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Summary (English)

E�cient operation of energy systems with substantial amount of renewable en-
ergy production is becoming increasingly important. Most renewables are de-
pendent on the weather conditions and are therefore by nature volatile and
uncontrollable, opposed to traditional energy production based on combustion.
The "smart grid" is a broad term for the technology for addressing the challenge
of operating an energy system, especially the electrical grid, with a large share
of renewables. The "smart" part is formed by technologies, which model the
properties of the systems and e�ciently adapt the load to the volatile energy
production using the available �exibility in the system.

In the present thesis methods related to operation of solar energy systems and
for optimal energy use in buildings are presented. Two approaches to forecasting
of solar power based on numerical weather predictions (NWPs) are presented.
They are applied to forecast the power output from PV and solar thermal col-
lector systems. The �rst approach is based on a developed statistical clear-sky
model, which is used for estimating the clear-sky output solely based on obser-
vations of the output. This enables local e�ects such as shading from trees to
be taken into account. The second approach to solar power forecasting is based
on conditional parametric modelling. It is well suited for forecasting of solar
thermal power, since is it can be made non-linear in the inputs. The approach
is also extended to a probabilistic solar power forecasting model.

The statistical clear-sky model is furthermore used as basis for a method for
correction of global radiation observations. This method can used for correction
of typical errors, for example from shading trees or buildings.
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Two methods for �exible heat use in buildings are presented in the last part of
the thesis. First a method for forecasting of the heat load in single-family houses
based on weather forecasts is presented. A model is identi�ed for forecasting the
heat load for sixteen single-family houses. The model adapts to the individual
houses and needs no speci�c information about the buildings. Finally, a proce-
dure for identi�cation of a suitable model for the heat dynamics of a building
is presented. The applied models are grey-box model based on stochastic dif-
ferential equations and model identi�cation is carried out with likelihood ratio
tests. The models can be used for providing detailed information of the thermal
characteristics of buildings and as basis for optimal control for �exible heating
of buildings.



Summary (Danish)

Energiproduktion med vindmøller og solceller kan af naturlige årsager ikke styres
som energiproduktion baseret på forbrænding. Derfor kræves en udvikling af nye
teknologier til styring af energisystemer med en betydelig andel vind- og solen-
ergi. Elnettet skal udbygges med it-teknologi og blive til et "smart grid". Dette
betyder at styringen skal udføres automatisk baseret på computermodeller, der
"lærer"−at tilpasse sig systemets egenskaber udfra data opsamlet af sensorer.
I afhandlingen præsenteres en række af sådanne modeller og metoder relateret
til solenergi og opvarmning i bygninger.

Først præsenteres to metoder til forudsigelse af solenergiproduktionen udfra me-
teorologiske vejrprognoser. De kan bruges til forudsigelse af energiproduktionen
fra både solceller og solfangere, og kræver ikke nogen speci�k information om
anlæggene udover målinger af energiproduktionen. Den ene metode er baseret
på en udviklet statistisk model, der kan estimere solenergiproduktionen ved
klar himmel, udelukkende ud fra målinger af produktionen. Dette gør modellen
i stand til at inkludere lokale e�ekter, som for eksempel solenergi-anlæggets vin-
kling og skygger fra objekter i de lokale omgivelser, f.eks. fra træer. Den anden
metode er baseret på en betinget parametrisk model, hvilket giver en e�ek-
tiv modellering med ikke-lineære funktioner. Denne metode er desuden veleg-
net til solvarme forudsigelser. Endeligt beskrives en metode til probabilistisk
forudsigelse af solenergiproduktion.

En metode til korrektion af fejl i målinger af global stråling præsenteres. Den
statistiske model for klar himmel benyttes her på målinger af global stråling
og systematiske fejl korrigeres, som for eksempel skyldes skygger fra træer eller
bygninger.
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En række modeller af solfangeres varmedynamik præsenteres. Modellerne er
baseret på stokastiske di�erentialligninger og kan benyttes til estimation af
vigtige fysiske parametre udfra målinger fra en enkelt dag. Dette gør dem oplagte
til brug i tests af ydeevne.

To metoder der kan bruges i styringen af �eksibelt varmeforbrug i bygninger
præsenteres i sidste del af afhandlingen. Først identi�ceres en model til forudsigelse
af varmeforbrug baseret på meterologiske forudsigelser, og den afprøves på sek-
sten typiske parcelhuse op til 42 timer frem i tiden. Modellen tilpasser sig au-
tomatisk de enkelte huses varmeforbrug og kræver ingen speci�k information
om de enkelte huse.

Tilsidst præsenteres en metode til identi�cering af en velegnet model af bygningers
varmedynamik. Modellerne er baseret på stokastiske di�erentialligninger og kan
bruges til at estimere vigtige fysiske parametre, for eksempel bygningens UA-
værdi og varmekapacitet. De kan for eksempel benyttes til at bestemme poten-
tialet for energirenovering og som basis for styring af �eksibelt varmeforbrug.



Preface

This thesis was prepared at the department of Informatics and Mathematical
Modelling (Informatics), the Technical University of Denmark (DTU) in partial
ful�lment of the requirements for acquiring the Ph.D. degree in engineering.
The Ph.D. project was carried as part of the project "Solar/electric heating
systems in the future energy system" which is funded by The Danish Council
for Strategic Research.

The thesis deals with modelling for operation of energy systems depending on
solar radiation and for �exible heating of buildings. Methods for forecasting
of solar power and for correction of observations are presented, together with
models for forecasting of heat load in buildings and models for the heat dynamics
of buildings.

The thesis consists of a summary report and seven research papers. Two of the
papers are published in, and two are submitted to, international peer reviewed
scienti�c journals. The last three appear in conference proceedings.

Lyngby, 2012

Peder Bacher
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Chapter 1

Introduction

The foreseen negative impact on human life conditions due to climate changes
caused by the increasing level of greenhouse gases in the atmosphere, is driving
a transformation of the energy system: away from the current system based on
fossil fuels and over to a future system based on sustainable and climate neutral
energy production. Many plans for this transformation have been presented
during the last decades and the visions are manifold. They range from focusing
on yet not operational technologies, such as nuclear fusion energy, and over to
focusing on existing technologies, such as nuclear �ssion energy, and wind and
solar energy. Reality is however, that no single sustainable energy technology,
which can cheaply replace coal and oil, and cover the entire demand for en-
ergy, has been invented. Currently, it seems like a very realistic scenario is a
system composed of wind, solar, bio, and hydro power. See for example the
scenarios suggested by Fthenakis et al. (2009), Jacobson and Delucchi (2011),
and Mathiesen et al. (2011). The transition should be carried out with the
socio-economically most optimal solutions and is highly dependent on the cur-
rent energy infrastructure and locally available resources. Due to the spacial
requirements and intermittent nature of wind and solar energy technologies,
two very important aspects have to be considered: energy storage and energy
mobility. In one end of the renewable energy scenarios, all energy is produced
with large scale plants at locations where the resource is plentiful: solar energy
in the desert and wind energy o�-shore at sea. This requires strong intercon-
nections over very long distances for transportation of energy to where it is



2 Introduction

needed. In the other end, scenarios are suggested where the energy is produced
on distributed small scale systems as close as possible to where it is needed. For
the Danish energy system several plans for a system based on 100% renewables
in 2050 have been put forward. The currently most established plan is put for-
ward by the Danish Commission on Climate Change Policy (2010), who suggest
a profound change of the structure of energy system. Away from the current
centralized system, which is based on non-volatile power generation technologies
and where the power generation is controlled to match the demand, and over to
a distributed system, which can handle a much more volatile power generation
and where the demand is shifted to match the power generation. The change
involves engineering challenges in many �elds, where especially the "smart grid"
is pointed out as an essential component which must be developed.

The "smart grid" is a term covering a range of technologies for enabling an ef-
�cient and �exible operation of a renewable based energy system, in particular
with the use of information and communication technology for providing the
needs for communication between the units in the system. This forms the basis
for the "smart" part, namely the operation of the energy system with computer
models, which can "learn" the characteristics of the system and enable an op-
timized use of the vast amounts of data from sensors in the system. In the
present thesis such methods based on such data-driven statistical models are
presented. They are centered around the use of real-time energy and climate
data for modelling, with focus on solar energy applications and optimal energy
use in buildings. This type of methods will be vital for operation of energy
systems with a substantial amount of solar energy production, and - especially
for the methods related to buildings - also for e�cient integration of other re-
newables, in particular wind energy. Methods for the following applications are
presented in the thesis:

• Solar power forecasting, both for PV systems and solar thermal systems.

• Processing and correction of solar radiation measurements.

• Dynamical models for solar thermal collectors.

• Forecasting of heat load for buildings.

• Identi�cation of suitable models for the heat dynamics of buildings.

The methods are based on statistical modelling techniques, which, where it is
appropriately, are combined with prior physical knowledge. The models deal
with both non-linear and dynamic relations, and thorough statistical analysis
for evaluation of the results are carried out. An objective is to provide a solid
foundation for operational applications, as well as expanding current state of the
art in the addressed �elds. Data from both experimental setups and systems
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in operation is used, for example data consisting of measurements from test
buildings, inhabited buildings, weather stations, and meteorological forecasts.

The PhD-study is carried out under the project "Solar/electric heating systems
in the future energy system", in which a heating system scaled for a single-
family house is designed, see (Perers et al., 2011) for a detailed description. The
core of the system is a hot-water tank, which is connected to both an electrical
heater and a solar thermal collector. The system provides both space heating
and hot water heating. By heating in advance with electricity, and storing
thermal energy in the tank, the system can be used for load-shifting, and thus
become valuable also for the integration of wind power (Meibom et al., 2007).
An objective of the PhD-study is to provide the forecasting models needed
for optimal operation of the system in a Danish context, where the electricity
is bought at a variable price on the Nord Pool Spot day-ahead market. The
optimal operation is carried out by shifting the load to hours with cheap energy
in order to minimize the costs of running the system. The presented methods for
forecasting of the hourly solar thermal production and forecasting of heat load,
are used to provide the necessary basis for the economic model predictive control
(MPC) scheme presented by Halvgaard et al. (2012) for optimal operation of
solar-electric combisystems. Furthermore price forecasts are used, which are
provided using the models described by Jónsson et al. (2012).

1.1 Solar energy

Energy from solar radiation drives the processes that makes life on earth possi-
ble. It has the potential to cover all human energy needs: the energy from solar
radiation striking the surface of the earth in 90 minutes (appr. 6.4·1020 J) is well
over the current global energy consumption per year (appr. 5.1 · 1020 J in 2009
(IEA, International Energy Agency, 2011b)). Several plans exist for a renewable
based energy system relying heavily on solar energy. For example: Zweibel et al.
(2008) plan 35% of the total energy to come from solar, Heide et al. (2010) �nds
that an optimal balance is 55% wind and 45% solar energy for Europe, and IEA,
International Energy Agency (2011a) discuss the IEA High-Renewable Scenario
where 25% of global electricity is covered by solar power. A vast palette of
technologies exist for using solar radiation as an direct source of energy: from
agriculture over architecture and over to conversion of solar radiation directly
to electrical power. Many other renewable energy sources are indirectly driven
by solar radiation, for example wind and hydro power. The most used tech-
nologies, which convert solar radiation directly into heat or electricity, can be
divided into following categories:
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Figure 1.1: Total worldwide installed solar PV and thermal capacity

• Heating, cooling and ventilation in buildings, for example there is a long
tradition for buildings to have windows for providing indoor light and
heating.

• Water heaters. Di�erent types of solar thermal collectors exist, the most
widespread type is �at-plate collectors.

• Photovoltaic (PV) panels, which are either distributed on roof-tops or
installed in large power plants, currently the largest is Golmud Solar Park
(200 MWp), which is to be built in China.

• Concentrated solar power. Installed in large plants, where sun beams are
concentrated with mirrors to heat �uid for driving steam turbines. This
technology has a huge potential in sunny regions, currently the largest is
Brightsource's Ivanpah plant in the US, which is planned to reach 392
MWp when completed. The use of a heated �uid in the process has the
advantage that thermal storage can be used to shift the electricity pro-
duction.

The plot in Figure 1.1 shows the total worldwide installed capacity over the last
years of PV (BP, 2011) and solar thermal (appr. 85% from �at-plate and evacu-
ated tube collectors and 15% from unglazed collectors) (IEA - The Solar Heating
and Cooling Programme, 2010). Clearly the installed capacity is rapidly increas-
ing and especially the installed PV capacity has been rapidly increasing the last
few years. Currently Germany has the highest level of solar power penetration
at around 3% of the electricity production, which already has a considerable im-
pact on the power price on sunny days (Nicolosi and Nabe, 2011). The currently
installed capacity in Denmark is around 22.5 MWp, which corresponds to 0.06
% of the electricity production. This is quite little, but in 2011 nearly 8.5 kWp

was installed and the trend seems to be continuing upwards, as seen from the
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Figure 1.2: Total installed solar PV peak power capacity in Denmark (source:
Energinet.dk)

plot in Figure 1.2 of the total installed PV capacity in Denmark. During the
large scale smart grid research project Ecogrid, the Danish island of Bornholm
(population around 42000) will be equipped with 5MWp solar power, which will
be around 9% peak power penetration (Yang et al., 2011). Hence there is a
growing need for methods for an e�cient integration of PV solar power.

As seen in Figure 1.1 the globally installed solar thermal capacity is much higher
than the installed capacity of PV. The by far largest part of solar thermal
is used for water heating and works independently of the surrounding energy
system. However there is an increasing trend in application of solar heating for
other purposes, such as space heating and industrial heating. As an example
is the solar heating system from Innogie1, where the entire roof is turned into
a solar thermal collector. It is coupled to a hot water tank and a geothermal
heat pump. In the summertime an HP/ORC module is used for conversion of
the solar thermal energy to electricity. Apart from e�cient use of solar and
electrical energy for heating, the system can also provide �exible electrical load
and production.

In order to operate systems with solar power optimally, it is essential to have
forecasts of solar power available (Lew et al., 2010). They are required for
periods ranging from days ahead down to hours and ten-of minutes ahead (Sayeef
et al., 2011). Quite a lot of research in solar forecasting has been carried out the
last years and two main approaches, depending on the forecast horizon, have
had most attention: for short horizons within a couple of hours, the forecasts are
based on satellite images and total sky imagery, and for longer horizons up to a
several days, the forecasts are based on numerical weather predictions (NWPs).

The following is a small overview of the recently presented methods for fore-
casting based on NWPs. Ji and Chee (2011) do a detrending of solar power

1www.innogie.dk

www.innogie.dk


6 Introduction

by �tting a high order polynomial model based on a monthly average of the
diurnal curve to account for non-stationarity of the observed process. Then
the detrended series is forecasted with an ARMA and TDNN hybrid model.
Lorenz et al. (2011) use several steps in a post-processing procedure of NWPs
to derive optimized site-speci�c irradiance forecasts. First a spatial averaging
of the NWPs is carried out and thereafter a bias-removal procedure, which is
based on a physical clear-sky model, is applied. Finally, a physical model is
used to convert the irradiance forecasts to PV power forecasts. An up-scaling
method for regional solar power forecasting is also presented. Schmelter et al.
(2011) presents a continuous weather classi�cation for combining NWPs, which
improves forecasting performance especially for di�cult weather conditions such
as fog and snow. Pelland et al. (2011) do post processing of NWPs for forecast-
ing global radiation and PV output. First a spacial averaging of the NWPs
is applied and a Kalman �lter is used for bias removal. Fonseca Júnior et al.
(2011) compare neural networks and support vector regression for forecasting
24 hours ahead. It is found that RMSE performance is quite equivalent, while
MAE performance is better for support vector regression.

In the present thesis two approaches to solar power forecasting based on NWPs
are presented. The �rst approach is based on a developed statistical clear-sky
model, which is used for normalization of the solar power to a stationary process,
such that classical linear time series models, here ARX models, can be e�ciently
applied. The second approach is to forecast the solar power directly with a
conditional parametric model. This provides a simple and e�cient approach to
solar power forecasting. Furthermore an outline of an approach to probabilistic
solar power forecasting is given.

In addition to the forecasting methods two other solar energy related studies are
presented in the thesis. First a method for correction of global radiation obser-
vations based on the statistical clear-sky model is presented. The method can
especially be useful for correction of observations from partly unsupervised solar
radiation sensors, which will be exposed to many types of errors, for example
shading from surrounding objects. Finally, a study, in which grey-box models
for the heat dynamics of solar thermal collectors are applied, is presented. The
models can be used for obtaining detailed knowledge of the heat dynamics of a
collector, including the physical parameters related to the performance of the
collector.
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1.2 Buildings and energy

An essential key to a successful integration of the volatile energy production
from renewables is the development of cheap and operational energy storage.
Today many di�erent energy storage technologies exists. They are di�erent
with regards to several aspects such as: e�ciency, temporal characteristics, and
geographic requirements. For example pumped hydro, which can provide sea-
sonal storage with a round-trip e�ciency up to 85%, has a limited potential due
to the geographic requirements. Another very promising technology is renew-
able power methane (RPM) storage, which is based on conversion of electricity
to methane gas. The gas is stored and can be used later in the existing nat-
ural gas energy infrastructure. The draw-back of RPM is that the round-trip
e�ciency is only in the range of 30% to 37% (Breyer et al., 2011), which makes
it expensive and feasible mostly for seasonal storage. Hence cheap and e�cient
short-term energy storage is really valuable, in Denmark especially for match-
ing the �uctuations in wind power (Meibom et al., 2007), but also for shifting
the load away from peak hours within the day. Due to the generally increasing
electricity load, even very short time �exibility can be very valuable in order to
avoid overload of the transmission system and thereby minimize the needed in-
vestments in the transmission system (Danish Commission on Climate Change
Policy, 2010). The use of electric vehicle (EV) batteries for short-term load-
shifting is possible, but the large scale transition to EVs is yet to come. It is
to cover this need that thermal storage in buildings can prove to be the a key
solution. As heating become more electricity based, a huge potential for energy
bu�ering and �exible load can be released (Palensky and Dietrich, 2011). Ap-
proximately 40% of the total energy consumption is related to buildings, either
used for heating or consumed by electrical appliances. Thermal energy can ei-
ther be stored in the building structures, making it possible to possible to shift
load while keeping the indoor temperature within some limits (e.g. 19 to 21
◦C), or stored in a thermal storage system, for example a hot water tank. This
applies both to heating and cooling, or both at the same time as suggested by
Blarke et al. (2012), who �nds that thermal storage is a very cheap compared
to electro-chemical or mechanical storage.

Apart from the hardware for enabling the use of buildings for energy storage,
the methods for optimal operation are necessary to have. Modelling and fore-
casting of the energy �ows in the building are needed, together with methods
for modelling the energy systems related locally to the building. For example
for forecasting of solar thermal power, if a solar collector is connected to the
heating system. Finally, the operation of the heating system must be coupled
to the operation surrounding energy system. This will most likely be carried
out with energy markets, where a variable energy price will reward a �exible
load. Today smart meters are being installed in many buildings and the high
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resolution readings (10 to 15 minute values) of heat load will - combined with
climate data - form the basis for modelling the building energy characteristics.
Especially a proper modelling of the heat dynamics is crucial for this time res-
olution and provides the key for optimal use of the buildings for load-shifting.
Here it is also emphasized, that another very important use of data from smart
meters is for determination of the energy performance of buildings, as carried
out by ENFOR (2010) and as with the methods presented in below. This will
be very valuable for e�cient energy refurbishment of buildings, which has a very
important feature that must not be overseen: energy savings are far less volatile
and to a large extend cheaper, compared to an equivalently increased renewable
energy production.

In the thesis two methods for modelling related to building energy use are pre-
sented: First a method for forecasting the heat load of single-family houses and
secondly a method for obtaining a detailed description of the heat dynamics of
a building.

The method for forecasting of heat load is very well suited for optimized op-
eration of a heating system, which include thermal storage in some dedicated
medium, for example a hot water tank. As described previously, the objective
of the PhD-project is to make methods to be used for optimal operation of
a solar-electric combisystem for space and hot water heating in single family
houses. The idea is to couple forecasts of: the electricity price, the energy pro-
duction from the solar thermal collector, and the heat load of the building. The
forecasts are then used as input to economic model predictive control scheme
(MPC), which then provides an optimal operation plan for the system, i.e. how
much electricity should be bought for heating at a given time. If the electricity
can be bought at a variable price, then the storage capacity of the hot water
tank can be used for lowering the running costs, by shifting the load to hours
with cheap electricity. Hence the system can provide services to the grid, and
thereby the short-term energy storage for an e�cient integration of the large
amount of wind power planned in Denmark. It is planned to have around 50%
of electricity production in 2020.

The method, which can be used to obtain a detailed and accurate description of
the heat dynamics of a building from data, is based on grey-box modelling. The
models are formed by stochastic di�erential equations, which enables a combi-
nation of physical and data-driven modelling. The physical part for the model is
formed by a description of the heat dynamics with di�erential equations, which
includes the physical thermal properties and a model of how the signi�cant heat
transfers occur in the building. This allows for the estimation of parameters,
which are directly physically interpretable. The identi�ed model can be used for
several purposes. Firstly, thermal properties, such as the UA-value of the build-
ing, provide valuable information, which can be used to identify buildings with
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high potentials for energy refurbishment. Secondly, the knowledge of the heat
dynamics can be used to optimize the operation of the heating system, while
keeping the indoor temperature within some limits, as mentioned above, and
for example minimize the operation costs, when the electricity can be bought
at a variable price. Model predictive control can be used for carrying out the
optimization using the model of the dynamics, as described by �iroký et al.
(2011) and Zong et al. (2011). This will enable the thermal mass of buildings
to be used for load-shifting

In the following chapters the methods, which are presented in the included
papers, are outlined and discussed. In Chapter 2 an overview is given of the
methods relating to solar energy applications, which are presented in Paper A
to E. In Chapter 3 an overview is given of the methods related to energy use in
buildings, which are presented in Paper F to G. Chapter 4 �nalizes the thesis
with a general discussion and conclusion.
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Chapter 2

Methods for solar energy
applications

An overview of the presented methods, which can be used for the di�erent pur-
poses related to solar energy, is given in this chapter. First a statistical clear-sky
model, which is used in several di�erent contexts, is presented. For example in
the method for correction of systematic errors in global radiation observations,
which is outlined subsequently. This is followed by a section in which two meth-
ods for point forecasting and an approach for probabilistic forecasting of solar
power are described. The chapter ends with a section on grey-box modelling of
solar thermal collectors and �nally a discussion is given.

