 

yields a very different P-φ0 set of results. This is at least in part due to the substantial 
underestimation of the respective error bars, owing to the highly structured velocity 
autocovariance functions (Figure S4, Appendix 3.a). Finally, to test the the possible effect 
of Autozell’s tracking method, which involved truncating the centroid coordinate to the 
nearest pixel, we have similarly rounded the coordinates generated by PACT to the 
nearest pixel to generate the PACT/cut common dataset (Table S4, Appendix 3.a). I found 
that the motility parameters determined from this subset had not changed, and conclude 
that the systematic centroid truncation performed by Autozell is unlikely to affect the 
motility analysis results. 

 
These observations raise the point of the importance of the definition of the cell 

centroid and the effect this definition has on cell motility statistical analysis. I elaborate 
on this below. 
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4. Biological Applications 
To assess the influence of surface nanotopography on cell motility, we have 

imaged NIH 3T3 fibroblast on a range of Si black surfaces. The details of sample 
preparation have been described elsewhere (Lopacinska et al. 2011), and the cell handling 
and imaging has been done exactly as for the NIH 3T3/glass experiments (section III.5.a 
and III.5.b). The characteristics of the samples used are summarized in Figure 1 and 
Table 1 below. 
 

 

Figure 1: Geometrical characteristics of nanograss surface morphologies that were tested 
for NIH3T3 response. Substrate topography measured on SEM images. All images taken 
at 30º angle. Scale bars: 2 µm. (From Lopacinska et al. 2011). 

Table 1 Characteristics of different nanograss surface morphologies tested for NIH3T3 
response (Lopacinska et al. 2011). 

Sample 
Density Pitch Diameter Height 

[part/um2] [um] [um] [um]
bs01A 5.30 0.43 0.198 0.333
bs01B 0.04 5.00 1.743 4.216
bs02 7.40 0.37 0.074 0.296
bs03A 24.3 0.20 0.071 0.061
bs03B 2.16 0.70 - 0.286
bs04 14.80 0.26 0.071 0.102
 
 

The motility parameters are shown schematically in figure 2. 
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Figure 2 Persistence times P of cells on the different surfaces plotted against the values of 
the RMS cell speed.  Both values were obtained by fitting a monoexponential function to 
the auto-covariance ݒۃԦሺݐଵሻ ·  of velocities in trajectories. These results show that ۄଶሻݐԦሺݒ
nanotopography alone can lead to large variations in the RMS cell speed and persistence 
time.  This type of motility analysis provides a new and different parameterization of 
differences in cell responses to various surfaces. (From Lopacinska et al. 2011). 

 
 While no consistently clear monotonous relation of either of the two cell 
parameters on surface topology parameters can be found, this results indicates clearly a 
strong dependence on motility on surface topography, and paves the way for further 
investigations in the area. 
 

5. Materials and Methods 

a.  Cell Culture and Substrate Nanofabrication 
HeLa and NIH 3T3 cells were imaged on a microscope glass slide (Thermo 

Scientific, Menzel-Gläser), and NIH 3T3 cells on flat silicon and silicon black. Silicon 
black samples were fabricated by reactive ion etching of silicon substrates (Jansen and et 
al. 1995; Cui 2008).  

 
The cell lines were obtained from Risø National Laboratory, Denmark.  The cells 

were grown in Dulbecco's Modified Eagle Medium: Nutrient Mixture F-12 (DMEM/F12) 
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+ GlutaMAX (Invitrogen) supplemented with either 10% fetal bovine serum – FBS 
(Sigma) in the case of HeLa cells, or 10% of newborn calf serum for NIH3T3 cells, 2 mM 
L-glutamine (Sigma), 100 U/mL

 

penicillin (Sigma), 100 μg/mL
 

streptomycin (Sigma) and 
grown until confluency. Cells were harvested by a standard trypsinization method, then 
seeded at a concentration of 5 x 104 cells per each well of 24-well plate and cultured on 
the tested materials (1cmx1cm) for 1 or 3 days. The time-lapse microscopy experiments 
were performed in a home-made cell culture chamber equipped with a bubble trap and 
adjustable medium flow, mounted on a temperature-controlled microscope stage.  

 
For the fluorescence microscopy experiments performed to compare brightfield 

and fluorescence microscopy centroids of the actin cytoskeleton of the cells, the cells 
were treated with 2% glutaraldehyde in 0.05M cacodylate buffer for 15-20 minutes at the 
room temperature, washed in 1xPBS containing 0.05% Tween-20, and permeabilized 
with 0.1% Triton X-100 in 1xPBS for 1-5 minutes at room temperature. After being 
washed three times with 1xPBS containing 0.05% Tween-20, the cells were incubated in 
TRITC-conjugated phalloidin (Sigma-Aldrich) for 30 minutes, and rinsed three times 
with 1xPBS containing 0.05% Tween-20. 

 

b. Data and Image Sequence Acquisition 
The videos contain 8-bit, grayscale images recorded with a temporal resolution of 

2-10 minutes. Each image pixel has a size of 0.977 x 0.977 μm and the resolution of the 
images was 1024 x 768. The recording device was a Zeiss Axiotech microscope equipped 
with a 10x Zeiss objective with a 19 mm working distance and a field of view of 1000 x 
750 μm2 and a Labview-controlled microscope stage. The acquisition technique was 
bright field microscopy and reflected light microscopy was used as many of the substrates 
were not transparent to light. The fluorescence and bright field microscopy experiments 
with fixed cells were performed on an Olympus BX51 upright microscope. Analysis of 
bright field images was performed using the TLA setup file provided by the authors. By 
default, TLA tracks cells imaged in bright field microscopy by first applying a low-pass 
Gaussian filter of size 25x25 pixels and standard deviation 11 pixels. A Wiener low-pass 
filter in a 15x15 pixel mask around each pixel is applied to remove the pixel noise the 
image, and this is followed by the actual segmentation process. 

 

c. PACT Algorithm, Program Implementation, Structure and 
Functionality 

PACT was implemented using MATLAB (ver. 2008a) and is a text-based, 
interactive, open source application for the analysis of cell motility data such as the 
methods described by Selmeczi et al. (Selmeczi et al. 2005). This analysis requires 
accurate measurements of cell centroid coordinates throughout the duration of their 
observation.  

 
Processing a time lapse movie in PACT consists of: Tracking the individual 

moving objects through a sequence of images, where the objects have been localized by 
an image segmentation routine on images after a suitable image filtering process for 
optimal segmentation results. PACT employs a combination of two of the simplest and 
fastest segmentation methods: thresholding and edge detection. The result of a PACT 
processing is a time-ordered list of centroid coordinates for each object that is tracked. 
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Root mean square deviation filtering (RMSD-filtering, see point (v) above) is an optional 
last step of processing and removes tracks of objects whose displacement is below a user-
defined threshold. This option automatically removes tracks of non-motile cells, such as 
cells immobilized on the surface and lysed cells.  

 
Post-processing is the manual screening of the processed data using criteria of 

biological relevance, which results in final identification of biologically relevant cells 
amongst the objects tracked. Human judgment is needed to decide which tracks are of 
sufficient quality for inclusion in the data analysis. This involves discarding segments of 
tracks where cells either: (a) undergo division; (b) come into contact with one another; (c) 
carry foreign objects; (d) and optionally cells that do not display normal motility patterns 
(i.e. those that do not extend lamellipodia or filopodia).  

 
The source code of PACT is provided in Appendix 5. The program takes the 

recorded movie frames as input and outputs the cell centroid coordinates. The frames 
must be located in the same folder as the source code of the program and a new folder 
("processed") is created where overlay images of original frames and the contours and 
cell centroids are stored. The section "working parameters" in the main program may be 
used to change the name of the input files and to invert the images if needed. The frame 
may be color or gray-scale; PACT will remove the color component if present. 8-bit 
depth is sufficient if the contrast is good, else 16-, 24-, etc. may be needed. 

 
For image filtering, a band-pass filter that is part of ‘IDL (Interactive Data 

Language) Particle Tracking’ package (Crocker et al.) is first applied to remove pixel 
noise and non-uniform background illumination effects (Figure 6). This is done by 
convolving (○ operator) the image array I in two steps with a Gaussian function G and a 
boxcar function B and subtracting the result. 

 

    TTTTTTTT BBIGGIIFiltered    
Equation 3 

 
In Fourier space this amounts to applying a radially symmetric mask function 

which features a Gaussian decline at high frequencies and an abrupt fall at low 
frequencies.  The limits of this band-pass filter are also set up in the working parameters 
section: the high-frequency limit by the standard deviation of G, and the low-frequency 
limit by the width of B.  We found that a high-frequency limit of 2-3 pixels works well 
for most flat surfaces, and that as much as eight pixels may be required for the highly 
noisy backgrounds that we have encountered when imaging cells on silicon black. We 
typically set the low frequency limit to 30-50 pixels as this corresponds approximately to 
the size of an average cell in our microscopy setup and efficiently filters inhomogeneous 
background illumination. 

 
For the segmentation, PACT has a text-based, interactive user interface, which 

iteratively requests two parameters until the user is satisfied with the selection. The first 
parameter is the peak exclusion threshold which defines the minimal brightness of a spot 
in the band-pass filtered image required for inclusion on the object list. The peak 
(brightest pixel) of the object is marked as a red cross on the image. The cell contour 
shown as a blue line in the image is defined as the isohypse located at a user-defined 
percentage (the contour cutoff) of the peak level (Figure 6). The segmentation is done 
manually for the first and last frames in the movie, and all intervening frames are 
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processed automatically with an average of the contour cutoffs and linear interpolation of 
the peak exclusion thresholds set for these two frames. The linear interpolation is 
especially useful for long movies where the background and/or object brightness may 
change slowly in time due to factors external to the experiment (see section (ii) above). 

 
Further selection includes restrictions on minimal and maximal cell area (to 

remove unwanted objects such as small pieces of dust or large air bubbles and cell 
conglomerates from the analysis) and minimal distance between cells to ensure that only 
independent cells are detected.  These parameters may also be set in the working 
parameters section. 



Chapter III                                                Cell tracking and motility on isotropic substrates 

65 
 

 
Figure 6  - Image segmentation in PACT: band-pass filtering followed by 

segmentation by thresholding and edge detection. Image of HeLa/glass (top), band-pass 
filtered using frequency limits of 3 and 30 pixels (middle), and processed frame (bottom) 
showing peaks brighter than peak-exclusion threshold of 60 as red crosses and cell 
contours as blue shapes. Some peaks do not have a blue contour around them, as they did 
not pass the additional cell selection criteria (size and proximity to other cells).  
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The tracking process entails sorting this independent list of coordinates 
(determined at discrete times as the centroid of the cell footprint) into particle tracks using 
a routine part of ‘IDL Particle Tracking’ package (Crocker et al.).  If desired, it is possible 
to add a last exclusion criterion for removing the non-moving cells on the basis of an 
RMSD filter (see RMSD-filtering and data post-processing sections above).  

 

6. Discussion and Conclusions  
The segmentation efficiency tested in (i) was performed by 4 programs showed in 

table 2 that perform reasonably well on flat substrates with detection efficiencies up to 
ranging from 90% of the manual count to about 60% especially for nanostructured 
substrates. These values were obtained by one user optimizing settings in the present case 
scenario and may vary between uses and time lapse movies. Image filtering routines were 
shown to be essential for efficient detection of cells on structured backgrounds (iv), and 
these routines are not available with all programs (Table 1). Additionally, settings may 
need to be optimized over time in a movie (ii) due variations in imaging conditions, 
which may be aided by the linear interpolation possible in PACT.  The variations in 
segmentation combined with track formation algorithms such as the RMSD filter (v) can 
result in very different yield of tracks from the same data set. This is especially true when 
looking the complete tracks (ix), where the joint dataset is only three tracks. The overall 
analysis process may be prone to biased selection of subpopulations of cells with specific 
features, such as proximity to other cells and specific morphology features, all depending 
on the program being used, sample details and users choice of settings. For this reason, I 
recommend that before performing automated time lapse analysis on a specific movie, the 
users assess how well the program performs compared to manual counting and consider 
carefully if the undetected cells might result in a bias in the detected cell population. 

 
I developed PACT for tracking cells on non-uniform backgrounds. To that end, I 

tested PACT on silicon black substrates. Cells on such substrates are often difficult to 
distinguish from the background even by eye. TLA and PACT are the only programs that 
successfully tracked cells in these images. The Wiener filter that TLA employs in its 
bright field tracking method is comparable to the convolution filter implemented in PACT 
with regard to cell recognition. However, I have specifically designed PACT to reduce 
operator effort at the post-processing step, which is the most time-consuming step of the 
analysis. I accomplished this by implementing additional automated post-processing 
features: restrictions on the area of the object and minimal inter-cell distance. These 
features make PACT less likely to find false positives and this is reflected in the 
percentage of objects that pass the post-processing step of PACT in comparison with 
TLA: 81% versus 72% for flat Si and 52% versus 31% for silicon black. I conclude that 
PACT is more useful for the sparse cell culture motility analyses we perform in this 
paper. PACT can, however, be less efficient for applications such as dense cell cultures.  
 

The positional error was shown in section (vii) to be of the order 1-2µm. 
Compared to this noise level, the cell centroids appear to be fairly reliably determined: 
They are not strongly influenced by variations in focus and threshold settings, but scatter 
with an RMSD of 1µm for a 20 µm focus variation in the test performed in section (ii). 
The brightfield image centroid position correlates with the fluorescence microscopy 
results with an RMSD on flat surfaces of 2.8µm as shown in (iii), while nanostructured 
substrates increase the RMSD to 4.3µm. This indicates that bright field microscopy can 
be used for motility analysis with precision comparable to that of fluorescence 
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microscopy and that the overall process is not strongly influenced by variations in the 
experimental procedure and image segmentation. 

 
I tested the internal consistency of the velocity auto-covariance function 

measurements on cell motility in section (viii) and found that the results are consistent, 
especially when accounting the artificial underestimation of the motility parameters’ error 
bars due to data overdispersion. Comparing the motility parameters obtained with 
different programs in (ix), Figures 5A and 5B, I find that the different programs give 
statistically consistent results. PACT and Autozell provide motility parameters that agree 
well within their respective uncertainty, when data overdispersion effects are accounted 
for, with the exception of TLA which leads to unusually high correlations in the velocity 
autocovariance function values and subsequent under- or over-estimation of motility 
parameters. 

