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We propose a phenomenological model for the polygonal hydraulic jumps discovered by Ellegaard and
co-workers [Nature (London) 392, 767 (1998); Nonlinearity 12, 1 (1999); Physica B 228, 1 (1996)], based on
the known flow structure for the type-II hydraulic jumps with a “roller” (separation eddy) near the free surface in
the jump region. The model consists of mass conservation and radial force balance between hydrostatic pressure
and viscous stresses on the roller surface. In addition, we consider the azimuthal force balance, primarily between
pressure and viscosity, but also including nonhydrostatic pressure contributions from surface tension in light of
recent observations by Bush and co-workers [J. Fluid Mech. 558, 33 (2006); Phys. Fluids 16, S4 (2004)]. The
model can be analyzed by linearization around the circular state, resulting in a parameter relationship for nearly
circular polygonal states. A truncated but fully nonlinear version of the model can be solved analytically. This
simpler model gives rise to polygonal shapes that are very similar to those observed in experiments, even though
surface tension is neglected, and the condition for the existence of a polygon with N corners depends only on a
single dimensionless number φ. Finally, we include time-dependent terms in the model and study linear stability
of the circular state. Instability occurs for sufficiently small Bond number and the most unstable wavelength is
expected to be roughly proportional to the width of the roller as in the Rayleigh-Plateau instability.

DOI: 10.1103/PhysRevE.85.036316 PACS number(s): 47.35.−i, 47.20.Ky, 68.03.Cd

I. INTRODUCTION

The term hydraulic jump refers to the sudden jump in fluid
height, as observed, for example, in the outward spreading
water layer in a kitchen sink, resulting from the impact of the
water from the tap with the horizontal bottom of the sink [1–4].
Similar phenomena are seen in rivers with large tidal variation
at the outlet and are known as river bores. River bores move
up the rivers, whereas hydraulic jumps are stationary, due to
either spatial inhomogeneities or the geometric configuration
of the flow. In the kitchen sink the jump occurs on a more or
less circular locus. Close to the point of impact the water level
is very thin, but at a certain radius rj (θ ) the level increases
abruptly forming a circular jump. The water flow and thus
the jump shape in a kitchen sink fluctuate, but by building
a more symmetric experimental setup and/or using a more
viscous fluid, one may obtain a completely stationary and
axisymmetric flow, where the jump occurs on a surprisingly
well-defined circle (Fig. 1). It has been shown [5–7] that
circular hydraulic jumps can undergo a sequence of structural
changes seen by varying the fluid height ho downstream of the
jump. This can be achieved by inserting an adjustable circular
weir at the rim of the circular impact plate. When increasing
ho, the jump becomes steeper until, at a critical value of ho, the
jump becomes unstable and loses its balance. Like a breaking
wave, it creates a new stationary state with a wider jump region
and a new flow structure in which the surface flow is reversed
due to a separation vortex (referred to in the following as the
roller). Following Ref. [7], this new flow structure is called a
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type-II jump to distinguish it from the ordinary type-I jump.
The most remarkable observation about the type-II state is that
the jump typically loses its azimuthal symmetry and attains
the shape of a regular, though not necessarily straight-edged,
polygon (Fig. 2).

In this paper we present a phenomenological model for
the type-II jump, which we believe to include the basic
mechanisms of the flow rendering the circular state unstable
and giving the polygonal jump its peculiar shape. This allows
us to obtain the qualitative dependence of the jump shape on the
control parameters available, primarily the outer fluid height
ho, and the properties of the fluid, i.e., viscosity and surface
tension. For experimental data, we refer to earlier work. Our
own experiments are performed with the same setup as in
Ref. [6] and is only used qualitatively as a visual guide (see
also Ref. [8]).

For the type-I state, averaging theory with a variable profile
gives at least qualitatively the right flow structure including the
separation region on the bottom, outside the jump [9,10]. For
the type-II state with separation at the surface, no such theory
exists and we therefore from the outset assume a flow structure
derived from experiments. Our model extends earlier models
proposed in Refs. [5,6,11], based on the competition between
gravitational and viscous effects. In Refs. [5,6] a radial force
balance for the roller was used together with a “line tension” to
derive polygonal shapes. In Ref. [11] it was shown that such a
line tension is not necessary and that a more satisfactory model
is obtained by taking into account the azimuthal flow. This is
the approach used in the present paper. It was recently pointed
out [12], however, that the instability forming the polygonal
jumps seems to be driven, at least in part, by surface tension
(see also Ref. [8]). Thus surface tension is included in our
model and indeed the instability forming the polygonal jumps
seems to be closely related to the Rayleigh-Plateau instability
for the “liquid cylinder” formed by the roller.
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FIG. 1. (Color online) Circular hydraulic jump. A cylindrical jet
of fluid impinges vertically on a horizontal glass plate and forms a
circular hydraulic jump. The fluid used here is ethylene glycol (about
10 times the viscosity of water).

In this paper we treat both linear and nonlinear properties
of our model. For the linear properties we can with some
confidence include the effects of surface tension, but for the
fully developed polygonal states this is very difficult because
of the lack of precise data on the height profiles. Even without
surface tension, our model does have polygonal states and we
compute their shapes assuming that they will be only slightly
changed by surface tension effects. The layout of the paper
is as follows. We first derive the model and point out the
similarities to and differences from earlier models. We then
solve analytically a nonlinear model with zero surface tension
and show that it has many features that are expected from
experiments. Finally, we compute the temporal stability of the
circular state while including surface tension and show that it
has properties close to the Rayleigh-Plateau instability.

II. DERIVATION OF THE MODEL

In the experiment [5–7] the fluid falls from a nozzle
mounted at some height, at constant volumetric flow rate

(a) (b) corner belly

jump line

FIG. 2. (Color online) Polygonal jump with eight corners. (a)
Top view from an oblique angle. (b) View from below through a glass
plate. The jump line becomes visible by diffracting light shone on the
jump from above. The “belly” between two corners (or “necks”) is
where the roller is thickest.
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FIG. 3. Measured height profiles of a pentagonal polygonal
hydraulic jump in ethylene glycol. The solid curve represents the
profile measured along the radial direction through a corner. The
dashed curve represents the profile along the radial direction midway
between two corners (“belly”), where the edge of the jump is almost
straight [see, e.g., Fig. 2(b)]. The height of the fluid layer was
measured manually with a depth micrometer attached to a translation
table. The flow rate is Q = 40ml s−1. (This figure has been reproduced
with permission from Ref. [13].)

Q. We employ cylindrical coordinates (r,θ,z), centered at
the point, where the central axis of the cylindrical liquid
jet impinges on the horizontal plate. The height of the fluid
surface above the plate is parametrized by h(r,θ ). As the fluid
leaves the point of impact, h is small and the fluid spreads
in a very thin layer (around 1 mm in our experiments) with
supercritical flow speed (i.e., a speed faster than the speed of
surface waves). At a short distance from the point of impact,
the boundary layer in the film has become fully developed [2]
and the fluid height is almost constant, i.e., h(r < rj ,θ ) ≈ hi ,
as seen in Fig. 3. Due to the supercriticality, this inner flow
is not affected by the transition from a type-I to a type-II
jump [14] and remains axially symmetric. The surface height
of the type-II jump abruptly increases at the jump radius rj

due to the presence of the roller on top of the thin fluid layer.
The surface height increases for rj < r until a certain radius R

where it settles at a roughly constant level h(r > R,θ ) ≈ ho.
The height difference across the jump is �h and since ho � hi ,
we use the approximation

�h ≡ ho − hi ≈ ho (1)

throughout the paper. We further introduce the aspect ratio

α = ho

R
, (2)

which is typically small, say of the order of 0.2.
In Fig. 4 we show a visualization of the flow in a triangular

jump created with ethylene glycol. It can be seen clearly that
the roller fills the jump region from rj to R, where rj now has
lost its azimuthal symmetry, whereas the outer edge R remains
circular. We therefore define the normalized local roller width
as one of the basic variables of our model