2.1 Statistical clear-sky model

Clear-sky models, as described by Bird and Riordan (1984) and Rigollier et al.
(2000), are primarily used for calculation of the global radiation under clear sky
at some point in time and some location on the surface the earth. They are
based on physical modelling of the radiative transfer of solar radiation through
the atmosphere. One application of clear-sky models is for making a normaliza-
tion of observations from sensors, which outputs are directly related to the solar
radiation, for example the output of a pyranometer or a PV system. By normal-
ization of the output it becomes evenly distributed throughout the day and thus
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becomes a stationary process. The physical based clear-sky models take many
e�ects into account, however they cannot account for e�ects related locally to
the sensor, such as: bias in the sensor, shadows from trees, or re�ections from
a nearby water surface. In this thesis a statistical clear-sky model is presented,
which can account for such e�ects. This is achieved by modelling the clear-sky
output with a statistical model based solely on the data from the sensor. The
models provide an estimate of the sensor output at clear-sky conditions for a
given time. The estimated clear-sky output for the sensor is very well suited
for the normalization and can be used for several purposes - in the thesis it is
used for solar power forecasting and, together with a physical clear-sky model,
for correction of typical errors in global radiation observations. The principles
behind the statistical clear-sky model is the use of a locally weighted quantile
regression model, where a quantile close to one is estimated for the given solar
output. Depending on the application the statistical clear-sky model can be
composed di�erently. The most generel de�nition is with second order polyno-
mial quantile regression

β̂t = argmin
β∈R5

∞∑
i=−∞

∞∑
j=−∞

ρτ
(
Gt+24i+j − (β0,t + β1,ti+ β2,ti

2 + β3,tj + β4,tj
2)
)
K(i, j)

(2.1)

where {Gt, t = 1, . . . , N} is a time series with hourly values (e.g. global radiation
observations), ρτ (u) = u

(
τ − I(u < 0)

)
(see (Koenker, 2005) and (Koenker,

2011)), τ ∈ [0, . . . , 1] is the sample quantile to be estimated (which should be
close to 1), i ∈ N is a counter of days, j ∈ N is a counter of hours, and K(i, j) is
a kernel function. The estimated clear-sky value at time t is then found as the
intercept

Gcs
t = β0,t (2.2)

The weights are calculated with the two dimensional multiplicative Epanech-
nikov kernel function

K(i, j) =
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]2)
for |i|

hday
≥ 1 ∧ |j|

htod
≥ 1

0 for |i|
hday

< 1 ∨ |j|
htod

< 1

(2.3)

where hday is the bandwidth in the day of year dimension and htod is the
bandwidth in the time of day dimension. The local weighting is thus carried
out in the day of year and time of day dimensions, such that observations which
are close in these two dimensions are given a higher weight in the estimation.
The strong feature of using these dimensions is that they are directly related to
both: the position of the sun and changing conditions over time. In Section A.3
(page 51) and Section B.3 (page 71) more detailed descriptions of the statistical
clear-sky model are found, and in the following it is presented together with its
applications.
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Figure 2.1: The upper plot is of the observed radiation and the estimated
clear-sky radiation. The lower plot is of the normalized global
radiation.

2.1.1 Correction of global radiation observations

Observations of global radiation is an important source of information, especially
for solar energy applications. The observations are typically exposed to several
types of systematic errors, for example: shadows from objects in the surround-
ing, tilt in levelling of the sensor, and processing errors (Younes et al., 2005).
In Paper A a method for correction of such errors is presented. The correction
is carried out using the statistical clear-sky model, for both the observations Gt
and NWPs of global radiation Gnwp

t in order to �nd the systematic deviance
between them. The time series consist of hourly average values. Instead of the
NWPs, a clear-sky model based on atmospheric physics can be used, e.g. (Bird
and Riordan, 1984). The upper plot in Figure 2.1 shows the observed global
radiation together with the estimated clear-sky radiation. It can be seen how
the estimated clear-sky radiation follows the observed radiation on clear-sky
days. Two types of errors are readily seen: there is a drop before noon and the
observations are clipped at a maximum level. It can be seen that the errors are
apparent in the observations and also described by the clear-sky model. The
weather station, at which the observations were recorded, is located at a district
heating plant. It is the plant chimney which shades and cause the drop, see
the image on page 47. The lower plot in Figure 2.1 shows the normalized solar
power, which is obtained by simple division of the observed radiation with the
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Figure 2.2: The values of the observations versus the NWPs before and after
the correction. The morning values and the afternoon values are
indicated by di�erent symbols and colors. The two lines show a
locally weighted least squares regression estimate of the relation
between the variables in the morning and the afternoon.

estimated clear-sky radiation

τt =
Gt
Gcs
t

(2.4)

This process is clearly much less dependent on the time of day, hence it is a more
stationary process, and are much less a�ected by shadow-drop before noon and
saturation. The normalized process is multiplied with the estimated clear-sky
radiation for the NWPs and thereby the corrected observations

Gco
t = Gnwp,cs

t

Gt
Gcs
t

(2.5)

are obtained. It is furthermore noted that a tilt in the levelling of the sensor
cause the observed level to be generally lower in the morning compared to the
afternoon. The result of the correction can be seen by comparing the two scatter
plots in Figure 2.2. The left scatter plot is of observations versus the NWPs
before the correction, where both the shading and the tilt error can be seen.
The right plot is a similar plot after the correction. It can be seen that the
errors are mostly removed.
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2.2 Solar power forecasting

In the following sections an overview of the solar power forecasting methods
presented in the papers is given. The methods are based on modelling the power
output past data consisting of past measurements and NWPs. The forecast
horizons are as long as provided by the NWPs, in presented applications they
are complete up to 42 hours ahead at any time of day. Two basic approaches
are presented: A two-stage method based on the statistical clear-sky model
combined with a linear model, and a one-stage method based on a conditional
parametric model. The two-stage approach is applied to forecasting of the total
output of 21 PV-systems located in a small village in Denmark, it is described
in Paper B. The one-stage approach is applied to forecasting of the output of
both: a PV-system, as described Paper C, and to forecast the output of a solar
thermal collector, as described in Paper D. Finally, an approach to probabilistic
solar power forecasting is outlined in Section 2.2.3.

The obtained results from application of the forecasting methods are based on
the data described in the papers, together with NWPs from the Hirlam-S05
(DMI, 2011), which are provided by the Danish Meteorological Institute.

2.2.1 Two-stage method based on the statistical clear-sky

model

In paper B a forecasting method is described, where �rst the statistical clear-sky
model is used to normalize the solar power

τt =
Pt

P̂cs,t

(2.6)

where Pt is the solar power, P̂cs,t is the estimated clear sky solar power and
tayt is the normalized solar power. The NWPs of global radiation are similarly
normalized to τ̂nwp

t+k|t. This is carried out to obtain more stationary processes,
such that the distribution is much less dependent on the day of year and to the
time of day. The normalized processes is in the range of 0 to 1 and have approx-
imately the same distribution at any time t. This is similar to the normalization
of global radiation described in the previous section and illustrated in Figure
2.1, where the lower plot shows the normalized process. The normalization al-
lows for of classical linear time series models (Box et al., 1976) to be used for
forecasting. The best performing model is identi�ed to the ARX model

τt+k = m+ a1τt + a2τt−s(k) + b1τ̂
nwp
t+k|t + et+k (2.7)
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where s(k) ensures that the latest diurnal component is used (see page 85).
The same ARX model is �tted for each horizon, using a recursive least squares
with forgetting scheme to achieve time adaptivity. Finally, the forecasts are
transformed back again with the clear-sky model. The results show a root mean
square error (RMSE) improvement of around 35 % over a persistence reference
model.

2.2.2 Solar power forecasting with a conditional paramet-

ric model

An alternative to the statistical clear-sky model for compensating for the non-
stationarity of the solar power is to use conditional parametric models, see
(Nielsen et al., 2000) for more details about conditional parametric models. The
same basic approach, as for the statistical clear-sky model, is taken by using a
model, which is �tted locally in the day of year and time of day dimensions.
Furthermore the conditional parametric models allows for the model to be non-
linear in the inputs, for example as a non-linear function of the NWPs of global
radiation. For improving the forecasting performance for short horizons (up to
three hours) the latest available observation is also added as input and the best
model is obtained as

Pt+k =m+ a
(
tday, ttod, Pt

)
Pt (2.8)

+ b
(
tday, ttod, G

nwp
t+k|t

)
Gnwp
t+k|t + et+k

where the coe�cient function a
(
tday, ttod, Pt

)
and b

(
tday, ttod, G

nwp
t+k|t

)
are non-

linear functions, see Paper C for more details. For illustration of this, the plot
in Figure 2.3 is used. It illustrates the 24 hour ahead forecasts of hourly solar
power as a function of the NWPs of global radiation for �ve days over the year.
From these plots it can be seen how the forecasting function can be non-linear
and how it changes conditional on the day of year. The results for forecasting
of the power output from a PV system, as presented in the paper, shows a
slight RMSE performance improvement compared to the two-stage method. The
approach is also very well suited for forecasting of thermal power output from
a solar collector, as presented in Paper D, where it is found that especially the
possibilities for modelling non-linearity in the inputs are important.

2.2.3 Probabilistic solar power forecasting

Probabilistic forecasting is not presented in any of the papers in this thesis,
however it is found that a natural next step forward is to expand the current
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Figure 2.3: Example of the 24 hour ahead forecasted hourly solar power as
a function of the NWP of global radiation for �ve days over the
year. The data is presented in Paper C. The weighting of a point
(only by day(t, i) and tod(t, i)) is indicated by the size of its circle
in the plot. A nearest neighbor weighting scheme is used.
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point forecasts to probabilistic forecasts. Probabilistic solar power forecasting -
which will be valuable for energy system operation, as described for wind power
Pinson et al. (2007a) - means that at a given time ahead the probability distri-
bution of solar power is forecasted instead of the single value. Many approaches
to probabilistic forecasting exist, here an approach using quantile regression is
used for illustration of some important aspects. One aspect is the relation be-
tween the normalized solar power - which can be considered equivalent to the
clearness index - and the uncertainty on the forecast becomes apparent by con-
sidering normalized NWPs plotted versus normalized solar power, as described
in Section B.5 (page 82). It is found that the uncertainty of the forecasts is de-
pendent on the cloud cover, which is described with the clearness index, in such
a way that forecasts for overcast or cloudless conditions have lower uncertainty,
than forecasts of partly cloudy conditions. This is consistent with �ndings in
other studies (Lorenz et al., 2007).

Probabilistic forecasting with quantile regression has been successfully applied
for wind power forecasting by Bremnes (2004) and Nielsen et al. (2006). The
suggested approach here for solar power is based on the same basic principles as
the forecasting with a conditional parametric model, as presented in the previous
section and in Paper C. The same data, consisting of observed solar power Pt
and NWPs of global radiation Gnwp

t+k|t, is used, and the forecasting function is
simply replaced with the local quantile regression model

β̂t = argmin
β∈R2

t∑

i=1

ρτ

(
Pi −

(
β0,t + β1,tG

nwp
i|i−k

))
K3d(t, i) (2.9)

where i and t are denoting time, ρτ (u) = u
(
τ−I{u<0}

)
is the quantile regression

objective function (see (Koenker, 2005)), and the 3-dimensional multiplicative
kernel function

K3d(t, i) = K
(
day(t, i)

)
·K
(
tod(t, i)

)
·K
(
Gnwp
t|t−k −G

nwp
i|i−k

)
(2.10)

where day(t, i) is the distance from t to i in days, tod(t, i) is the time of day
distance, and the Epanechnikov kernel function

K(∆) =





3
4

(
1−

[
|∆|
h

]2)
for |∆|h ≥ 1

0 for |∆|h < 1
(2.11)

with bandwidth h is used for calculating the weights in each dimension. The
following bandwidths, which was set from visual inspection of the results, are
used in the three weighting dimensions:

• hday = 150 is bandwidth in days
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• htod = 2 is bandwidth in hours

• hGnwp = nn(t, i, 300) is bandwidth in W/m2 calculated as the smallest
bandwidth where the 300 nearest neighbors are included.

The quantile regression implementation in the R (R Development Core Team,
2011) package 'quantreg' is used for carrying out the calculations.

The plots shown in Figure 2.4 is of the estimated quantiles conditioned on the
NWP of global radiation, for a 24 hour horizon. It is the 5%, 10%, . . . , 90%, 95%
τ quantiles. A clear dependency on the level of the global radiation NWPs is
seen and the same pattern as described above is found: the uncertainty is higher
for values in the middle of the range of forecasted global radiation.

It is evident that more research in probabilistic forecasting of solar power is
needed, for example a proper evaluation should be carried out and an optimiza-
tion of the bandwidths. From the very coarse outline of the presented approach
a few conclusions are drawn:

• Evaluation of probabilistic solar power forecasts is needed for assessment
of the forecast quality. Solar forecasting is highly related to wind power
forecasting and the evaluation can be based on methods for evaluation of
probabilistic wind power forecasts, for example the framework proposed
by Pinson et al. (2007b).

• It is clearly seen that the distribution of solar power conditional on the
NWPs of global radiation is highly skewed for low and high levels of the
NWPs. Hence it can be questioned how a proper evaluation of point
forecasts should be carried out, since the optimality of the least squares
criteria is mostly based on an assumption of normal distributed errors.

• The value of energy forecasts for operation increase as more useful infor-
mation for system operators is available. In that respect probabilistic solar
power forecasting can prove to be very valuable, since the distribution of
the error is highly dependent on the inputs and thus contain quite a lot
non-trivial information.

• Studies have shown that valuable information about the uncertainty on
wind power forecasts can be gained from ensemble forecasting. Ensemble
forecasts calculated by the meteorologists can be used as input to model
the uncertainty in energy forecasts, for example as described by Nielsen
et al. (2006) for probabilistic wind power forecasting. The same approach
can be applied for solar power forecasting.
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Figure 2.4: Example of probabilistic solar power forecasts for a k = 24 hour
horizon at �ve di�erent hours over the day. Local quantile regres-
sion is applied to estimate the 5%, 10%, . . . , 90%, 95% τ quantiles.
The weighting of a point (only by day(t, i) and tod(t, i)) is indi-
cated by the size of its circle in the plot.



2.3 Modelling the heat dynamics of solar thermal collectors 21

F ′(τα)enKταb(θ)GbF ′(τα)enKταdGd
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QfcfTo

Ufa(Ta − Tf)

Tf =
Ti+To

2
To Ti

Figure 2.5: Diagram of the single state grey-box model illustrating all the
energy �ows included in the model.

2.3 Modelling the heat dynamics of solar thermal

collectors

In Paper E models for the heat dynamics of solar thermal collectors are pre-
sented. The heat dynamics are described with grey-box models. A grey-box
model is established using a combination of prior physical knowledge and statis-
tics Kristensen et al. (2004). The prior physical knowledge is formulated by a set
of non-linear stochastic di�erential equations (SDEs). The equations describe a
lumped model of the heat dynamics of the system. Models from Perers (1997)
of solar thermal collectors based on prior physical knowledge are used to derive
the SDE which forms the system equation

dTo =
(
F ′U0(Ta − Tf) + cfQf(Ti − To) (2.12)

+ F ′(τα)enKταb(θ)Gb + F ′(τα)enKταdGd

) 2

(mC)e
dt+ σdω

of the simplest applied grey-box model and it consists of a single state To which
is the outlet temperature of the collector, [◦C]. In the diagram in Figure 2.5 the
energy �ows are illustrated.

The following are parameters in the model
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F ′U0 Heat loss coe�cient at (Ta − Tf) = 0,
[
W/(m2K)

]
.

F ′(τα)en Zero loss e�ciency for direct radiation at normal incidence

Kταb(θ)
Incidence angle modi�er for direct radiation. It has a single parameter b0
which is estimated

Kταd Incidence angle modi�er for di�use radiation

(mC)e E�ective thermal capacitance including piping for the collector,
[
J/(m2K)

]
.

σ2 is the incremental variance of the Wiener process {ω}

The following are inputs which are measured (or derived directly from measure-
ments)

Ta Ambient temperature , [◦C].

Tf Average temperature of the collector �uid, [◦C].

Qf Flow of the �uid per square meter of collector,
[
l/(sm2)

]
.

Ti Temperature of the inlet to the collector, [◦C].

Gb Direct radiation onto the collector plane,
[
W/m2

]
.

Gd Di�use radiation onto the collector plane,
[
W/m2

]
.

and �nally cf which is the speci�c heat capacity of the �uid, [J/(l K)].

The data-driven part of the grey-box model is formed by the discrete time
observation equation

Yk = Tok + ek (2.13)

where k is the point in time tk of a measurement, Yk is the measured outlet
temperature, and ek is the measurement error, which is assumed to be a Gaus-
sian white noise process with variance σ2. The parameters are estimated with
maximum likelihood techniques as described in Section E.2.1 on page 130.

A suitable model is identi�ed for a �at plate collector using 30 second average
values measured at a test setup at the building department of DTU. It is shown
how the models can provide detailed knowledge about the performance of the
collector with data from a single day. A forward model selection approach is
used, where �rst a simple model is applied and stepwise expanded. The �nal
model includes two lumped parts: one representing the �uid and one represent-
ing the metal and frame of the collector. Each of the two parts are lumped
further into three compartments, resulting in the �nal model having six state
variables, see Section E.5.2 on page 136.
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A strong feature of using the applied grey-box modelling, is that accurate phys-
ical knowledge can be obtained with a minimum of testing time. The results
are evaluated and discussed both from a statistical and physical perspective.
As a reference the equivalent parameter estimates found with current ISO-
standardized multiple linear regression models are used. The results show that
parameters can be estimated very accurately with 30 second average values from
a single day. It is an prerequisite that the input, especially the ambient temper-
ature and the global radiation is uncorrelated. For the presented study this was
achieved by using data from a day, where clouds modulated the radiation with
an "on-o�" sequence. This should be replaced with a shading device - simply
a foil that can be automatically rolled up and down - for enabling an "on-o�"
testing sequence for the radiation onto the collector. The models can be used in
several contexts, both for performance testing and for operational applications.

2.4 Discussion

Two methods for solar power forecasting based on NWPs have been presented,
together with a method for correction of measured global radiation, and an out-
line of a probabilistic solar power forecasting method. The recurrent principle,
on which all of the methods is based, is the use of non-parametric local regres-
sion techniques to model measured solar output, by using a kernel weighting
function in dimensions of day of year and time of day. The advantage of using
such models is that all types of systematic e�ects embedded in the solar output
are included in model, especially e�ects which are local to the sensor and there-
fore very complex to model with a physical model, e.g. shadowing from trees.
Regarding the statistical clear-sky model, a local �tting in the dimensions of the
sun azimuth and sun elevation has been considered in (Bacher, 2008), where it
was found that it leads to decreased accuracy for the considered applications.
This is due to the importance of the model being local in time, for example at
the positions of the sun where trees are shading, then it makes a huge di�erence
if there are leaves on the trees or not.

Regarding the solar forecasting methods presented it is clear that further work
should be addressed to enhance the models. For example regime switching for
using di�erent models depending on the weather type and using multiple NWPs
as inputs. This has proved to increase performance both for wind power forecasts
and solar forecasts. For example Schmelter et al. (2011) presents a method for
combining forecasts depending on a weather classi�cation for improving solar
power forecast performance, especially for handling special weather conditions
like fog and snow.
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Chapter 3

Methods for building energy
applications

The methods outlined in this chapter can be used to deal with important aspects
for optimized energy use in buildings, especially for enabling buildings as a key
player in smart grids and for energy performance improvement of the building
stock. The method for forecasting of the heat load presented in Paper F is
outlined, together with the procedure for identi�cation of a suitable model for
the heat dynamics of buildings presented in Paper G. The data used consist of
a combination of: measurements and NWPs of climate variables, heat load, and
indoor temperature.