 
Finally, we have implemented the features present in PACT (RMSD filter, track 

screening) in TLA and we are currently implementing the parameter estimation as an add-
on to TLA. 

 
In conclusion, this study shows that cell tracking can be done with different 

programs, often with reasonable segmentation efficiency and precision: the pair-wise 
RMSD of tracks output by two different programs is 2-3µm, consistent with a positional 
noise per dataset of ~1µm. The velocity auto-covariance function analysis demonstrates 
that different programs provide comparable precision in the motility parameters P and  
in a statistically significant manner. 
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1. Anisotropic motility  

a. Motivation 
Recent work on the interaction between cells and nanostructured substrates has indicated 
that anisotropic substrates have the potential of directly influencing isotropy of cell 
morphology and motility. By way of an example, the laboratories of Yong Chen have 
imaged cells on grooves and lines coated with specific adhesion promoting proteins, as 
shown in the images below (Hu et al.) 
.  
 

 
Figure 1: SEM image of nanogratings arrays defined by soft UV-NIL, contact 
photolithography and reactive ion etch techniques (left) and SEM image of cells on a 
hybrid pattern, showing elongation and alignment of single HeLa cell cultured on hybrid 
patterns for 36h (right). (Hu et al.) 
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Static images like these show the achieved biological structure, but tell little about the 
dynamics, e.g. for how long time the structure will remain. Here I examine varying types 
of anisotropic motility of 3T3 fibroblast on substrates patterned with grooves. Guided by 
various motility statistics, we find a model that describes the observed anisotropic 
motility. 
 

b. Current advances 
Modeling of cell motility on isotropic substrates has reached a significant level of 
sophistication (Selmeczi, Mosler et al. 2005; Li, Cox, and Flyvbjerg 2011). By contrast, 
modeling of motility in anisotropic environments has essentially been limited to the study 
of chemotaxis, which is cell motility in response to chemical gradients (Watkins 1995; 
Ionides, Fang et al. 2004; Simpson. 2004; Neilson, Veltman et al. 2011).  
 
There are a limited number of studies of motility on translationally invariant substrates, 
mostly concerned with determining diffusion-like parameters of cell motility on 
anisotropic surfaces or interpreting the differences in velocity along the axis of anisotropy 
vs. perpendicular to it without presenting a specific model of motility (Dunn and Brown 
1986; Dickinson, Guido et al. 1994; Dickinson 2000). Some of these studies present 
transport models (i.e., models of cell probability density on the surface) (Patlak 1953; 
Tranquillo and Lauffenburger 1987; Dickinson 2000) and only a few of those are 
stochastic models of motility (Matthes and Gruler 1988; Stokes, Lauffenburger et al. 
1991).  
 

2. Anisotropic motility: theory and supporting experimental data 
The dataset consists of time lapse movies of the cells, with images recorded at constant 
time intervals t. The individual cell positions in images jr


=[x(tj), y(tj)] were determined 

using PACT. From the observed positions, the secant velocities ju


 and secant 

accelerations j


can be determined: 

t

uu

t

rr
u jj

j
jj

j 







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



 11    and   

 
Equation 1 

 
I remind the reader here of the distinction between these quantities and the instantaneous 
velocities and accelerations, for which I keep the traditional notation )(tv


and )(ta


. The 

secant velocities ju


 and secant accelerations j


 are discrete time series, whereas )(tv


and )(ta


 are continuous functions of time. Only the secant quantities are available from a 
real experiment and differ from )(tv


and )(ta


 due to discretization effects owing to the 

finite frame rate ∆t (II.5.a). They also include contributions from the positional noise, 
which is the inherent measurement error that affects each cell centroid values output by 
the tracking program. In the limit where the positional noise and ∆t become vanishingly 
small, the secant quantities equal their instantaneous counterparts. 
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a. The anisotropic OU process 
Below I will describe how to analyze the data to derive an OU-like model that 

best describes the corresponding cell motility. Cell motility models may be described as 
OU-like processes (III.2.a). The standard OU process follows equation 2, section III.2.a: 

)t(s)t(v
P

1
)t(

dt

vd





 

In the standard OU model the parameter P is interpreted as the persistence time of 
the motility and s is the cell motility coefficient. Using secant quantities, this becomes 
equation 3, section III.2.a: 

jj
j

def

j u
t

u
  
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






 

The β and σ parameters can be determined directly from plots of α and RMSD(α) 
vs. u, and  depend on the experimental setup through the  positional noise and 
discretization of time (III.2.a). A system-specific set of parameters, P and s, require 
indirect methods to determine them (II.5.b and II.5.c).  
 

As a reminder, for the OU process, the secant velocities can be used to calculate P 
as the characteristic time of the velocity autocorrelation function (equation 3, section 
II.4.a): 
 



 












tracklast

tracklast jN

k
kkj

j

N

tuttu

 

1

 

1 0exp

)()(








  

 
By fitting a monoexponential function to the remaining values of φ, the 

persistence time P can be determined accurately as the characteristic time of the 
monoexponential fit (II.5.c). I also remind the reader here that the first two points of the 
autocorrelation velocity function are also affected by more subtle effects (e.g. the fine 
oscillations in trajectory due to pseudopod action) (Li et al., Phys Biol), which makes this 
method of determining positional noise subject to some error. 
 

In the following I define the method used to assess the dominant characteristics of 
the observed cell motility and how to determine if an OU process or a modified version 
with velocity dependent parameters. Based on the scalar OU process, a general tensor 
version for anisotropic motility in an unmodified OU process (i.e. P and s independent of 
v) can be written as 
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Equation 1 
 



Chapter IV  Cell motility on anisotropic substrates 

74 
 

Using secant quantities, this equation becomes 
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Equation 2 

This analysis will study to what extent such a model or modification thereof can be used 

to describe the data.  
 

b. Experimental data analysis 
I have analyzed NIH 3T3 fibroblast motility on topographically anisotropic 

surfaces. The experimental dataset consists of movies of fibroblasts on PDMS substrates 
patterned with grooves of 150, 200, and 500 nm respectively (width=depth, aspect ratio 
1). A negative control of fibroblast motility on flat PDMS has also been recorded “flat 
control.” The results are summarized in table 1 and the final trajectories following 
RMSD-filtering are shown in Figures 1-4. Motility on the flat substrate is isotropic, as 
expected, and the patterned substrates show various degrees of anisotropy. A monotonous 
relationship exist between the stripe width and χ only if the flat case is regarded as an 
anisotropic substrate with pitch width of 0 nm. 
 
Sample χ 
500 nm 0.62 
200 nm 0.68 
150 nm 0.82 
Flat 0.94 
 
Table 1: Anisotropy coefficient vs stripe width.  
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Figure 1. Tracks of 3T3 fibroblasts on flat PDMS visualized by light microscopy, tracked 
by PACT (top). (1 pixel = 0.977 μm; numbers on axes show distance in μm); and plot of 
x and y components of secant velocities (bottom): χ = 0.94. 
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Figure 2. Tracks of 3T3 fibroblasts on 500 nm patterned substrates visualized by light 
microscopy, tracked by PACT (top). (1 pixel = 0.977 μm; numbers on axes show distance 
in μm); and plot of x and y components of secant velocities (bottom) : χ = 0.62. 
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Figure 3. Tracks of 3T3 fibroblasts on 150 nm patterned substrates visualized by light 
microscopy, tracked by PACT (top). (1 pixel = 0.977 μm; numbers on axes show distance 
in μm); and plot of x and y components of secant velocities (bottom) : χ = 0.82. 
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Figure 4. Tracks of 3T3 fibroblasts on 200 nm patterned substrates visualized by light 
microscopy, tracked by PACT (top). (1 pixel = 0.977 μm; numbers on axes show distance 
in μm); and plot of x and y components of secant velocities (bottom): χ = 0.68. 
 

c. Data­driven modelling 
 
To test the method I have analyzed one of our most anisotropic movies, the 200 nm 
dataset, as described in section 2. I highlight the fact that, unlike the results presented up 
until now, the analysis below is preliminary as it is the first of its kind. Hence, although 
specific results are obtained, more data is necessary in some cases to draw definitive 
conclusions (such as whether the βx and βy parameters or Px and Py are indeed equal or 
just slightly different within their corresponding error bars). Similarly, more data is 
necessary to quantitatively establish the velocity-dependence of the σ tensor.  

i. Accounting for stage drift 
To assess if there is drift or unidirectional motility, I calculated the mean secant velocity 
(ux and uy) and standard error of the mean. In the absence of stage drift, these are 
expected to be reasonably close to zero within their error bars. The raw tracks and a plot 
of ux vs. uy is shown in Figure 4 above, centered about -0.0008 ± 0.0028 μm/min on the 
ux axis and -0.0005 ± 0.0036 μm/min on the uy axis. The dataset is hence free from drift. 
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ii. Quantitating anisotropy 
To provide a quantitative measure of the level of anisotropy of the motility, 

I first evaluated the moment of inertia of the secant velocities, I, which can be 
diagonalized to determine the principal axes of inertia. 
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where axis is a normalized eigenvector of I.  

 
I then defined the anisotropy quotient: 

 

χ = RMSDminor/RMSDmajor 
Equation 3 

 
Although χ can in principle vary between 0 and 1, it will never assume the 

value 0 for real data due to uncertainty in cell centroid localization (positional noise). 
Indeed, for purely 1D motility, the theoretically instantaneous velocity vx and vy pairs lie 
on a straight line, but the experimentally available secant velocitie, ux and uy, do not. 
Modeling the positional noise as an uncorrelated, Gaussian distributed term as done 
previously (II.3.a): 
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For convenience, I have rotated the (x,y) velocity data (ux, uy) such that the 
major axis now lies along the x-axis: vj

y= 0. 
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Whereas χtheor = 0 for perfectly linear motility, and noting that var(vx) = <vx
2> - <vx>

2 = 
<vx

2>: 
 

0
RMSD

t/2

RMSD

RMSD

major

pos

major
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def

exp 



 

Equation 4
 

 
The RMSDminor = RMSD(uy) was 0.9345 µm/min and RMSDmajor = RMSD(ux)  1.3650 
µm/min, thus an anisotropy coefficient of 0.68.  
 

iii. Velocity histogram plots 
 

The histogram of secant velocities should be Gaussian in the case of a 
standard OU process. In the case of the generalized OU process, a diagonally symmetric 
β tensor would ensure a 2D Gaussian shape of the histogram of (ux,uy) values because j


 

that defines the noise term of the OU process is white noise. Long tails, if present, are 
indicative of a velocity dependence of the σ parameter, which can be tested by means of 
an acceleration-velocity plot (section vi below).  
 

A histogram of the secant velocities is shown in Figure 5, with a Gaussian 
fit overlaid to them to check for symmetry and skew. The fit parameters were μ, the 
center of the Gaussian, σ, the standard deviation, and the amplitude. The total number of 
points was 11328, slightly underestimated by the total area under the fit Gaussian for both 
the ux and uy histograms: 10992 ±140 and 10633 ± 316, respectively. The centers of the 
Gaussians also do not match perfectly the mean of ux and uy quoted in section (i): μx = 
0.019 ± 0.008 μm/min and μy = 0.05 ± 0.03 μm/min, but remain reasonably close to zero 
within error bars. These slight mismatch effects are presumably due to binning. The 
standard deviations of the velocity histograms were 0.61 ± 0.015 μm/min and 0.92 ± 0.03 
μm/min for ux and uy, respectively, with a x/y ratio of 0.66, very comparable to the χ of 
0.68 determined for this dataset. 
 



Chapter IV  Cell motility on anisotropic substrates 

85 
 

 

 
Figure 5. Histogram of secant velocities (ux and uy) 
 

As seen from both figures, the histograms do not exhibit perfect Gaussian 
behavior, especially visible at high speeds, consistent with a slight velocity dependence of 
the sigma parameters of the OU process which I also will prove using a different method 
in the following section. 
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iv. Acceleration­velocity plots 
 
The generalized OU model can be tested by plotting αx and αy against (ux, 

uy) to see if a linear relation holds for the expected values of αx and αy as functions of (ux, 
uy), as equation 2.a.6 suggests. Such 3D plots should show a scatter plot of triplets e.g. 
(ux, uy, αx) for the αx plot centered around a plane passing through the origin, with a slope 
of -βx along the x axis and a slope of -βxy along the y axis. To remove the contribution of 
the noise term, the data is binned in velocity bins, and the relationship below (following 
from equation 2, section IV.4.a) is expected to hold true: 

 

binybinxxybinybinxybinxxbinx uu yy u  and  u  
 

Equation 5 
 
Any non-linearity in this relationship is a deviation from the standard OU model (e.g. 
dependence of the β parameters on secant velocities, III.2.a). This case would require a v-
dependent P tensor in the first term of the defining equation of the OU process (equation 
2, section IV.4.a). 
 

I plotted αx and αy respectively as a 3D-function of (ux, uy) to test whether 
the data lie on a plane as expected in the case of the generalized OU process. To remove 
the noise component I binned the data in (ux, uy) bins of 1x1 μm2/min2. The resulting 
mesh plot is shown below in figures 6 and 7. In the insets I show the original scatter plot 
viewed along the ux and uy axes, respectively, to test whether the slopes of components of 
α vs. u confirm the model. 
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Figure 6. Top: Plot of the average value of ax, the x component of the secant 
accelerations, vs. (ux, uy), with the latter binned in 1x1 μm2/min2 bins. Bottom: 2D plots 
showing the original scatter plot viewed along the ux and uy axes, respectively.  
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Figure 7. Top: Plot of the average value of ay, the x component of the secant 
accelerations, vs. (ux, uy), with the latter binned in 1x1 μm2/min2 bins. Bottom: 2D plots 
showing the original scatter plot viewed along the ux and uy axes, respectively.  
 