δ(θ ) = R − rj (θ )

R
(0 < δ < 1), (3)

which varies with θ to give the jump its characteristic polygon
shapes. The dye dripped into the roller reveals an extremely
slow exchange of the fluid in the roller (see also flow
visualization in Ref. [8]). In fact, the dye can be visible in
the roller for several minutes if it is left undisturbed. From
this we conclude that the main part of the fluid in the thin
layer going under the roller leaves the jump region without
ever entering the roller. Downstream of the jump region,
the flow speed is subcritical (less than the speed of surface
waves) and again purely radial, but it now has an azimuthal
dependence: At the corners of the polygon, strong radial jets
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FIG. 4. (Color online) Flow visualization of the roller vortex in
the case of a triangular jump in ethylene glycol. The jump is seen from
below through a glass plate, where the impinging jet is visible as the
black center region and the jump line as the black line surrounding
it. Red dye is injected into the roller flow by letting droplets of the
dye fall from above into the vortex. It is seen that the roller structure
extends from the jump line to the outer radius. In the corner region,
fluid is expelled in clearly visible radial jets. Note also the fine white
line between the roller vortices, which indicate that the vortices are
actually disconnected structures. For a visualization of the flow see
also Ref. [8].

are observed. Within the jump region, an azimuthal transport
must therefore exist in the jump region from the sides to the
corners of the polygon. Indeed, a small, spiraling azimuthal
flow is observed in the roller from its “belly” out to the “neck”.
From Fig. 4 the jets seem to consist primarily of liquid going
right through the jump, but they also carry with them the
dyed fluid transported to the corners inside the roller. The
jets at the corners of an N -gon are actually so strong that
they apparently break up the roller into N distinct rollers,
touching and interacting in a rather complicated manner in the
corners [6]. This effect is not included in our model, but since
it occurs only in narrow regions near the corners, we believe
that our model can still give useful results. A phase diagram
has been presented in Ref. [5] in terms of three parameters:
the flow rate Q, the outer fluid height ho, and the height of
the nozzle. The dependence on the first two parameters is
reproduced in Fig. 5. When increasing ho, the transition to
the type-II structure leads to a polygon with many corners
(up to N = 13 have been observed). Increasing ho further,
the number of corners decreases and so does the average
jump radius (2π )−1

∮
rj (θ )dθ until at last the jump closes

on the vertical jet from the nozzle. Throughout this regime
the outer radius R is surprisingly constant, while the inner
border defining the polygon changes. In fact, this polygon
shape shows considerable hysteresis and a whole series of
bordering polygon shapes can be stable at the same flow rates.
An extra corner can be created by pulling out a polygon side

4 5 6

Q

ho

[mm]

50

40

30
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FIG. 5. Measured phase diagram, reproduced with permission
from Ref. [6]. Polygonal hydraulic jumps are observed using ethylene
glycol, which has a viscosity about 10 times that of water. Polygons
appear in the parameter regime between the circular type-I state
(marked as I ) and the closed state (i.e., no jump, marked as C) when
the jet flux Q and the outer height ho are varied. The height of the
nozzle about the surface is set to 2 cm. The number of corners is found
to be less sensitive to the nozzle height [6]. Polygonal states with the
number of corners N = 1,2, . . . ,8 are found in this experiment.

with a needle and similarly a corner can be removed by pushing
a corner inward. For sufficiently small disturbances the jump
simply deforms—just as if a rubber band was pulled—and
bounces back to its original shape after being released.

A. Momentum balance for the roller

In our phenomenological model, we focus on the roller,
which we consider as a separate object interacting with the
fluid beneath and behind it. We look at a control volume defined
by the section of the roller inside an infinitesimal wedge [θ,θ +
dθ ], as illustrated in Fig. 6, and label the areas of the bottom
and the rear faces of the control volume as dAb(θ ) and dAr ,
respectively. The lateral areas are denoted as At (θ ). Let further
τij be the stress tensor, let V and S be the volume and the
boundary, respectively, of the roller slice, and let n̂ be the unit
normal of S. Then the momentum equations are∫

V

∂

∂t
(ρu)dV +

∫
S

ρu(u · n̂)dS

FIG. 6. (Color online) Three-dimensional view of the infinitesi-
mal wedge [θ,θ + dθ ] for the hydraulic jump. The gray shaded region
is a part of the roller eddy near the surface just after the jump and
represents the control volume we consider for the mass and force
balances. Areas of the side, bottom and rear face, as well as the
free-surface portion of the volume, are labeled as At (θ ), dAb(θ ),
dAr , and dAf (θ ), respectively. The bold blue arrows indicate the
flow direction.
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= −
∫

S

p(n̂ dS) +
∫

S

τij (n̂j dS) +
∫

V

ρf dV. (4)

Initially, we shall consider stationary states and thus the first
term on the left-hand side is zero. Also, the last term on
the right-hand vanishes since the only body force is gravity,
which is taken into account by assuming that the pressure p is
hydrostatic.

The inner flow in Fig. 6 is purely radial and axially sym-
metric. When it reaches the roller, most of it passes underneath
it. When it has passed the roller the flow is still radial, but has
acquired an angular dependence. In between, in the region of
the roller, the flow thus acquires a small tangential component,
which we assume to run inside the roller. Our first task is
then to write down the continuity equation for the flow. Then
we shall evaluate the “force” terms in Eq. (4) for the radial
and tangential directions, respectively. In the following we
use cylindrical coordinates and denote the respective vector
components of dependent variables by indices r , θ , and z.

B. Mass conservation

Figure 7(a) shows the top view of the entire roller and
Fig. 7(b) displays an angular section dθ of the roller, together
with the mass flux entering and leaving the control volume
(corresponding to the gray shaded volume in Fig. 6). Since the
flow before the jump is purely radial and independent of θ , as
evidenced in Fig. 3, the radial flow into the volume must be
Q

2π
dθ . The fluid going out of the volume in the radial direction

is denoted by qr (θ )dθ . The fluid going into the roller at the
cross sectional wall at θ is qθ (θ ) and the corresponding flow
out of the roller at θ + dθ is qθ (θ + dθ ). Mass conservation in
the region then demands

Q

2π
dθ + qθ (θ ) = qr (θ )dθ + qθ (θ + dθ ).

We define the normalized radial and azimuthal fluxes per
azimuthal angle ξr ≡ qr/Q and ξθ ≡ qθ/Q, respectively. The
continuity equation is now written as

1

2π
= ξr (θ ) + dξθ

dθ
. (5)

FIG. 7. (Color online) (a) Schematic top view of a pentagonal
jump. The gray shaded wedge represents the control volume with
infinitesimal angle dθ , also seen in Fig. 6. (b) Enlargement of the
wedge-shaped control volume. Bold blue arrows represent the radial
and tangential mass fluxes qr and qθ , i.e., the flux in and out of the
control volume.

FIG. 8. (Color online) Side view of the wedge in Fig. 6. The
heights inside and outside the jump are hi and ho, respectively. We
treat the roller eddy (shaded region) as a separate body of fluid from
the main stream and assume the force balance of the hydrostatic force
dF h

r and the shear force dF μ
r in the radial direction (forces indicated

by bold red arrows).