3.1 Heat load forecasting

A method for forecasting the heat load in single family houses is presented in
Paper F. Adaptive linear time series models are applied to forecast the heat load

Qt+k = Qambient
t+k|t +Qdiurnal

t+k|t +Qsun
t+k|t +Qwind

t+k|t + et+k (3.1)

where the terms on the right side represent heat gains caused by several mech-
anisms together with an error. The inputs to the model are formed from mea-
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surements from a local weather station and numerical weather predictions. The
following three signals are available

• T̂ a
t+k|t the ambient temperature

• Ĝt+k|t the global radiation

• Ŵ s
t+k|t the wind speed

The heat dynamics of the building are described with linear rational transfer
functions from the climate variables to the heat load. The heat gain to the
ambient (i.e. negative in the winter period) is described by

Qambient
t+k|t = αia + αaHa(q)T̂ a

t+k|t (3.2)

where αia is representing a constant indoor temperature (which is not available
and therefore modelled as an intercept) and the �rst order low-pass �lter with
unity DC-gain

Ha(q) =
1− aTa

1− aTa
q−1

(3.3)

is applied and where q−1 is the backward shift operator (q−1xt = xt−1) (see
(Madsen, 2007)) and aTa

∈ [0, 1] is a coe�cient, which is equivalent to the time
constant for the part of the building a�ected by changes in ambient temperature.
This is equivalent to describing the heat dynamics of the building with a lumped
RC-model having a single heat capacity for the interior of the building and a
single thermal resistance through the building envelope. The diurnal curve heat
gain describes diurnal patterns caused by systematic user behavior, for example
a nightly setback. It is modelled as a harmonic function using a Fourier series

µ(ttod, αdiu) =

nhar∑

i=1

αdiu
i,1 sin

( ttodiπ

12

)
+ αdiu

i,2 cos
( ttodiπ

12

)
(3.4)

where ttod is the time of day in hours at time t and nhar is the number of
harmonics included in the Fourier series. The heat gains from solar radiation
and wind are modelled as

Qambient
t+k|t = αgHg(q)Ĝt+k|t (3.5)

and

Qwind
t+k|t = αwHw(q)Ŵ s

t+k|t (3.6)

where the low-pass �lters Hg(q) is similar to the �lter for ambient temperature
(Equation (3.3)), but �tted independently such that the coe�cient describing
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the dynamic response of the building is di�erent for each of the inputs. Several
extensions to this model is also applied as described in the paper. In order to
achieve time adaptivity of the model, it is �tted with a recursive least squares
scheme, where the past data is down-weighted depending on a forgetting factor.
Note that each of the coe�cients could have been denoted with a t to indicate
that they change as a function of time. Finally, in a second stage a simple AR(1)
model is applied to remove the last correlation in the residuals.

To identify a suitable forecasting model measurements of the hourly heat load
for sixteen houses, which are typical Danish single family houses, are used.
The houses are connected to district heating with a heat exchanger and have
radiator heating. In order to lower the signal-to-noise ratio for e�ects related to
the climate conditions, the heat load signals are preprocessed by �ltering out the
peaks from water heating. Thereafter a thorough model identi�cation is carried
out to �nd a forecasting model, which is suitable for all the houses. The following
parameters are tuned for each house separately: transfer function coe�cients
(they are equivalent to time constants in the building and describe how fast the
building respond to changes in the climate variables), harmonics in the diurnal
curve, and the optimal time adaptivity. The �rst step in the model identi�cation
is to �t a simple model consisting only of a constant heat gain and a diurnal curve
- i.e. this model does not include any climate variables, however it can follow the
slow changes in climate due to the adaptive modelling scheme. This model is
then expanded in steps, where inputs are included in di�erent ways in a forward
selection approach. The �nal result is a model, which is suitable for forecasting
the heat load for each house, without requiring any speci�c knowledge about
the building, apart from the heat load measurements. It can be used solely with
NWPs as input, but the addition of local measurements improves forecasting
performance for short horizons. It is shown that the forecasting residuals are
close to white-noise and thereby that the information embedded in the inputs
are very well utilized.

The forecasting performance measured with the mean absolute error as a func-
tion of the forecasting horizon is plotted for each of the sixteen houses in Figure
3.1. Clearly, a quite large di�erence is found between the houses, especially the
forecasting performance is poor for House 8. Analysing the forecasts for House
8 it is found that the heat load signal has some oscillations with a period around
6 hours, which are not possible to forecast and which are most likely caused by
a poorly tuned thermostatic control. A futher thorough analysis of the forecast
for all the houses indicates that the solar radiation part of the model pose a
challenge. Improvements could possibly be achieved by using some information
about the buildings, such as the azimuth angles of the building walls etc., or by
using an o�-line model for learning how the solar energy gain of the building
depends on the position of the sun, possibly as a function of day of year and
time of day. Furthermore is seen how the error in the global radiation NWPs
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Figure 3.1: Mean absolute error for the hourly forecasted average values as a
function of the forecasting horizon for each of the sixteen houses.

for longer horizons, i.e. an error in the input to the model, result in errors
in the heat load forecasts. Furthermore, it is seen how e�ects related to un-
predictable behavior of the residents, for example ventilation from opening of
windows, appear in the heat loads.

3.2 Models for the heat dynamics of buildings

In Paper G models are presented, which can provide detailed knowledge of the
heat dynamics of a building from measurements of: heat load, indoor temper-
ature, ambient temperature, and global radiation. The focus of the paper is a
procedure for selection of the most suitable model. The models are grey-box
models, which are based on a combination of physical and data-driven modelling.
They are based on stochastic di�erential equations, which allows for extensive
modelling of dynamical systems and estimation of parameters which are directly
physically interpretable, for example the heat capacity of the building and the
UA-value of the building envelope. A description of heat transfer mechanisms
which forms the basis for the physical part of the grey-box models can be found
in (Bacher et al., 2010, Chapter 3).

The applied grey-box models are stochastic linear state space models, which are
formed by a continuous time system equation and a discrete time measurement
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equation. The system equation can be formulated in matrix form

dT = ATdt+ BUdt+ σdω(t) (3.7)

where T is a vector of state variables (typically both measured and unmeasured
temperatures), U is a vector of inputs, and ω(t) is a Wiener process, which
is a stochastic process with independent normal distributed increments. The
matrices A de�nes how the current state a�ects the dynamics and B de�nes
how input enters the system, and σ2 is the scaling of the linear in time growing
variance of the increments of the Wiener process. The discrete measurement
equation can be formulated as

Ytk = CTtk + DUtk + etk (3.8)

where tk are the equidistant time points on which the output and inputs are mea-
sured, Ytk is the measured output (typically temperatures and/or heat �ows,
for example the interior temperature), etk is the measurement error. It is as-
sumed that etk is normal distributed white noise with zero mean and variance
Re. Furthermore it is assumed that etk and ω(t) are mutually uncorrelated. C
and D de�nes how the measured states are in�uenced by the state and input
respectively.

A lumped parameter model is used to describe the heat dynamics of the build-
ing as exampli�ed in the following, where a two state model is de�ned. One
state variable is describing the interior temperature Ti and one is represent-
ing the temperature of the building envelope Te. The �rst-order dynamics are
represented by the stochastic di�erential equations

dTi =
1

RieCi
(Te − Ti)dt+

1

Ci
Φhdt+

1

Ci
AwΦsdt+ σidωi (3.9)

dTe =
1

RieCe
(Ti − Te)dt+

1

ReaCe
(Ta − Te)dt+ σedωe (3.10)

where t is the time, Rie is the thermal resistance between the interior and the
building envelope, Rea is the thermal resistance between the building envelope
and the ambient air, Ci is the heat capacity of the interior, Ce is the heat capacity
of the building envelope, Φh is the energy �ux from the heating system, Aw is
the e�ective window area, Φs is the energy �ux from solar radiation, Ta is the
ambient air temperature, {ωi,t} and {ωe,t} are standard Wiener processes, and
σ2

i and σ2
e are the scaling of the linear in time growing incremental variances of

the Wiener processes. Note that the equations can easily be written into the
matrix form de�ned in Equation (3.7). The model can be represented with the
RC-network depicted in Figure 3.2, where the model is divided into di�erent
parts to show the corresponding parts of the building.
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Figure 3.2: RC-network of the model described by Equation (3.9) and (3.10).
The model is divided into di�erent parts indicating the correspond-
ing part of the building.

The interior temperature is measured and the discrete time measurement equa-
tion is

Ytk = Ti,tk + etk (3.11)

where tk is the time point of a measurement, Ytk is the measured interior tem-
perature and etk is the measurement error, which is assumed to be a Gaussian
white noise process with variance σ2.

The presented procedure for identi�cation is based on a forward model selection
approach, where likelihood ratio-tests are used for selection of a grey-box model
with a suitable complexity. This is important since, on the one hand, a too
simple model will be biased and not model the dynamics with the required level
of detail, and on the other hand, a too complex model will be over-parametrized
leading to degraded performance and incorrect parameter estimates. The proce-
dure is based on a forward selection approach, where a simple model is extended
until no signi�cant increase in likelihood is found.

In the paper the procedure is applied to identify a model for the heat dynamics
of a single-storey 120 m2 building. The building is heated with a 6 days test
sequence and �ve minutes average values are used for the modelling. An image
and �oor plan of the building can be seen in the paper (page 184). First the
very simple model illustrated with its RC-diagram in Figure G.7 (page 191) is
�tted. Then an expansion of this is seeked by adding di�erent model parts,
one at a time, and the expanded model with the highest increase in likelihood
is selected. The expansion step is repeated iteratively until likelihood-ratio
tests shows that no more signi�cant increase in likelihood is achieved by any
expansion. The �nal selected model is illustrated by its RC-diagram in Figure
G.8 (page 193). The one-step prediction residuals for the models selected in each
step are analysed with time series plots, the auto-correlation function and the
cumulated periodogram. These can be seen in Figures G.9, G.10 and G.11. The
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identi�ed model can be applied for several purposes. The estimated parameters
gives important information of the thermal performance of the building. The
values can be found in Table G.3. The UA-value of the building envelope, which
can be calculated directly from the parameters, indicates how well the building is
insulated, see Table G.4. Furthermore accurate knowledge of the heat capacity
of the building is obtained and thereby the nessesary knowledge for using the
model as basis for control is provided.

Due to the rather uncomfortable course of the indoor temperature the modelling
method using the used test sequence is not directly applicable in residential
buildings. However it can be applied in periods, where the residents are away
from the house in some days or for example at night time and during the day.
In o�ce buildings it can be run during the weekends. More work is needed for
applying the procedure with other buildings in order to determine the minimum
requirements for a desired level of estimation accuracy. For MPC methods for
optimal load-shifting control of heating systems, in which the models are used,
for example Pedersen et al. (2011) and Zong et al. (2011) both suggest that the
indoor temperature is to be kept within a given range, for example between 19
to 21 ◦C in some periods and within 18 to 22 ◦C in others. Identifying a model
for control allowing a indoor temperature variation in this range is probably a
feasible task.

A strong feature is the capabilities of modelling the uncertainty in SDE models,
which can be important for including residents behavior in the models. For
example it can be modelled such that it depends of the time of day, in order to
describe an increased uncertainty when the residents are home.

Finally, it is mentioned that the presented grey-box modelling procedure is very
well suited for e�ective modelling in relation to e�ective performance testing
of building components, e.g. in a test cell, as described in (Madsen and Holst,
1995).

3.3 Discussion

Considering the variety in the building stock and the highly diversi�ed use
of buildings, it is clear that much more research in modelling of heat use in
buildings, based on data from smart meters, is needed. As seen in the data
used in Paper F even for the sixteen single-family houses the characteristics of
the heat load signals are very di�erent, see for example the plot on page 171.
However, even if the models as presented in the two papers are applied for a
relatively speci�c type of buildings, the underlying principles can be applied for
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modelling dynamic systems in many respects, including many types of buildings.

The need for details and accuracy for e�cient operation of energy systems re-
lated to buildings depends on the application and the availability of data. A
statistical approach, which eventually enables nearly all available information
in data to be modelled, can save costs for hardware, e.g. sensors. The level
of forecast uncertainty will naturally be related to the operational performance
of the energy system, but it is a (economical) trade-o� between the need for
information from sensors (how many sensors etc. that are needed) and the per-
formance gain, which �nally also maps to an economical value of operating the
total energy system, since more expensive energy backup capacity is needed as
the forecasting accuracy decrease. Determining the cost-optimal need for sen-
sors and accuracy is a non-trivial task, but a very valuable question to be able
to answer.

Modelling the uncertainty for probabilistic forecasting presents another chal-
lenge, since the dynamics of the system needs to be included. For example the
errors from the NWP forecasts of solar radiation can have a signi�cant and
one-sided e�ect on the forecast uncertainty, and thus the dynamics needs to be
taken into account for a proper modelling.



Chapter 4

Discussion and conclusion

The presented methods have been discussed separately, hence in this section a
general discussion of the presented work is given.

4.1 General discussion

The methods are closely related by the data-driven approach using statistical
times analysis techniques for modelling. They form a basis for a range of oper-
ational applications, which are needed as the amount of data acquired from the
energy system is increasing rapidly, for example with the widespread installation
of smart meters in buildings. The data will be used for providing the needed
on-line modelling of the system, where knowledge of the state and the dynamics
in di�erent part of the system is vital for an e�cient operation. It is widely
recognized that the operation of the power grid will be carried with markets,
where a variable electricity price is available on di�erent timescales. This will
reward consumers which can provide a �exible load. Both for the operator of
such markets and the participants, e.g. a consumer o�ering �exible heat load
services in buildings, forecasting and methods for optimal operation are prereq-
uisites for enabling the needed �exible load. Furthermore it is noted that it is
very important to avoid sub-optimization of interdependent energy systems, for
example as for operation of the considered solar/electric heating system, where
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it is very important that the operation of the solar heating and the electrical
heating is jointly optimized. Hence the forecasting and modelling methods, as
the ones presented, should be combined in order to achieve an e�cient operation
of smart grid enabling technologies.

The required accuracy for the methods is a very relevant, but non-trivial ques-
tion, to consider. It is know from statistical modelling theory that performance
of a model is decreased if it is too simple or too complex. Therefore mod-
els should only comprise the needed complexity and here the statistical tech-
niques for optimization of model complexity are vital. They are for example
demonstrated in Paper G with the procedure for model identi�cation based
on likelihood-ratio tests. A forward selection approach for model identi�cation
is used for most of the presented modelling, in order to optimize the model
complexity. Roughly said this simply implies starting with a simple model and
trying di�erent expansions until no performance improvement is found. To some
extend this will require some manual interaction, but most likely the methods
can be applied automatically for the majority of cases, in a combination with an
automatic selection of cases which require further manual interaction. Certainly
the computational resources needed is also an issue when considering operation
of many thousand units. The presented methods are very suited for on-line
operation, especially the recursive schemes for forecasting are very computa-
tional e�cient. Generally it is suggested to run the computations on a central
server. This will allow for easier management and more e�cient computation,
for example some calculations can be carried only once, opposed to stand-alone
implementation.

Modelling of the forecast uncertainties is a really important step for power
grid operation, as the share of renewables in the power mix is increasing, the
forecasting errors will have a greater impact on the operation of the power
system. Hence the value of modelling the uncertainties, and have probabilistic
forecasting for all di�erent types of power generation and load in the system,
will increase. Considering the sources of errors there is a distinction between
modelling errors, e.g. errors in the meteorological forecasts, and errors caused
by for example user behavior. Errors from meteorological forecasts will mostly
be a�ecting forecasts of wind and solar power generation, but also for the load,
as especially the thermal part is included. Errors from user behavior will be
a�ecting the load, but will, when considering the total load be smoothed out
due to averaging over many individuals. However for operation of for example
the heating system for a single house, the user behavior is very important to
take into account.



4.2 Conclusion 35

4.2 Conclusion

Methods for optimized operation of energy systems with substantial amounts of
renewable and volatile energy production are presented in the thesis. The meth-
ods are very well suited for smart grid applications. The focus is on electrical
and thermal solar energy, and on heating in buildings.

The methods are mainly based on data-driven statistical models, which are
combined with prior-physical knowledge where appropriate. The modelling car-
ried out takes important aspects into account, such as: dynamical e�ects, non-
stationarity, time adaptivity, non-linearity, user behavior, physical relations, and
computationally e�cient implementation. In the presentation of the methods,
focus is on model identi�cation and performance evaluation, which are carried
out with statistical time series analysis techniques. The presented methods are
almost directly applicable for operational use without much further develop-
ment. Many perspectives and ideas for further work on the methods and in the
respective �elds are given.

A statistical clear-sky model is presented. It can be used to estimate the clear-
sky output of a system, where the output is directly dependent on solar radiation
at the surface of the earth. It is based solely on observations of the output and
is very useful for removing non-stationarity in the observations. It also includes
the e�ects occurring in the system and caused by the local surrondings, for
example tilt in the levelling of the sensor (e.g. a pyranometer or a PV panel) or
shading from objects in the surroundings. Two applications, where the statistical
clear-sky model is used, are presented in the thesis: a two-stage method for solar
power forecasting for PV-systems and a method for correction of errors in global
radiation observations.

A second approach to solar power forecasting is presented. It is based on a
conditional parametric model, which is conditional on the day of year and on
the time of day. It is demonstrated how the method is well suited for forecast-
ing solar power both for PV and solar thermal systems, and furthermore it is
outlined how the approach can be used for probabilistic solar power forecasting.

Grey-box models for the heat dynamics of solar thermal collectors are presented.
The models can for example be used to obtain accurate estimates of the energy
performance parameters based on a very short testing period.

A method for forecasting the heat load for single family houses is presented. A
forecasting model is found on the basis of heat load measurements from sixteen
houses and local climate measurements combined with weather forecasts. The
model is tuned to describe the heat dynamics of the building and the resident
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behavior for each individual house. It is shown that practically all information
embedded in the inputs are modelled.

Finally, a procedure for identi�cation of a suitable model of the heat dynamics
of a building is presented. The applied grey-box models are based on stochastic
di�erential equations, which provide a detailed description of the heat dynamics
based on prior physical knowledge combined with data-driven modelling. The
models can be used as basis for model predictive control to enable shifting of
the heat load, and for obtaining detailed knowledge of the energy performance
of buildings.
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Abstract

This paper presents a method for correction and alignment of global radiation
observations based on information obtained from calculated global radiation, in
the present study one-hour forecast of global radiation from a numerical weather
prediction (NWP) model is used. Systematical errors detected in the observa-
tions are corrected. These are errors such as: tilt in the leveling of the sensor,
shadowing from surrounding objects, clipping and saturation in the signal pro-
cessing, and errors from dirt and wear. The method is based on a statistical
non-parametric clear-sky model which is applied to both the observed and the
calculated radiation in order to �nd systematic deviations between them. The
method is applied to correct global radiation observations from a climate station
located at a district heating plant in Denmark. The results are compared to
observations recorded at the Danish Technical University. The method can be
useful for optimized use of solar radiation observations for forecasting, moni-
toring, and modeling of energy production and load which are a�ected by solar
radiation.
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Nomenclature

Gt Observed global radiation
[
W/m2

]
Gnwp
t Numerical weather predictions (NWPs) of global radiation

[
W/m2

]
Gcs Clear-sky global radiation

[
W/m2

]
Bcs Direct clear-sky global radiation

[
W/m2

]
Dcs Di�use clear-sky global radiation

[
W/m2

]
G Global radiation

[
W/m2

]
Iext Extraterrestrial radiation

[
W/m2

]
Gpr
t

Projection of global radiation to the plane normal to the direct
solar radiation

[
W/m2

]
Ĝpr,cs
t

Estimated clear-sky radiation on a plane normal to the direct
solar radiation

[
W/m2

]
Ĝcs
t Estimated clear-sky global radiation (modeled based on observations)

[
W/m2

]
Ĝnwp,cs
t t Clear-sky global radiation for numerical weather predictions (NWPs)

[
W/m2

]
Ĝco
t Corrected global radiation

[
W/m2

]
θzenitht Solar zenith angle [rad]

τa,B
Transmittance function of the atmosphere for direct radiation under clear-sky
conditions

τc Transmittance function of clouds in the atmosphere

βt Parameter vector for the local quantile regression

ρq(u) The quantile regression objective function

q Sample quantile to be estimated in the local quantile regression

i Counter of days [days]

j Counter in samples

t Time [hours]

tsp Sample period [hours]

hdoy Bandwidth of kernel function in the day of year dimension [days]

htod Bandwidth of kernel function in the time of day dimension [hours]

A.1 Introduction

The transition to a reliable and secure energy system based on weather de-
pendent production technologies, especially wind and solar, will require new
methods for automated handling of climate data recorded at, in most cases,
unsupervised and uncalibrated stations. Reliable observations of solar radiation
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are an important source of information for operation of the energy system, es-
pecially for the energy production and load which are dependent on the solar
radiation, for example production from photovoltaics and solar collectors, and
load from heating and cooling of buildings.

Observations of solar radiation are exposed to many sources of errors. Younes
et al. (2005) list the most important types of errors and divide the errors into two
major categories: equipment errors and operation related errors. The present
solar radiation sensor technology makes it easy and cheap to install and connect
sensors to the Internet, both for professional and amateur applications. Web
sites already provide on-line data (DMI, 2012), which can become an important
source of information for operation of energy systems. Such, mostly unsuper-
vised and unvalidated installations, will be highly exposed to di�erent error
sources.

In the present study observations of global radiation from a station at a district
heating plant in Sønderborg, Denmark, are used. Three types of errors are found
in the observations: tilt in the leveling of the sensor, shadowing from surrounding
objects, and clipping at a maximum level. A method is presented for correction
of the observations on the basis of information extracted from global radiation
calculated using a model based on physical principles. The method is based on
a non-parametric statistical clear-sky model and requires no further information
about the installation and sensor than the observed values and the location of
the station. With the statistical clear-sky model the sensor output level under
clear-sky conditions is modeled directly from the observations. This is compared
to solar radiation calculated with a clear-sky model based on physical modeling
of the optical e�ects through the atmosphere, such as the models described by
Davies and McKay (1982), Bird (1984), Rigollier et al. (2000), Mueller et al.
(2004), and Ineichen (2006). In the preset study forecasts from a numerical
weather prediction (NWP) model is used. The result after correction of the
observations is compared to high quality measurements recorded at the Danish
Technical University.

Studies on quality control of measured solar radiation data can be found in
the literature. The procedures are semi-automatic and are mostly based on
comparison to physical models for detection of erroneous measurements (Geiger
et al., 2002), (Younes et al., 2005), (Isaac and Moradi, 2009) and (Journée and
Bertrand, 2011).