As seen from figures 6 and 7, the plots are planar (also within the error bars 
which are not shown for visual clarity). This confirms the initial hypothesis that the β 
tensor is u-independent. Having established this, a least-squares fit of a plane (e.g. αx = a0 
- βx<ux> - βxy<uy>) to the raw data of (ux, uy, αx/y) triplets shows that this plane passes 
through the origin (a0 = 0 within error bars). Following this check, the data is fit to a 
plane forced to pass through the origin (e.g. αx = -βx<ux> - βxy<uy>) which results in the 
following values for the components of the β tensor: 
 
βx = 0.206 ± 0.002 min-1 

βxy = 0.008 ± 0.002 min-1 

βyx = 0.011 ± 0.003 min-1 
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βy = 0.157 ± 0.002 min-1 

 
Note that since the variances on the triplets being fit are not necessarily 

Gaussian distributed, an accurate fit to the raw data requires using maximum likelihood 
estimation. Alternatively, one can perform a weighted fit to binned data as done below. 
That has the advantage of ensuring Gaussian distribution of αmean due to bin averaging of 
non-zero second moment probability distributions of the original data points (central limit 
theorem), which makes a least squares fit an accurate option (least squares fit is 
maximum likelihood with Gaussian distributed data). For this reason, I will rely further 
on the results from the fit to binned data.  
 
βx = 0.143 ± 0.006 min-1 

βxy = 0.001 ± 0.004 min-1 

βyx = 0.003 ± 0.007 min-1 

βy = 0.121 ± 0.006 min-1 

 
Regardless of the method used, the off-diagonal terms vanish within their respective error 
bars, indicative of uncorrelated persistence along x and y, respectively. The βx parameter 
is consistently slightly larger than βy, although this could be a statistical fluctuation.  
 

v. Dispersion of accelerations 
 
To assess if there is any influence on velocity in the s-parameters, I plotted the RMSD of 
the acceleration components in each (ux, uy) bin to observe the behavior of the noise term 
in the generalized OU model (Figures 8 and 9). 
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Figure 8. Plot of RMSD of the x component of the secant accelerations vs. 1x1 μm2/min2 
bins of (ux, uy) for 3T3 on 200 nm patterned substrates. 
 

 
Figure 9. Plot of RMSD of the y component of the secant accelerations vs. 1x1 μm2/min2 
bins of (ux, uy) for 3T3 on 200 nm patterned substrates. 
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Evaluating a “per-bin” variance of the raw data points, which is equivalent to taking the 
variance of of the difference equation defining the generalized OU process (equation 2, 
section IV.4.a): 
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Equation 1 
 
This result suggests the following quantity should be u-independent, provided the cells 
follow the generalized OU process: 
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Equation 2 

 

A plot of the right hand side of this equation is shown in Figures 10 and 11. Clearly, both 

components of the vector above show strong u dependence, and especially so for σx
2 + 

σxy
2, which is very dependent on ux and nearly independent of uy. The σyx

2 + σy
2 

component shows moderate dependence on both ux and uy.
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Figure 10. Plot of var(αx) + βxvar(ux) vs. 1x1 μm2/min2 bins of (ux, uy) for 3T3 on 200 nm 
patterned substrates. This is expected to be u-independent for a u-independent σ tensor 
characteristic of an unmodified generalized OU process. Clearly, this is not the case here. 
 

 
Figure 11. Plot of var(αy) + βyvar(uy) vs. 1x1 μm2/min2 bins of (ux, uy) for 3T3 on 200 nm 
patterned substrates. This is expected to be u-independent for a u-independent σ tensor 
characteristic of an unmodified generalized OU process. Clearly, this is not the case here. 
 
The motility model that emerges is thus: 
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 Equation 3 
 

While this approach establishes a motility model based on the experimental 
data, the values of the elements β and σ tensors are experimental setup-dependent, and it 
is instead the P and s tensors that are independent of discretization and positional noise 
factors. The frame rate Δt = 4 min is relatively small as compared to the P values 
determined in section vi below (48 and 25 min), although the positional noise determined 
in section vii below (2.1 and 2.8 μm) is comparable to the square root of the mean 
squared cell displacement (0.8 μm and 2.7 μm), and the latter factor which contributes to 
the difference between s and σ may play a significant role here. 
 
We currently do not have a systematic method for determining the s tensor elements yet, 
but if one should be developed it would involve power spectra analysis (II.5.b). The P 
tensor elements can be determined from the velocity autocovariance function because the 
off-diagonal elements of the β tensor are zero (no cross-correlation). 
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vi. Velocity autocovariance plots 
 

The velocity autocorrelation function  is defined in a similar manner to the 
standard OU process: 

 
)'t(v)'tt(v)t( xxx 

 
and )'t(v)'tt(v)t( yyy 

 
Equation 6 

 
As before, these are defined in terms of instantaneous velocities. In the 

general case where the off-diagonal terms of β are not zero, the various persistence times 
that make up the P tensor cannot be determined simply by fits to velocity autocorrelation 
functions as the equations do not separate. Numerical methods may then be employed to 
determine them instead. 
 

A simpler case arises if the off-diagonal components of the P tensor are 
negligibly small, which is the case with our experimental data. The cross-terms of the 
velocity autocovariance function )'t(v)'tt(v)t( yxxy   and 

)'t(v)'tt(v)t( xyyx   are white noise around zero for a generalized OU process if 

P is diagonal. 
 

I have directly tested whether the off-diagonal elements of the P vector are 
zero (as the work above rests on the assumption that if the β tensor is diagonal, that must 
also be true of P. While this has to be the case at low Δt/P and σpos, that statement does 
not have to be valid in the general case). This was done by plotting the cross-terms of the 
velocity autocovariance function φxy and φyx (figures 12 and 13): 
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Figure 12. Plot of the xy element of the secant velocities autocorrelation function (blue) 
and a straight line passing through 0 (red) for 3T3 on 200 nm patterned substrates. 
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Figure 13. Plot of the yx element of the secant velocities autocorrelation function (blue) 
and a straight line passing through 0 (red) for 3T3 on 200 nm patterned substrates. 
 
 These figures show the cross-terms of the velocity autocovariance function 
are zero (noise aside), and in order to prove that this requires that the off-diagonal 
elements of P are also zero, I start with equation 2, section IV.4.a: 
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Multiplying by vy(t+t’) and taking expectation values: 
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Setting φxy = φyx = 0,  
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with the only possible solution Pxy = Pyx = 0 (since the experimentally measured φx and φy 

are non-zero, see below).
 

 
When the P tensor is diagonal, the velocity autocovariance functions are 

expected to show simple, monoexponential behavior. Starting with equation 2, IV.4.a: 
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and multiplying to the left by ݒԦሺ0ሻ and taking the expectation value, this becomes: 
 

)t(vP)t(   and   )t(vP)t( y
1

yyx
1

xx
 

 



Chapter IV  Cell motility on anisotropic substrates 

96 
 

Equation 7 

 

As before, the experimentally available quantities are the velocity autocorrelation 

functions defined in terms of secant velocities. Since in the diagonal P case this becomes 

formally equivalent to two 1D systems, section II.5.c applies fully, and the Px and Py 

parameters, as well as the corresponding <vx
2> and <vy

2>  can be directly determined 

from monoexponential fits to φx(tj) and φy(tj), respectively.
 

 
The calculated velocity autocorrelation functions are shown in Figures 14 and 15: 
 

 
Figure 14. Plot of the autocorrelation function of the x component of the secant velocities 
(black) and a monoexponential fit to it (red) for 3T3 on 200 nm patterned substrates. 
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Figure 15. Plot of the autocorrelation function of the y component of the secant velocities 
(black) and a monoexponential fit to it (red) for 3T3 on 200 nm patterned substrates.  
 
Both velocity autocorrelation functions show clear monoexponential behavior. The 
persistence times are given by the fits’ lifetime: Px = 48 ± 11 min and Py = 25 ± 2 min.  
 
The amplitude parameters were φ0,x = 0.042 ± 0.008 μm2/min2 and φ0,y = 0.47 ± 0.03 
μm2/min2; as in the case of 1D motility, these remain approximately equal to <vx

2> and 
<vy

2>, respectively (II.5.c). This result shows that cells move significantly faster (~3x) 
along the y axis (parallel to the stripes) vs. along the x-axis (perpendicular to the stripes). 
Coupled with the differences in persistence times, this indicates that the cells move an 
average of Px·√<vx

2> = 9.8 μm and Py·√<vy
2> = 17 μm before turning. As the cells have 

to cross a rugged surface as they move along x (150-500 nm alternating wells and square 
bumps), this presents a different type of resistance to motility than movement along y 
where the surface presents itself as a smooth substrate to the cell. 
 
 

vii. Positional noise 
The positional noise can be determined by fitting to Fürth’s formula as described before 
(II.5.a). Fürth’s formula plots can also show if there are limitations to cell motion in the 
direction transverse to the groove axis (assumed parallel to the major axis of motility). 
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Figure 16. Fit of extended Fürth’s formula (red) to the mean squared displacement of the 
x (left) and y (right) positions of the cell (black). Inset: same plot showing only the first 
five points. 
 
From the Fürth’s formula plots we find the following values for the positional noise: σx,pos 
= 2.13 ± 0.06 μm and σy,pos = 2.8 ± 0.1 μm, typical if not slightly larger than those 
previously encountered with PACT-processed data (III.3.b). 
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3. Conclusions 
The 200 nm dataset illustrated strong anisotropic behavior. Based on the analysis above I 
have found that an modified, generalized OU process can be used to described the data 
reasonably well, with Px = 48 ± 11 min and Py = 25 ± 2 min and Pxy=0: 
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where methods for estimating the elements of the s tensor are pending investigation. 
 
In the form of a difference equation involving secant quantities: 
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Equation 2 

 
where the  parameters are strongly influenced by setup-dependent discretization effects 
and have some velocity dependence in the observed dataset. The s parameters are 
experimental setup-independent, but we do not have a systematic method for determining 
them yet. 
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This chapter contains the concluding remarks, which sum up all of the results 
presented, take a step back to the Objective section of this thesis to show what has been 
accomplished, and present a number of other research avenues that this work opens. 

 
 

1. Summary of results against the initial objectives 
The objectives of this Ph.D. project have been to develop the theoretical tools 

needed to characterize cell motility.  
 
The work presented herein developed a theoretical framework for coping in a 

quantitative manner with challenges frequently encountered in dealing with experimental 
data, such as positional measurement noise and discrete cell trajectories. They are no 
longer seen as sources of error, but have been modeled mathematically, which permits 
treating them as independent parameters that can be extracted from the experimental data. 
A computer program specifically optimized for tracking cells on the types of surfaces that 
have been investigated in this project has been written and compared against other similar 
packages available commercially or on an open-source basis. This led to a thorough study 
of the potential effect of tracking algorithm choice on motility results. Finally, the 
question of how to extract motility parameters has been addressed, which resulted in the 
development of two methods of data analysis and of a computer program that implements 
them, thereby automating the method of determining motility parameters from a set of 
cell tracks. 

 
For the purposes of cell motility modeling, various extensions of the standard OU 

process have been proposed, either to model the motility mouse fibroblasts on flat 
surfaces similar to that performed in Selmeczi et al., or for cell motility on anisotropic 
substrates. The former study allowed comparison of fibroblast motility across different 
species, as Selmeczi et al. modeled the motility of normal human dermal fibroblasts, 
which is an initial step in characterizing the effect of interspecies differences on cell 
motility. Finally, several experiments addressing the effect of surface nanotopography on 
motility found a strong dependence of motility parameters on topography, without any 
influence on the specific motility model.  
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2. Outlook 

a. Future directions 
This work has resulted in specific answers to the initial question of 

how to best model cell motility and how to interpret the results. This work’s 
contribution to the field raises in turn a few additional questions. Some are 
natural follow-ups of the research already presented, such as – on the 
mathematical side – what is the optimal way of determining the cell motility 
parameters σ and especially the experimental setup-independent cell motility 
coefficient, s. An accurate and precise way of determining them may shed light 
on the interplay of cell type and surface topology on the motility models and 
parameters, thereby clarifying the biological meaning of the persistence time 
and of the cell motility coefficients. Further, modeling anisotropic motility in 
the way described in chapter IV is preliminary and, to my knowledge, 
pioneering, and better data resolution, as well as inclusion of more surface 
types/anisotropic elements may lead to better characterization of cell motility in 
anisotropic environments. 

 
On the biological side, the preliminary observation that fibroblasts 

from different organisms and tissue types follow slightly different motility 
models, and significantly different motility parameters may provide a way to 
discriminate between such cells in much the same way that a biological marker 
does. 
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1. Proofs and formulas 

a. Estimation of D by unweighted LSQ fitting: 
 The unweighted least-squares fitting criterion for determining D requires 
minimization of the following quantity: 
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As a measure of this estimator’s precision, taking its expectation value shows that it is 

unbiased 
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Reverting to the definition of δn (equation 2.a.1): 
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And given equation 1.b.3: 
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which simplifies to  
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which can be rewritten as: 
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thus
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Collecting the terms appropriately,  
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b. Estimation of D by weighted LSQ fitting: 
 The weighted least-squares fitting criterion differs from the unweighted 
fitting by the addition of weights inversely proportional to the variance of δn: 
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This is also an unbiased estimator: 
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which simplifies to  
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c. Estimation of D by generalized LSQ fitting: 

The quantity of interest is var δest = ‹ (δest – ‹ δest
 ›)2 › = ‹ δest

2 › – ‹ δest
 ›2: 
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But since Σ = ‹ (Δ – ‹ Δ ›)(Δ – ‹ Δ ›)T ›: 
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Note that the middle factor is a scalar, thus equal to its transpose: 
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Inspecting numerically the covariance matrix Σ and the A = Σ-1N vector for a variety of N 
and nmax values, it can be seen that the first element of A is equal to 1/var(δest) while all 
the others are zero. To prove this, consider: 
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Since Σ is a covariance matrix, its determinant is non-zero, thus all columns are linearly 
independent. Specifically, no linear combination of columns (other than the first one 
which as seen above is proportional to N) can yield N. However, this is what the identity 
above implies, and these two statements can only be reconciled if a1 = (N-1)/16D2δt2 and 
an = 0 for n>1. Consequently, 
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Furthermore, since Σ-1N is zero except for the first element, the same holds true of its 
transpose NT Σ-1, and since δest ~ NT Σ-1 Δ, it follows that effectively only the first element 
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d. Estimation of D in the presence of positional 
measurement noise: 

The proofs in this section make extensive use of the covariance matrix cov(δn,m) for data 

affected by positional noise. It is derived below: 

Since (equation 3.a.2): 
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To determine the unweighted LSQ estimator for D and σexp
2, the quantity below needs to 

be minimized: 
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The weighted LSQ estimators are derived similarly by minimizing the following quantity: 
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Finally, the generalized LSQ estimators are: 
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 The quantity of interest is var δest = ‹ (δest – ‹ δest
 ›)2 ›: 
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But since Σ = ‹ (Δ – ‹ Δ ›)(Δ – ‹ Δ ›)T ›: 

        11111var
  NΣNNΣNNΣNP TTTT

est  

Note that the middle factor is a two-by-two symmetric matrix (due to the symmetry of Σ), 
thus equal to its transpose: 
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2. Power spectra analysis 
An additional complication arises from the fact that trajectories are finite and of 

unequal length. This is due to various factors – cell tracking software tracking gaps, cells 
moving outside of the view field of the microscope, partially unusable trajectories due to 
e.g. cell division, clustering, lysis etc.  