By integrating from θ = 0 to 2π and using the periodic
condition for ξθ , we obtain a constraint for the total flux out of
the jump region, ∮

ξr (θ )dθ = 1. (6)

C. Radial force balance

We now inspect Fig. 8, the side view of Fig. 6, and construct
a force balance equation in the radial direction for the roller,
which we view as a stationary body of liquid. It experiences
a force directed radially inward due to the difference in fluid
height at its inner and outer rims. The shear force also acts
on the bottom of the roller, caused by the velocity gradient of
the radially outward flow along its bottom boundary, which
we estimate at z = hi . We assume that these forces balance
and that surface tension plays a secondary role in the radial
direction. Under this assumption we have

dFh
r + dFμ

r = 0, (7)

where dFh
r and dF

μ
r are, respectively, the hydrostatic pressure

force and the radial component of the viscous friction force
per unit azimuthal angle on the roller slice in Fig. 6.

1. Hydrostatic pressure force

The pressure force dFh
r is obtained by integrating the

pressure over the area of its outer rim assumed to be at
r = R and extending from z = hi to ho (see Fig. 8). Further,
assuming the pressure to be hydrostatic and omitting the
ambient pressure that cancels, the force becomes

dFh
r = −

∫ ho

hi

ρg(ho − z)dz Rdθ ≈ −ρgR
h2

o

2
dθ, (8)

using Eq. (1), where ρ is the fluid density and g is the
gravitational acceleration.

2. Shear

If the fluid is Newtonian with the dynamic viscosity μ, the
outward force on the roller dF

μ
r shown in Fig. 8 is obtained
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by integrating the shear τrz ≈ μ∂ur

∂z
|z=hi

over the bottom area
of the roller:

dFμ
r ≈ −

∫ R

rj

μ
∂ur

∂z

∣∣∣∣
z=hi

r dr dθ, (9)

where ur is the radial velocity component. To estimate this
integral we assume that the thin radial flow continues forward
under the roller at a height of the order h∗, an appropriate
characteristic height near the roller. The velocity in this region
is related to the radial flux qr by qr = u∗

r r
∗h∗, where r∗

and u∗
r denote some characteristic radius and radial velocity,

respectively. We also assume that the shear can be expressed
as

∂ur

∂z

∣∣∣∣
z=hi

≈ −c1
u∗

r

h∗ = − c1qr

r∗h∗2 ,

with a numerical factor c1 > 0 of order unity. Then we have

dFμ
r ≈ c1μqr

r∗h∗2
dθ

∫ R

rj

r dr = c1μqr

2r∗h∗2

(
R2 − r2

j

)
dθ. (10)

For simplicity, we choose r∗ = 1
2 (rj + R) and h∗ = hi . Then

the shear force becomes

dFμ
r ≈ c1μQξr

h2
i

(R − rj )dθ = c1μQR

h2
i

ξrδ dθ. (11)

3. Radial balance

Substituting the estimated forces (8) and (11) into Eq. (7),
we obtain the radial force balance equation

ξr = �1

δ
, (12)

with the nondimensional parameter

�1 ≡ gh2
i h

2
o

2c1νQ
, (13)

where ν is the kinematic viscosity μ/ρ. This equation was
derived in Ref. [5]. It shows that the radial flux increases at
the corners where δ decreases. For a very thin corner, the flux
would increase to infinity and although our model remains
meaningful in this limit, we do not expect it to represent the
physics correctly since the detailed structure of the corner flow
could play an important role. Lacking such a more detailed
model, we shall thus keep in mind that polygons with very
thin or vanishing rollers in the corners are probably somewhat
idealized. In the circular state the normalized radial flux is
ξr = 1/2π , so the dimensionless roller has width δ0, where

δ0 = 2π�1. (14)

Combining Eq. (12) with the mass conservation (5), we
obtain

1

2π
= �1

δ
+ ξ ′

θ (θ ), (15)

where prime denotes the derivative with respect to θ . The
constraint (6), along with Eq. (12), becomes∮

dθ

δ(θ )
= 1

�1
. (16)

D. Azimuthal force balance

We now discuss the azimuthal transport in the control
volume shown in Fig. 7. Since the flows in the azimuthal
direction are slow, we neglect the kinetic term arising from
the second term on the left-hand side of Eq. (4) and consider
hydrostatic pressure, viscous, and surface tension terms.

1. Kinetic term

The second term on the left-hand side of Eq. (4) is the
momentum flux through the boundary of the roller slice. We
consider the flux for the vertical sides of the cross sections at
θ and θ + dθ in Fig. 6. Using the approximation ho � hi , the
areas of these sides are given by

At (θ ) ≈ R�hδ(θ ) ≈ Rhoδ(θ ). (17)

We consider the average azimuthal flow velocity over such a
surface uθ = qθ/At . Then the kinetic term is estimated as

dF kin
θ = [

ρu2
θAt

]θ+dθ

θ
≈ ρu2

θRhoδ(θ )dθ. (18)

Since the mean velocities in the roller always remain small,
except perhaps inside a very thin corner (where our model
breaks down anyway, since the roller breaks), we shall neglect
this term in the following.

2. Hydrostatic pressure

For the azimuthal component of the first term on the right-
hand side of Eq. (4), we assume the pressure in the roller to be
hydrostatic. Then a net azimuthal pressure force on the roller
slice arises due to the difference in area of the two vertical
sides at θ and θ + dθ shown in Fig. 6. The force on one side
is estimated as in Eq. (8). For this we assume a simple surface
profile that is linear within the cross section θ = const, i.e.,

h(r,θ ) ≈ hi + �h

Rδ(θ )
[r − R + Rδ(θ )], (19)

where h = hi at r = rj (θ ) = R[1 − δ(θ )] and h = ho at r =
R. With ho � hi we get

h(r,θ ) ≈ α

δ(θ )
{r − R[1 − δ(θ )]}, (20)

with the aspect ratio defined in Eq. (2). We then get

Fh
θ (θ ) =

∫ R

R[1−δ(θ)]
dr

∫ h(r,θ)

0
ρ g[h(r,θ ) − z]dz

≈ ρgRh2
o

6
δ(θ ). (21)

Considering the directions of the forces acting on the sides,
the force difference between the two sides is

dFh
θ = − d

dθ
Fh

θ (θ )dθ ≈ −ρgRh2
o

6
δ′(θ )dθ, (22)

where prime again denotes the derivative with respect to θ .
Due to the minus sign, the force acts in the direction from a
belly to a corner of the roller.

3. Shear

The contributions to the azimuthal component of the second
term on the right-hand side of Eq. (4) are the shear forces
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between the azimuthal flow inside the roller and the radial
flow underneath and behind it. Just as for the radial force
balance, we must make some estimate of the velocity gradients
involved. The outer rim of the roller has area

dAr ≈ R�hdθ ≈ Rhodθ (23)

on which we estimate ∂uθ/∂r|r=R ≈ −c2uθ/(R − rj ) since
uθ ≈ 0 for r > R. Here c2 is a positive numerical factor of
order unity and uθ is the average azimuthal flow velocity over
At . The areas of the sides are given by Eq. (17). Thus

uθ = qθ/At ≈ qθ/Rhoδ. (24)

Likewise, the area on the bottom of the roller is

dAb ≈ 1
2

(
R2 − r2

j

)
dθ (25)

on which ∂uθ/∂z|z=hi
≈ c3uθ/h∗ ≈ c3uθ/hi since uθ = 0 on

z = 0. Here we have used the height hi rather than �h to
estimate the shear between the roller and the main flow and c3

is another positive numerical factor of order unity.
Note that the radial velocity gradient at the rim is measured

from the interior to the exterior of the roller, whereas the
velocity gradient on the bottom is in the opposite direction.
Thus we reverse the sign of the latter in order to add both
contributions for an estimate of the shear force on the control
volume:

dF
μ
θ ≈ −μuθ

[
c2

R − rj

Rho + c3

hi

R2 − r2
j

2

]
dθ

= − μqθ

Rhoδ

[
c2ho

δ
+ c3Rδ(R + rj )

2hi

]
dθ

= −μQξθ

[
c2

Rδ2
+ c3R(2 − δ)

2hiho

]
dθ.