The paper is organized as follows: the data used in the study is presented in
the next section. This is followed by a section in which the statistical clear-sky
model is described and a section where the correction is presented. The paper
ends with a discussion of the method and a conclusion.
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Figure A.1: The weather station in Sønderborg, which is mounted on a pole
on the roof of a single-storey district heating plant building (in
the image it is on the left side of the building).

A.2 Data: Observations and numerical weather

predictions of global radiation

The data used in this study consists of time series of global radiation observed
at two weather stations: one located in Sønderborg (54.91◦N and 9.80◦E) and
one located at DTU Byg in Lyngby (55.79◦N and 12.52◦E), both in Denmark.
In addition NWPs of global radiation for the same locations are used. All values
are hourly averages. All times are in UTC and the time points are set to the
end of the hour.

A.2.1 Observations

The observations from Sønderborg are recorded with a weather station, which
is located at a district heating plant. The weather station is mounted on a pole
on a single-storey building as seen on the image in Figure A.1. No information
about the type of the solar radiation sensor was available. The time series from
Sønderborg is

{Gt; t = 1, . . . , N} (A.1)

where N = 17520 and Gt is the observed average global radiation between time
t and t − 1. The upper plot in Figure A.2 shows the series which spans from
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Figure A.2: The upper plot shows the time series of observed global radiation
in Sønderborg. In the lower plot the observations and NWPs of
global radiation in Sønderborg are shown for �ve days in August
2009.

2009-01-01 to 2011-01-01. From this plot it is readily seen that the observations
are not without systematic errors, for example it can be seen that the values
are clipped at a maximum level. This and other types of systematic errors are
corrected for the Sønderborg observations using the method described in this
paper.

The second series of observed global radiation is from a weather station at DTU
Byg in Lyngby and is used as a reference to check the corrected data. The upper
plot in Figure A.3 shows the series which spans from 2009-01-01 to 2010-01-01.
It was measured with a Kipp & Zohnen CM10 pyranometer and the weather
station was regularly supervised in the measuring period. The measurement
error is in the range of maximum ±3% from the world standard and high class
calibrated sensor inter-comparisons indicate an error within the range of ±1%.
The lower plot in Figure A.3 shows the observations together with the NWPs of
global radiation (de�ned in the next section) for �ve days in August 2009. It is
seen that the level of the observed global radiation is generally lower than the
level of the NWPs, but that this there is no systematic di�erence between the
deviation in the morning and in the afternoon. The lower level is most likely
due to a bias in the NWPs. Since the accuracy of the DTU observations is high
and no systematic errors, apart from the generally lower level, is seen, then it is
found valid to assume that the DTU observations can used be as a reference to
verify the NWPs and the results of the correction.
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Figure A.3: The upper plot shows the time series of observed global radiation
at DTU Byg covering the entire year 2009. In the lower plot
the observations and NWPs of global radiation at DTU Byg are
shown for �ve days in August 2009.

A.2.2 Numerical weather predictions

The numerical weather predictions (NWPs) used in the study are provided
by the Danish Meteorological Institute (DMI). The NWP model used is DMI-
HIRLAM-S05, which has a 5 kilometer grid and 40 vertical layers, see (DMI,
2011) and (Hansen Sass et al., 2002) for more details. The forecasts are updated
four times per day and have a calculation delay of 4 hours (e.g. the forecast
starting at 00:00 is available at 04:00). Two time series, consisting of the latest
available forecast (lead times are 5 to 11 hours) of global radiation, are used:
one for the location in Sønderborg and one for the location of DTU in Lyngby.
The time series of NWPs for the Sønderborg location is used for the correction.
It is denoted with

{Gnwp
t ; t = 1, . . . , N} (A.2)

The time series for DTU Byg in Lyngby is shown, together with the observations,
in the lower plot of Figure A.3 for �ve days in August.

A.2.3 Systematic errors in Sønderborg observations

The lower plot in Figure A.2 shows the Sønderborg observations and the NWPs
of global radiation for �ve days in August 2009. From the �rst day, which is
a clear-sky day, at least two types of errors can be seen in the observations:
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compared to the NWPs the observed level is too low in the morning and too
high in the afternoon, which is most likely due to the sensor being tilted. It
could also be due to a shift in time of the sensor, however it was thoroughly
checked that the night hours, where the radiation was zero (or very close to
zero), are with only a few exceptions the same hours for both the observed and
the NWPs, indicating that they are well synchronized. The second type of error
is seen just before noon, where the observations have a drop, which is repeated
at the same time of day on following clear-sky day. The drop is caused by
shading from the chimney, which is located close to the weather station, as seen
on the image in Figure A.1.

The scatter plot in Figure A.4 shows the observed values versus the NWPs,
together with two lines indicating the relation between the variables in the
morning and in the afternoon. The lines are calculated using locally weighted
least squares regression between the observations and the NWPs, using the
function loess() in R (R Development Core Team, 2011) with a bandwidth:
span=0.9. A similar plot for the DTU observations is found in Figure A.5. The
following three distinct systematic errors can be seen from the scatter plot for
the Sønderborg observations:

1. Firstly, the observations are clipped at a maximum level around 860
W/m2.

2. Secondly, the level of the morning observations is generally lower than
the level of the afternoon observations. This is con�rmed by the �tted
regression lines, which mostly have a di�erence of at least 50 to 75 W/m2.
This is clearly a larger di�erence than seen for the two �tted lines for the
DTU observations in Figure A.5.

3. Finally, the morning values are signi�cantly lower in the NWP range of 700
to 900 W/m2. These values are the observations in the drop before noon,
which, as described earlier, is caused by shadowing from the chimney right
next to the weather station.

Considering the scatter plot for the DTU observations in Figure A.5 it is seen
that these systematic errors are not found in the DTU observations. As noted
before the level of the DTU observations is generally a bit lower than the level
of NWPs, which is most likely due to a bias of the NWPs, since the accuracy of
the DTU observations is veri�ed to be in the range of ±3%. For correction of
the systematical errors, as the listed above, a statistical clear-sky model �tted
to the observations can be used, as outlined in the following sections.
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Figure A.4: The values of the Sønderborg observations versus the NWPs cov-
ering the entire year 2009. The morning values and the afternoon
values are indicated by di�erent symbols and colors. The two lines
show a locally weighted least squares regression estimate of the
relation between the variables in the morning and the afternoon.

A.3 Statistical clear-sky model

In this section it is described how the clear-sky global radiation is modeled using
a statistical model. With the statistical clear-sky model the level under clear-
sky conditions at time t is estimated for the particular series of observations. It
is the output of the sensor under clear-sky conditions which is estimated. This
implies that if an observation is a�ected by a systematical error, for example
shadowing from an object in the surroundings, the estimated clear-sky output
will be lowered. It is this feature which enables the model to be used for correc-
tion. The statistical clear-sky model is a non-parametric model based on local
polynomial quantile regression (Koenker, 2005) similar to the clear-sky model
presented in (Bacher et al., 2009).

Usually, clear-sky models are models with which the global radiation in clear
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Figure A.5: The values of observed versus NWP global radiation at DTU
Byg in Lyngby, Denmark. The morning values and the after-
noon values are plotted with di�erent symbols and colors. The
two lines are indicating the relation between the variables: one
for the morning and one for the afternoon.

(non-overcast) sky at any given time can be calculated based on physical mod-
eling of the atmosphere. Usually the clear-sky global radiation Gcs is separated
into a direct (or beam) Bcs and di�use Dcs component

Gcs = Bcs +Dcs (A.3)

which are then modeled separately. The direct component by

Bcs = Iext cos(θzenith) τa,B (A.4)

where Iext is the extraterrestrial radiation, θzenith is the solar zenith angle and
τa,B is a transmittance function of the atmosphere for direct radiation under
clear-sky conditions, which for example can be modeled taking Rayleigh scat-
tering, aerosol extinction, and ozone, water and uniformly mixed gas absorption
into account Bird and Riordan (1984).

The di�use component can be modeled by adding several contributions from
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re�ections and scattering through the atmosphere.

The global radiation (at the surface of the earth) can be modeled by

G = Gcs τc (A.5)

where τc is a transmittance function of clouds in the atmosphere, which can
be modeled with "layer models" (Davies and McKay, 1982) where cloud layer
transmittance and re�ections are taken into account.

A clear-sky model, similar to the one proposed by Bacher et al. (2009) for ob-
servations of solar power, is here proposed for observations of global radiation.
The proposed clear-sky model does not include any prior physical knowledge, it
is based solely on the information obtained from the observations. It is denoted
as a statistical clear-sky model, since it is based on a non-parametric statistical
model of clear-sky radiation. Information embedded in the observations, which
is particular for the sensor and its location, can be modeled with the statisti-
cal clear-sky model, for example shadowing and non-horizontal leveling of the
sensor. This is a fundamental di�erence to the clear-sky models based on prior
physical knowledge, which implies that the statistical clear-sky model can be
used for di�erent applications.

The statistical clear-sky model is based on time series of global radiation obser-
vations (or simulated values) and is de�ned by

Gt = Ĝcs
t τt (A.6)

where the t is used to indicate that the variables the time series of actual ob-
servations, Gt is observed global radiation, Ĝcs

t is estimated clear-sky global
radiation and τt is a factor, which is much to alike τc, but di�erent due to the
fact that it is estimated based on information from observations and not cal-
culated based on prior physical knowledge. It is noted here that the clear-sky
model could be de�ned for the direct component solely, which would be obvious
since nearly all local systematic e�ects have a much higher impact on the direct
component compared to the di�use component. However, since the application
of the clear-sky model in the present study is for observations of global radiation
and since the systematic errors would propagate into both the direct and di�use
component calculated with a splitting scheme, such as suggested by Ruiz-Arias
et al. (2010), the clear-sky model is applied to the global radiation directly.

Considering the observed global radiation as samples of a random variable with
a probability distribution function, which is a function of the day of year xt and
the time of day yt, the observed clear-sky global radiation can be estimated as
a quantile

Ĝcs
t = Qq(xt, yt) (A.7)
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of this distribution function, where the quantile q ∈ [0, . . . , 1] must be close to
one

q . 1 (A.8)

Assuming that the quantile function is a smooth function it can be approxi-
mated with local quantile regression Koenker (2005). The result in the three-
dimensional space formed by global radiation, day of year and time of day, can
be seen as a surface which follows the observed global radiation under clear-
sky conditions and is located "on top" of the point cloud of observed global
radiation.

In order to decrease the gradient and curvature of the estimated clear-sky radi-
ation surface a projection is carried out. The projection is from the horizontal
plane to the plane which is normal to the direct solar radiation (i.e. the plane
tracking the sun position)

Gpr
t =

Gt
cos(θzenith

t )
(A.9)

where θzenith
t is the average solar zenith angle in the sample period between

t − 1 and t. Values where cos(θzenith
t ) < 0.01 are removed: this corresponds to

sun elevation below 0.5◦. The quantile close to one is then estimated for the
projected values. A general form of the proposed statistical clear-sky model
is formulated in A.7, which is based on a local quantile regression model with
second order polynomials and a two-dimensional kernel in both the day of year
and time of day dimensions.

For correction of hourly values a local quantile regression model based only on a
one-dimensional kernel, where on the day of year dimension is used, was found
most suitable. The reason for using only a one-dimensional kernel, and not
including the time of day dimension in the local weighting, is that the model
becomes too biased and the estimated clear-sky global radiation does not follow
the drop before noon caused by shadowing (the systematic error described on
page 50) very well. Hence only values lagged in steps of 24 hours from t are used
as input, which is a similar approach as in classical decomposition of seasonal
time series (Cleveland and Tiao, 1976). Furthermore, it is noted that this is
equivalent to using a bandwidth in the time of day dimension below one hour
(i.e. below the sample period) for the two-dimensional model presented in A.7,
hence for time series with a shorter sample period a two-dimensional model
should be considered. The applied local quantile regression model based on a
third order polynomial is

β̂t = argmin
β∈R4

∞∑

i=−∞
ρq
(
Gtr
t+24i − (β0,t + β1,ti+ β2,ti

2 + β3,ti
3)
)
K(i) (A.10)
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where ρq(u) = u
(
q− I(u < 0)

)
is the quantile regression objective function (see

(Koenker, 2005) and (Koenker, 2011)), q ∈ [0, . . . , 1] is the sample quantile to
be estimated, i ∈ N is a counter of days, and K(i) is a kernel function. The
estimated projected clear-sky radiation is then found as the local intercept

Ĝpr,cs
t = β̂0,t (A.11)

The weights are calculated with the Epanechnikov kernel function

K(i) =





3
4

(
1−

[
|i|
hdoy

]2)
for |i|

hdoy
≥ 1

0 for |i|
hdoy

< 1

(A.12)

where hdoy is the bandwidth.

The R package quantreg implementation of quantile regression was used for the
estimation (Koenker, 2011). Finally, the estimated projected clear-sky radiation
on the projected plane is projected back to the horizontal plane by

Ĝcs
t = Ĝpr,cs

t cos(θzenith
t ) (A.13)

Finally, in order to take the clipping at a maximum level into account, the esti-
mated clear-sky radiation is limited to the maximum value of the observations

Ĝcs
t =

{
Ĝcs
t for Ĝcs

t ≤ Gmax
t

Gmax
t for Ĝcs

t > Gmax
t

(A.14)

where Gmax
t is the maximum value of global radiation observations.

The selection of suitable values for the parameters (here the quantile and the
kernel bandwidth) for the �tting of the local quantile regression model, would
preferably be based on a measure of performance for estimation clear-sky global
radiation. Then the parameters could be optimized in order to achieve the best
performance. However thorough studies are required in order to de�ne such a
measure. Therefore the parameter values are selected based on visual inspection
of the estimated clear-sky global radiation for days with only clear-sky. These
days are chosen such that they are distributed evenly over the entire period.
The selected values are

q = 0.97, hdoy = 125 (A.15)

which gives the estimate of the clear-sky global radiation for the observations
Ĝcs
t shown in Figure A.6 and for the NWPs Ĝnwp,cs

t shown in Figure A.7. Note,
that the estimated surface for the observations is clipped at the maximum value
of the observations, which gives the "�at" top. Furthermore, notice that the
drop due to shadowing is clearly seen in the estimated clear-sky radiation for
the observations.
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Figure A.6: The clear-sky global radiation estimated for the Sønderborg ob-
servations. Shown as a surface parametrized in the two dimen-
sions: day (days since 2009-01-01) and tod (time of day).

A.4 Correction of observations

The correction of the observations is carried out by multiplying the observations
with the ratio between the estimated clear-sky radiation for the NWPs and the
observations

Ĝco
t =

Ĝnwp,cs
t

Ĝcs
t

Gt (A.16)

The level of the correction applied, i.e. Ĝnwp,cs
t /Ĝcs

t , is shown as function of
days since 2009-01-01 and the time of day in Figure A.8. The systematical error
caused by a tilt of the sensor, resulting in a too low level of the observations
in the morning and too high level in the afternoon, can be directly seen in the
correction, since in the morning the correction is generally above one and the
afternoon level below one. Also apparent is the drop in the observed level due
to shadowing objects, especially seen between 9 to 10 am.

The corrected observations are plotted versus the NWPs in Figure A.9, includ-
ing the local least squares estimate of the relation in the morning and in the
afternoon. This plot is similar to the plot in Figure A.4. By comparison of
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Figure A.7: The clear-sky global radiation estimated for the NWPs for Søn-
derborg. Shown as a surface parametrized in the two dimensions:
day (days since 2009-01-01) and tod (time of day).

the two plots it is seen that the di�erence between the estimated relation in
the morning and the estimated relation in the afternoon has been decreased
signi�cantly. A visual comparison to the similar plot of the high quality DTU
observations in Figure A.5 veri�es that the pattern of the scatter after the cor-
rection is much closer to the pattern found there. It can also be seen that
the clipping at a maximum level has been corrected. Finally, it is found that
the overall scattering has been reduced. This is con�rmed by a comparison of
the errors for an estimated relation similar to the ones in Figure A.4 and A.9,
but using all data points (except nighttime values), i.e. no distinction between
morning and afternoon. Note here that the this measure is only used to give a
rough indication of the performance of the correction. The root mean square
error (RMSE) and mean absolute error (MAE) before the correction are

RMSEbefore = 114 W/m2, MAEbefore = 79 W/m2 (A.17)

and after the correction

RMSEafter = 101 W/m2, MAEafter = 67 W/m2 (A.18)

Hence a notably reduction in RMSE and MAE is achieved by applying the
correction.
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Figure A.8: The applied correction, which is the ratio between the estimated
clear-sky radiation of the observations and the NWPs, as a func-
tion of days and time of day.

A.4.1 On-line operation

For on-line operation the model has to be applied causally, such that only past
values can be used for the correction. A causal correction was calculated with
slightly di�erent parameter values for the clear-sky model, again selecting the
parameters from visual inspection. The estimated quantile q was decreased and
the kernel bandwidth hdoy increased slightly to

q = 0.95, hdoy = 150 (A.19)

Using a one-sided kernel will increase the bias of the estimates, which is also re-
�ected by a slightly increased RMSE and MAE of the loess �t for the corrected
observations to

RMSEafter = 103 W/m2, MAEafter = 67 W/m2 (A.20)

Considering the similar plots as presented for the causal correction showed only
a small visual di�erence. Hence it is found that the method works well for
on-line operation.
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Figure A.9: The values of the corrected observations versus NWPs of global
radiation. The morning values and the afternoon values are in-
dicated by di�erent symbols and colors. The two lines show a
locally weighted least squares regression estimate of the relation
between the variables in the morning and the afternoon.

A.5 Discussion

In this section the correction method and results are discussed together with
considerations on how to improve the method.

Considering the �tting of the clear-sky model it is noted that the model which
should be applied, is dependent on the time resolution of the data. For resolu-
tions higher than hourly a two-dimensional kernel, which also includes the time
of day dimension, should be used, as in (Bacher et al., 2009) where a similar
clear-sky model was applied to �fteen minutes values. Regarding the parame-
ters needed to be tuned in the clear-sky model - the quantile, kernel bandwidth,
and order of the polynomial - some manual interaction is required. However
the method could be based on a parameter optimization criteria, hence an ob-
jective measure to evaluate the performance of the correction, possibly based
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on cross validation (Friedman et al., 2001), and applied automatically for the
general case. Hence it can also be used for monitoring and data quality classi�-
cation for sub-daily solar data. Clearly, an objective measure of performance of
the correction is needed in order to further develop and improve the correction
method.

Improvements of the method could be formed by combining it with a prior step
in which a parametric model is �tted to correct for drift in time and tilt in
the leveling of the sensor. Another possibility for improvement is to treat the
direct and di�use radiation separately, since most of the systematic errors, for
example tilt and shadowing, will have a di�erent impact on direct and di�use
radiation. This will require, if the direct and di�use are not measured separately,
a splitting into a di�use and direct component, which could be carried out with
a scheme such as suggested by Ruiz-Arias et al. (2010) and Du�e and Beckman
(2006, p. 75-77). However applying such a scheme will cause the e�ect of the
systematic errors to propagate into both the direct and the di�use components.
Another approach would be to enhance the correction method by using more
than one quantile, in the presented approach only a single quantile close to
one is used. Several quantiles can be estimated for both the observed and
calculated radiation, which, together with an interpolation scheme, will form a
more extensive correction. Clearly this also requires that the calculated global
radiation, i.e. here the NWPs, describes the distribution well over the entire
range of global radiation. Finally, it is mentioned that for on-line operation the
method can be implemented computationally very e�cient using time-adaptive
quantile regression (Møller et al., 2008).

A.6 Conclusion

A correction method based on statistical non-parametric modeling techniques
is presented and applied on hourly observations of global radiation. Several
typical errors in the observations can be corrected with the method, including:
tilt in the leveling of the sensor, shadowing from objects in the surroundings
and clipping of the observations at a maximum level. The method works semi-
automatically and no prior information about the sensor and its surroundings,
besides the observations and location, is required. Furthermore only a few pa-
rameters needs to be tuned. Information embedded in NWPs of global radiation
is used for the correction, but this could be replaced with any calculated clear-
sky global radiation model. The method is well suited as part of monitoring
and operation applications for which local solar radiation observations provide
valuable information, e.g. for forecasting of climate dependent renewables such
as solar thermal, PV and heating systems. Finally, it is brie�y discussed how
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the method can be improved or extended in several ways.
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A.7 Two-dimensional local statistical clear-sky

model

The proposed statistical clear-sky model in a general form is described in this
section. It is based on a two-dimensional second-order polynomial local quantile
regression model. In this form the local weighting is carried out with a two-
dimensional multiplicative kernel function in the day of year and time of day
dimensions.