 
The finite length of the trajectory introduces a slight error due to end-effects in the 

construction of the power spectrum, which increases in magnitude as the length of the 
trajectory decreases and thus as the sampling frequency 1/t approaches the persistence 
time of the process, P. Starting from equation 8 that recursively defines uj and applying 
the following operator on both sides: 







1

1

/2
N

j

Nkijet   

then 

 












 

1

1

1

1

/2
1

/2
1

1
1

/2
N

j

N

j
j

Nkij
j

Nkij
N

j
j

Nkij uetuetcuet 

 
 

Following a change in variables from j+1 to j on the left side and identifying kû on the 

right hand side,  
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 Indeed, a correction which varies as 1/N needs to be added to the theoretical 
power spectrum in the cases where N is not a large number. From a practical point of 



 

112 
 

view, this is easiest done by fitting the experimental power spectrum, averaged over 
multiple independent trajectories, to Pk

inst,th-K as in the case of N  and then 
iteratively calculating the correction term from the values of the parameters D and P and 
repeating the process. This is, however, only necessary when the trajectory lengths are 
short enough that the 1/N correction becomes significant. 
 
For the purpose of assessing end-effects in power spectra fitting of velocities of motile 
cells on surfaces, a simulation of the OU process was used to generate 300 distinct 
trajectories of varying length. To that end, 17, 33, 65, and resp. 129 cell spatial 
coordinates were collected from the in silico data and used to calculate sets of 16, 32, 64, 
and resp. 128 discrete velocities, which were then used to calculate a velocity power 
spectrum. The 300 datapoints corresponding to each frequency in the power spectrum 
were averaged and the resulting averages with their respective standard deviations are 
shown in Fig 1A-D below. Since the power spectrum values are exponentially distributed, 
the averages are distributed according to the 300 distribution, which can be approximated 
with sufficient accuracy to a Gaussian distribution. Thus, the weighted least-squared can 
be employed to fit these averages to the expected Lorentzian curve. The parameters of the 
fit were D, P, and another constant (dependent in a complex way on D and P) which 
effectively shifts the Lorentzian downwards on the y axis. The resulting fit is shown in 
red in Fig 1. 
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Fig 1. Frequency-averaged power spectrum of the discrete velocities of 300 individual 
motile cells in silico (blue) and the corresponding wLSQ fit to a theoretical expression 

(Lorentzian+constant), red. Trajectories have been recorded for 17, 33, 65, and resp. 129 
frames. (A-D) Green trace shows the theoretical curve plotted with the wLSQ fit 

parameters corrected for bias (D’=D*N/(N-2)). 
 
 

3. Fitting experimental data 

a. Fits to Experimental Data 
I provide below the defining equation of the velocity autocovariance function 

(<…> denotes ensemble averaging): 
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and the formula that has been used to calculate the experimental velocity autocovariance 
function from the motility data: 
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Equation 1 
 

Here Nα denotes the number of points in track α, tj = jΔt and tk = kΔt as all of our 
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movies were recorded at a fixed frame rate, and u(t) are secant velocities (Li et al. 2011), 
different from the instantaneous velocity v(t) due to discretization and positional noise. 
 
Table 1  - Motility parameters for 3T3/glass (9 tracks remaining after post-processing 
from movie 1, 12 tracks from movie 2, 15 from movie 3, 8 from movie 4, and 14 from 
movie 5; the combined datasets includes the data from all these movies: 58 tracks). 
Movie number φ0 / baseline (μm2/min2) P (min) 
Combined 0.18 ± 0.02 / 0.003 ± 0.004 36 ± 4 
1 0.19 ± 0.03 / -0.02 ± 0.02 41 ± 9 
2 0.12 ± 0.04 / -0.002 ± 0.008 28 ± 9 
3 0.16 ± 0.03 / 0.009 ± 0.004 26 ± 5 
4 0.14 ± 0.03 / -0.001 ± 0.009 39 ± 8 
5 0.25 ± 0.03 / 0.014 ± 0.009 45 ± 6 
 
Figure 2  - Left: Monoexponential fits (red) to the velocity autocovariance function of 
NIH 3T3 cells, shown as black squares in the graphs below (fit results shown in figure 4 
and Table S1). Right: Red trace showing fits to 10-point bins of the velocity 
autocovariance function data points, shown in black. The motility parameters measured 
by fit to the binned autocovariance function match extremely well the ones shown in 
Table 1. 

Movie 1 

Movie 2 
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Movie 3 

 
Movie 4 

Movie 5 

Combined dataset 
 
Table 3  - Comparison of PACT, Autozell, and TLA with regards to data analysis  
Program φ0 (μm2/min2) P (min) 
PACT 0.16 ± 0.03 26 ± 5 
Autozell 0.09 ± 0.02 34 ± 8 
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TLA/Kalman filter/MA smoothing 0.09 ± 0.01 59 ± 6 
TLA/no filter/no smoothing 0.10 ± 0.01 58 ± 4 
PACT/common 0.18 ± 0.04 24 ± 6 
Autozell/common 0.18 ± 0.02 37 ± 4 
TLA/common/no Kalman filter 0.16 ± 0.04 30 ± 4 
TLA/common/Kalman filter 0.10 ± 0.01 58 ± 7 
PACT/common/truncated 0.18 ± 0.04 25 ± 6 
 
Figure 4  - Left: Monoexponential fits (red) to the velocity autocovariance function of 
NIH 3T3 cells, shown as black squares in the graphs below (fit results shown in figure 5 
and Table 3). Right: Right: Red trace showing fits to 10-point bins of the velocity 
autocovariance function data points, shown in black. 

PACT/Original dataset 

Autozell/Original dataset 

TLA/Original dataset 
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TLA:no filter-smoothing/Original dataset 

PACT/subset 

Autozell/subset 

TLA/subset 
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TLA/subset/no filter-smoothing 

PACT/subset/nearest digit-truncated 
 
Table 6  - Modified Fürth’s formula fits (red) to mean square displacement of NIH 3T3 
cells, shown as black squares in the graphs below (fit results shown in section (viii) of 
this paper). The insets show the first five points of the mean squared displacements and 
the corresponding fit, extrapolated to zero (dotted line). The y intercept is used to 
determine the positional noise. 

 
PACT 

 
Autozell 

 
TLA 

 
TLA/no filter 
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b. Data over­dispersion correction 
I have initially determined the weighted mean and standard deviation of the 

mean for the motility parameters P and φ0 from the 5 NIH 3T3/glass movies (Table S1, 
Figure S2, Supplementary information 1) using the standard formulas (N is the number of 
movies, in this case 5; equation shown for P and similar for φ0): 
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Equation S2 
 

A correction is due to account for data overdispersion in the individual Pi 
values. This method assumes that the data is drawn from distributions of the same mean P 
value (which is sensible given the data in figure 4 is from the same sample), but with 
different σi values (also a reasonable assumption given the differing number of tracks and 
track lengths included in each of the 5 movies in figure 4). The χ2 (quantity being 
minimized as part of the least-squares fit) is expected to be 1 for data dispersed in 
accordance to the provided σi’s, but that is not the case for this dataset: χ2

 (P) = 1.8 and χ2
 

(φ0) = 2.5. Thus, we correct the error bar of the mean P value above: 
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Equation S3 

In the absence of additional information, we have assumed equal 
overdispersion for all 5 movies and thus estimated the real dispersion of the motility 
parameters for an individual movie: 
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Equation S4 

 

 

4. MATLAB code employed for simulations 

a.  Brownian motion 
function []=t(D, dt, NN, Nens) 
ensavg_var_dnr2mean=zeros(1,NN); 
est_var_dnr2mean=zeros(1,NN); 
ensavg_dnr2mean=zeros(1,NN); 
expval_dnr2mean=zeros(1,NN); 
n=1; 
for N=n+1:NN 
    N 
for i_ens=1:Nens 
  
    % create a trajectory vector r(t): 
    r=zeros(2,N); 
    % starting at (x0,y0)=(0,0) 
     
    % generate a Gaussian-distributed velocity from N(0,sqrt(2D)) 
    dx=random('norm', 0, sqrt(2*D*dt), [1, N-1]); 
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    dy=random('norm', 0, sqrt(2*D*dt), [1, N-1]); 
    dr=[dx; dy]; 
     
    % generate trajectories 
    for i=1:N-1 
        r(:,i+1)=r(:,i)+dr(:,i); 
    end 
  
    % Part 2: data analysis 
  
    dnr2mean=0; 
  
        dnr2=zeros(1,N-n); 
        for i=1:N-n 
            dnr2(i)=(r(1,i+n)-r(1,i))^2+(r(2,i+n)-r(2,i))^2; 
        end 
        dnr2mean=mean(dnr2); 
        ensavg_var_dnr2mean(N)=ensavg_var_dnr2mean(N)+(dnr2mean-4*n*D*dt)^2; 
        ensavg_dnr2mean(N)=ensavg_dnr2mean(N)+dnr2mean; 
end 
  
% get actual dnr2mean and var_dnr2mean: note no bias due to using actual miu above. 
  
    ensavg_var_dnr2mean(N)=ensavg_var_dnr2mean(N)/Nens; 
    expval_dnr2mean(N)=4*n*D*dt; 
    ensavg_dnr2mean(N)=ensavg_dnr2mean(N)/Nens; 
         
% since we are dealing with correlated data in the dnr2(i) set 
% we need a different way of estimating the error bars on dr2mean(n) 
% see notebook 1 for derivation, Sep 11 2008 
  
        est_var_dnr2mean(N)=(4/(N-1))*(2*D*dt)^2; 
  
end 
  
% plot the points with their respective ensemble and estimated error bars. 
figure; 
plot ([n+1:NN], [ensavg_dnr2mean(n+1:NN)], '-r', [n+1:NN], [expval_dnr2mean(n+1:NN)-
sqrt(ensavg_var_dnr2mean(n+1:NN))], '-r', [n+1:NN], 
[expval_dnr2mean(n+1:NN)+sqrt(ensavg_var_dnr2mean(n+1:NN))], '-r', [n+1:NN], 
[expval_dnr2mean(n+1:NN)], '-b', [n+1:NN], [expval_dnr2mean(n+1:NN)-
sqrt(est_var_dnr2mean(n+1:NN))], '-b', [n+1:NN], 
[expval_dnr2mean(n+1:NN)+sqrt(est_var_dnr2mean(n+1:NN))], '-b'); 
title(['d_nr^2mean(1..N-1) +/- error bars (red ensavg, blue expval)']); 
xlabel('N'); 
ylabel('d_nr^2(n)+/-var'); 
  
% plot the fractional residuals for ensavg_dnr2mean vs expval_dnr2mean 
figure  
plot ([n+1:NN], [ensavg_dnr2mean(n+1:NN)./expval_dnr2mean(n+1:NN)-1], '-g' ); 
title(['residuals EnsAvg vs ExpVal:d_nr^2mean(1..N-1)']); 
xlabel('N'); 
ylabel('resid d_nr^2mean(n)'); 
  
% plot the fractional residuals for estSigma_dnr2mean vs ensavg_var_dnr2mean 
figure  
plot ([n+1:NN], [sqrt(est_var_dnr2mean(n+1:NN)./ensavg_var_dnr2mean(n+1:NN))-1], '-m' ); 
title(['residuals EstVar vs EnsAvgVar:d_nr^2mean(1..N-1)']); 
xlabel('N'); 
ylabel('resid var d_nr^2(n)'); 
  
end 

 
 

b. The standard OU process 
function []=OUphi() 
% Monte Carlo simulation of Persistent 2D motion of cell as defined by the OU Process 
% positions and velocities simulated simultaneously as per Norrelykke et 
% al. 2009 
  
% This program generates (x,y) pairs [with positional noise sig_pos] which 
% behave as experimental-like data, as well as the (x,y, vx, vy) quads for 
% purely theoretical considerations. 
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clear all 
close all 
clc 
  
% use power of 2 for optimal fft:  
N=128; 
  
% use NN=50 for ensemble averaging (number of cells/independent trajectories) 
% that's what you'd typically get from some 5-6 movies. 
NN=50; 
  
%%%% PARAMETERS %%%% 
  
D=7.3; % um^2/min, some typical value as in FK's 3T3/glass. 
P=40; % 20 min, some typical value 
sig_pos=1; % um, some reasonable value (std of 1 um in centroid localization)4 
  
% Conversion parameters 
dt=.25; % Amount of time between successive frames, min 
um2pix=0.977; % size of a pixel in um. 
  