Here the relation (24) is again used.

4. Surface tension

Surface tension acts by changing the pressure inside the
roller depending on the local curvature. This does not to a
first approximation change the radial force balance, so we
shall concentrate on the effects in the azimuthal direction.
A somewhat similar approach in a different context can be
found in Ref. [15]. To model this we shall include the Laplace
pressure difference across the surface z = h(r,θ ):

�p = σ

(
1

R1
+ 1

R2

)
, (26)

where R1 and R2 are the two principal curvatures; we take their
signs to be positive if the center of curvature is on the “inside”
direction from the surface (i.e., located under the surface).
Taking the atmospheric pressure to be zero everywhere, the
relation (26) describes the fluid pressure just beneath the
surface. Thus the total pressure inside the fluid becomes

p(r,θ,z) = ρg[h(r,θ ) − z] + �p. (27)

To use these expressions we need information about the fluid
surface height h(r,θ ) in the circular state and in the polygonal
state as well as in the family of states between them. Of course,
we do not have this information, so in keeping with our simple
model, which expresses the geometry of the jump entirely in

terms of the local width of the roller, we shall replace the two
radii of curvature with averages over the cross section of the
surface.

In what follows we consider small perturbations, i.e.,
nearly circular jumps. One principal radius of curvature R1

quantifies the curvature roughly in the (r,z) plane, i.e., the
cross section of the jump. This is the “dangerous” one, which
may lead to instability. The other one R2 is defined in a plane
orthogonal to R1, also including the surface normal. Since
surface inclinations are small, R2 can be approximated by
the radius of curvature of the jump shape seen from above (see
Fig. 7). For slow variations of the plane curve Rδ(θ ) the radius
of curvature we get

1

R2
≈ − 1

R
δ′′(θ ), (28)

where primes denote differentiation with respect to θ .
To estimate R1 we have to know how the shape distorts

when a corner is created. Since it is observed that the addition
of surfactant destroys the polygons (see also Ref. [8]), it
seems likely that surface tension can make the circular states
unstable through a Rayleigh-Plateau-like instability (however,
it cannot explain the observation of circular type-II states that
are sometimes stable). This means that the curvature should
increase when δ is decreased as it does near a corner. This is
indeed observed in experiments as seen in Fig. 3, where the
height profile (on a radial path) of a polygon state has been
measured with an electrically conducting needle [13] through
both an edge and a corner. It is clear that the curvature is larger
(i.e., the radius of curvature is smaller) through the corner.
Thus we assume

R′
1(δ) > 0, (29)

where prime denotes differentiation with respect to δ.
When the height �h and the width Rδ are similar, we expect

that R1 would have a value close to these, like for a cylindrical
surface; however, in contrast to the classical cylinder case of
Plateau and Rayleigh, the curvature cannot keep increasing
when the roller shrinks since the external height is fixed. Thus
we expect the curvature to saturate when the width of the
roller becomes much smaller than �h. For future use, we
shall use the symbol ρ1 for the normalized cross-sectional
curvature: ρ1 = R1/R. The Laplace pressure term in Eq. (27)
now becomes

�p = σ

R

(
1

ρ1(δ)
− δ′′

)
. (30)

To get the force, we now have to integrate �p · n̂ over the
bounding surfaces, where n̂ is the local outward normal, and
project the result along θ . This will give the force from the
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roller on the surroundings. To get the force on the roller we
have to put in a minus sign. The rear surface does not contribute
anything since it is parallel to �̂. Treating �p as constant in
the cross section θ = const yields

Fvert,σ ≈ −At�p�̂, (31)

where the areas of the sides At are given by Eq. (17).
To estimate the free surface contribution we need the area

of the free surface and the θ component of the outward unit
normal vector. As above, we use the linear height profile (20),
where

h,r ≡ ∂h

∂r
≈ �h

Rδ
(32)

and

h,θ ≡ ∂h

∂θ
≈ δ′(θ )�h

δ(θ )2

(
1 − r

R

)
, (33)

where for brevity we use a compact notation for partial
derivatives throughout this section. The area of the free surface
is

dAf ≈ Rdθ
√

(Rδ)2 + (�h)2 (34)

and the unit normal vector is

n̂ = N

⎛
⎝ −h,r

−h,θ/r

1

⎞
⎠ , (35)

with a suitable normalization factor N . Assuming that δ′(θ ) �
1 so that |h,θ/r| � h,r and |h,θ/r| � 1, we have

N ≈ 1√
(h,r )2 + 1

= Rδ√
(�h)2 + (Rδ)2

. (36)

The θ component of the unit normal becomes

n̂θ ≈ −Nh,θ

R
≈ − δ h,θ√

(�h)2 + (Rδ)2
(37)

and we obtain (based on the assumption �h � Rδ)

dAf n̂θ ≈ −Rδh,θdθ. (38)

Using the average value for h,θ ,

h,θ = 1

R δ(θ )

∫ R

R[1−δ(θ)]
h,θdr = 1

2

�h

δ(θ )
δ′(θ ), (39)

we obtain

dAf n̂θ ≈ −1

2
Rhoδ

′dθ. (40)

The force contribution from the free surface is this product
times �p. Thus

dFfree,σ ≈ −dAf n̂θ�p ≈ σho

2
δ′

(
1

ρ1(δ)
− δ′′

)
dθ. (41)

The total surface tension force in the azimuthal direction can
now be computed from Eqs. (31) and (41). Note that we need
the forces on the roller, so the direction of the force is into the
roller, i.e., in the direction θ̂ at θ and in the direction −θ̂ at

θ + dθ . Thus

dFσ
θ ≈ −F ′

vert,σ (θ )dθ + dFfree,σ

≈ 1

2
hoσδ

[
δ′ρ ′

1(δ)

ρ2
1

+ δ′′′(θ )

]
. (42)

It is seen that if ρ ′
1(δ0) > 0 (like in the case of a cylinder

squeezed uniformly), the first term gives a contribution similar
to the hydrostatic one (22), but with opposite sign. This seems
to be the case for the polygonal hydraulic jump shown in Fig. 3,
where the curvature in the corner is larger than at the edge.

For later use, we shall introduce the shape parameter

B ≡ δ0ρ
′
1(δ0)

[ρ1(δ0)]2
. (43)

For a cylindrical roller with ρ(δ) ≈ δ we would then get B ≈
δ−1

0 . The ratio of the prefactor of the gravitational term (22)
to the surface tension term (without δ) is the dimensionless
number

ρgRh2
o/2

3σho/2
= Rho

3l2
c

= Bo2

3α
, (44)

where lc = (σ/ρg)1/2 is the capillary length and

Bo = ho

lc
(45)

is the Bond number based on ho.

5. Azimuthal force balance

Using these estimates, we write down the azimuthal
component of Eq. (4):

dFh
θ + dF

μ
θ + dFσ

θ = 0, (46)

which can be written in dimensionless form as

δ′(θ ) = −
[
�2

δ2
+ �3

(
1 − δ

2

)]
ξθ

+ 3α Bo−2δ

(
ρ ′

1(δ)

ρ2
1

δ′(θ ) + δ′′′(θ )

)
, (47)

where we have defined the dimensionless numbers

�2 ≡ 2c2νQ

gR2h2
o

, �3 ≡ 2c3νQ

ghih3
o

. (48)

The two coupled equations (47) and (15) close our model
for δ and ξθ . An overview of the numerous symbols used in
our model is provided in Ref. [8].