The model

β̂t = argmin
β∈R5

∞∑
i=−∞

∞∑
j=−∞

ρq
(
Gtr
t+ 24

tsp
i+j
− (β0,t + β1,ti+ β2,ti

2 + β3,tj + β4,tj
2)
)
K(i, j)

(A.21)

where tsp is the sample period of the time series in hours, ρq(u) = u
(
q −

I(u < 0)
)
is the quantile regression objective function (see (Koenker, 2005) and

(Koenker, 2011)), q ∈ [0, . . . , 1] is the sample quantile to be estimated, i ∈ N is a
counter of days, j ∈ N is a counter in steps of the sample period, and K(i, j) is a
kernel function. The model could easily be reduced or expanded to polynomials
of di�erent orders. The estimated projected clear-sky radiation is then found as
the local intercept

Ĝpr,cs
t = β̂0,t (A.22)

The weights are calculated with the Epanechnikov kernel function

K(i, j) =





9
16

(
1−

[
|i|
hdoy

]2)(
1−

[
|j|tsp
htod

]2)
for |i|

hdoy
< 1 ∧ |j|

htod
< 1

0 for |i|
hdoy
≥ 1 ∨ |j|

htod
≥ 1

(A.23)
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where hdoy is the bandwidth in the day of year dimension (in days) and htod is
the bandwidth in the time of day dimension (in hours).
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Abstract

This paper describes a new approach to online forecasting of power production
from PV systems. The method is suited to online forecasting in many appli-
cations and in this paper it is used to predict hourly values of solar power for
horizons of up to 36 hours. The data used is �fteen-minute observations of solar
power from 21 PV systems located on rooftops in a small village in Denmark.
The suggested method is a two-stage method where �rst a statistical normaliza-
tion of the solar power is obtained using a clear sky model. The clear sky model
is found using statistical smoothing techniques. Then forecasts of the normal-
ized solar power are calculated using adaptive linear time series models. Both
autoregressive (AR) and AR with exogenous input (ARX) models are evaluated,
where the latter takes numerical weather predictions (NWPs) as input. The re-
sults indicate that for forecasts up to two hours ahead the most important input
is the available observations of solar power, while for longer horizons NWPs are
the most important input. A root mean square error improvement of around 35
% is achieved by the ARX model compared to a proposed reference model.

B.1 Introduction

E�orts to increase the capacity of solar power production in Denmark are con-
centrating on installing grid connected PV systems on rooftops. The peak power
of the installed PV systems is in the range of 1 to 4 kWp, which means that
the larger systems will approximately cover the electricity consumption (ex-
cept heating) of a typical family household in Denmark. The PV systems are
connected to the main electricity grid and thus the output from other power pro-
duction units has to be adjusted in order to balance the total power production.
The cost of these adjustments increases as the horizon of the adjustments de-
creases and thus improved forecasting of solar power will result in an optimized
total power production, and in future power production systems where energy
storage is implemented, power forecasting is an important factor in optimizing
utilization of storage facilities (Koeppel and Korpas, 2006).

The total electricity power production in Denmark is balanced by the energy
market Nord Pool, where electricity power is traded on two markets: the main
market Elspot and a regulation market Elbas. On Nord Pool the producers
release their bids at 12:00 for production each hour the following day, thus the
relevant solar power forecasts are updated before 12:00 and consist of hourly
values at horizons of 12 to 36 hours. The models in this paper focus on such
forecasts, but with the 1-to-11-hour horizons also included.
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Interest in forecasting solar power has increased and several recent studies deal
with the problem. Many of these consider forecasts of the global irradiance which
is essentially the same problem as forecasting solar power. Two approaches are
dominant:

• a two-stage approach in which the solar power (or global irradiance) is
normalized with a clear sky model in order to form a more stationary time
series and such that the classical linear time series methods for forecasting
can be used.

• another approach in which neural networks (NNs) with di�erent types of
input are used to predict the solar power (or global irradiance) directly.

In a study Chowdhury and Rahman (1987) make sub-hourly forecasts by nor-
malizing with a clear sky model. The solar power is divided into a clear sky com-
ponent, which is modelled with a physical parametrization of the atmosphere,
and a stochastic cloud cover component which is predicted using ARIMA mod-
els. Sfetsos and Coonick (2000) use NNs to make one-step predictions of hourly
values of global irradiance and compare these with linear time series models that
work by predicting clearness indexes. Heinemann et al. (2006) use satellite im-
ages for horizons below 6 hours, and in (Lorenz et al., 2007) numerical weather
predictions (NWPs) for longer horizons, as input to NNs to predict global ir-
radiance. This is transformed into solar power by a simulation model of the
PV system. Hocaoglu et al. (2008) investigate feed-forward NNs for one-step
predictions of hourly values of global irradiance and compare these with sea-
sonal AR models applied on solar power directly. Cao and Lin (2008) use NNs
combined with wavelets to predict next day hourly values of global irradiance.
Di�erent types of meteorological observations are used as input to the models;
among others the daily mean global irradiance and daily mean cloud cover of
the day to be forecasted.

This paper describes a new two-stage method where �rst the clear sky model
approach is used to normalize the solar power and then adaptive linear time
series models are applied for prediction. Such models are linear functions be-
tween values with a constant time di�erence, where the model coe�cients are
estimated by minimizing a weighted residual sum of squares. The coe�cients
are updated regularly, and newer values are weighted higher than old values,
hence the models adapt over time to changing conditions.

Normalization of the solar power is obtained by using a clear sky model which
gives an estimate of the solar power in clear (non-overcast) sky at any given
point in time. The clear sky model is based on statistical smoothing techniques
and quantile regression, and the observed solar power is the only input. The
adaptive linear prediction is obtained using recursive least squares (RLS) with
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forgetting. It is found that the adaptivity is necessary, since the characteristics
of a PV-system are subject to changes due to snow cover, leaves on trees, dirt
on the panel, etc., and this has to be taken into account by an online forecasting
system.

The data used in the modelling is described in Section B.2. The clear sky
model used for normalizing the solar power is de�ned in Section B.3 followed
by Section B.4 where the adaptive time series models used for prediction are
identi�ed. In Section B.5 an approach to modelling of the uncertainty in the
forecasts is outlined. The evaluation of the models and a discussion of the results
are found in Section B.6 and �nally the conclusions of the study are drawn in
Section B.7.
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Nomenclature

p Solar power W

pcs Clear sky solar power W

τ Normalized solar power -

t Time index -

k Forecast horizon index -

i, j Miscellaneous indexes -

pt Observation of average solar power W

p̂t+k|t k-step prediction of solar power W

p̂cs
t Estimated clear sky solar power W

ĝi,k i'th update of NWP of global irradiance W/m2

ĝ00
k,t NWP of global irradiance updated at 00:00 W/m2

ĝ12
k,t NWP of global irradiance updated at 12:00 W/m2

p00
k,t Observation of solar power corresponding to ĝ00

k,t W

p12
k,t Observation of solar power corresponding to ĝ12

k,t W

τt Normalized solar power -

τ̂t+k|t k-step prediction of normalized solar power -

τ̂nwp
t NWPs transformed into normalized solar power -

xt Day of year -

yt Time of day -

et+k k-step prediction error -

q Quantile level -

h Bandwidth of smoothing kernel -

λ Forgetting factor -

B.2 Data

The data used in this study is observations of solar power from 21 PV systems
located in a small village in Jutland, Denmark. The data covers the entire year
2006. Forecasts of global irradiance are provided by the Danish Meteorological
Institute using the HIRLAM mesoscale NWP model.

The PV array in each the 21 PV systems is composed of �BP 595� PV modules
and the inverters are of the type �BP GCI 1200�. The installed peak power of



70 Online Short-term Solar Power Forecasting

Jan Mar May Jul Sep Nov Jan

0
20

00
S

ol
ar

 p
ow

er
 (

W
)

Apr 22 Apr 27 May 02

0
20

00
S

ol
ar

 p
ow

er
 (

W
)

Jul 26 Jul 31 Aug 05

0
20

00
S

ol
ar

 p
ow

er
 (

W
)

Figure B.1: The observations of average solar power used in the study. Upper
plot: The solar power over the entire year 2006. Lower plots: The
solar power in two selected periods.

the PV arrays is between 1020 Watt peak and 4080 Watt peak, and the average
is 2769 Watt peak. Let pi,t denote the average value of solar power (W) over
15 minutes observed for the i'th PV system at time t. These observations are
used to form the time series

{pt; t = 1, . . . , N} (B.1)

where

pt =
1

21

21∑

i=1

pi,t . (B.2)

This time series is used throughout the modelling. The time series covers the
period from 01 January 2006 to 31 December 2006. The observations are �fteen-
minute values, ie. N = 35040. Plots of {pt} are shown in Figure B.1 for the
entire period and for two shorter periods.

The NWPs of global irradiance are given in forecasts of average values for every
third hour, and the forecasts are updated at 00:00 and 12:00 each day. The i'th
update of the forecasts is the time series

{ĝi,k, k = 1, . . . , 12} (B.3)

which then covers the forecast horizons up to 36 hours ahead, and is given in
(W/m2).

Time series are resampled to lower sample frequencies by mean values and when
the resampled values are used this is noted in the text. In order to synchronize
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Figure B.2: All three hour interval values of solar power at time of day 10:30
versus the corresponding NWPs of global irradiance with 24 hour
horizon. Hence the plot shows observations and predictions of
values covering identical time intervals.

data with di�erent sample frequencies, the time point for a given mean value
is assigned to the middle of the period that it covers, e.g. the time point of an
hourly value of solar power from 10:00 to 11:00 is assigned to 10:30.

As an example of the NWPs of global irradiance Figure B.2 shows values at time
of day 10:30 of {pt} resampled to three hour interval values plotted versus the
corresponding {ĝi,k} values with a 24 hour horizon. Clearly the plot indicates a
signi�cant correlation. Hence it is seen that there is information in the NWPs,
which can be utilized to forecast the solar power.

B.3 Clear sky model

A clear sky model is usually a model which estimates the global irradiance in
clear (non-overcast) sky at any given time. Chowdhury and Rahman (1987)
divide the global irradiance into a clear sky component and a cloud cover com-
ponent by

G = Gcs · τc (B.4)

where G is the global irradiance (W/m2), and Gcs is the clear sky global irra-
diance (W/m2). Finally τc is the transmissivity of the clouds which they model
as a stochastic process using ARIMA models. The clear sky global irradiance is
found by

Gcs = I0 · τa (B.5)
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Figure B.3: Modi�ed boxplots of the distribution of the solar power as a func-
tion of time of day. The boxplots are calculated with all the
�fteen-minutes values of solar power, i.e. covering all of 2006.
At each time of the day the box represents the center half of
the distribution, from the �rst to the third quantile. The lower
and upper limiting values of the distribution are marked with the
ends of the vertical dotted lines, and dots beyond these indicate
outliers.

where I0 is the extraterrestrial irradiance (W/m2). τa is the total sky transmis-
sivity in clear sky which is modelled by atmospheric dependent parametrization.

In this study the same approach is used, but instead of applying the factor on
global irradiance it is applied on solar power, i.e.

p = pcs · τ (B.6)

where p is the solar power (W) and pcs is the clear sky solar power (W). The
factors τ and τc are much alike, but since the clear sky model developed in the
present study estimates pcs by statistical smoothing techniques rather than using
physics, the method is mainly viewed as a statistical normalization technique
and τ is referred to as normalized solar power.

The motivation behind the proposed normalization of the solar power with a
clear sky model is that the normalized solar power (the ratio of solar power to
clear sky solar power) is more stationary than the solar power, so that classical
time series models assuming stationarity (Madsen, 2007) can be used for pre-
dicting the normalized values. The non-stationarity is illustrated by Figure B.3
where modi�ed boxplots indicate the distribution of solar power pt as a function
of time of day. Clearly a change in the distributions over the day is seen and
this non-stationarity must be considered. Figure B.4 shows the same type of
plot for the normalized solar power and it is seen that the distributions over the
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Figure B.4: Modi�ed boxplots of the distribution of the normalized solar
power as a function of time of day. The boxplots are calculated
with all �fteen-minutes values available, i.e. covering all of 2006.

day are closer to being identical. Thus the e�ect of the changes over the day is
much lower for the normalized solar power than for the solar power.

The clear sky model is de�ned as

pcs = fmax(x, y) (B.7)

where pcs is the clear sky solar power (W), x is the day of year and y is the time
of day. The function fmax(·, ·) is assumed to be a smooth function and thus
fmax(·, ·) can be estimated as a local maximum (Koenker, 2005). Figure B.5
shows the solar power plotted as a function of x and y, and the estimated clear
sky solar power f̂max(·, ·) is shown as a surface in Figure B.6. Due to outliers
the weighted quantile regression method outlined in Section B.8 is used to �nd
the local maximum. The f̂max(·, ·) is then used to form the output of the clear
sky model as the time series

{p̂cs
t , t = 1, . . . , N}, (B.8)

where p̂cs
t is the estimated clear sky solar power (W) at time t, and N = 35040.

The normalized solar power is now de�ned as

τt =
pt
p̂cs
t

(B.9)

and this is used to form time series of normalized solar power

{τt, t = 1, . . . , 35040}. (B.10)

For each (xt, yt) corresponding to the solar power observation pt, weighted quan-
tile regression estimates the q quantile by a Gaussian two dimensional smooth-
ing kernel, de�ned in Section B.8. The smoothing kernel is used to form the
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Figure B.5: The solar power as a function of the day of year, and the time of
day. Note that only positive values of solar power are plotted.

Figure B.6: The estimated clear sky solar power shown as a surface. The solar
power is shown as points.
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Figure B.7: The one dimensional smoothing kernels used. Left plot is the
kernel in the day of year (x) dimension. Right plot is the kernel
in the time of day (y) dimension. They are multiplied to form the
applied two dimensional smoothing kernel.
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Figure B.8: The result of the normalization for selected clear sky days over
the year. The time-axis ticks refer to midday points, i.e. at 12:00.
The upper plot shows the solar power p and the estimated clear
sky solar power p̂cs. The lower plot shows the normalized solar
power τ .

weights applied in the quantile regression. As seen in Figure B.7, which shows
the smoothing kernel used, the weights in the day of year dimension w(xt, xi, hx),
are decreasing as the absolute time di�erences are increasing. Similarly for the
weights in the time of day dimension w(yt, yi, hy). The applied weights are �-
nally found by multiplying the weigths from the two dimensions. The choice of
the quantile level q to be estimated and the bandwidth in each dimension, hx

and hy, is based on a visual inspection of the results. A level of q = 0.85 was
used since this gives τt ≈ 1 for days with clear sky all day, as seen in Figure B.8.
The plot for days with varying cloud cover in Figure B.9 show that estimates
where τt > 1 occur. These are ascribed to re�ections from clouds and varying
level of water vapour in the atmosphere. Future work should elaborate on the
inclusion of such e�ects in the clear sky model.
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Figure B.9: The result of the normalization for days evenly distributed over
the year. The time-axis ticks refer to midday points, i.e. at 12:00.
The upper plot shows the solar power p and the estimated clear
sky solar power p̂cs. The lower plot shows the normalized solar
power τ .

For small p̂cs
t values the error of τt is naturally increasing and at nighttime the

error is in�nite. Therefore all values of p̂cs
t where

p̂cs
t

max({p̂cs
t })

< 0.2 (B.11)

are removed from {τt}. The function max({p̂cs
t }) gives the maximum value in

{p̂cs
t }.

The estimates of clear sky solar power are best in the summer period. The bad
estimates in winter periods are caused by the sparse number of clear sky obser-
vations. It should also be possible to improve the normalization toward dusk
and dawn, and thus lower the limit where values in {p̂cs} are removed, either by
re�ning the modelling method or by including more explanatory variables such
as e.g. air mass.

Finally it is noted that the deterministic changes of solar power are really caused
by the geometric relation between the earth and the sun, which can be repre-
sented in the current problem by the sun elevation as x and sun azimuth as y.
The clear sky solar power was also modelled in the space spanned by these two
variables, by applying the same statistical methods as for the space spanned by
day of year and time of day. The result was not satisfactory, i.e. the estimated
clear sky solar power was less accurate, probably because neighboring values in
this space are not necessarily close in time and thus changes in the surroundings
to the PV system blurred the estimates.
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B.4 Prediction models

Adaptive linear time series models (Madsen, 2007) are applied to predict future
values of the normalized solar power τt. The inputs are: lagged observations of
τt and transformed NWPs τ̂nwp

t . Three types of models are identi�ed:

• a model which has only lagged observations of τt as input. This is an
autoregressive (AR) model and it is referred to as the AR model.

• a model with only τ̂nwp
t as input. This is referred to as the LMnwp model.

• a model with both types of input. This is an autoregressive with exogenous
input (ARX) model and it is referred to as the ARX model.

The best model of each type is identi�ed by using the autocorrelation function
(ACF).

B.4.1 Transformation of NWPs into predictions of nor-

malized solar power

In order to use the NWPs of global irradiation ĝi,k as input to the prediction
models, these are transformed into τ̂nwp

t which are meteorological based hourly
predictions of τt. This is done by �rst transforming ĝi,k into solar power predic-
tions and then transforming these by the clear sky model. The time series {ĝi,k},
de�ned in (B.3), holds the i'th NWP forecast of three hour interval values, and
was updated at

timei = t0 + (i− 1) · 12h (B.12)

where t0 = 2006-01-01 00:00. Thus the time series with sample period of one
day

{ĝ00
k,t, t = 1, . . . , 364} = {ĝi,k, i = 1, 3, . . . , 727}, (B.13)

consist of all the NWPs updated at time of day 00:00 at horizon k, i.e. the
superscript �00� forms part of the name of the variable. Similarly the time
series

{ĝ12
k,t, t = 1, . . . , 364} = {ĝi,k, i = 2, 4, . . . , 728}, (B.14)

consist of all the NWPs updated at time of day 12:00. The corresponding time
series of solar power covering the identical time intervals are respectively

{p00
k,t, t = 1, . . . , 364} = (B.15)

{pt, t = k, (1 · 8 + k), . . . , (363 · 8 + k)}
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and

{p12
k,t, t = 1, . . . , 364} = (B.16)

{pt, t = k + 4, (1 · 8 + k + 4), . . . , (363 · 8 + k + 4)},

where {pt} has been resampled to three hour interval values. The NWPs are
modelled into solar power predictions by the adaptive linear model

p̂00
k,t = βt + αt ĝ

00
k,t + et , (B.17)

note that the hat above the variable indicates that these values are predictions
(estimates) of the solar power. A similar model is made for the NWP updates at
time of day 12:00 giving p̂12

k,t. The interpretion of the coe�cients βt and αt is not
further elaborated here, but it is noted that they are time dependent in order
to account for the e�ects of changing conditions over time, e.g. the changing
geometric relation between the earth and the sun, dirt on the solar panel. This
adaptivity is obtained by �tting the model with k-step recursive least squares
(RLS) with forgetting, which is described in Section B.9. In order to use the
RLS algorithm, p00

k,t has to be lagged depending on k. Each RLS estimation is
optimized by choosing the value of the forgetting factor λ from 0.9, 0.905, . . . , 1
that minimizes the root mean square error (RMSE ).

The last steps in the transformation of the NWPs is to normalize p̂00
k,t and p̂

12
k,t

with the clear sky model, and resample up to hourly values by linear interpola-
tion. Finally the time series

{τ̂nwp
t , t = 1, . . . , 8760} (B.18)

of the NWPs of global irradiance transformed into predictions of normalized
solar power is formed, and this is used as input to the ARX prediction models
as described in the following. More details can be found in (Bacher, 2008).

B.4.2 AR model identi�cation

To investigate the time dependency in {τt}, i.e. dependency between values with
a constant time di�erence, the ACF is calculated and plotted in Figure B.10.
Clearly an AR(1) component is indicated by the exponential decaying pattern
of the �rst few lags and a seasonal diurnal AR component by the exponential
decaying peaks at lag = 24, 48, ... . By considering only �rst-order terms this
leads to the 1-step AR model

τt+1 = m+ a1τt + a2τt−23 + et+1 . (B.19)
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Figure B.10: ACF of the time series of normalized solar power {τt}.

And a reasonable 2-step AR model is

τt+2 = m+ a1τt + a2τt−22 + et+2 . (B.20)

Note that here the 1-step lag cannot be used, since this is τt+1 i.e. a future
value, and thus the latest observed value τt is included instead. Formulated as
a k-step AR model

τt+k = m+ a1τt + a2τt−s(k) + et+k (B.21)

s(k) = 24 + k mod 24 (B.22)

where the function s(k) ensures that the latest observation of the diurnal com-
ponent is included. This is needed, since for k = 25 the diurnal 24 hour AR
component cannot be used and instead the 48 hour AR component is used. This
model is referred to as the AR model.

Figure B.11 shows the ACF of {et+k}, which is the time series of the errors in
the model for horizon k, for six selected horizons after �tting the AR model
with RLS, which is described in Section B.9. The vertical black lines indicate
which lags are included in the model. For k = 1 the correlation of the AR(1)
component is removed very well and the diurnal AR component has also been
decreased considerably. There is high correlation left at lag = 24, 48, . . .. This
can most likely be ascribed to systematic errors caused by non-stationarity ef-
fects left in {τt}, and it indicates that the clear sky model normalization can be
further optimized. For k = 2 and 3 the grayed points show the lags that cannot
be included in the model and the high correlation of these lags indicate that
information is not exploited. The AR model was extended with higher order
AR and diurnal AR terms without any further improvement in performance,
see (Bacher, 2008).
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Figure B.11: ACF of the time series of errors {et+k} for selected horizons k
of the AR model. The vertical bars indicate the lags included in
each of the models, and the grayed points show the lags which
cannot be included in the model.

B.4.3 LMnwp model identi�cation

The model using only NWPs as input

τt+k = m+ b1τ̂
nwp
t+k|t + et+k (B.23)

is referred to as LMnwp . It is �tted using RLS and the ACF of {et+k} is shown
in Figure B.12 for two horizons. For k = 1 clearly correlation is left from an
AR(1) component, but as seen for both horizons the actual NWP input removes
diurnal correlation very well.