% program starts below 
  
c=exp(-dt/P); 
Aplus=sqrt(D*P/2*(1-c^2)); 
Aminus=sqrt(D*dt); 
alpha=sqrt((2*P/dt)*((1-c)/(1+c))); 
  
  
'**************************************************************************' 
'************** NEW RUN ********************** NEW RUN ********************' 
'**************************************************************************' 
  
  
% Generate data 
v=zeros (N,2,NN); 
r=zeros (N,2,NN); 
  
% generate a Gaussian-distributed noise from N(0,1) 
eta_a=random('norm', 0, 1, [N-1,2, NN]); 
eta_b=random('norm', 0, 1, [N-1,2, NN]); 
  
% generate trajectories & velocities 
v(1,:,:)=sqrt(D/P)*random ('norm', 0, 1, [1, 2, NN]); 
  
% for simplicity it is ok to have intersecting trajectories on this 
% 750x1000 pixel-image, as well as cells exiting and entering the 
% viewfield. Then all trajectories will have length N. 
r(1,1,:)=random('unif', 0, 1024, [1,1, NN]); 
r(1,2,:)=random('unif', 0, 768, [1,1, NN]); 
  
for j=1:N-1 
    r(j+1,:,:)=r(j,:,:)+P*(1-c)*v(j,:,:)+eta_a(j,:,:)*(Aminus-Aplus)*sqrt(1+alpha)-
eta_b(j,:,:)*(Aminus+Aplus)*sqrt(1-alpha); 
    v(j+1,:,:)=c*v(j,:,:)+eta_a(j,:,:)*Aplus*sqrt(1+alpha)/P+eta_b(j,:,:)*Aplus*sqrt(1-
alpha)/P; 
end 
  
% now add Gaussian-distributed positional noise with std sig_pos 
  
r=r+random ('norm', 0, 1, [N,2,NN])*sig_pos;  
  
% generate dataset in the format accepted by data_analysis. 
  
tr=zeros(NN*N,6); 
index=1; 
for i=1:NN 
    for j=1:N 
            tr(index,1)=r(j,1,i)/um2pix; % units of pixels 
            tr(index,2)=r(j,2,i)/um2pix; % units of pixels 
            tr(index,3)=j; 
            tr(index,4)=i; 
            tr(index,5)=v(j,1,i)*dt/um2pix; % units of pix/dt 
            tr(index,6)=v(j,2,i)*dt/um2pix; % units of pix/dt  
            index=index+1; 
    end 



 

123 
 

end 
  
tr=tr(1:index-1,:); 
% save data to ascii file: x y time index vx vy 
save -ascii 'trajs-and-instant-vels.txt' tr; 
  
tr1=tr(:,1:4); 
% save data to ascii file: x y time index 
save -ascii 'trajectories-picked.txt' tr1; 
  
% the latter uses data_analysis_exp 
  
 data_analysis_exp() 
  
end 
 

5. PACT: MATLAB code 
 
function track_movie = track_movie_ver_1_0() 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
%%%%%%%%%%%%%%%%%%%%%%% VERSION 1.0: CELL TRACKING 
%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 
% 
% This program will process images of sparse motile cells on a surface 
and 
% output the cell centroid coordinates. 
% 
% The frames must be located in same folder as the .m files and a 
% "processed" folder is created where the processed data is saved. 
% If it already exists, a warning message will be output. 
% 
% The image filename template must be set inside the .m file under the 
% section "WORKING PARAMETERS." That section also needs to be changed if 
% the image is inverted (i.e. light cells on dark background). 
% 
%%%%%%%%%%%%%%%%%%%%%%%%% HOW THE PROGRAM WORKS 
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
% The image may be color or bw; the program will remove the color 
component 
% if present. 8-bit depth is sufficient if the contrast is good, else 
16-, 
% 24-, etc. may be needed.  
% 
% A bandpass filter will be first applied to remove pixel noise and 
% non-uniform background illumination effects. These high- and 
% low-frequency limits are set up in the WORKING PARAMETERS section. 
%  
% Next the peaks brighter than a user-defined peak exclusion threshold 
are 
% selected; they are the initial guess for where the cells are and will 
be 
% shown as red crosses on the image. The cell contour is defined as the 
% contour line laying at a user-defined fraction of the height of its 
% corresponding peak and is shown as a blue contour line around the 
peak. 
% 
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% Further selection includes restrictions on minimal and maximal cell 
area 
% and minimal distance between cells. The default parameters set up in 
the 
% WORKING PARAMETERS section are generally useable, but may be changed 
for 
% special circumstances. 
% 
% Once these parameters defined, you are ready to run the program; you 
will 
% be guided further as it runs. All output from the program may be found 
in 
% logfile.txt once it has finished. 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%% WORKING PARAMETERS %%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Generic name for frame files [e.g. image_file*.jpg] 
filename_template=('*.jpg'); 
  
% Image should be dark cells on light background, else set invert to 
false 
% [true or false] 
invert=true; 
  
% Bandpass filter limits: 
% 
% Lower limit removes high-freq noise due to fluctuations from 
% pixel-to-pixel. This thus should be set to 1-3, unless features on the 
% surface (such as nanostructures visible under the microscope) are 
% present. 
%  
% Upper limit removes low-freq noise due to fluctuations in 
illumination, 
% but should not remove cell-sized objects, thus set to the typical cell 
% diameter in pixels. 
  
BP_low=3; 
BP_high=30; 
  
% Minimum distance between peaks: set by default to twice the diameter 
of a 
% typical cell.  This excludes peaks located closer than this limit, to 
% avoid finding two peaks on the same cell. 
min_dist=2*BP_high; 
  
% Minimum cell area [pixels]: 
% by default no smaller than the area of a circle whose diameter is 1/3 
% than that of the "average cell diameter" defined above as BP_high 
min_area=round(pi*(BP_high/2/3)^2); 
  
% Maximum cell area [pixels] 
% by default no larger than the area of a circle whose diameter is 
triple 
% that of the "average cell diameter" defined above as BP_high. 
max_area=round(pi*(3/2*BP_high)^2); 
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% Program starts below: 
  
close all 
clc 
  
logfile=fopen('logfile.txt','w'); 
  
fprintf('**** TRACK_MOVIE program *****\n'); 
fprintf('Type help track_movie_ver_1_0 for information on using this 
software.\n'); 
fprintf(logfile,'**** TRACK_MOVIE program *****\n'); 
fprintf(logfile,'Type help track_movie_ver_1_0 for information on using 
this software.\n'); 
  
  
% read image 
files=dir(filename_template); 
[filenumber nc]=size(files); 
  
if filenumber==0 
    fprintf('ERROR: NO IMAGE FILES MATCHING THE FILENAME TEMPLATE FOUND. 
PLEASE CONSULT THE HELP FILE.\n\n\n', filenumber); 
    fprintf(logfile,'ERROR: NO IMAGE FILES MATCHING THE FILENAME 
TEMPLATE FOUND. PLEASE CONSULT THE HELP FILE.\n\n\n', filenumber); 
    return 
else 
    fprintf('Found %d frames in the current directory.\n\n\n', 
filenumber); 
    fprintf(logfile,'Found %d frames in the current directory.\n\n\n', 
filenumber); 
end 
fprintf('The program will now process the first and last image in the 
sequence.\n'); 
fprintf('You will be asked to choose a peak exclusion threshold and 
contour cutoff for each by visual inspection.\n'); 
fprintf('In most cases they will be the same; however, for long movies, 
they may differ substantially.\n'); 
fprintf('In that case a linear function will be used to model the 
changing threshold, and the average cutoff will be used.\n\n'); 
fprintf(logfile,'The program will now process the first and last image 
in the sequence.\n'); 
fprintf(logfile,'You will be asked to choose a peak exclusion threshold 
and contour cutoff for each by visual inspection.\n'); 
fprintf(logfile,'In most cases they will be the same; however, for long 
movies, they may differ substantially.\n'); 
fprintf(logfile,'In that case a linear function will be used to model 
the changing threshold, and the average cutoff will be used.\n\n'); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%INITIAL ANALYSIS ON FIRST FRAME%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
a = uint8(imread(files(1).name)); 
  
% remove color component if present 
file_dim=size(size(a)); 
if file_dim(2)==3 
    a=mean(a,3); 
end; 
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if invert  
    a=255-a; 
end 
       
b = bpass(a,BP_low,BP_high); 
b=uint8(b.*255/max(max(b))); 
  
% find peaks as an initial guess as to where the cells are 
  
figure 
peak_thresh=60; 
contour_cutoff=60; 
fprintf('****Processing first frame now****\n\n'); 
fprintf(logfile,'****Processing first frame now****\n\n'); 
  
cont_thr=true; 
cont_cutoff=true; 
while cont_thr | cont_cutoff 
    pk = peak_find(b,peak_thresh,min_dist); 
    [nr,nc]=size(b); 
    bw=zeros(nr,nc); 
    colormap('gray'), imagesc(a); 
    hold on 
    [no_peaks nr]=size(pk); 
    fprintf('Setting threshold to %d/255 and cutoff to %d%%...\n', 
peak_thresh, contour_cutoff); 
    fprintf(logfile,'Setting threshold to %d/255 and cutoff to 
%d%%...\n', peak_thresh, contour_cutoff); 
    %plot these as red cross-hairs on top of the original image 
    plot (pk(:,1),pk(:,2),'xr'); 
  
    % find boundaries within contour_cutoff% of peak. 
    [bw_x,bw_y]=find(b(:)>peak_thresh*contour_cutoff/100); 
    bw([bw_x,bw_y])=1; 
  
    % remove all objects containing fewer than min_area pixels 
    bw = bwareaopen(bw,min_area); 
  
    % remove all objects containing more than max_area pixels 
    bw = bwareaopen_max(bw,max_area); 
  
    % remove all objects that do not contain one of the peaks in pk 
    bw=bwselect(bw,pk(:,1),pk(:,2)); 
  
    % find boundaries 
    [B,L] = bwboundaries(bw,'noholes'); 
  
    fprintf('Found %d peaks shown as red crosses and %d cells, with 
contours shown in blue.\n\n', no_peaks, length(B)); 
    fprintf(logfile,'Found %d peaks shown as red crosses and %d cells, 
with contours shown in blue.\n\n', no_peaks, length(B)); 
     
    for k = 1:length(B) 
      boundary = B{k}; 
      plot(boundary(:,2), boundary(:,1), 'b', 'LineWidth', 1) 
    end 
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    title (strcat('First frame thresholded at: ', num2str(peak_thresh), 
'/255, contour cutoff=', num2str(contour_cutoff), '%')); 
    readout=input('Select new threshold or enter to continue (decrease 
for more peaks, increase for fewer): '); 
    fprintf(logfile,'Select new threshold or enter to continue (decrease 
for more peaks, increase for fewer): %d\n', readout); 
if (readout~=0)  
        peak_thresh=readout; 
    else 
        cont_thr=false; 
    end 
    readout=input('Select new contour cutoff or enter to continue 
(increase for smaller area, decrease for larger): '); 
    fprintf(logfile,'Select new contour cutoff or enter to continue 
(increase for smaller area, decrease for larger): %d\n', readout); 
    if (readout~=0)  
        contour_cutoff=readout; 
    else 
        cont_cutoff=false; 
    end 
    hold off 
end 
  
fprintf('\nFinal parameters accepted for first frame: peak threshold 
%d/255, contour cutoff %d%%.\n\n\n', peak_thresh, contour_cutoff); 
fprintf(logfile,'\nFinal parameters accepted for first frame: peak 
threshold %d/255, contour cutoff %d%%.\n\n\n', peak_thresh, 
contour_cutoff); 
  
peak_thresh_start=peak_thresh; 
contour_cutoff_start=contour_cutoff; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%INITIAL ANALYSIS ON LAST FRAME%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
a = uint8(imread(files(filenumber).name)); 
  
% remove color component if present 
file_dim=size(size(a)); 
if file_dim(2)==3 
    a=mean(a,3); 
end; 
  
if invert  
    a=255-a; 
end 
       
b = bpass(a,BP_low,BP_high); 
b=uint8(b.*255/max(max(b))); 
  
% find peaks as an initial guess as to where the cells are 
  
figure 
  
% use old params from frame %1 to start with 
  
fprintf('****Processing last frame now****\n\n'); 
fprintf(logfile,'****Processing last frame now****\n\n'); 
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cont_thr=true; 
cont_cutoff=true; 
while (cont_thr | cont_cutoff) 
    pk = peak_find(b,peak_thresh,min_dist); 
    [nr,nc]=size(b); 
    bw=zeros(nr,nc); 
    colormap('gray'), imagesc(a); 
    hold on 
    [no_peaks nr]=size(pk); 
    fprintf('Setting threshold to %d/255 and cutoff to %d%%...\n', 
peak_thresh, contour_cutoff); 
    fprintf(logfile,'Setting threshold to %d/255 and cutoff to 
%d%%...\n', peak_thresh, contour_cutoff); 
    %plot these as red cross-hairs on top of the original image 
    plot (pk(:,1),pk(:,2),'xr'); 
  
    % find boundaries within contour_cutoff% of peak. 
    [bw_x,bw_y]=find(b(:)>peak_thresh*contour_cutoff/100); 
    bw([bw_x,bw_y])=1; 
  
    % remove all objects containing fewer than min_area pixels 
    bw = bwareaopen(bw,min_area); 
  
    % remove all objects containing more than max_area pixels 
    bw = bwareaopen_max(bw,max_area); 
  
    % remove all objects that do not contain one of the peaks in pk 
    bw=bwselect(bw,pk(:,1),pk(:,2)); 
  
    % find boundaries 
    [B,L] = bwboundaries(bw,'noholes'); 
  
    fprintf('Found %d peaks shown as red crosses and %d cells, with 
contours shown in blue.\n\n', no_peaks, length(B)); 
    fprintf(logfile,'Found %d peaks shown as red crosses and %d cells, 
with contours shown in blue.\n\n', no_peaks, length(B)); 
  
    for k = 1:length(B) 
      boundary = B{k}; 
      plot(boundary(:,2), boundary(:,1), 'b', 'LineWidth', 1) 
    end 
  
    title (strcat('Last frame thresholded at: ', num2str(peak_thresh), 
'/255, contour cutoff=', num2str(contour_cutoff), '%')); 
    readout=input('Select new threshold or enter to continue (decrease 
for more peaks, increase for fewer): '); 
    fprintf(logfile,'Select new threshold or enter to continue (decrease 
for more peaks, increase for fewer): %d\n', readout); 
    if (readout~=0)  
        peak_thresh=readout; 
    else 
        cont_thr=false; 
    end 
    readout=input('Select new contour cutoff or enter to continue 
(increase for smaller area, decrease for larger): '); 
    fprintf(logfile,'Select new contour cutoff or enter to continue 
(increase for smaller area, decrease for larger): %d\n', readout); 
    if (readout~=0)  
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        contour_cutoff=readout; 
    else 
        cont_cutoff=false; 
    end 
    hold off 
end 
  
fprintf('\nFinal parameters accepted for last frame: peak threshold 
%d/255, contour cutoff %d%%.\n\n\n', peak_thresh, contour_cutoff); 
fprintf(logfile,'\nFinal parameters accepted for last frame: peak 
threshold %d/255, contour cutoff %d%%.\n\n\n', peak_thresh, 
contour_cutoff); 
  
peak_thresh_end=peak_thresh; 
contour_cutoff_end=contour_cutoff; 
  