E. Linear analysis

We investigate the existence of nearly circular polygons,
i.e., for small oscillations around the circular solution δ = δ0 =
2π�1 and ξθ = 0. Inserting δ = δ0 + εδ1(θ ) and ξθ = εξ1(θ )
into Eqs. (47) and (15) and using B in Eq. (43), we find the
first-order perturbation equations to be

(1 − 3α Bo−2B)δ′
1 = −ξ1

[
�2

δ2
0

+ �3

(
1 − 1

2
δ0

)]

+ 3α Bo−2δ0δ
′′′
1 , (49)

ξ ′
1 = 1

2πδ0
δ1. (50)
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Differentiating Eq. (49) with respect to θ and substituting ξ ′
1

from Eq. (50), we obtain

(1 − 3α Bo−2B)δ′′
1 = 1

2πδ0

[
�2

δ2
0

+ �3

(
1 − 1

2
δ0

)]
δ1

+ δ03α Bo−2δ′′′′
1 . (51)

For perturbations with δ1 = sin[k(θ − θ0)], we obtain the
characteristic equation

δ0k
4 + k2

(
Bo2

3α
− B

)
− Bo2

6παδ0

[
�2

δ2
0

+ �3

(
1 − 1

2
δ0

)]
= 0.

(52)

This equation has the solution

k2 = 1

2δ0

(
B − Bo2

3α
±

√
G

)
, (53)

where we define

G ≡
(

B − Bo2

3α

)2

+ 2 Bo2

3απ

[
�2

δ2
0

+ �3

(
1 − 1

2
δ0

)]
. (54)

When the wave number k is an integer, the solution is periodic
on [0,2π/k] and corresponds to a polygon with k corners. In
the present case, k2 needs to be positive for the solution to
make sense. In the limit of negligible surface tension where
σ → 0 (i.e. Bo → ∞), we simply get

k = ±
√

1

2πδ0

[
�2

δ2
0

+ �3

(
1 − 1

2
δ0

)]
. (55)

III. SOLVABLE NONLINEAR MODEL

To solve the static nonlinear model [Eqs. (47) and (15)] we
would need to know ρ1(δ). At present we do not know the
shapes well enough to estimate this and so we shall restrict
our attention to the case where surface tension is absent;
despite this simplification, we shall see that we still obtain
meaningful results that allow us to explain the structure of the
phase diagram.

It is instructive to start with a further simplification. By
letting �3 → 0, we neglect the term due to the shear against the
bottom of the roller. By ignoring this regular perturbation term,
the model can be solved analytically, which enables further
analysis, as discussed in Sec. III D, where we investigate the
effect of the term �3. We obtain

φ2x ′ = − y

x2
, (56)

y ′ = 1 − 1

x
, (57)

where we have introduced the rescaled variables

x(θ ) = δ

δ0
, (58)

y(θ ) = 2πξθ (59)

and the nondimensional parameter

φ = (2π )2�
3/2
1 �

−1/2
2 = π2h3

i h
4
og

2R

ν2Q2
√

c3
1c2

. (60)

We now solve Eq. (56) for y, differentiate it once with respect
to θ , and eliminate y ′ in Eq. (57), i.e., to obtain the single
(second-order) equation

φ2

(
x3

3

)′′
= 1

x
− 1. (61)

By substituting X = x3/3, this may be formulated as an
equation of motion for a “mass” φ2 in the conservative force
field,

φ2X′′ = −dV

dX
, (62)

where the potential function is given by

V = X − 1

2
(3X)2/3 = x3

3
− x2

2
. (63)

We introduce the rescaled angle � = θ/φ and integrate once
in � to obtain

1

2

(
dX

d�

)2

+ V (X) = C, (64)

where C is a constant of integration corresponding to the
“energy” of the “mass” φ2. Solving the equation for dX/d�

and transforming back to x, we obtain

dx

d�
= ±

√
2[C − V (x)]

x2
. (65)

This equation has the implicit solution

�(xb) = �(xa) ±
∫ xb

xa

x2 dx√
2[C − V (x)]

. (66)

With Eq. (58) we recover the expression in terms of the original
scaling

θ (δ) = θ (δa) ± φ

∫ δ/δ0

δa/δ0

x2 dx√
2[C − V (x)]

(67)

and similarly, by substitution of Eq. (65) into Eq. (56), the
corresponding azimuthal flux is given by

ξθ = ∓ φ

2π

√
2[C − V (δ/δ0)]. (68)

A. Phase diagram

We now consider the parameter space for the existence of
polygons. Such solutions may be considered “bound” states of
the potential V . As shown in Fig. 9, such a state exists if and
only if − 1

6 < C < 0. When C is within the range, there are two
roots xmin and xmax for the equation V (x) = C, satisfying 0 <

xmin < xmax < 3
2 . They serve as turning points for a trajectory

and describe the minimum (corner) and the maximum (belly)
of the jump width, respectively. Without loss of generality we
may choose x = xmin when θ = � = 0 and then a trajectory
can be computed by integrating Eq. (65) with the plus sign from
� = 0 to T/2, where T (C) denotes the period of oscillation
in terms of �, and extending that part of the solution using
symmetry.

For a polygon with N corners a trajectory must oscillate in
the potential N times and this must result in an increase by 2π
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FIG. 9. Potential function V as a function of x = δ/δ0 and X =
x3/3, respectively. A periodic solution, i.e. “bound” state, exists only
when − 1

6 < C < 0. The solution corresponds to a polygon with N

corners if the period is 2π/N in terms of θ .

in terms of θ = φ�. Thus a solution for an N polygon must
satisfy a commensurability condition

φN = 2π

T (C)
, (69)

with the normalized half period

T (C)

2
=

∫ xmax(C)

xmin(C)

x2dx√
2[C − V (x)]

. (70)

When C = − 1
6 the equilibrium solution xmin = xmax = 1,

corresponding to the circular jump δ ≡ δ0, is obtained. When
C is only slightly larger than − 1

6 we approximate the potential
near the local minimum as V (x) ∼ − 1

6 + 1
2 (x − 1)2. If we

express xmin = 1 − ε, then xmax = 1 + ε and the energy is
approximated by C = V (xmin) = V (xmax) ∼ − 1

6 + 1
2ε2. Then

2[C − V (x)] ∼ ε2 − (x − 1)2 and we find

T (−1/6)

2
= lim

ε→0

∫ 1+ε

1−ε

x2dx√
ε2 − (x − 1)2

= π, (71)

for which the condition (69) becomes φ = 1/N . Naturally,
this agrees with the condition (55) found in the linear analysis
when �3 = 0.

From C = − 1
6 to 0 the oscillation amplitude grows until, at

C = 0, xmin = 0 and xmax = 3
2 . Correspondingly, the integral

T (C)/2 decreases monotonically in C until it reaches

T (0)

2
=

∫ 3/2

0

x2dx√−2V (x)
= 3. (72)

In this limit the condition (69) becomes φ = π/(3N ). To
summarize, the condition (69) for the existence of a polygon
solution becomes

φ = K

N
, (73)

where K = 2π/T ∈ [1,π/3] ≈ [1,1.0472]; K = 1 corre-
sponds to nearly circular and K = π/3 to spiky polygons.

We also need to ensure 0 < δ < 1. Since xmin > 0, δ > 0
is guaranteed. Thus the remaining condition is δ < 1 for all θ ,
which is equivalent to

δ0 < 1/xmax. (74)

On this border the roller thickness is predicted to equal the
jump radius. This unphysical behavior is likely to be due to

FIG. 10. Polygonal jumps with N corners exist in the parameter
range shown in the truncated nonlinear model. The jumps bifurcate
from the dashed line φ = 1/N for the circular jumps C. When
the parameters approach the line φ = π/(3N ), the roller thickness
approaches δ = 0 in the corners at some δ = 0, indicating rupture:
solutions appear spiky near the solid line S. On the border δ0 = 1/xmax

(gray line), the roller thickness reaches δ = 1 so the solution becomes
unphysical.

truncation of the terms in this approximation. The border curve
is computed in Fig. 10 together with the lines φ = 1/N and
π/(3N ).