B.4.4 ARX model identi�cation

The model using both lagged observations of τt and NWPs as input is an ARX
model. The LMnwp revealed an exponential decaying ACF for short horizons
and thus an AR(1) term is clearly needed, whereas adding the diurnal AR
component has only a small e�ect. The results show that in fact the diurnal
AR component can be left out, but it is retained since this clari�es that no
improvement is achieved by adding it, this is showed later. The model

τt+k = m+ a1τt + a2τt−s(k) + b1τ̂
nwp
t+k|t + et+k, (B.24)

is referred to as the ARX model. The model is �tted using RLS and the ACF of
{et+k} is plotted in Figure B.13. It is seen that the AR(1) component removes
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Figure B.12: ACF of the time series of errors {et+k} at horizon k = 1 and
k = 24 of the LMnwp model. The grayed points show the lags
which cannot be included in the model.
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Figure B.13: ACF of the time series of errors {et+k} at horizons k = 1 and
k = 24 of the ARX model. The vertical bars indicate the lags
included in each of the models, and the grayed points show the
lags which cannot be included in the model.
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Figure B.14: The online estimates of the coe�cients in the AR model as a
function of time. Two selected horizons are shown. The grayed
period in the beginning marks the burn-in period.

the correlation for the short horizons very well. The ARX was extended with
higher order AR and diurnal AR terms without any further improvements in
performance.

B.4.5 Adaptive coe�cient estimates

The plots in Figure B.14 show the online coe�cient estimates for the AR model,
where a value of λ = 0.995 is used since this is the value that minimizes the
RMSEk best for all horizons in the current setting. Clearly the values of the
coe�cient estimates change over time and this indicates that the adaptivity is
needed to make an optimal model for online forecasting.

B.5 Uncertainty modelling

Extending the solar power forecasts, from predicting a single value (a point
forecast) to predicting a distribution increases their usefulness. This can be
achieved by modelling the uncertainties of the solar power forecasts and a simple
approach is outlined here. The classical way of assuming normal distribution of
the errors will in this case not be appropriate since the distribution of the errors
has �nite limits. Instead, quantile regression is used, inspired by Møller et al.
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Figure B.15: Normalized solar power versus the predicted normalized solar
power at horizons k = 1 and k = 24. The predictions are
made with the ARX model. The lines are estimates of the
0.05, 0.25, 0.50, 0.75 and 0.95 quantiles of fτ (τ̂).

(2008) where it is applied to wind power forecasts. Plots of {τt} versus {τ̂t} for
a given horizon reveal that the uncertainties depend on the level of τ̂ . Figure
B.15 shows such plots for horizons k = 1 and k = 24. The lines in the plot
are estimates of the 0.05, 0.25, 0.50, 0.75 and 0.95 quantiles of the probability
distribution function of τ as a function of τ̂ . The weighted quantile regression
with a one dimensional kernel smoother, described in Section B.8, is used.

Figure B.15 illustrates that the uncertainties are lower for τ̂ close to 0 and
1, than for the mid-range values around 0.5. Thus forecasts of values toward
overcast or clear sky have less uncertainty than forecasts of a partly overcast
sky, which agrees with results by Lorenz et al. (2007). Further work should
extend the uncertainty model to include NWPs as input.

B.6 Evaluation

The methods used for evaluating the prediction models are inspired by Madsen
et al. (2005) where a framework for evaluation of wind power forecasting is
suggested. The RLS �tting of the prediction models does not use any degrees
of freedom and the dataset is therefore not divided into a training set and a test
set. It is, however, noted that the clear sky model and the optimization of λ
does use the entire dataset, and thus the results can be a little optimistic. The
values in the burn-in period are not used in calculating the error measures. In
Figure B.14 the burn-in periods for the AR model are shown.
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B.6.1 Error measures

The k-step prediction error is

et+k = pt+k − p̂t+k|t (B.25)

The Root Mean Square Error for the k'th horizon is

RMSEk =

(
1

N

N∑

t=1

e2
t+k

) 1
2

. (B.26)

The RMSEk is used as the main evaluation criterion (EC) for the performance
of the models. The Normalized Root Mean Square Error is found by

NRMSEk =
RMSEk

pnorm
(B.27)

where either

pnorm = p̄ =
1

N

N∑

t=1

pt. (B.28)

or pnorm is the average peak power of the 21 PV systems.

The mean value of the RMSEk for a range of horizons

RMSEks,ke =
1

ke − ks + 1

ke∑

k=ks

RMSEk (B.29)

is used as a summary error measure. When comparing the performance of two
models the improvement

IEC = 100 · EC ref − EC

EC ref
(%) (B.30)

is used, where EC is the considered evaluation criterion.

B.6.2 Reference model

To compare the performance of prediction models, and especially when making
comparisons between di�erent studies, a common reference model is essential.
A reference model for solar power is here proposed as the best performing naive
predictor for the given horizon. Three naive predictors of solar power are found
to be relevant. Persistence

pt+k = pt + et+k, (B.31)
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Figure B.16: RMSEk for the three naive predictors used in the Reference
model.

diurnal persistence

pt+k = pt−s(k) + et+k (B.32)

s(k) = fspd + k mod fspd (B.33)

where s(k) ensures that the latest diurnal observation is used and fspd is the
sample frequency in number of samples per day, and diurnal mean

pt+k =
1

n

n∑

i=1

pt−s(k,i) + et+k (B.34)

s(k, i) = i · fspd + k mod fspd (B.35)

which is the mean of solar power of the last n observations at the time of day
of t+ k. The value of n is chosen such that all past samples are included.

Figure B.16 shows the RMSEk for each of the three naive predictors. It is seen
that for k ≤ 2 the persistence predictor is the best while the best for k > 2
is the diurnal persistence predictor. This model is referred to as the Reference
model.

B.6.3 Results

Examples of solar power forecasts made with the ARX model are shown in
Figure B.17 for short horizons and in Figure B.18 for next day horizons. It is
found that the forecasted solar power generally follows the main level of the
solar power, but the �uctuations caused by sudden changes in cloud cover are
not fully described by the model.
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Figure B.17: Forecasts of solar power at short horizons k = 1, . . . , 6 made
with the ARX model.
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Figure B.18: Forecasts of solar power at next day horizons k = 19, . . . , 29
made with the ARX model.
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Figure B.19: The NRMSEk for each of the three models and the Reference
model. The left plot show the short horizons and the right the
next day horizons. The left scale show RMSEk normalized by
the mean solar power p̄ = 248 W/h and the right scale show
RMSEk normalized by 2769W, which is the mean peak power
of the 21 PV systems.



B.6 Evaluation 87

Models IRMSE1,6
IRMSE19,29

AR over Reference 27% 17%
LMnwp over Reference 25% 36%
ARX over Reference 35% 36%

LMnwp over AR -2% 23%
ARX over AR 12% 23%

ARX over LMnwp 13% 1%

Table B.1: Summary error measures of improvements compared to the Refer-
ence model for short horizons k = 1, . . . , 6 and next day horizons
k = 19, . . . , 29 .

The NRMSEk is plotted for each model in Figure B.19. Clearly the performance
is increasing from the Reference model to the AR model and further to the ARX
model. The di�erences from using either the solar power or the NWPs, or both,
as input become apparent from these results.

At k = 1 the AR model that only uses solar power as input is better than
the LMnwp which only uses NWPs as input, but at k = 2, . . . , 6 the LMnwp is
better, though only slightly. This indicates that for making forecasts of horizons
shorter than 2 hours, solar power is the most important input, whereas for 2
to 6 hours horizons, forecasting systems using either solar power or NWPs can
perform almost equally. The ARX model using both types of input does have
an increased performance at all k = 1, . . . , 6 and thus combining the two types
of input is found to be the superior approach.

For k = 19, . . . , 29, which are the next day horizons, very clearly the LMnwp

model and the ARX model perform better than the AR model. Since the
LMnwp model and the ARX model perform almost equally, it is seen that no
improvement is achieved from adding the solar power as input, and thus using
only the NWPs as input is found to be adequate for next day horizons.

A summary of the improvement in performance is calculated using (B.29) and
(B.30). The improvements compared to the Reference model are calculated for
the four models by IRMSE1,6

for short horizons and IRMSE19,29
for next day

horizons. The results are shown in Table B.1. These results naturally show the
same as stated above, though the di�erence at k = 1 from AR to LMnwp cannot
be seen. These results show that a RMSE improvement of around 35 % over
the Reference model can be achieved by using the ARX model.
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B.7 Conclusions

Inspired by previous studies, the present method for solar power forecasting
has been developed from scratch. A new approach to clear sky modelling with
statistical smoothing techniques has been proposed, and an adaptive prediction
model based on RLS makes a solid framework allowing for further re�nements
and model extensions e.g. by including NWPs of temperature as input. The
adaptivity of the method makes it suited to online forecasting and ensures com-
prehension of changing conditions of the PV system and its surroundings. Fur-
thermore the RLS algorithm is not computer intensive, which makes updating
of forecasts fast. The clear sky model used to normalize the solar power delivers
a useful result, but can be improved, especially for the estimates toward dawn
and dusk, by using polynomial-based kernel regression. A procedure based on
quantile regression is suggested for calculating the varying intervals of the un-
certainty of the solar power predictions and the results agree with other studies.
The best performing prediction model is an ARX model where both solar power
observations and NWPs are used as input. The results indicate that for hori-
zons below 2 hours solar power is the most important input, but for next day
horizons no considerable improvement is achieved from using available values of
solar power, so it is adequate just to use NWPs as input. Thus, depending on
the application of the forecasting system using only either of the inputs can be
considered, and a lower limit of the latency, at which solar power observations
are needed for the forecasting system, can be di�erent. Finally it is noted that a
comparison to other online solar power forecasting methods, e.g. (Lorenz et al.,
2007) and (Hocaoglu et al., 2008), has not been carried out, but that such a
study would be informative in order to describe strengths and accuracy of the
di�erent proposed methods.

B.8 Weighted quantile regression

The solar power time series {pt, t = 1, . . . , N} is the realization of a stochastic
process {Pt, t = 1, . . . , N}. The estimated clear sky solar power at time t is p̂cs

t

and it is found as the q quantile of fPt
, the probability distribution function

of Pt. The problem is reduced to estimating p̂cs
t as a local constant for each

(xt, yt), where x is the day of year and y the time of day. This is done by
weighted quantile regression in which the loss function is

ρ(q, εi) =

{
qεi , εi ≥ 0
(1− q)εi , εi < 0

(B.36)
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where εi = pi − p̂cs
t . The �tting of p̂cs

t is then done by

p̂cs
t = arg min

p̂cst

N∑

i=1

k(xt, yt, xi, yi) · ρ(q, εi). (B.37)

where

k(xt, yt, xi, yi) =
w(xt, xi, hx) · w(yt, yi, hy)

∑N
i=1 w(xt, xi, hx) · w(yt, yi, hy)

(B.38)

is the two dimensional multiplicative kernel function which weights the obser-
vations locally to (xt, yt), (Hastie and Tibshirani, 1993). Details of the mini-
mization are found in (Koenker, 2005). In each dimension a Gaussian kernel is
used

w(xt, xi, hx) = fstd

( |xt − xi|
hx

)
(B.39)

where fstd is the standard normal probability density function. A similar kernel
function is used in the y dimension, and the �nal two dimensional kernel is found
by multiplying the two kernels as shown in (B.37).

B.9 Recursive least squares

Fitting of the prediction models is done using k-step recursive least squares
(RLS) with forgetting, which is described in the following using the ARX model

τt+k = m+ a1τt + a2τt−s(k) + b1τ̂
nwp
t+k|t + et+k, (B.40)

as an example. The regressor at time t is

XT
t = (1, τt, τt−s(k), τ̂

nwp
t+k|t), (B.41)

the parameter vector is
θT = (m, a1, a2, b1), (B.42)

and the dependent variable
Yt = τt. (B.43)

Hence the model can be written as

Yt = XT
t θ + et. (B.44)

The estimates of the parameters at t are found such that

θ̂t = arg min
θ
St(θ), (B.45)
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where the loss function is

St(θ) =

t∑

s=1

λt−s(Ys −XT
s θ)

2. (B.46)

This provides weighted least squares with exponential forgetting. The solution
at time t leads to

θ̂t = R−1
t ht, (B.47)

see (Madsen, 2007), where

Rt =
∑t
s=1 λ

t−sXsX
T
s , ht =

∑t
s=1 λ

t−sXsYs. (B.48)

The k-step RLS-algorithm with exponential forgetting is then

Rt = λRt−1 + Xt−kX
T
t−k (B.49)

θ̂t = θ̂t−1 + R−1
t Xt−k(Yt −XT

t−kθ̂t−1) (B.50)

and the k-step prediction at t is

Ŷt+k = XT
t θ̂t. (B.51)
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Abstract

This paper describes two methods for online forecasting of power production
from PV systems. The methods are suited for online forecasting in many appli-
cations and in this paper they are used to predict hourly values of solar power
for horizons up to 32 hours. The data used is hourly observations of solar power
from a single PV system located on a rooftop in a small village in Denmark.
One approach is a two-stage method in which a statistical normalization of the
solar power is obtained using a clear sky model. The clear sky model is found
using statistical smoothing techniques, which ensure that local phenomena are
directly modelled from data, as opposed to applying a deterministically derived
clear sky model. In the second stage forecasts of the normalized solar power are
calculated using adaptive linear time series models. A second approach is to
apply conditional parametric models with both autoregressive input and NWPs
exogenous input. The results indicate that for forecasts up to two hours ahead
the most important input is the available observations of solar power, while for
longer horizons NWPs are the most important input. A root mean square error
improvement over a persistence model around 40 % is achieved for 1 and 2 hour
horizons and around 35 % for longer horizons.

C.1 Introduction

The increasing installed solar power capacity rises the challenges of grid inte-
gration. The need for e�cient forecasting methods is evident and the research
activities within the topic is increasing, see for example (Sfetsos and Coonick,
2000), (Hocaoglu et al., 2008), (Lorenz et al., 2009), and (Ji and Chee, 2011). In
this paper methods for online forecasting are presented. The methods are suited
for forecasting of solar power for di�erent systems and here they are applied to
forecast the power production of a single 4 kW-peak PV-system installed on a
rooftop of a single family house. Due to the �uctuating nature of solar power
such forecasts are essential for optimal grid integration and will be essential for
solar power smart grid technology. The applications include energy trading for
large solar power producers, and diurnal peak-shaving and cost optimization
for smaller systems with storage capacity in battery packs (e.g. provided in an
electrical car). Two approaches are considered. One is based on a two-stages ap-
proach: �rst the systematic dependency of the position of the sun relative to the
PV panel are removed with a clear sky model, and secondly the resulting pro-
cess is forecasted with time-adaptive linear time series methods. The clear sky
model is calculated with non-linear statistical techniques, which will also model
the local conditions, such as e.g. shadows from elements in the surrounding
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environment and snow cover. In the second approach numerical weather pre-
dictions (NWPs) are used as input to conditional parametric non-linear models
(Nielsen et al., 2002) to forecast the solar power. Finally, the two approaches
are combined by normalizing the forecast with the clear sky model, and �nally
using this as input to the linear forecasting model, such that an ARX model is
formed.

The paper is organized as follows. First the data and how it is preprocessed is
described. The next section contains an outline of the clear sky model, followed
by a section where all the forecasting models are described. Then an evaluation
is given and the results are presented, followed by a discussion of the results and
ideas for further work. Finally, the paper ends with a conclusion.

C.2 Data

The data used in this study consist of hourly mean values of solar power from a
4 kW-peak PV-system and NWPs of global irradiance. The NWPs are provided
by the Danish Meteorological Institute using the HIRLAM mesoscale NWP
model. The data covers the entire year 2006.

The time series of hourly observed solar power is

{Pt; t = 1, . . . , N} (C.1)

where N = 8760. The NWPs have a calculation time of 4 hours, which is taken
into consideration, such that e.g. the forecast from 2009-01-01 00:00 are only
available from 2009-01-01 04:00. The NWPs are provided in a time resolution
of 3 hours. They are pre-processed into time series of hourly values, such that
the most recent available forecast k hours ahead is selected each hour. The time
series for a given k of the direct radiation is

{
Gnwp
t+k|t; t = 1, . . . , N

}
(C.2)

C.2.1 Pre-processing

The solar power data is plotted for each hour of the day in Figure C.1. The solar
radiation is zero at night, hence the observed solar power is also zero. For the
current data set only periods, for a given hour of the day longer than 40 days in
which the solar power is di�erent from zero, are included for evaluation of the
model performance. This is illustrated in Figure C.1, where the non-included
periods are grayed out.
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Figure C.1: The solar power data. The greyed area are not included in the
evaluation of the model performance.

C.3 Clear sky model

Forecasting e�ectively using linear time series methods calls for stationarity of
the underlying process Madsen (2007). The process that generates the solar
power is not stationary, which is seen by plotting quantiles of the distribution
of solar power conditioned on the time of day, see Figure C.2. Clearly the
distribution of solar power is not independent of the time of day.

Most of this dependency can be removed by a normalization using a clear sky
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model

τt =
Pt
P cs
t

(C.3)

where Pt is the observed solar power, P cs
t is the estimated clear sky solar power,

and τt is the normalized solar power.

C.3.1 Statistically estimated clear sky solar power

The clear sky solar power is estimated using a statistical non-linear and adaptive
model. Quantile regression Koenker (2005) locally weighted in the day of year
and time of day dimension is applied. This is carried out fully causal, i.e. only
past values are used. The clear sky model is

P̂ cs
t = q0.99(P1, P2, . . . , Pt, hy, htod) (C.4)

where q0.99 is the 99% quantile based on the solar power values up to time
t. The bandwidths hday and htod, are in the day of year and time of day
dimension, respectively. The bandwidths control how �locally� the model is
�tted, i.e. a lower bandwidth puts more emphasis on data which is close in the
two dimensions. The local weighting function is an Epanechnikov kernel. The
applied bandwidths are

hday = 100 days, htod = 3 hours (C.5)

which were found by visual inspection of the �tted clear sky curve. Finally, it is
noted that second-order polynomials were applied in the time of day dimension
to include curvature into the model. The estimated clear sky solar power is
shown in Figure C.3.

One advantage of the normalization is that it will automatically adapt to changes
in the system, such as degraded performance or changes in the surroundings e.g.
snow cover and shadowing e�ects. It can as well be used for monitoring of the
solar system, since degraded performance from the same time of year will result
in a lower clear sky solar power curve. Plots of the quantiles of the distribution
of normalized solar power conditional on the time of day are shown in Figure
C.2, from which it is seen that the normalized solar power process is considerably
less dependent on the time of day and therefore a much more stationary process.
It is noted that further work could include physical considerations into the clear
sky model.

[t]



98 Online Short-term Solar Power Forecasting

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

4 6 8 12 16 20

Time of day

S
o
la
r
P
o
w
er

(W
/m

2
)

0
.0

0
.5

1
.0

1
.5

4 6 8 12 16 20

Time of day

T
ra
n
sf
o
rm

ed
so
la
r
p
o
w
er

Figure C.2: The 0, 4%, ..., 100% quantiles of the distribution of the solar power
and the normalized solar power conditioned on the time of day.
Values above 1.5 has been clipped, which was the case for 6 values.

C.4 Forecasting models

In this section a description of the applied forecasting models is given. The
models can be divided into models using linear time series models to forecast
the normalized solar power: autoregressive (AR) and autoregressive with ex-
ogenous inputs (ARX) models - and models which forecast in a single stage:
conditional parametric (CP) models. Each model is �tted separately for each
horizon, such that the same model structure is used, but the parameters are
estimated separately for each horizon.

C.4.1 Reference model

To compare the performance of prediction models, and especially when making
comparisons between di�erent studies, a common reference model is essential.
The reference model for solar power used in this study is the best performing
naive predictor for a given horizon. Two naive predictors of solar power are
found to be relevant. Persistence

pt+k = pt + et+k, (C.6)
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and diurnal persistence

pt+k = pt−s(k) + et+k (C.7)

s(k) = 24 + k mod 24 (C.8)

where s(k) ensures that the latest diurnal observation is used, i.e. the value
which, depending on the horizon, is either 24 or 48 hours before the time point
that is to be forecasted.

C.4.2 Autoregressive models

Autoregressive (AR) models are applied to forecast the normalized solar power.
These models can include either the latest available observation or the latest
available diurnal observation, or both, as input. The models are �tted with
k-step recursive least squares with forgetting factor Bacher et al. (2009). The
model formulated as a k-step AR model

τt+k = m+ a1τt + a24τt−s(k) + et+k (C.9)

s(k) = 24 + k mod 24 (C.10)

where the function s(k) ensures that the latest observation of the diurnal com-
ponent is included. The model without the diurnal component, denoted AR,
performs best on short horizons

τt+k = m+ a1τt + et+k (C.11)

and is included in the evaluation. The AR model with only the diurnal performs
better on longer horizons, but is inferior to the models including the NWPs.

C.4.3 Conditional parametric models

Conditional parametric (CP) models where the coe�cients are conditional on
the time of day and time of year are applied with both past solar power ob-
servations and NWPs as inputs. The CP model with the latest solar power
observation as input is

Pt+k = m+ a
(
tday, ttod, Pt

)
Pt + et+k (C.12)

where the coe�cient function is a non-linear function of the solar power. It is
denoted as CPP . The CP model with NWPs of global radiation as input is

Pt+k = m+ b
(
tday, ttod, G

nwp
t+k|t

)
Gnwp
t+k|t + et+k (C.13)
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Figure C.3: The estimated clear sky solar power.

where Gnwp
t+k|t is the k-hour ahead NWP of global radiation. This model is

denoted CPNWP . Finally, the model with both inputs

Pt+k =m+ a
(
tday, ttod, Pt

)
Pt (C.14)

+ b
(
tday, ttod, G

nwp
t+k|t

)
Gnwp
t+k|t + et+k

is denoted CPNWP,P .