%Set up peak_thresh linear function 
  
thr_slope=(peak_thresh_end-peak_thresh_start)/(filenumber-1); 
thr_intercept=peak_thresh_start-thr_slope;     
  
if peak_thresh_start==peak_thresh_end 
    fprintf('Equal thresholds chosen for first and last frames, will use 
thresh=%d/255 for all frames.\n', peak_thresh_start); 
    fprintf(logfile,'Equal thresholds chosen for first and last frames, 
will use thresh=%d/255 for all frames.\n', peak_thresh_start); 
else 
    fprintf('Different thresholds chosen for first and last frames, will 
use thresh=%3.1f+(frame #)*%3.3f to process data.\n', thr_intercept, 
thr_slope); 
    fprintf(logfile,'Different thresholds chosen for first and last 
frames, will use thresh=%3.1f+(frame #)*%3.3f to process data.\n', 
thr_intercept, thr_slope); 
end 
  
peak_thresh=zeros(filenumber,1); 
peak_thresh(:)=thr_intercept+(1:filenumber)*thr_slope; 
  
contour_cutoff=(contour_cutoff_start+contour_cutoff_end)/2; 
  
close all; 
figure 
  
[est_no_cells,dim]=size(pk); 
pos_list=zeros(3,filenumber(1)*est_no_cells*2); 
pos_list_index=0; 
if exist('./processed')==7 
    fprintf('\nWARNING: directory ./processed already exists.\n'); 
    fprintf(logfile,'\nWARNING: directory ./processed already 
exists.\n'); 
    readout=input('Press Enter to continue and overwrite, CTRL-C to stop 
here: '); 
    fprintf(logfile,'Press Enter to continue and overwrite, CTRL-C to 
stop here: %d\n', readout); 
else mkdir('.\processed'); 
end 
for fileindex=1:filenumber(1) 
%for fileindex=1:10 
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    fprintf('Currently processing frame #%d with peak_thresh=%3.1f and 
contour_cutoff=%d%% : %s\n', fileindex, peak_thresh(fileindex), 
contour_cutoff, files(fileindex).name); 
    fprintf(logfile,'Currently processing frame #%d with 
peak_thresh=%3.1f and contour_cutoff=%d%% : %s\n', fileindex, 
peak_thresh(fileindex), contour_cutoff, files(fileindex).name); 
    a = double(imread(files(fileindex).name)); 
  
file_dim=size(size(a)); 
if file_dim(2)==3 
    a=mean(a,3); 
end; 
  
if invert  
    a=255-a; 
end 
  
b = bpass(a,BP_low,BP_high); 
b=uint8(b.*255/max(max(b))); 
  
pk = peak_find(b,peak_thresh(fileindex),min_dist); 
  
[nr,nc]=size(b); 
bw=zeros(nr,nc); 
  
% find boundaries within contour_cutoff% of peak. 
[bw_x,bw_y]=find(b(:)>peak_thresh(fileindex)*contour_cutoff/100); 
bw([bw_x,bw_y])=1; 
  
% remove all objects containing fewer than min_area pixels 
bw = bwareaopen(bw,min_area); 
  
% remove all objects containing more than max_area pixels 
bw = bwareaopen_max(bw,max_area); 
  
% remove all objects that do not contain one of the peaks in pk 
bw=bwselect(bw,pk(:,1),pk(:,2)); 
  
% find boundaries 
[B,L] = bwboundaries(bw,'noholes'); 
  
colormap('gray'), imagesc(a); 
hold on 
  
stats = regionprops(L,'Area','Centroid'); 
  
for k = 1:length(B) 
  boundary = B{k}; 
  plot(boundary(:,2), boundary(:,1), 'b', 'LineWidth', 1) 
  area = stats(k).Area; 
  centroid = stats(k).Centroid; 
  pos_list_index=pos_list_index+1; 
  plot(centroid(1),centroid(2),'xr'); 
  pos_list(1,pos_list_index)=centroid(1); 
  pos_list(2,pos_list_index)=centroid(2); 
  pos_list(3,pos_list_index)=fileindex; % time, really. 
   
end 
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title (strcat(files(fileindex).name, ' - frame # ', 
num2str(fileindex))); 
saveas(gcf, strcat('.\processed\',files(fileindex).name,'-processed - 
frame # ', num2str(fileindex),'.jpg'), 'jpeg') 
pause(0.01); 
hold off 
  
end 
  
% create & plot trajectories 
pos_list=pos_list(:,1:pos_list_index)'; 
tr = track_m(pos_list, min_dist); 
  
figure 
a = double(imread(files(1).name)); 
file_dim=size(size(a)); 
if file_dim(2)==3 
    a=mean(a,3); 
end; 
  
if invert  
    a=255-a; 
end 
  
colormap('gray'), imagesc(a); 
hold on 
color_traj='bgrcmykw'; 
  
q=1; 
[nr nc]=size(tr); 
  
  
for q=1:nr 
    plot (tr(q,1), tr(q,2), strcat('.',color_traj(mod(tr(q,4),8)+1)) , 
'markersize', 4); 
    if q~=1 
        if tr(q-1,4)<tr(q,4) 
            text(tr(q,1)-10, tr(q,2)-10, num2str(tr(q,4)), 
'color',rgb(strcat(color_traj(mod(tr(q,4),8)+1)))); 
            plot (tr(q,1), tr(q,2), 
strcat('x',color_traj(mod(tr(q,4),8)+1))); 
  
        end 
    else 
        text(tr(1,1)-15, tr(1,2)-15, num2str(tr(1,4)), 
'color',rgb(strcat(color_traj(mod(tr(q,4),8)+1)))); 
    end 
end 
  
hold off 
  
saveas(gcf, 'final-trajs-dots.fig', 'fig'); 
  
fprintf('\nFound a total of %d datapoints in %d frames.\n',nr, 
filenumber); 
fprintf('One last exclusion criterion entails removing the non-moving 
cells.\n'); 
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fprintf(logfile,'\nFound a total of %d datapoints in %d frames.\n',nr, 
filenumber); 
fprintf(logfile,'One last exclusion criterion entails removing the non-
moving cells.\n'); 
readout=input(strcat('Exclude trajectories with rmsd < BP_high/2=', 
num2str(BP_high/2),' or enter new exclusion threshold (0 if no rmsd-
filtering desired): ')); 
fprintf(logfile,'Exclude trajectories with rmsd < BP_high/2=%d or enter 
new exclusion threshold: %d\n', BP_high/2, readout); 
if mean(size(readout))==0 
    readout=BP_high/2; 
end 
% weed out those trajectories with less than the set rmsd. 
q=1; 
[nr nc]=size(tr); 
  
while q<nr 
    q_init=q; 
    while tr(q,4)==tr(q+1,4) % still in the same trajectory 
        q=q+1; 
    end 
    q_fin=q; 
    % calculate rmsd(r)=sqrt(rmsd(x)^2+rmsd(y)^2) for each trajectory. 
    rmsd=sqrt(std(tr(q_init:q_fin,1))^2+std(tr(q_init:q_fin,1))^2); 
    if rmsd < readout 
        tr(q_init:nr+q_init-q_fin-1,:)=tr(q_fin+1:nr,:); 
        nr=nr+q_init-q_fin-1; 
        q=q_init-1; 
    end; 
q=q+1; 
end 
  
tr=tr(1:nr,:); 
  
fprintf('\nFollowing this, %d datapoints in %d frames, all output in 
./trajectories-preprocessed.txt\n', nr, filenumber); 
fprintf('File format: (x) (y) (frame #) (trajectory index)\n'); 
fprintf('You are now ready for the post-processing step.\n'); 
fprintf(logfile,'\nFollowing this, %d datapoints in %d frames, all 
output in ./trajectories-preprocessed.txt\n', nr, filenumber); 
fprintf(logfile,'File format: (x) (y) (frame #) (trajectory index)\n'); 
fprintf(logfile,'You are now ready for the post-processing step.\n'); 
tr=[tr; [0 0 0 0]]; 
  
% and plot after weeding 
  
figure 
a = double(imread(files(1).name)); 
file_dim=size(size(a)); 
if file_dim(2)==3 
    a=mean(a,3); 
end; 
  
if invert  
    a=255-a; 
end 
  
% all-dot format 
colormap('gray'), imagesc(a); 
hold on 
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color_traj='bgrcmykw'; 
  
for q=1:nr 
    plot (tr(q,1), tr(q,2), strcat('.',color_traj(mod(tr(q,4),8)+1)) , 
'markersize', 4); 
    if q~=1 
        if tr(q-1,4)<tr(q,4) 
            text(tr(q,1)-10, tr(q,2)-10, num2str(tr(q,4)), 
'color',rgb(strcat(color_traj(mod(tr(q,4),8)+1)))); 
            plot (tr(q,1), tr(q,2), 
strcat('x',color_traj(mod(tr(q,4),8)+1))); 
  
        end 
    else 
        text(tr(1,1)-15, tr(1,2)-15, num2str(tr(1,4)), 
'color',rgb(strcat(color_traj(mod(tr(q,4),8)+1)))); 
    end 
end 
  
hold off 
  
saveas(gcf, 'final-trajs-dots-rmsd-excluded.fig', 'fig'); 
  
  
% save data to ascii file 
save -ascii 'trajectories-preprocessed.txt' tr; 
fclose(logfile); 
  
end 
 

6. data_analysis_exp.m: MATLAB code 
function data_analysis_exp = data_analysis_exp() 
    
%this function accepts *experimental and experimental-like* data (i.e. 
%found in a file called trajectories-picked.txt and with the following 
%format: (x) (y) (frame #) (trajectory #) 
  
%The data could come from either real data (gotten from track_movie.m) or 
%from simulated data gotten from OUx.m or OUphi.m etc. 
  
% The program will then calculate u(t) values from that and process them 
% accordingly. 
  
  
close all 
clc 
  
% Conversion parameters 
dt=2; % Amount of time between successive frames,min 
um2pix=0.977; % size of a pixel in um. 
  
vmax=10; % um/min, may need to change this 
v_bin_size=0.5; % um/min, may need to change this 
  
rsd_filter=15; %um, as per David's paper. That's about 1/2 cell diameter. 
  
% Determine N from the trajectory file as the length of the longest 
% trajectory. 
  
logfile=fopen('logfile.txt','w'); 
  
  
fprintf('**************************************************************************\n'); 
fprintf('*********************** EXPERIMENTAL DATA ANALYSIS ***********************\n'); 
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fprintf('**************************************************************************\n\n\n'
); 
  
fprintf(logfile,'*************************************************************************
*\n'); 
fprintf(logfile,'*********************** EXPERIMENTAL DATA ANALYSIS 
***********************\n'); 
fprintf(logfile,'*************************************************************************
*\n\n\n'); 
  
fprintf('DATE: %s\n\n', datestr(now)); 
fprintf(logfile,'DATE: %s\n\n', datestr(now)); 
  
filename=input('Enter the name of the file containing the selected trajectories: ', 's'); 
fprintf(logfile,'Enter the name of the file containing the selected trajectories: %s\n', 
filename); 
  
tr=load(filename); 
N=0; 
NN=1; 
[trajs_len nc]=size(tr(:,1)); 
for i=1:trajs_len-1 
    % velocities 
    if (tr(i,4)~=tr(i+1,4)) % change in index number 
        NN=NN+1; 
       if tr(i,3)>N 
           N=tr(i,3); 
       end 
    end 
end 
if tr(trajs_len,3)>N 
    N=tr(i,3); 
end 
  
fprintf('Found %d trajectories and %d data points. Longest trajectory spans %d 
frames\n\n', NN, trajs_len, N); 
fprintf(logfile,'Found %d trajectories and %d data points. Longest trajectory spans %d 
frames\n\n', NN, trajs_len, N); 
  
avg_drift=zeros(N-1,5); 
avg_xy_drift=zeros(N+1,2); 
  
if exist('./trajectories-fixed.txt')==2 
    trf=load('trajectories-fixed.txt'); 
    % avg_drift(23,1) is x coord of 23rd entry; (23,2) is y; tr(23,3) # of entries in the 
average. 
    %4th column is delta x^2, 5th is delta y^2 
  
figure 
hold on 
color_traj='bgrcmykw'; 
for q=1:size(trf(:,1)) 
    trf(q,1)=trf(q,1)-avg_xy_drift(trf(q,3),1); 
    tr(q,2)=trf(q,2)-avg_xy_drift(trf(q,3),2); 
    plot (trf(q,1), trf(q,2), strcat('.',color_traj(mod(trf(q,4),8)+1)) , 'markersize', 
4); 
    if q~=1 
        if trf(q-1,4)<trf(q,4) 
            text(trf(q,1)-15, trf(q,2)-15, 
num2str(trf(q,4)),'color',rgb(strcat(color_traj(mod(trf(q,4),8)+1)))); 
        end 
    else 
        text(trf(1,1)-15, trf(1,2)-15, 
num2str(trf(1,4)),'color',rgb(strcat(color_traj(mod(trf(q,4),8)+1)))); 
    end 
end 
title('Trajectories-fixed that will be used to assess stage drift.'); 
  
% Convert pixels into um and frames into minutes. 
  
trf(:,1:2)=trf(:,1:2)*um2pix; % x,y in um 
  
    for i=2:size(trf(:,1)) 
        if (trf(i,4)==trf(i-1,4))  % still same trajectory 
            if trf(i,3)==trf(i-1,3)+1  % and only 1 time step away (i.e. continuous) 
                avg_drift(trf(i,3)-1,1)=(trf(i,1)-trf(i-1,1))+avg_drift(trf(i,3)-1,1); 
                avg_drift(trf(i,3)-1,2)=(trf(i,2)-trf(i-1,2))+avg_drift(trf(i,3)-1,2); 
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                avg_drift(trf(i,3)-1,4)=((trf(i,1)-trf(i-1,1)))^2+avg_drift(trf(i,3)-1,4); 
                avg_drift(trf(i,3)-1,5)=((trf(i,2)-trf(i-1,2)))^2+avg_drift(trf(i,3)-1,5); 
                avg_drift(trf(i,3)-1,3)=avg_drift(trf(i,3)-1,3)+1; 
            end 
        end 
    end 
  