Since xmax is determined purely by the choice of C,
the border (74) is identical for all N but only scaled and
shifted in the φ direction. Apart from this border, an N

polygon exists in the horizontal strip π/(3N ) > φ > 1/N . It
is natural to ask for which N we find an overlap of these
bands corresponding to multistability of polygons as observed
experimentally. Consider two neighboring strips with N and
N + 1. The condition for overlap of the strips is φmin

N <

φmax
N+1, or 1/N < π/{3(N + 1)}. This leads to a condition

N > 3/(π − 3) ≈ 21.2, or N � 22. While the model thus in
principle predicts overlapping regions and resulting hystereses
of polygonal jumps with different N , it is an experimental fact
that overlap exists for much lower N .

B. Solutions and shapes

Typical solutions are displayed in Fig. 11 in terms of the
variables δ(θ ) and qr (θ ) for the symmetries N = 1,2,3,4,
which were obtained by solving Eqs. (56) and (57) numer-
ically. In Fig. 11 each row shows the transition from nearly
circular to spiky solutions; this may be achieved by tuning Nφ

between 1 and π/3. Notice that a solution only exists for a
special value of the energy C and is determined via Eq. (69)
by the choice of the symmetry N and mass φ2. The strict
monotonicity of T = T (C) in C (see above) means that this
mapping is one to one. It is meaningful to start integration in
a corner where x ′ = 0 at xmin or xmax, respectively. The initial
condition xmin is then given by this C [see Eq. (65), which
yields V (xmin,max) = C for x ′ = 0]. In other words, to obtain
the desired symmetry N with mass φ2, the initial condition
xmin must be chosen accordingly.

The spiky polygons go along with a singular behavior of
the radial outward flux qr (θ ) (blue). This behavior is caused by
δ → 0 in Eq. (12) and it is likely that this behavior disappears
by inclusion of some of the neglected terms. However, we note
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FIG. 11. (Color online) Typical polygon solutions for the trun-
cated model in Eqs. (56) and (57). The polygon shape (jump line)
is given by δ(θ ) (solid red line) and the radial flux by ξr (θ ) (blue
dashed line), which is computed via the radial balance equation (12).
Numbers refer to the symmetry N and increase down the columns.
From left to right, the transition from nearly circular to spiky is
shown for each symmetry (c, m, and h refer to center, middle, and
homoclinic orbits in phase space (x,y), respectively), corresponding
to the transition from the lines C to S in Fig. 10.

that although this behavior is not physical, it is seen that the
polygons exhibit very strong jets in the corners in the outward
radial direction, as seen in the flow visualization in Fig. 4.
Note also that the wave number has the right dependence on
ho, i.e., larger ho leads to fewer corners. Thus the increase in
the number of corners with increasing Q, as seen in Fig. 5, is
reproduced.

C. Comparison with experimental observations

We now represent the shaded region in Fig. 10 in terms
of the physical entities. Our aim is to compare the predicted
region with the measurement on the (ho,Q) plane in Fig. 5.
The two parameters in the model can be written as

δ0 = πgh2
i h

2
o/(c1νQ), (75)

φ = π2g2Rh3
i h

4
o/

(
c

3/2
1 c

1/2
2 ν2Q2

)
. (76)

We note that both δ0 and φ appear to depend on ho and Q only
through the combination h2

o/Q. If so, then we are not able to

FIG. 12. Bifurcation diagram in physical parameters (ho,Q). The
regions for polygonal solutions with each N up to N = 8 are
shown. The ho-Q relationship for the border curves, especially in
the enlarged inset, is qualitatively similar to the measured relationship
in the phase diagram of Fig. 5 despite quantitative disagreement. The
bands are predicted to be thinner and do not overlap in the model,
unless N � 22, unlike in experimental observations.

map the bifurcation curves from Fig. 10 one to one to the phase
diagram curves in Fig. 5.

However, the jump radius R actually depends on other
parameters as described before. For an estimate of this
dependence, we use the relation R = c4Q

5/8ν−3/8g−1/8 (c4 =
const) proposed in Ref. [16] since it is based on experimental
data and leads to a simple estimate for the mapping. This
converts Eq. (76) to φ ∼ π2c4g

15/8h3
i h

4
o/(c3/2

1 c
1/2
2 ν19/8Q11/8)

and the Q dependence of φ is corrected. Solving this with
Eq. (75), we obtain

ho ∼
(

c1c
4
2ν

8φ8

π5c8
4g

4h2
i δ

11
0

)1/10

, (77)

Q ∼
(

c4
2gν3h8

i φ
8

c4
1c

8
4δ

16
0

)1/5

. (78)

Thus we are able to map (δ0,φ) back to the physical parameters
ho and Q.

When only δ0 is varied while φ and other parameters on
the right-hand sides of Eqs. (77) and (78) are fixed, these
relations predict ho ∝ δ

−11/10
0 and Q ∝ δ

−16/5
0 and hence Q ∝

h
32/11
o . Thus the top and bottom border lines in Fig. 10 are

mapped to these curves. Points on the left border line δ0 = 0
diverge in the physical plane and the remaining border δ0 =
1/xmax is mapped to a curve close to the origin of the physical
plane. For each N = 1,2, . . . ,8 we have mapped the region in
Fig. 10 in this way and the resulting physical parameter plane
is shown in Fig. 12. Here the typical set of parameter values in
the Appendix are used for physical parameters other than ho

and Q.

D. Nonlinear model with �3 > 0

An analysis of Eqs. (15) and (47) where �3 > 0 is also
possible by numerical means and partially also by using
more intricate analytic arguments based on a Hamiltonian
formalism, which we only mention here for the sake of
brevity. To numerically solve the static equations including
�3 > 0 a scheme similar to the one described above must
be adopted. For this case, we have no analytic means of
determining the period T (C) in the same manner as above.
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However, one may integrate the equation system with an
event solver: If we start integration from the corner, a half
period is given when δ′ = 0 (corresponding to the “belly”
of the polygon), which defines the condition (event) to stop
integration. While integrating from the corner δmin to the
belly δmax one may also compute the period of the solution,
T = T̃ (C), and so invoke a secondary solver to solve for
a δmin such that the commensurability condition T = π/N

is satisfied. Such solutions have no extreme spikes as with
�3 = 0 and instead yield rounder corners. The periodicity T

of the solution no longer depends monotonically on the corner
width of the roller δmin, which results in a more complex
solution space (some of the solutions look like the clover
shapes reported by Aristoff et al. [17]). Interestingly, larger
overlap of the parameter regions corresponding to polygons
with different symmetry number N is seen, in particular for
lower symmetries as low as N ∼ 2. Details are discussed in
Refs. [18,19].