In the following the coe�cients dependency of the time of day for CPNWP is
elaborated on. It is noted that the bandwidths are optimized for each horizon.
Plots of the �tted forecasting function b

(
tday, ttod, G

nwp
t+k|t

)
for k = 24 hours are

shown in Figure C.4. It is seen how the slope of the function is lower in the
morning, than in the middle of the day. This is naturally caused by the higher
angle of incidence in the morning, which cause less horizontal radiation to be
absorbed due to re�ection. Likewise for the afternoon. Finally, non-linearity in
the �tted function is seen.

C.4.4 Autoregressive model with exogenous input

The AR model is be expanded to include the forecast of the CP models, thus
combining information in past observed solar power and NWPs. The solar power



C.4 Forecasting models 101

0
1
5
0
0

3
0
0
0 Observation

b
(
tday , ttod , G

nwp
t+k|t

)
for CPNWP

2006-07-15 06:00:00

0
1
5
0
0

3
0
0
0

2006-07-15 09:00:00

S
o
la
r
P
o
w
e
r
(W

)

0
1
5
0
0

3
0
0
0

2006-07-15 12:00:00

0
1
5
0
0

3
0
0
0

2006-07-15 15:00:00

0
1
5
0
0

3
0
0
0

2006-07-15 18:00:00

0 200 400 600 800

Forecasted Irradiance (W/m2)

Figure C.4: Examples of the function �tted for k = 24 hours forecasting with
the NWPs of global radiation at di�erent times of the day on the
15'th of July 2010 with the CPNWP model. For each observation
the size of circle indicates the weighting of the observation in the
CP models. Thus observations with a larger circle have more
in�uence on the �tted function.

forecasts from the CP is normalized with the clear sky model by

τ̂nwp
t+k|t =

P̂ nwp
t+k|t

P cs
t−s(k)

(C.15)

s(k) = fspd + k mod fspd (C.16)

where fspd = 24 is the sample frequency in number of samples per day. The
ARX1 model is

τt+k = m+ a1τt + b1τ
nwp
t+k|t + et+k (C.17)
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C.5 Evaluation

The methods used for evaluating the prediction models are inspired by Madsen
et al. (2005). The clear sky model, RLS, and CP �tting do not use any degrees
of freedom and the data set is therefore not divided into a training set and
a test set. It is only for the optimization of the kernel bandwidths and the
forgetting factor that the entire data set is used. The period before 2006-03-01
is considered as a burn-in period and not used for calculating the error measures.

C.5.1 Error measures

The Root Mean Square Error for the k'th horizon is

RMSEk =

(
1

N

N∑

t=1

e2
t+k

) 1
2

(C.18)

where et+k is the k-hourly prediction error. The RMSEk is used as the main
evaluation criterion (EC) for the performance of the models. The Normalized
Root Mean Square Error is found by

NRMSEk =
RMSEk

pmax
(C.19)

where pmax is the maximum observed solar power output. The mean value of
the RMSEk for a range of horizons

RMSEkstart,kend
=

1

kend − kstart + 1

kend∑

k=kstart

RMSEk (C.20)

is used as a summary error measure. When comparing the performance of two
models the improvement

IEC = 100 · EC ref − EC

EC ref
(%) (C.21)

is used, where EC is the considered evaluation criterion. When calculating the
error measures it is important to consider how to handle missing values for the
solar power forecasts. The problem is handled by replacing missing forecast
values with forecast values from the reference model Ref.
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Figure C.5: The upper plot is RMSEk for the forecasting models. On the
right side theNRMSEk is indicated. The lower plot is complete-
ness Ck.

C.5.2 Completeness

In order to evaluate a model for its performance regarding missing forecast
values a measure is de�ned. It is denoted completeness. The completeness of
a forecast for horizon k, is the ratio of the total sum of solar power and the
summed solar power for time points where the forecasts are not missing

Ck =

∑N
t=1 Pt I

(
P̂t|t−k

)
∑N
t=1 Pt

(C.22)

where I(P̂t|t−k) is the indicator function which is 0 if P̂t|t−k is missing, and 1 if
not. Only the included values are used, i.e. not values during nighttime.

C.6 Results

In this section the results are presented and evaluated. The RMSEkstart,kend

improvements for relevant ranges of horizons are listed in Table C.1. For se-
lected models the RMSEk is shown in the upper plot of Figure C.5 and the
completeness in the lower.

Considering the improvements it is seen that most of the models perform very
well on either the short horizons or the longer horizons. Starting with short
horizons (1 to 2 hours) the four models using the latest observed solar power
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have better performance than CPNWP , which only uses the NWPs. Using the
combination of observed solar power and NWPs improves the performance, ex-
cept on longer horizons where using only NWPs are slightly better. Considering
the performance of AR, CPP , and ARX it is seen that the RMSEk increase re-
ally fast as the horizon increases and reach the reference model around a horizon
of 10 hours. This is simply because the models are using night values (which
are missing) to forecast day values. This is also seen in the completeness of the
AR and ARX model.

C.7 Discussion and applications

This section contains a short discussion of the results and ideas for further work,
and ends with an outline of applications.

Considering the improvement achieved over the reference model the forecasting
models are found to perform very well. Clearly the quality of the NWPs of
solar radiation is the most in�uential source of error, hence improved NWPs
will improve the performance. Especially using NWPs of direct and di�use
radiation should be tried. Regarding further improvement of the forecasting
models, it is suggested that the following should be considered:

• Application of regime models and hidden Markov models to handle dif-
ferent aspects of forecasting for e.g. low and high radiation values, and it
might be useful to use di�erent forecasting models for di�erent types of
cloud conditions. This is ideal to apply in the setting of the CP models.

• For the CP models using higher order polynomials in the day of year
and time of day dimensions should improve the models. It was tried but
didn't improve the performance, but as the NWPs are getting better this
will most likely be important.

Table C.1: Improvements in percent for selected ranges of horizons.

Model IRMSE1,2
IRMSE3,17

IRMSE18,32

AR 34.3 7.4 12.6
CPP 36.7 17 11.5
CPNWP 25 38.4 33.1
CPNWP,P 40.8 37.6 31.4
ARX 40.1 15.9 25



C.8 Conclusion 105

• A thorough evaluation of the forecast errors to �nd ideas for how the
models can be improved.

The applications for solar power forecasting include the integration of PV sys-
tems into the electricity grid, especially for smart grids. The solar power fore-
casts can be used as input to model predictive control to optimize the operation
of the PV system. This will enable diurnal peak-shaving and cost optimization
for smaller systems with storage capacity in battery packs (e.g. provided in
an electrical car). For large solar power producers forecasting is essential for
optimized energy trading.

The method is furthermore well suited for monitoring the performance of PV
systems. Measures of the performance can be derived from the CP models, with
which systems can be compared on an absolute scale. Sudden high deviation
from the CP forecasting model will allow for very fast detection of failures in
the system. For an individual system the change in performance over time can
also be assessed by monitoring the clear sky curve for unusual behavior, and
compare the change from year to year.

C.8 Conclusion

Two approaches for solar power forecasting are presented and applied to forecast
hourly values for horizons up to 32 hours. Both a method based on a two-stage
approach, where �rst the solar power is normalized with a statistical clear-sky
model, and a method in which the solar power is forecasted in a single step.
The normalization with a clear sky model removes most of the non-stationarity
caused by the changing position of the sun relative to the PV panel. This a
pre-requisite for optimal application of linear time series models. Conditional
parametric models are used to include NWPs of global radiation, and a one-
stage approach, solely based on conditional parametric models, is presented.
A root mean square improvement over a persistence reference model on short
horizons (1 to 2 hours) is in average 40%, and in average 35% on the longer
horizons. The method can furthermore be applied to monitor and check the
performance of PV systems.
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Abstract

This paper describes a new approach to online forecasting of power output from
solar thermal collectors. The method is suited for online forecasting in many
applications and in this paper it is applied to predict hourly values of power
from a standard single glazed large area �at plate collector. The method is
applied for horizons of up to 42 hours.

Solar heating systems naturally come with a hot water tank, which can be uti-
lized for energy storage also for other energy sources. Thereby such systems can
become an important part of energy systems with a large share of uncontrollable
energy sources, such as wind power. In such a scenario online forecasting is a
vital tool for optimal control and utilization of solar heating systems.

The method is a two-step scheme, where �rst a non-linear model is applied to
transform the solar power into a stationary process, which then is forecasted
with robust time-adaptive linear models. The approach is similar to the one by
Bacher et al. (2009), but contains additional e�ects due to di�erences between
solar thermal collectors and photovoltaics. Numerical weather predictions pro-
vided by Danish Meteorological Institute are used as input. The applied models
adapt over time enabling tracking of changes in the system and in the sur-
rounding conditions, such as decreasing performance due to wear and dirt, and
seasonal changes such as leaves on trees. This furthermore facilitates remote
monitoring and check of the system.

D.1 Introduction

Forecasting of energy production is vital for optimization of energy systems
which include wind and solar energy production. This paper describes an ap-
proach to online forecasting of power production from solar thermal collectors.
In Denmark the level of wind power penetration already now gives periods with
a surplus of energy and facilities to absorb this energy are needed. Solar heating
systems with a hot water tank and auxiliary electrical heating can provide energy
storage, which can facilitate absorption of wind energy and peak shaving, espe-
cially for levelling out diurnal energy consumption. The method is planned to
be part of the control system for such heating systems (Perers et al., 2011). The
study is carried out with climate data observed at a weather station at Danish
Technical University. From this data, simulated hourly average values of solar
thermal power is generated with a very detailed simulation model. Furthermore
numerical weather predictions (NWPs) provided by Danish Meteorological In-
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stitute data is used. The forecasting method is a two-step scheme, where �rst a
statistical clear sky model is applied to transform the solar power into a more
stationary process, which then is forecasted with robust time-adaptive linear
models. The NWPs are used as input to conditional parametric time-adaptive
models to forecast the solar power. These forecasts are then transformed with
the clear sky model, such that they can be applied as inputs to the linear fore-
casting models. Finally, a combined model, which is the most optimal for all
horizons, is formed.

The paper is organized as follows. First the data and how it is preprocessed
is described in a section. The next section contains an outline of the clear sky
model, and this is followed by a section where all the forecasting models are
described. Then an evaluation is given and the results are presented, each in a
section. The second last section contains a discussion of the results and ideas
for further work, and �nally, the paper ends with a conclusion.

Nomenclature

Pt Hourly solar thermal power,
[
W/m2

]
.

P cs
t Estimated clear sky solar power,

[
W/m2

]
.

τt Normalized solar power.

t Time index, [h].

k Forecast horizon index, [h].

ttod Time of day.

F ′(τα)en Zero loss e�ciency of collector for direct radiation at normal incidence

Kταb(θ) Incidence angle modi�er for direct radiation

Kταd Incidence angle modi�er for di�use radiation

F ′U0 Heat loss coe�cient at (Ta − Tf) = 0,
[
W/(m2K)

]
.

Gnwp
t+k|t NWP of global radiation,

[
W/m2

]
.

Gb,nwp
t+k|t NWP of direct solar radiation,

[
W/m2

]
.

Gd,nwp
t+k|t NWP of di�use solar radiation,

[
W/m2

]
.

T a,nwp
t+k|t NWP of ambient temperature, [◦C].

P̂ nwp
t+k|t k-hour prediction of solar power,

[
W/m2

]
.

τ̂t+k|t k-hour prediction of normalized solar power.

et+k k-step prediction error.
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D.2 Data

The forecasting method is applied on simulated solar output power data for a
�at plate collector carefully tested and modelled at DTU. A validated collector
model and longterm climate data from the DTU Byg climate station was used
to create realistic operating data for a solar collector during the year. The
simulation model and weather data was introduced in TRNSYS 16 and the
collector output power was calculated as hourly mean values. The simulation
model is dynamic, such that dynamical e�ects - introduced when the collector
starts and stops and during rapidly varying solar radiation conditions - are
modelled.

In this study all time series are hourly average values and all units are implicitly
per hour. Time points are set to the end of their respective sample period and
all are in UTC. The units for radiation are W

m2 and for temperatures ◦C.

D.2.1 Solar power

The simulated solar power time series is plotted for each hour of the day in
Figure D.1. A few short periods are with missing values.

D.2.2 Numerical weather predictions

The numerical weather predictions (NWPs) used in the study are provided by
Danish Meteorological Institute. The NWP model is DMI-HIRLAM-S05, which
has a 5 kilometer grid and 40 vertical layers (DMI, 2011). NWPs are updated
every 6'th hour and are up to a 48 hours horizon. They consist of hourly
predictions of ambient temperature, and horizontal direct- and di�use solar
radiation. A couple of the considered forecasting models use the global radiation
as input, which is simply the direct and the di�use radiation summed. The
scatter plots in Figure D.2 shows the solar power versus the NWPs for a 24
hour horizon. Clearly, the solar power is highly correlated with both the global
and direct radiation, whereas the e�ect of di�use and ambient temperature are
not as apparent.
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Figure D.1: The observed solar power for each hour of the day. The grayed
area shows the periods not included in the modelling. The curve
following the highest values of solar power is the estimated clear
sky power, which is referred to in later parts of the paper.

D.2.3 Pre-processing

On most locations on earth the solar radiation is zero at night time, hence the
observed solar power is also zero. For the current dataset only periods, for a
given hour of the day longer than 40 days in which the solar power is di�erent
from zero, are included. This is illustrated in Figure D.1, where the non-included
periods are grayed out. Furthermore a few short periods are missing from the
observations. The time series of hourly observed solar power spanning the period
from 2009-01-01 to 2010-07-01 is

{Pt; t = 1, . . . , N} (D.1)

where N = 13104. The NWPs have a calculation time of 4 hours, which is taken
into consideration, such that e.g. the forecast from 2009-01-01 00:00 are only
available from 2009-01-01 04:00. The NWPs are pre-processed into time series
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Figure D.2: The observed solar power versus the NWPs for k = 24, which are
used as inputs to forecasting models.

of hourly values, such that the most recent available forecast k hours ahead is
selected each hour. The time series are for a given k: the direct radiation

{
Gb,nwp
t+k|t ; t = 1, . . . , N

}
(D.2)

the di�use radiation
{
Gd,nwp
t+k|t ; t = 1, . . . , N

}
(D.3)

and the ambient temperature
{
T a,nwp
t+k|t ; t = 1, . . . , N

}
(D.4)

Due to the 6 hours interval the NWPs for horizons longer than 42 hours are not
complete and therefore the solar power forecasting are only carried out up to 42
hours.

D.3 Clear sky model

For e�ective forecasting with classical linear time series methods stationarity of
the process is required (Madsen, 2007). The process that generates the solar
power is not stationary, which is seen by plotting quantiles of the distribution of
solar power conditioned on the time of day. Such a plot is shown in Figure D.3.
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Figure D.3: The 0, 2%, ..., 100% quantiles of the distribution of the solar power
and the transformed solar power conditioned on the time of day.
Values above 1.5 has been clipped, which was the case for 17
values.

Clearly the distribution of solar power is not independent of the time of day.
The dependency can be removed by a transformation with a clear sky model

τt =
Pt
P cs
t

(D.5)

where Pt is the observed solar power, P cs
t is the estimated clear sky solar power,

and τt is the transformed solar power.

D.3.1 Statistically estimated clear sky solar power

The clear sky solar power is estimated with a statistical non-linear and adaptive
model. Quantile regression locally weighted in the day of year and time of day
dimension is applied. In the present study this is carried out fully causal. The
clear sky model is

P cs
t = q0.99(P1, P2, . . . , Pt, ht, htod, hy) (D.6)

where q0.99 is the 99% quantile of all the solar power values up to t. The
bandwidths ht, htod, and hy, are in the time-, time of day-, and year-dimension,
respectively. The bandwidths control how �locally� the model is �tted, i.e. a
lower bandwidth puts more emphasis on data which is close in time. The local
weighting function is an Epanechnikov kernel. The applied bandwidths are

ht = 120 days, htod = 2 hours, hy = 1.7 years (D.7)
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which were found by visual inspection of the �tted clear sky curve. Finally, it
is noted that second-order polynomials were applied in the time- and time of
day-dimension to include curvature into the model. The estimate of the clear
sky solar power is shown in Figure D.1. From the plot it is seen that it follows
the highest values of solar power quite well. Clearly, the clear sky power is
most easily carried out in the periods with a high level of solar power. One
advantage of the transformation is that it will automatically adapt to changes
in the system, such as degraded performance or changes in the surroundings e.g.
snow cover and shadowing e�ects. It can as well be used for monitoring of the
solar system, since degraded performance from the same time of year will result
in a lower clear sky solar power curve. Quantile plots of the transformed solar
power conditioned on the time of day are shown in Figure D.3, from which it is
seen that the transformed solar power process is considerably less dependent of
the time of day and therefore a much more stationary process. It is noted that
further work could include physical considerations e.g. by using the air mass as
an input.

D.4 Forecasting models

In this section a description of the applied forecasting models is given. The
models can be divided into models without NWPs as input - autoregressive
(AR) models - and models with NWPs as input: conditional parametric (CP)
and autoregressive with exogenous inputs (ARX) models. Each model is �tted
seperately for each horizon, such that the same model structure is used, but
the parameters are estimated separately for each horizon. In the �nal model, a
combination of models are used to achieve the most optimal performance for all
horizon.

D.4.1 Reference model

To compare the performance of prediction models, and especially when making
comparisons between di�erent studies, a common reference model is essential.
The reference model for solar power used in this study is the best performing
naive predictor for a given horizon. Two naive predictors of solar power are
found to be relevant. Persistence

pt+k = pt + et+k, (D.8)
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and diurnal persistence

pt+k = pt−s(k) + et+k (D.9)

s(k) = fspd + k mod fspd (D.10)

where fspd = 24 is the sample frequency in number of samples per day and
s(k) ensures that the latest diurnal observation is used, i.e. the value which,
depending on the horizon, is either 24 or 48 hours before the time point that is
to be forecasted.

D.4.2 Autoregressive models

Autoregressive (AR) models are applied to forecast the transformed solar power.
These models can include either the latest available observation or the latest
available diurnal observation, or both, as input. The models are �tted with
k-step recursive least squares with forgetting factor (Bacher et al., 2009). The
model formulated as a k-step AR model

τt+k = m+ a1τt + a24τt−s(k) + et+k (D.11)

s(k) = 24 + k mod 24 (D.12)

where the function s(k) ensures that the latest observation of the diurnal compo-
nent is included. It was found that depending on the horizon better performance
was achieved by only using one input. Thus for short horizons (1 and 2 hours)
the model without the diurnal component

τt+k = m+ a1τt + et+k (D.13)

was found to have the best performance, it is denoted AR1, and for longer
horizons the model with only the diurnal component

τt+k = m+ a24τt−s(k) + et+k (D.14)

was found to have the best performance, it is denoted ARDiurnal.

D.4.3 Conditional parametric models with NWPs as in-

put

Models based on NWPs of solar radiation and ambient temperature are de-
scribed in this section. It is known from physics (Perers, 1997) that the power
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output of a solar collector can be described by

P = F ′(τα)enKταb(θ)Gb,col + F ′(τα)enKταdGd,col − F ′U0

(
To + Ti

2
− Ta

)

(D.15)

where the Gb,col and Gd,col are respectively direct and di�use solar radiation
normal to the collector plane. This is formed into a forecasting model based on
NWPs by rewriting as follows. First, both the the angle of incidence modi�er
Kταb(θ) and the transformation of solar radiation from horizontal to the col-
lector plane are modelled by letting the coe�cients - for the radiation e�ects -
become a function of time t and time of day ttod. Furthermore, assuming that
the outlet temperature is a function of the solar radiation

To = fb(Gb,col) + fd(Gd,col) (D.16)

this give the total e�ect of direct radiation as a non-linear function

a(t, ttod, Gb, Gd)Gb = F ′(τα)enKταb(θ)Gb,col − F ′U0
1

2
fb(Gb,col) (D.17)

and for the di�use radiation

b(t, ttod, Gb, Gd)Gd = F ′(τα)enKταdGb,col − F ′U0
1

2
fd(Gd,col) (D.18)

Finally, the e�ect of the ambient temperature is kept as

cTa = F ′U0Ta (D.19)

and by assuming a constant inlet temperature this part becomes a constant
e�ect

m = −F ′U0
Ti

2
(D.20)

Thus the CP model structure used for forecasting is

P = m+ a(t, ttod, Gb, Gd)Gb + b(t, ttod, Gb, Gd)Gd + cTa (D.21)

Since the time-dependency and non-linearity are smooth functions in the pa-
rameters, it is modelled with conditional parametric (CP) models. The time
varying e�ect is modelled by conditioning on t and ttod - this is equivalent of
a local constant e�ect - and the dependency of the radiation is modelled with
1-order local polynomials. A kernel method is applied, using a nearest neighbor
approach to �nd the bandwidth of an Epanechnikov weighting function. From
Equation (D.15) it is seen that the output can be negative if little radiation hits
the collector and the ambient temperature is low. In this case the output is zero
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since the system stops. This e�ect can be seen on the plot in Figure D.2. It is
handled by the non-linearity of the models and by setting negative forecasts to
zero.