    % now the actual average velocities 
    avg_drift(:,1)=avg_drift(:,1)./avg_drift(:,3); 
    avg_drift(:,2)=avg_drift(:,2)./avg_drift(:,3); 
    avg_drift(:,5)=avg_drift(:,5)./avg_drift(:,3); 
    avg_drift(:,4)=avg_drift(:,4)./avg_drift(:,3); 
  
    figure 
    plot(1:N-1, avg_drift(:,1), 'o-'); 
    title ('stage x drift correction'); 
    figure 
    plot(1:N-1, avg_drift(:,2), 'o-'); 
    title ('stage  y drift correction'); 
     
    % and replace columns 4 and 5 with weights = 1/std^2 now (N-1)/N/(x^2mean - xmean^2) 
    avg_drift(:,5)=(((avg_drift(:,3)-1)./avg_drift(:,3))./(avg_drift(:,5)-
avg_drift(:,2).^2)); 
    avg_drift(:,4)=(((avg_drift(:,3)-1)./avg_drift(:,3))./(avg_drift(:,4)-
avg_drift(:,1).^2)); 
     
    % tr format x y t traj# 
    % subtract strage drift correction from data and plot trajs on the original 
    % frame #1 
  
    % note that if there is only one trj in the average, weight is zero 
  
    % binned 5/bin: use weights: xmean = sum(wi*xi)/sum(wi) 
    bin_size=5; 
     
    bin_avg=zeros(floor((N-1)/bin_size),4);     
    for i = 1:floor((N-1)/bin_size) 
        bin_avg(i,1)=(avg_drift(i*bin_size-(bin_size-
1):i*bin_size,1))'*(avg_drift(i*bin_size-(bin_size-
1):i*bin_size,4))/sum(avg_drift(i*bin_size-(bin_size-1):i*bin_size,4)); 
        bin_avg(i,2)=(avg_drift(i*bin_size-(bin_size-
1):i*bin_size,2))'*(avg_drift(i*bin_size-(bin_size-
1):i*bin_size,5))/sum(avg_drift(i*bin_size-(bin_size-1):i*bin_size,5)); 
        % and corresponding weighted mean std: 1/sqrt(sum(wi)) 
        bin_avg(i,3)=sqrt(1./sum(avg_drift(i*bin_size-(bin_size-1):i*bin_size,4))); 
        bin_avg(i,4)=sqrt(1./sum(avg_drift(i*bin_size-(bin_size-1):i*bin_size,5))); 
    end 
  
  
    % and now fit to a smooth function to account for actual stage drift. 
    % namely Ax - Bx exp(-dt/T) for x_drift, similar for y_drift. 
  
    % an alternative is to fit 40-84 to a flat line (Ax and Ay) and then 
    % fix those: 
    Ax=(avg_drift(floor(N/2):N-1,1))'*(avg_drift(floor(N/2):N-
1,4))/sum(avg_drift(floor(N/2):N-1,4)); 
    Ay=(avg_drift(floor(N/2):N-1,2))'*(avg_drift(floor(N/2):N-
1,5))/sum(avg_drift(floor(N/2):N-1,5)); 
  
    parameterx = lsqnonlin(@mycurvex,[Ax 1 10],[Ax-0.01 -Inf -Inf],[Ax+0.01 Inf 
Inf],[],0:floor(N/3),avg_drift(1:floor(N/3)+1,1)');     
        parameterx 
    parametery = lsqnonlin(@mycurvey,[Ay 1 10],[Ay-0.01 -Inf -Inf],[Ay+0.01 Inf 
Inf],[],0:floor(N/3),avg_drift(1:floor(N/3)+1,2)');     
        parametery 
  
    figure 
    plot(floor(bin_size/2):bin_size:floor((N-1)/bin_size)*bin_size-(floor(bin_size/2)), 
bin_avg(:,1), 'o-', floor(bin_size/2):bin_size:floor((N-1)/bin_size)*bin_size-
floor(bin_size/2), bin_avg(:,1)+bin_avg(:,3), '-r', floor(bin_size/2):bin_size:floor((N-
1)/bin_size)*bin_size-floor(bin_size/2), bin_avg(:,1)-bin_avg(:,3), '-r', 1:N-1, 
parameterx(1)-parameterx(2).*exp(-(1:N-1) / parameterx(3)), '-g'); 
    figure 
    plot(floor(bin_size/2):bin_size:floor((N-1)/bin_size)*bin_size-(floor(bin_size/2)), 
bin_avg(:,2), 'o-', floor(bin_size/2):bin_size:floor((N-1)/bin_size)*bin_size-
floor(bin_size/2), bin_avg(:,2)+bin_avg(:,4), '-r', floor(bin_size/2):bin_size:floor((N-



 

136 
 

1)/bin_size)*bin_size-floor(bin_size/2), bin_avg(:,2)-bin_avg(:,4), '-r', 1:N-1, 
parametery(1)-parametery(2).*exp(-(1:N-1) / parametery(3)), '-g'); 
    title ('stage y drift correction binned'); 
  
     
    % Here's the integral: 
    for i=1:N 
        avg_xy_drift(i,1)=(parameterx(1)*(i-1)-
parameterx(3)*parameterx(2)+parameterx(3)*exp(-(i-1) / parameterx(3))*parameterx(2)); 
        avg_xy_drift(i,2)=(parametery(1)*(i-1)-
parametery(3)*parametery(2)+parametery(3)*exp(-(i-1) / parametery(3))*parametery(2)); 
    end 
  
    avg_xy_drift_noise=zeros(85,2); 
    for i=2:N 
        avg_xy_drift_noise(i,1)=avg_xy_drift_noise(i-1,1)+avg_drift(i-1,1); 
        avg_xy_drift_noise(i,2)=avg_xy_drift_noise(i-1,2)+avg_drift(i-1,2); 
    end 
     
    figure 
    plot(avg_xy_drift(:,1),avg_xy_drift(:,2), '-
g',avg_xy_drift_noise(:,1),avg_xy_drift_noise(:,2), 'or'); 
    title ('stage drift correction - fitted'); 
  
avg_xy_drift=zeros(N,2); 
for i=1:N-1 
    avg_xy_drift(i+1)=avg_xy_drift(i)+avg_drift(i); 
end 
  
end 
  
% back to our dataset. 
  
figure 
hold on 
color_traj='bgrcmykw'; 
for q=1:size(tr(:,1)) 
    tr(q,1)=tr(q,1)-avg_xy_drift(tr(q,3),1); 
    tr(q,2)=tr(q,2)-avg_xy_drift(tr(q,3),2); 
    plot (tr(q,1), tr(q,2), strcat('.',color_traj(mod(tr(q,4),8)+1)) , 'markersize', 4); 
    if q~=1 
        if tr(q-1,4)<tr(q,4) 
            text(tr(q,1)-15, tr(q,2)-15, 
num2str(tr(q,4)),'color',rgb(strcat(color_traj(mod(tr(q,4),8)+1)))); 
        end 
    else 
        text(tr(1,1)-15, tr(1,2)-15, 
num2str(tr(1,4)),'color',rgb(strcat(color_traj(mod(tr(q,4),8)+1)))); 
    end 
end 
plothandle=gca; 
set(plothandle, 'Color', [0,0,0] ); 
title('Trajectories-picked after stage drift correction, where available'); 
xlabel('x axis - pixels'); 
ylabel('y axis - pixels'); 
  
% root-square displacememt-based filtering where necessary. 
% criterion keep only trajs with sqrt(max((r_j-r_0)^2))>rsd_filter 
% "excluding cells with rms displacement that never exceeded 20 um for 
% NHDF" 
  
% first calculate the rsd from 1st point for each trajectory, then update 
% tr so as to reflect that change. 
  
while q<trajs_len 
    q_init=q; 
    while tr(q,4)==tr(q+1,4) % still in the same trajectory 
        q=q+1; 
    end 
    q_fin=q; 
    % determine largest rsd for each trajectory. 
    max_rsd=0 
    for j=q_init:q_fin 
        if max_rsd<sqrt((tr(j,1)-tr(q_init,1))^2+(tr(j,2)-tr(q_init,2))^2) 
            max_rsd=sqrt((tr(j,1)-tr(q_init,1))^2+(tr(j,2)-tr(q_init,2))^2); 
        end 
    end 
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    if max_rsd < rsd_filter 
        tr(q_init:trajs_len+q_init-q_fin-1,:)=tr(q_fin+1:trajs_len,:); 
        trajs_len=trajs_len+q_init-q_fin-1; 
        q=q_init-1; 
    end; 
q=q+1; 
end 
  
tr=tr(1:trajs_len,:); 
  
N=0; 
NN=1; 
for i=1:trajs_len-1 
    % velocities 
    if (tr(i,4)~=tr(i+1,4)) % change in index number 
        NN=NN+1; 
       if tr(i,3)>N 
           N=tr(i,3); 
       end 
    end 
end 
if tr(trajs_len,3)>N 
    N=tr(i,3); 
end 
  
fprintf('After rsd filter of %d um, found %d trajectories and %d data points. Longest 
trajectory spans %d frames\n\n', rsd_filter,NN, trajs_len, N); 
fprintf(logfile, 'After rsd filter of %d um, found %d trajectories and %d data points. 
Longest trajectory spans %d frames\n\n', rsd_filter,NN, trajs_len, N); 
  
fprintf('This analysis uses secant velocities and accelerations.\n\n'); 
fprintf(logfile, 'This analysis uses secant velocities and accelerations.\n\n'); 
  
  
figure 
hold on 
color_traj='bgrcmykw'; 
  
for q=1:size(tr(:,1)) 
    plot (tr(q,1), tr(q,2), strcat('.',color_traj(mod(tr(q,4),8)+1)) , 'markersize', 4); 
    if q~=1 
        if tr(q-1,4)<tr(q,4) 
            text(tr(q,1)-15, tr(q,2)-15, 
num2str(tr(q,4)),'color',rgb(strcat(color_traj(mod(tr(q,4),8)+1)))); 
        end 
    else 
        text(tr(1,1)-15, tr(1,2)-15, 
num2str(tr(1,4)),'color',rgb(strcat(color_traj(mod(tr(q,4),8)+1)))); 
    end 
end 
plothandle=gca; 
set(plothandle, 'Color', [0,0,0] ); 
title('Trajectories-picked after stage drift correction and rsd filtering, where 
available'); 
xlabel('x axis - um'); 
ylabel('y axis - um'); 
  
% and then since we're at this anyway, plot Fuerth's formula as per our 
% manuscript for a guess on std_pos mostly. 
  
fuerth=zeros(N,4); 
for i=1:N 
    fuerth(i,1)=(i-1)*dt; 
end 
  
% now pass through the entire tr variable and collect data 
for i=1:trajs_len-1 
        j=i; 
        while ((j<trajs_len) && (tr(j,4)==tr(j+1,4))) % go up to the end of this 
contiguous section 
            % simply leave out the very last entry in tr - it's absent anyway in 
            % real data, and won't make much of a difference in the 
            % simulated one 
            fuerth(j-i+1,2)=fuerth(j-i+1,2)+(tr(j,1)-tr(i,1))^2+(tr(j,2)-tr(i,2))^2; 
            fuerth(j-i+1,3)=fuerth(j-i+1,3)+((tr(j,1)-tr(i,1))^2+(tr(j,2)-tr(i,2))^2)^2;            
            fuerth(j-i+1,4)=fuerth(j-i+1,4)+1; 
            j=j+1; 
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        end    
end 
  
fuerth(:,2)=fuerth(:,2)./fuerth(:,4); 
fuerth(:,3)=sqrt((fuerth(:,3)-fuerth(:,2).^2)./(fuerth(:,4).*(fuerth(:,4)-1))); 
  
fuerth=fuerth(2:floor(N/2),:); 
  
figure 
errorbar(fuerth(:,1), (fuerth(:,2)), fuerth(:,3), '.b'); 
title('<(r(t)-r(0))^2> vs Fuerth''s formula'); 
  
save -ascii 'fuerth.txt' fuerth; 
  
  
% plot a_perp and a_parallel vs speed. Only successive steps are considered 
% for v and a calculations. 
  