IV. TEMPORAL STABILITY OF THE CIRCULAR STATE

We now introduce time dependence to the equations.
First, we consider a time-dependent version of the continuity
equation (5),

∂

∂t

[
R2 − r2

j

2
�hdθ

]
=

[
Q

2π
dθ + qθ (θ )

]
− [qr (θ )dθ + qθ (θ + dθ )]. (79)

The left-hand side is an estimated rate of change in the volume
of the roller slice. The right-hand side describes flux into and
out of the volume as described in Sec. II B. This equation
becomes in dimensionless form:

T ∂

∂t

[
δ

(
1 − δ

2

)]
= 1

2π
− ξr (θ ) − ∂ξθ

∂θ
. (80)

Now the roller thickness δ(t,θ ) also depends on t and the
characteristic time scale T is

T ≡ R2�h

Q
≈ R2h2

o

Q
, (81)

i.e., time to fill the whole disk with radius R and height
�h ≈ ho. Using this together with the radial force balance
equation (12), we get

T ∂

∂t

[
δ

(
1 − δ

2

)]
= 1

2π
− �1

δ
− ∂ξθ

∂θ
. (82)

Next we introduce time dependence in the azimuthal momen-
tum balance (47). This becomes

T
�4

∂ξθ

∂t
= − ∂δ

∂θ
−

[
�2

δ2
+ �3(2 − δ)

2

]
ξθ

+ 3α Bo−2δ

[
ρ ′

1(δ)

ρ2
1

∂δ

∂θ
+ ∂3δ

∂θ3

]
, (83)

where

�4 ≡ gR2h3
o

Q2
. (84)

We now linearize around the circular solution as before: Set-
ting δ = δ0 + εδ1(t,θ ) and ξθ = 0 + εξ1(t,θ ), and taking the

first-order terms in ε, we find

T (1 − δ0)
∂δ1

∂t
= 1

2πδ0
δ1 − ∂ξ1

∂θ
(85)

and

T
�4

∂ξ1

∂t
= −

[
�2

δ2
0

+ �3

(
1 − 1

2
δ0

)]
ξ1

− (1 − 3αB Bo−2)
∂δ1

∂θ
+ 3αδ0Bo−2 ∂3δ1

∂θ3
(86)

instead of their stationary version (49) and (50).
We now Fourier transform by[

δ1(t,θ )

ξ1(t,θ )

]
=

[
z

x

]
exp

[
st

(1 − δ0)T + ikθ

]
, (87)

where, due to the 2π periodicity in θ , the wave number k has
to be an integer. We find

sx = −C2x − i(C1k + C3k
3)z, (88)

sz = −ikx + C4z, (89)

where

C1 = (1 − δ0)�4(1 − 3αB Bo−2), (90)

C2 = (1 − δ0)�4

[
�2

δ2
0

+ �3

(
1 − 1

2
δ0

)]
, (91)

C3 = δ0(1 − δ0)3α�4Bo−2, (92)

C4 = 1

2πδ0
, (93)

with B defined in Eq. (43). The characteristic equation is

s2 + (C2 − C4)s + (C1k
2 + C3k

4) − C2C4 = 0, (94)

with the solution

s = 1

2
[C4 − C2 ±

√
(C4 + C2)2 − 4(C1k2 + C3k4)]. (95)

For k = 0 the solutions are s+(0) = C4 and s− = −C2. Since
C4 > 0, the spatially homogeneous (circular) mode is unstable,
leading to an increase or decrease of δ away from δ0. This is
clearly unphysical (since our circular state is uniquely defined
from the outset) and reflects the fact that flux conservation is
not built into our time-dependent model since Eq. (82) does
not directly respect flux conservation. Thus we must require
that the constraint (16) still holds, whereby the total mass flux
in and out of the roller is in balance. To linear order, this
condition implies that∮

δ1(θ )dθ = 0. (96)

Thus the mode k = 0 must vanish and is excluded. In the
following we consider only integer values k � 1.

Let us take a look at the dispersion relations in Eq. (95).
All the �’s and the Bond number are positive, so all the
C’s are guaranteed to be positive except C1. As discussed in
Sec. II D 4, the surface shape parameter B is positive when
R1 grows with δ; this is the case at least close to the circular
jump where δ ≈ δ0. Then the sign of C1 depends only on the
relative magnitude of B and Bo2: When 3αB > Bo2 we have
C1 < 0 and surface tension is “active” in the sense that it then
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can cause a Rayleigh-Plateau-like instability. This instability
criterion is equivalent to

Rho

l2
c

< 3B. (97)

At present, we do not have much data to check this criterion,
but from the case presented in Fig. 3 we can estimate the
two curvature radii and thereby the magnitude of B ≈ 27
(see the Appendix). Note, however, that since the values
entering B should really be averages over the surface, we
somewhat overestimate the curvatures and therefore likely
underestimate B. Ethylene glycol has a surface tension of
σ ≈ 50 × 10−3 N/m and a density of 1100 kg m−3; these
numbers yield a capillary length of lc ≈ 2.2 mm and a Bond
number Bo ≈ 2.3. In effect, the left-hand side of Eq. (97)
thus becomes approximately equal to 32, whereas the right
hand side is approximately equal to 81. This demonstrates
that the circular state should indeed be unstable toward the
formation of polygons. The flow rate is Q ≈ 40 ml s−1

and using the parameters listed in the Appendix we have
�4 = gR2h3

oQ
−2 ≈ 0.69; this yields a positive prefactor in

C1 of (1 − δ0)�4 ≈ 0.4. Although the two sides of Eq. (97)
appear similar, these estimates show that it is plausible that C1

may take on negative values.
Let us look at the dispersion relations in more detail. First

we note that s(k) has reflective symmetry around k = 0. In
Figs. 13 and 14 we therefore display only the positive-k axis.
Along this positive-k axis there are (at most) three distinct
values that occur for the dispersion relation: (i) the maximal
value of s(k) at k∗, defining the two neighboring modes of
strongest growth (integer values); (ii) the root of the dispersion

FIG. 13. (Color online) There is no maximally unstable wave
number k∗ when C1 > 0 [see Eq. (98)]. The stability curves s+(k)
(blue dotted line) and s−(k) (red dashed line) from Eq. (95) are shown
for C1 = 2 (above) and C1 = −2 (below) with C2 = 2.5, C3 = 0.1,
and C4 = 0.3. The dashed lines show the curves for continuous k, but
only integral values of k, corresponding to the crosses, are allowed
due to 2π periodicity in θ . The mode k = 0 is treated separately due
to the global conservation law (96).

FIG. 14. (Color online) Stability curve s+(k) (dashed line) from
Eq. (95) for stability coefficients C1 ≈ −0.603, C2 ≈ 0.415, C3 ≈
0.0156, and C4 ≈ 0.374, based on experimental parameters and the
height profile of a pentagon (see the Appendix). Note that the constant
branch s(k > k0) = (C4 − C2)/2 ≈ −0.02 is negative. We find that
the maximally stable wave number (98) is k∗ ≈ 4.4; thus the most
likely symmetry to occur has symmetry k = 4 or 5, which matches
well the expectation. The crosses mark the values of s for integer k,
respecting the 2π periodicity. The mode k = 0 is treated separately
according to the global conservation law (96).

relation s(k0) = 0; and (iii) the point kc where the two branches
s−(kc) = s+(kc) meet. For k > kc, the discriminant D = (C4 +
C2)2 − 4(C1k

2 + C3k
4) becomes negative and the real part

assumes simply a constant value Re(s) = (C4 − C2)/2, which
defines a further symmetry axis for the dispersion relation.
Note that, by definition, k0 is identical to Eq. (53).

For the unstable case (C1 < 0) we expect the symmetry
breaking predominantly to occur at the maximally unstable
wave number k∗. The value of Re(s+) is maximal when the
term |C1|k2 − C3k

4 is maximal and so

k∗ =
√

−C1

2C3
=

√
3αB − Bo2

6αδ0
. (98)

Clearly, such a maximal value exists only when C1 is negative,
i.e., when the condition 3αB > Bo2 in Eq. (97) is satisfied,
as illustrated in Fig. 13. For small Bond number, or strong
instability, Eq. (98) simplifies to

k∗ ≈
√

B

2δ0
=

√
ρ ′

1(δ0)

2ρ2
1 (δ0)

(99)

and if the roller cross section is close to cylindrical, we find
k∗ ∼ δ−1

0 , i.e., a wavelength proportional to the width of the
roller as in the Rayleigh-Plateau instability. This fits nicely
with the observed bifurcation sequence since, experimentally,
polygons with many corners (up to 13) are seen close to the
transition, where the roller is thin, and lower-order polygons
occur later only when the width is larger.