[trajs_len nc]=size(tr(:,1)); 
  
tr(:,1:2)=tr(:,1:2)*um2pix; % x,y in um 
  
newton=zeros(trajs_len,7); 
% format: index/time/vx/vy/ax/ay/validity (0 is nothing in there, 1 if only 
% v's, 2 if both v's and a's). 
for i=1:trajs_len-1 
    % velocities u; note I call it u(i) but it really is u(i+1/2) 
    if (tr(i,4)==tr(i+1,4)) && (tr(i,3)==tr(i+1,3)-1) % still same cell and only 1 time 
step away (i.e. continuous) 
       newton(i,3)=(tr(i+1,1)-tr(i,1))/dt; 
       newton(i,4)=(tr(i+1,2)-tr(i,2))/dt; 
       newton(i,7)=1; 
    end 
    % accelerations a(i)=(u(i+1/2)-u(i-1/2))/dt 
      if (i>1) && (tr(i,4)==tr(i+1,4)) && (tr(i,4)==tr(i-1,4)) && (tr(i,3)==tr(i+1,3)-1) 
&& (tr(i,3)==tr(i-1,3)+1) 
       newton(i-1,5)=(newton(i,3)-newton(i-1,3))/dt; 
       newton(i-1,6)=(newton(i,4)-newton(i-1,4))/dt; 
       newton(i-1,7)=2; 
    end 
    newton(i,1)=tr(i,4); 
    newton(i,2)=tr(i,3)*dt; 
end 
  
  
  
% average of velocities for drift considerations 
uxmean=zeros(N-1,1); 
uymean=zeros(N-1,1); 
counts=zeros(N-1,1); 
std_uxmean=zeros(N-1,1); 
std_uymean=zeros(N-1,1); 
for i=1:N-1 
    [counts nr]=size(newton(find(tr(:,3)==i),3)); 
    if counts == 0 
        std_uxmean(i)=Inf; 
        std_uymean(i)=Inf; 
        uxmean(i)=0; 
        uymean(i)=0; 
    else 
        std_uxmean(i)=std(newton(find(tr(:,3)==i),3))./counts; 
        std_uymean(i)=std(newton(find(tr(:,3)==i),4))./counts; 
        uxmean(i)=mean(newton(find(tr(:,3)==i),3)); 
        uymean(i)=mean(newton(find(tr(:,3)==i),4)); 
    end 
end 
  
figure 
plot([1:N-1]*dt, uxmean, 'or', 'markersize', 5); 
hold on 
errorbar([1:N-1]*dt, uxmean, std_uxmean); 
title ('average u_x of all cells in a frame'); 
xlabel('Time (min)'); 
ylabel ('u_x mean, um/min'); 
  
figure 
plot([1:N-1]*dt, uymean, 'or', 'markersize', 5); 
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hold on 
errorbar([1:N-1]*dt, uymean, std_uymean); 
title ('average u_y of all cells in a frame'); 
xlabel('Time (min)'); 
ylabel ('u_y mean, um/min'); 
  
% Now averaging all frames 
  
avg_ux=0; 
avg_uy=0; 
    for j=1:N-1 
        avg_ux=uxmean(j)/(std_uxmean(j)^2)+avg_ux; 
        avg_uy=uymean(j)/(std_uymean(j)^2)+avg_uy; 
    end 
    avg_ux=avg_ux/sum(1./(std_uxmean.^2)); 
    avg_uy=avg_uy/sum(1./(std_uymean.^2)); 
    wx=sum(1./(std_uxmean.^2)); 
    wx2=sum(1./(std_uxmean.^4)); 
    wy=sum(1./(std_uxmean.^2)); 
    wy2=sum(1./(std_uymean.^4)); 
    avg_std_ux=sqrt(wx/wx2); 
    avg_std_uy=sqrt(wy/wy2); 
     
fprintf('Time-averaged ux_mean = %7.4f ± %6.4f um/min\n', avg_ux,avg_std_ux); 
fprintf('Time-averaged uy_mean = %7.4f ± %6.4f um/min\n', avg_uy,avg_std_uy); 
fprintf('\nThe numbers above should be zero within their respective errorbars as that 
indicates lack of stage drift.\n\n'); 
  
fprintf(logfile,'Time-averaged ux_mean = %7.4f ± %6.4f um/min\n', avg_ux,avg_std_ux); 
fprintf(logfile,'Time-averaged uy_mean = %7.4f ± %6.4f um/min\n', avg_uy,avg_std_uy); 
fprintf(logfile,'\nThe numbers above should be zero within their respective errorbars as 
that indicates lack of stage drift.\n\n'); 
  
% Actual data analysis starts here 
  
  
valid_newton_indices=find(newton(:,7)==2); 
%format newtwon_index/speed/a_perp/a_parallel 
a2v=zeros(length(valid_newton_indices),4); 
a2v(:,1)=valid_newton_indices; 
a2v(:,2)=sqrt(newton(a2v(:,1),3).^2+newton(a2v(:,1),4).^2); 
% a parallel = a dot v / |v| 
a2v(:,4)=(newton(a2v(:,1),3).*newton(a2v(:,1),5)+newton(a2v(:,1),4).*newton(a2v(:,1),6))./
a2v(:,2); 
% a perp = proj/z  of a x v / |v| 
a2v(:,3)=(newton(a2v(:,1),4).*newton(a2v(:,1),5)-
newton(a2v(:,1),6).*newton(a2v(:,1),3))./a2v(:,2); 
  
  
%%%%%%%%%%%%%%%%%%%%%% PLOT a_par and a_perp vs. u: scatterplot %%%%% 
  
a_par=-mean(a2v(:,4)./a2v(:,2)); 
  
[size_v nc]=size(a2v(:,4)); 
da_par=std(a2v(:,4)./a2v(:,2))/sqrt(size_v-1); 
  
a_perp=-mean(a2v(:,3)./a2v(:,2)); 
  
[size_v nc]=size(a2v(:,3)); 
da_perp=std(a2v(:,3)./a2v(:,2))/sqrt(size_v-1); 
  
  
% a perp versus speed 
figure 
plot(a2v(:,2), a2v(:,3), '.', 'markersize', 3); 
title (strcat('a_p_e_r_p vs speed, ', num2str(length(a2v(:,1))), ' datapoints')); 
xlabel('speed (um/min)'); 
ylabel ('a_p_e_r_p, um/min^2'); 
  
  
% a parallel versus speed 
figure 
plot(a2v(:,2), a2v(:,4), '.', 'markersize', 3); 
title (strcat('a_p_a_r_a_l_l_e_l vs speed, ', num2str(length(a2v(:,1))), ' datapoints')); 
xlabel('speed (um/min)'); 
ylabel ('a_p_a_r_a_l_l_e_l, um/min^2'); 
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% bin a_perp and a_par vs. speed 
% make velocity bins of v_bin_size um/min, from 0 to vmax 
% format: 
% speed/mean_a_perp/sig_mean_a_perp/mean_a_par/sig_mean_a_par 
  
vmax=min(vmax,max(a2v(:,2))); 
mean((a2v(:,2))) 
  
  
binned_a2v=zeros(floor(vmax/v_bin_size),5); 
for i=1:floor(vmax/v_bin_size) 
    binned_a2v(i,1)=(i-1)*v_bin_size+v_bin_size/2; % middle of bin 
    % find all with speed in the i-1,i range 
    vec=find(a2v(:,2).^2-(2*i-1)*v_bin_size.*a2v(:,2)+(i^2-i)*v_bin_size^2<0); 
    [nr nc]=size(vec) 
    binned_a2v(i,2)=mean(a2v(vec,3)); 
    binned_a2v(i,3)=std(a2v(vec,3))/sqrt(nr); 
    binned_a2v(i,4)=mean(a2v(vec,4)); 
    binned_a2v(i,5)=std(a2v(vec,4))/sqrt(nr); 
    binned_a2v(i,6)=nr; 
end 
  
  
% a versus speed 
  
figure 
errorbar(binned_a2v(:,1), binned_a2v(:,2), binned_a2v(:,3), '.g'); 
hold on 
errorbar(binned_a2v(:,1), binned_a2v(:,4), binned_a2v(:,5), '.r'); 
plot([0:vmax], a_perp.*[0:vmax], '-g'); 
plot([0:vmax], (a_perp-da_perp).*[0:vmax], '-g'); 
plot([0:vmax], (a_perp+da_perp).*[0:vmax], '-g'); 
plot([0:vmax], -a_par.*[0:vmax], '-r'); 
plot([0:vmax], -(a_par-da_par).*[0:vmax], '-r'); 
plot([0:vmax], -(a_par+da_par).*[0:vmax], '-r'); 
title('bin a_p_e_r_p (green) and a_p_a_r_a_l_l_e_l (red) vs u') 
xlabel('u (um/min)'); 
ylabel ('bin a, um/min^2'); 
  
% mean std/std of mean std 
% speed/mean_sig_a_perp/sig_mean_sig_a_perp/mean_sig_a_par/sig_mean_sig_a_par 
binned_std_a2v=zeros(floor(vmax/v_bin_size),5); 
for i=1:floor(vmax/v_bin_size) 
    binned_std_a2v(i,1)=(i-1)*v_bin_size+v_bin_size/2; % middle of bin 
    % find all with speed in the i-1,i range 
    vec=find(a2v(:,2).^2-(2*i-1)*v_bin_size.*a2v(:,2)+(i^2-i)*v_bin_size^2<0); 
    [nr nc]=size(vec); 
    rmsd_a2v=a2v(vec,:); 
    rmsd_a2v(:,3)=abs(rmsd_a2v(:,3)-mean(rmsd_a2v(:,3))); 
    rmsd_a2v(:,4)=abs(rmsd_a2v(:,4)-mean(rmsd_a2v(:,4)));     
    binned_std_a2v(i,2)=std(a2v(vec,3)); 
    binned_std_a2v(i,3)=sqrt(sum((rmsd_a2v(:,3)-binned_std_a2v(i,2)).^2)/((nr-1)*nr)); 
    binned_std_a2v(i,4)=std(a2v(vec,4)); 
    binned_std_a2v(i,5)=sqrt(sum((rmsd_a2v(:,4)-binned_std_a2v(i,4)).^2)/((nr-1)*nr)); 
end 
  
% velocity autocovariance function: take all nth order "distances" into 
% account 
% reminder newton format:index/time/vx/vy/ax/ay/validity (0 is nothing in there, 1 if only 
% v's, 2 if both v's and a's). 
  
% phi format:  
% delta_time /phi(delta_t)/std_phi/# datapoints  
  
phi=zeros(N,4); 
for i=1:N 
    phi(i,1)=(i-1)*dt; 
end 
  
% now pass through the entire newton variable and collect data into phi 
for i=1:trajs_len-1 
    if newton(i,7)>0 % i.e. there's good velocities 
        j=i; 
        % calculate drift for data decorrelation purposes 
        while ((j<trajs_len) && (newton(j,1)==newton(j+1,1))) && (newton(j,7)>0) % go up 
to the end of this contiguous section 
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            % simply leave out the very last entry in tr - it's absent anyway in 
            % real data, and won't make much of a difference in the 
            % simulated one 
            phi(j-i+1,2)=phi(j-i+1,2)+newton(i,3)*newton(j,3)+newton(i,4)*newton(j,4); 
            phi(j-i+1,3)=phi(j-i+1,3)+(newton(i,3)*newton(j,3)+newton(i,4)*newton(j,4))^2;            
            phi(j-i+1,4)=phi(j-i+1,4)+1; 
            j=j+1; 
        end    
    end 
end 
  
phi(:,2)=phi(:,2)./phi(:,4); 
phi(:,3)=sqrt((phi(:,3)-phi(:,2).^2)./(phi(:,4).*(phi(:,4)-1))); 
  
  
figure 
errorbar(phi(:,1), phi(:,2), phi(:,3), '.b'); 
hold on 
  
ph=phi(3:floor(N/2),1:3); 
save -ascii 'phi_Origin.txt' ph; 
  
%%% bin phi (exclude phi(0) and phi(1) b/c those are off due to pos noise) 
%%% bin in sets of 10. 
% weighted binning. 
  
wbinned_phi=zeros(floor(N/10),4); 
wght=1./phi(:,3).^2; 
  
wbinned_phi(1,1)=mean(phi(3:10,1)); 
wbinned_phi(1,2)=sum(wght(3:10).*phi(3:10,2))/sum(wght(3:10)); 
wbinned_phi(1,3)=sqrt(1./sum(wght(3:10))); 
  
for i=2:floor(N/10) 
    wbinned_phi(i,1)=mean(phi(10*i-9:10*i,1)); 
    wbinned_phi(i,2)=sum(wght(10*i-9:10*i).*phi(10*i-9:10*i,2))/sum(wght(10*i-9:10*i)); 
    wbinned_phi(i,3)=sqrt(1./sum(wght(10*i-9:10*i))); 
end 
  
fprintf('Weight-binned phi_u_posn(t): (time [dt]) (phi [pix^2/dt]) (std_phi [pix^2/dt]:') 
wbinned_phi(:,1:3) 
  
figure 
plot(wbinned_phi(:,1), wbinned_phi(:,2), 'o-r', 'markersize', 3); 
hold on 
plot(wbinned_phi(:,1), wbinned_phi(:,2)+wbinned_phi(:,3), '-r'); 
plot(wbinned_phi(:,1), wbinned_phi(:,2)-wbinned_phi(:,3), '-r'); 
title('wght-binned velocity autocovariance function and error bars'); 
  
save -ascii 'phi_Origin_binned.txt' wbinned_phi; 
  
% uwLSQ fit of a+bt to ln phi_u as a rough guess for 
% P and phi1. 
  
phi_mean=zeros(N,1); 
for i=7:N 
    phi_mean(i-2)=mean(phi(3:i,2)); 
end 
  
 
figure 
errorbar(phi(:,1), log(phi(:,2)), (log(phi(:,2)+phi(:,3))-log(phi(:,2)-phi(:,3)))/2, 
'.b'); 
hold on 
plot(phi(:,1), log(exp(beta(1))*exp(-phi(:,1)/(-1/beta(2)))), '-r', 'markersize', 3); 
plot([(N_Pest-1)*dt (N_Pest-1)*dt], [log(phi(N_Pest,2)) log(phi(3,2))], '-r'); 
title('loglin experimental phi\_u\_posn(t) with error bars and uwLSQ fit to phi'); 
xlabel('Time/min'); 
ylabel('Ln velocity autocovariance)'); 
xlim([-dt/2 N*dt]); 
  
 
% also do the speed histogram and speed^2. 
% format vx/vy 
  
speeds=newton(find(newton(:,7)>0), 3:4); 
figure 
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counts=histc(sqrt(speeds(:,1).^2+speeds(:,2).^2), ((0:30)-.5)); 
% this counts the number of observations in each bin 
% each bin contains one integer 
bar((0:30), counts, .3, 'b', 'EdgeColor', 'b') 
title('speed histogram'); 
xlabel('speed um/min'); 
ylabel('Counts'); 
  
  
  
figure 
counts=histc((speeds(:,1).^2+speeds(:,2).^2), ((0:100)-.5)); 
% this counts the number of observations in each bin 
% each bin contains one integer 
bar((0:100), counts, .3, 'b', 'EdgeColor', 'b') 
title('speed^2 histogram'); 
xlabel('speed^2 um^2/min^2'); 
ylabel('Counts'); 
  
fclose(logfile); 
  
  
    function err = mycurvex(parameter,real_x, real_y) 
        fit = parameter(1)-parameter(2).*exp(-real_x / parameter(3)); 
        err = fit - real_y; 
  
        % weight the error according to the |WEIGHT| vector 
        err_weighted = err.*avg_drift(1:size(real_x),4)'; 
        err = err_weighted; 
    end 
    function err = mycurvey(parameter,real_x, real_y) 
        fit = parameter(1)-parameter(2).*exp(-real_x / parameter(3)); 
        err = fit - real_y; 
  
        % weight the error according to the |WEIGHT| vector 
        err_weighted = err.*avg_drift(1:size(real_x),5)'; 
        err = err_weighted; 
    end 
    function nc = nocomplex(x) 
        nc=x 
        for i=1:size(x) 
            if imag(x(i))~=0  
            nc(i)=Inf 
            end 
        end 
    end 
end 