In Fig. 14 we show the dispersion relation using parameter
estimates from the Appendix that are based on the height
profile of the pentagon shown in Fig. 3. For this case we
obtain k∗ ≈ 4.4 and k0 ≈ 6.23. With this value of k∗ it is most
likely that polygons with either k = 4 or 5 corners occur, in
accordance with the experimental observation.

V. DISCUSSION

We hope that we have been able to convince the reader
that the type-II hydraulic jumps and their intriguing polygon
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offspring can be understood within the phenomenological
framework presented here. We have given a detailed presen-
tation of the model and the underlying assumptions about
the flow. In particular, we assumed that the inner edge of
a “roller” structure inside the jump describes the shape of
the type-II jump. In the circular type-II regime, the internal
flow of this roller structure is similar to a toroidal vortex. The
local width of this roller is one of three basic variables in our
model. The two other variables in our model are the radial
and tangential flow rates across the jump and inside the roller,
respectively. A polygonal shape is obtained when the width
loses circular symmetry and becomes a periodic function of
the polar angle, while the outer edge of the roller remains
circular, as observed in experiments. Also, for the polygonal
states, a net flux is carried inside the roller from the sides to
the corners. The model is formulated by considering a radial
and a tangential force balance across the roller structure and
the polygon shapes occur primarily by competition between
viscous and gravitational effects. We have shown that one
variant of the model is exactly solvable, even in the strongly
nonlinear limit, and that it has polygonal solutions that are
quite similar to those observed experimentally. The resulting
bifurcation diagram is qualitatively similar to experimental
measurements.

The question of stability has been addressed as well.
Here surface tension plays an important role. For small
deformations around the circular state, we can include surface
tension by considering the Laplace pressure inside the roller.
This pressure can be estimated by introducing a parameter
that characterizes how the curvature of the roller changes
with deformation. When this parameter is positive, which
is expected for the circular type-II hydraulic jump, surface
tension effects will tend to destabilize the circular state if the
length scales at the jump (e.g., jump height ho and radius R)
are of the order of or smaller than the capillary length. Thus
a polygon state will emerge with a wavelength of the order of
the width of the roller, in analogy with the Rayleigh-Plateau
instability.

To include surface tension beyond the linear approximation
would require more detailed knowledge about the height
profile of the polygon states. It is hoped that such results will
soon be available. Indeed, one of the aims of the present paper
is to stimulate renewed research in this direction.

In the present study we have neglected the rotational motion
inside the roller that is clearly observed in experiments. The
stability of a rotating liquid column with a free cylindri-
cal surface has been investigated in other studies [20,21].
The relative importance of the rotational kinetic energy to
the surface energy is characterized by the Weber number
We� = ρa3�2/σ , where � is the characteristic rotational
frequency and 2a = R δ is the width of the roller. For an
infinitely long cylinder, subject to axisymmetric disturbances
(neglecting disturbances in, e.g., the azimuthal direction), a
necessary and sufficient condition for stability is given by
k2 � 1 + We� [20], where k is our wave number (this result
is valid for potential vortex flows and solid body rotation), and
thus rotation could widen the spectrum of unstable modes.
Compared to the roller in the hydraulic jump, these vortices
are of course strongly idealized and we do not know at present
how to include them in a convincing way.
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APPENDIX: TYPICAL PARAMETERS AND
COEFFICIENTS

A typical set of parameters used in the experiments is
Q ≈ 40 × 10−6 m3/s, ho ≈ 5 × 10−3 m, hi ≈ 5 × 10−4 m,
ν ≈ 10−5 m2/s, g ≈ 9.8 m/s2, σ ≈ 50 × 10−3 N/m, and ρ ≈
1100 kg/m3. Clearly, the assumption hi � ho used throughout
the paper is then valid. With the above parameters, we have a
Bond number of Bo = 2.3 (Bo2 = 5.4) and lc ≈ 2.2 mm.

Furthermore, using the values from the height profile in
Fig. 3, we read off the following numbers: the outer edge of the
roller R ≈ 3 × 10−2 m, the width of the roller between two cor-
ners (belly) Rδb = 14 mm and in the corner Rδc = 11.5 mm,
and the corresponding curvature radii Rb = 4.5 mm and Rc =
2.5 mm. Using the approximations δ0 = (δb + δc)/2 ≈ 0.426
and

B = δ0
d

dδ

1

ρ1(δ)

∣∣∣∣
δ0

≈ 1

2

δb + δc

δb − δc

(
1

ρ1(δc)
− 1

ρ1(δb)

)
,

we estimate that B ≈ 27. Note that the values entering B

should really be averages over the surface; therefore, we
somewhat overestimate the curvatures and therefore likely
underestimate B.

The scaling factors c1, c2, c3, and c4 are unknown, but using
the above experimental parameters and the estimates from the
height profile, we can at least estimate some of them. Using the
scaling R = c4Q

5/8ν−3/8g−1/8 proposed in Ref. [16] for the
outer edge of the roller R, we estimate that c4 ∼ 0.3; moreover,
we can match the definition δ0 = 2π�1 with c1 ∼ 1.13.
The constants c2andc3 originate from the linearization of the
frictional force (26) and it is reasonable to assume that they are
also of order unity. With these estimates, the nondimensional
numbers become �1 ≈ 0.0678, �2 ≈ 0.003 63, �3 ≈ 1.306,
�4 ≈ 0.689, δ0 ≈ 0.426, and φ ≈ 11.6. The stability coeffi-
cients are then C1 ≈ −0.603, C2 ≈ 0.415, C3 ≈ 0.0156, and
C4 ≈ 0.374. With these estimated coefficients, we find the
spectrum for stable wave numbers as shown in Fig. 14, with
a maximally unstable wave number k∗ ≈ 4.4 and s+ has a
root k0 ≈ 6.23. Evaluating the wave number of the linearly
perturbed circular jump in Eq. (53), we have k ≈ 6.23, which
is at least quite close to a pentagon. However, we note again
that these numbers can serve as only rough estimates due to
the lack of experimental data (i.e., to determine c1, c2, c3, c4,
and B).

Typical frequencies for the rotational motion in our exper-
iment are of the order of 5 Hz, so � ∼ 5 × 2π rad/s. The
roller structure has a width of order Rδ0/2 ≈ 6 mm and a
height of ho/2 = 2.5 mm. Using for the average roller radius
an estimate of (a = ho + Rδ0)/4 ≈ 4.5 mm, we arrive at an
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estimated Weber number of We� = ρa3�2/σ ∼ 1.9; notice,
though, that the Weber number scales with the cube of the
average roller width a and is thus very sensitive to errors in the
estimate of a. It is not clear that the vorticity extends all the way
out to where the surface attains its maximal value (this is how
we estimated Rδ0) and therefore we may be overestimating a.

We define standard dimensionless numbers as follows.
Defining the velocity before the jump as ui = Q

2πRhi
, we get

the Reynolds number

Re = uiho

ν
= Qho

2πRhiν
≈ 212, (A1)

where we take ho as the characteristic scale, similar to Rδ. The
Froude numbers are

Fri = ui√
ghi

= Q

2πRhi

√
ghi

, (A2)

so

Fr2
i = Q2

(2π )2gR2h3
i

≈ 37.037. (A3)

Similarly, we have the downstream Froude number

Fr2
o = Q2

(2π )2gR2h3
o

≈ 0.037. (A4)

These dimensionless numbers are evaluated using the above
choice of parameter, with R = 30 mm for the height profile in
Fig. 3. With these definitions, φ from Eq. (76) is

φ = 1

4
√

c3
1c2

h2
i

Rho

Fr−2
i Fr−2

o Re2. (A5)

The Weber number is defined as

We = ρu2
i

σ/ho

(A6)

because ho is similar to Rδ, which is similar to the radii of
curvature. Thus

We = ρhoQ
2

(2π )2R2h2
i σ

. (A7)
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