The simplest considered conditional parametric model is

Pt+k = m+ a
(
t, ttod, G

nwp
t+k|t

)
Gnwp
t+k|t + et+k (D.22)

where Gnwp
t+k|t is the k-hour NWP of global radiation and denoted as CP1 in the

following. This second CP model has NWPs of direct and the di�use radiation
as inputs

Pt+k = m+ a
(
t, ttod, G

b,nwp
t+k|t , G

d,nwp
t+k|t

)
Gb,nwp
t+k|t (D.23)

+ b
(
t, ttod, G

b,nwp
t+k|t , G

d,nwp
t+k|t

)
Gd,nwp
t+k|t + et+k

where Gb,nwp
t+k|t is the k-hour NWP of direct radiation and Gd,nwp

t+k|t is the k-hour
NWP of di�use radiation, and denoted as CP2. Finally the model is expanded
with NWPs of ambient temperature

Pt+k = m+ a
(
t, ttod, G

b,nwp
t+k|t , G

d,nwp
t+k|t

)
Gb,nwp
t+k|t (D.24)

+ b
(
t, ttod, G

b,nwp
t+k|t , G

d,nwp
t+k|t

)
Gd,nwp
t+k|t + c

(
t, ttod

)
T a,nwp
t+k|t + et+k

where T a,nwp
t+k|t is the k-hour NWPs of the ambient temperature and the model is

denoted as CP3.

In the following the coe�cients dependency of the time of day is elaborated on.
Plots of the �tted forecasting function a

(
t, ttod, G

b,nwp
t+k|t , G

d,nwp
t+k|t

)
are shown in

Figure D.4. It is seen how the slope of the function is lower in the morning,
than in the middle of the day. This is naturally caused by the higher angle of
incidence in the morning, which cause less horizontal radiation to be absorbed
due to re�ection. Likewise for the afternoon. Finally, non-linearity in the �t
is seen, which is caused by the non-negativity of the solar power (mentioned
above) and varying uncertainty of the NWPs.

D.4.4 Autoregressive model with exogenous input

The AR model is be expanded to include the forecast of the CP models, thus
combining information in past observed solar power and NWPs. The solar power
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Figure D.4: Examples of the function �tted for forecasting of the e�ect of
direct radiation at di�erent times of the day the 1'th of May
2010 with the CP2 model. For each observation the size of circle
indicates the weighting of the observation in the CP models. Thus
observations with a larger circle have more in�uence on the �tted
function.

forecasts from the CP is transformed with the clear sky model by

τ̂nwp
t+k|t =

P̂ nwp
t+k|t

P cs
t−s(k)

(D.25)

s(k) = fspd + k mod fspd (D.26)

where fspd = 24 is the sample frequency in number of samples per day. This is
applied as an input to the ARX model

τt+k = m+ a1τt + a24τt−s(k) + b1τ
nwp
t+k|t + et+k (D.27)

Again, as for the AR models, di�erent performance is found depending on the
horizon. The ARX1 model is best for short horizons

τt+k = m+ a1τt + b1τ
nwp
t+k|t + et+k (D.28)



D.5 Evaluation 119

ARXDiurnal for horizons up to 24 hours

τt+k = m+ a24τt−s(k) + b1τ
nwp
t+k|t + et+k (D.29)

and ARX

τt+k = m+ b1τ
nwp
t+k|t + et+k (D.30)

for longer horizons.

D.4.5 Combined model

The �nal model is a combination of the previously described models. The model
is denoted ARXCombined. First, missing values in forecasts from ARX1 are
replaced with forecast values from ARXDiurnal. These missing values are in the
morning, since they were tried to be forecasted based on night values, which are
zero. For horizons longer than 30 hours forecasts from ARX are used. Finally,
any remaining missing values - which are only where the diurnal lag was not
present for ARXDiurnal - are replaced with forecasted values from CP2.

D.5 Evaluation

The methods used for evaluating the prediction models are inspired by Madsen
et al. (2005). They suggest a framework for evaluation of wind power forecasting.
The clear sky model, RLS, and CP �tting do not use any degrees of freedom
and the dataset is therefore not divided into a training set and a test set. It
is only for the optimization of the kernel bandwidths and the forgetting factor
that the entire dataset is used. The period before 2009-03-15 is considered as a
burn-in period and are not used when calculating the error measures.

D.5.1 Error measures

The Root Mean Square Error for the k'th horizon is

RMSEk =

(
1

N

N∑

t=1

e2
t+k

) 1
2

(D.31)
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where et+k is k-hourly prediction error. The RMSEk is used as the main eval-
uation criterion (EC) for the performance of the models. The Normalized Root
Mean Square Error is found by

NRMSEk =
RMSEk

pmax
(D.32)

where pmax is the maximum observed solar power output. The mean value of
the RMSEk for a range of horizons

RMSEkstart,kend
=

1

kend − kstart + 1

kend∑

k=kstart

RMSEk (D.33)

is used as a summary error measure. When comparing the performance of two
models the improvement

IEC = 100 · EC ref − EC

EC ref
(%) (D.34)

is used, where EC is the considered evaluation criterion. When calculating the
error measures it is important to consider how to handle missing values for the
solar power forecasts. The problem is handled by replacing missing forecast
values with forecast values from the reference model Ref.

D.5.2 Completeness

In order to evaluate a model for its performance regarding missing forecast
values a measure is de�ned, it is denoted completeness. The completeness of a
forecast for horizon k, is the ratio of the the summed solar power for time points
where the forecasts are not missing to the total sum of solar power

Ck =

∑N
t=1 Pt I

(
P̂t|t−k

)
∑N
t=1 Pt

(D.35)

where I(P̂t|t−k) is the indicator function which is 0 if P̂t|t−k is missing, and 1 if
not. Only the included values are used, i.e. not night values.

D.6 Results

In this section the results are presented and evaluated. The RMSEkstart,kend

improvement for relevant ranges of horizons are listed in Table D.1. For se-
lected models the RMSEk is shown in the upper plot of Figure D.5 and the
completeness in the lower.
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Considering the improvements it is seen that most of the models perform very
well on either the short horizons or the longer horizons. Starting with short
horizons (1 to 2 hours), the AR1 and ARX1 are clearly superior, which is due
to their inclusion of the most present autoregressive lag. Their performance
on longer horizons are not good. The reason for this is found by considering
the plot of RMSEk and completeness. Here it is seen that the completeness
of AR1 and ARX1 drops really quickly as the horizon increase, which cause
the RMSEk to increase and reach the reference model at the 10 hours horizon.
This is simply due to missing forecast values, since for e.g. the 10 to 14 hours
horizons the models use night values (which are missing) to forecast day values
with.

For horizons longer than three hours the best performance is seen for the mod-
els, that doesn't include the most present AR lag. The ARDiurnal is a clear
improvement from the AR1, and the CP and ARX models - which include the
NWPs - are superior for these horizons. An improved performance is found from
CP1 to CP2 mainly for 3 to 24 hours horizons, whereas no clear increase in im-
provement is found from CP2 to CP3. The CP models are slightly improved by
using them as input to the ARX models, since autocorrelation of the errors are
modelled.

Finally, the combined model ARXCombined utilizes the best parts of: ARX1,
ARX, ARXDiurnal, and CP2. Especially the replacement of missing forecast
values improves the performance for horizons up to 5 hours. The completeness
of the combined model is as high as any of the others.

Table D.1: Improvements in percent for selected ranges of horizons.

Model IRMSE1,2
IRMSE3,24

IRMSE25,42
IRMSE1,42

AR1 30.8 7.1 6.1 7.8
ARDiurnal -10.7 15 18 15.1
CP1 13.5 30 30.6 29.5
CP2 16.2 31.4 30.9 30.5
CP3 15.5 31.6 30.8 30.5
ARX 17.1 32 31.3 31
ARX1 34.4 11.6 8.7 11.4
ARXDiurnal 17.8 32.4 30.5 30.9
ARXCombined 39.3 33.3 31.5 32.8
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Figure D.5: The upper plot is RMSEk for the forecasting models. On the
right side the NRMSEk is indicated. The lower plot is com-
pleteness Ck.

D.7 Discussion and applications

This section contains a short discussion of the results and ideas for further work,
and ends with an outline of applications.

Considering the improvement achieved over the reference model the forecasting
method is found to perform very well. Clearly the quality of the NWPs of solar
radiation is the most in�uential source of error, hence improved NWPs will
improve the forecasting performance. Regarding improvement of the forecasting
models, the following are considered:

• A thorough evaluation of the forecast errors to clarify how the models can
be improved.

• Optimization of forgetting factor of the RLS has not been carried out, this
will improve the performance of the AR and ARX models.

• Application of regime models to handle di�erent aspects of forecasting for
low and high radiation values.

• More optimal ways to combine the models. Utilizing a linear combination
instead of the simple replacement currently carried out.
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• It might be possible to improve performance by including a third-stage,
where modelling of the errors are carried out.

The applications for this type of solar thermal power forecasting counts the
integration of solar thermal energy systems with auxiliary electrical heating
into smart grid systems (Perers et al., 2011). The solar power forecasts will be
used for model predictive control to optimize the operation of the system. Other
applications include optimal control of large solar heating plants.

The method is furthermore well suited for monitoring the performance of solar
thermal systems. Measures of the performance can be derived from the CP
models, with which systems can be compared on an absolute scale. Sudden
high deviation from the CP forecasting model will allow for very fast detection
of failures in the system. For an individual system the change in performance
over time can also be assessed by monitoring the clear sky curve for unusual
behavior, and compare the change from year to year.

D.8 Conclusion

Amethod for forecasting of solar thermal power output is presented. It is applied
to forecast hourly values for horizons up to 42 hours. The method is based on
conditional parametric models. Both models without and with NWPs of solar
radiation and ambient temperature are considered. The NWPs are included by
using a non-linear conditional parametric model, which are formed from prior
physical knowledge. The forecast models which do not use NWPs achieve an
improvement on short horizons (1 to 2 hours) in average 30% over a persistence
reference model, and in average 15% on horizons up to 42 hours. Applying the
NWPs an improvement around 39 % is achieved in average for short horizons
and around 32% in average for longer horizons. The method can furthermore
be applied to monitor and check the performance of solar thermal collectors.
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Abstract

The need for fast and accurate performance testing of solar collectors is increas-
ing. This paper describes a new technique for performance testing which is
based on non-linear continuous time models of the heat dynamics of the collec-
tor. It is shown that all important performance parameters can be accurately
estimated with measurements from a single day. The estimated parameters are
compared with results from standardized test methods (Fischer et al., 2004).

Modelling the dynamics of the collector is carried out using stochastic di�er-
ential equations, which is a well proven e�cient method to obtain accurate
estimates of parameters in physical models. The applied method is described
by Kristensen et al. (2004) and implemented in the software CTSM1. Examples
of successful applications of the method includes modelling the of the heat dy-
namics of integrated photo-voltaic modules (Friling et al., 2009) and modelling
of the heat dynamics of buildings (Madsen and Holst, 1995).

Measurements obtained at a test site in Denmark during the spring 2010 are
used for the modelling. The tested collector is a single glazed large area �at
plate collector with selective absorber and Te�on anti convection layer. The
test rig is described in Fan et al. (2009).

The modelling technique provides uncertainty estimates such as con�dence in-
tervals for the parameters, and furthermore enables statistical validation of the
results. Such tests can also facilitate procedures for selecting the best model to
use, which is a very non-trivial task.

E.1 Introduction

This paper presents a new statistical approach for modelling the heat dynamics
of a solar thermal collector. The applied modelling technique facilitates applica-
tion of detailed models on data sampled with a relatively high sample rate. It is
demonstrated that this allows for parameter estimation with high accuracy to be
achieved with measurements from a single day. In the present study 2 seconds
values averaged to 30 seconds values are used. Conventional non-dynamical
models - by some called pseudo-dynamical models - of solar collectors cannot
use such a high sample rate due to auto-correlation of the errors caused by
non-modelled dynamical e�ects. The applied models are based on stochastic
di�erential equations (SDEs), which gives the possibility to combine physical

1www2.imm.dtu.dk/~ctsm/

www2.imm.dtu.dk/~ctsm/
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and data-driven statistical modelling. Such models are called grey-box models.
A very strong feature of grey-box models is that they provide the possibility
to estimate hidden state variables, i.e. variables in the model which are not
measured. This allows using the same data for �tting models, with which the
system is lumped di�erently, i.e. the physical model of the system can either be
a single-state or a multi-state lumped model, which can be required for di�erent
types of collectors. Furthermore the modelling technique facilitates application
of statistical tests to determine which model is most suitable for the given data.
This is important for model identi�cation and the approach is demonstrated in
the paper. The modelling is carried out based on measurements from a period
of 9 consecutive days in the beginning of May 2010. None of the days could have
been used for stationary testing that is still the most common test method for
solar collectors. Stationary testing requires perfect stable clear weather around
noon. The measurements were performed on a single glazed large area �at plate
collector with selective absorber and Te�on anti convection layer. The collector
was not brand new, but has been in operation for 15 years, which a�ects the
parameter values compared to todays products of the similar design. The results
from the grey-box models are compared with results from the standardized EN
12975 Quasi Dynamic Test Method (CEN, European committee for standard-
ization, 2006), which is based on multiple linear regression (MLR) modelling, to
see if the estimation results matches current test standards. Finally, a thorough
discussion and perspectives of the technique are given.

The paper is arranged as follows. The next section is a presentation of the
theory of the applied grey-box models, with a simple example. This is followed
by a section with a description of the MLR models used and thereafter a section
with a description of all the considered grey-box models. Then the results are
presented, and �nally a discussion and perspective is given before the paper
ends with a conclusion.
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Nomenclature

The same notation as in Perers (1997) are used as widely as possible.

Collector model parameters:

F ′(τα)en Zero loss e�ciency for direct radiation at normal incidence

Kταb(θ) Incidence angle modi�er for direct radiation

Kταd Incidence angle modi�er for di�use radiation

F ′U0 Heat loss coe�cient at (Ta − Tf) = 0,
[
W/(m2K)

]
.

F ′U1 Temperature dependence of the heat loss coe�cient,
[
W/(m2K2)

]
.

F ′Uw Wind dependence of the heat loss coe�cient,
[
Ws/(m3K)

]
.

(mC)e E�ective thermal capacitance including piping for the collector,
[
J/(m2K)

]
.

Cf Fluid thermal capacitance,
[
J/(m2K)

]
.

Cm Collector thermal capacitance,
[
J/(m2K)

]
.

Ufa Heat transmission coe�cient from �uid to ambient,
[
J/(Km2)

]
.

Ufm heat transmission coe�cient from �uid to module,
[
J/(Km2)

]
.

Uma heat transmission coe�cient from module to ambient,
[
J/(Km2)

]
.

nc Number of compartments

Measured variables:

Gd Di�use radiation onto the collector plane,
[
W/m2

]
.

Gb Direct radiation onto the collector plane,
[
W/m2

]
.

Ta Ambient air temperature near the collector, [◦C].

To Outlet temperature of the collector, [◦C].

Ti Temperature of the inlet to the collector, [◦C].

Qf Flow of the �uid per square meter of collector,
[
l/(sm2)

]
.

θ incidence angle for the direct solar radiation onto the collector plane, [radians].

w Wind speed, [m/s].

Derived variables etc.:

Tf Average temperature of the collector �uid, [◦C].

Tm Average temperature of the collector, [◦C].

qu Collector power output,
[
W/m2

]
.

cf Speci�c heat capacity of the �uid, [J/(lK)].
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E.2 Grey-box models of a dynamic system

A grey-box model is established using a combination of prior physical knowledge
and statistics, i.e. information embedded in data Kristensen et al. (2004). The
prior physical knowledge is formulated by a set of non-linear stochastic di�er-
ential equations (SDEs), also called a stochastic non-linear state-space model in
continuous time. The equations describe a lumped model of the heat dynamics
of the system.

The output of the solar collector is calculated by

qu = cfQf(To − Ti) (E.1)

where To is the outlet temperature and Ti is the inlet temperature of the �uid.
The output qu is power output per square meter of collector aperture area and
Qf is �ow per the same area. From Perers (1997) it is known that the output
of a standard �at plate collector in �rst order accuracy level can be described
by the heat balance

cfQf(To − Ti) = F ′(τα)enKταb(θ)Gb + F ′(τα)enKταdGd (E.2)

− F ′U0(Tf − Ta)− (mC)e
dTf

dt

For explanation of the symbols, see page 128. A linear temperature pro�le
through the collector is applied by modelling the �uid temperature as a simple
average

Tf =
To + Ti

2
(E.3)

The di�erential of the �uid temperature can then be written as

dTf

dt
=

1

2

dTo

dt
+

1

2

dTi

dt
(E.4)

which for a constant inlet temperature is

dTf

dt
=

1

2

dTo

dt
(E.5)

This substitution, together with the addition of a noise term, is used to form
the SDE

dTo =
(
F ′U0(Ta − Tf) + cfQf(Ti − To) (E.6)

+ F ′(τα)enKταb(θ)Gb + F ′(τα)enKταdGd

) 2

(mC)e
dt+ σdω
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F ′(τα)enKταb(θ)GbF ′(τα)enKταdGd

QfcfTi

QfcfTo

Ufa(Ta − Tf)

Tf =
Ti+To

2
To Ti

Figure E.1: Diagram of ToComp1 illustrating all the energy �ows included in
the model.

which describes the heat dynamics for the collector in the simplest grey-box
model considered in the paper. It is denoted as ToComp1. In grey-box termi-
nology this is called the system equation of the state-space model. The noise
term σdω is called the system noise and consist of increments of {ω}, which
is a standard Wiener process, and σ2, which is the incremental variance of the
Wiener process. In this model the collector is lumped into one single part and
the state variable is the outlet temperature To. An illustration of the model is
found in Figure E.1.

The physical model part is coupled with the data-driven model part with which
the information embedded in observed data is used for parameter estimation.
The data-driven part in the considered example is represented by the discrete
time measurement equation

Yk = Tok + ek (E.7)

where k is the point in time tk of a measurement, Yk is the measured outlet tem-
perature, and ek is the measurement error, which is assumed to be a Gaussian
white noise process with variance σ2. This assumption - plus the assumption
that W is a Wiener process - enables evaluation and tests of the performance
of the model, since such tests can show if the physical model is consistent with
the observed heat dynamics of the collector.

E.2.1 Maximum likelihood estimation of parameters

Given a grey-box model, as described above, maximum likelihood estimates of
the parameters can be obtained. Let the N observations be represented by

YN = [YN , YN−1, . . . , Y1, Y0] (E.8)
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then the likelihood function is the joint probability density

L(θ;YN ) =

(
N∏

k=1

p(Yk|Yk−1, θ)

)
p(Y0|θ) (E.9)

where p(Yk|Yk−1, θ) is a conditional density denoting the probability of observ-
ing Yk given the previous observations and the parameters θ, and where p(Y0|θ)
is a parameterization of the starting conditions Kristensen et al. (2004). The
maximum likelihood estimates of the parameters are then found by

θ̂ = arg max
θ

{
L(θ;YN )

}
(E.10)

Due to the previously mentioned assumptions about the system and measure-
ment noise, it follows that the conditional densities in Equation (E.10) can be
well approximated by Gaussian densities. Hence an extended Kalman �lter
can be used to calculate the likelihood function, and an optimization algorithm
can be applied to maximize it, thereby calculating the maximum likelihood
estimates, see Kristensen et al. (2004) for a detailed discussion. This is imple-
mented in the computer software CTSM, which has been used for carrying out
the parameter estimation. See more about the methods and software at 2 and
in Kristensen and Madsen (2003).

E.3 Experimental setup and data

The experiments are described by Fan et al. (2009) and were carried out in
the spring of 2010. The measurements were obtained with a 2 seconds sample
interval. For the present study models are identi�ed for both 30 seconds and
10 minutes average values. The data resampled to 10 minute average values is
plotted in Figure E.2. Only time points where the angle of incidence is lower
than 84 degrees are used. For the parameter estimation it is important to acquire
a period, for which the input signals are as uncorrelated as possible and cover
the typical range of operation. Periods with full cloud cover are not feasible,
since there is not enough variation in the direct radiation and in periods with
no cloud cover the radiation and the module temperature is highly correlated.
Hence days with varying cloud cover are most appropriate and these days are
the most common in most locations where people traditionally live.

2www.imm.dtu.dk/~ctsm

www.imm.dtu.dk/~ctsm


132Models of the heat dynamics of solar collectors for performance testing
0

2
0

6
0

1
0
0

Ti

To

Ta

T
em

p
er
a
tu
re

(◦
C
)

0
4
0
0

8
0
0

R
a
d
ia
ti
o
n
(W

/
m

2
)

Gd

Gb

0
.0
0
5

0
.0
1
5

0
.0
2
5

F
lo
w
( l/

(s
m

2
)) Qf

May 03 May 05 May 07 May 09 May 11

Year 2010 (UTC)

Figure E.2: The data as 10 minutes averaged values. The upper plot is the
measured temperatures, the middle plot is the di�use and direct
(beam) radiation, and the lowest plot is the �uid �ow.

E.4 Multiple linear regression models

The EN 12975 Quasi Dynamic Test Method (CEN, European committee for
standardization, 2006) is applied to have a reference for the results from the new
proposed method. The method is based on multiple linear regression (MLR)
modelling, where down to 5 minutes average values are recommended. The
data was resampled to 10 minutes averages, which for all 9 days gives 593 time
points. MLR modelling with 5 minutes averages was tried and the results were
only marginally di�erent. The following model structure is applied

qu
t = F ′(τα)enKταb(θ)Gb

t + F ′(τα)enKταdG
d
t + F ′U0∆Tt (E.11)

+ F ′U1∆T 2
t − F ′Uw∆Ttwt − (mC)e

dT f
t

dt
+ et

where ∆Tt = T a
t −T f

t . Three models are �tted: MLR1 without F ′U1 and F ′Uw,
MLR2 without F ′U1, and MLR3 with all inputs.

E.5 Applied grey-box models

This section gives an overview of the applied grey-box models and the parts of
the data on which the parameter estimation was carried out. First the single
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Figure E.3: The 10 minutes averaged values from days where the model To-
Comp1 is �tted. The upper plot is of the inlet-, outlet-, and the
ambient temperature. Below this is shown a plot of the direct-
and di�use solar radiation, followed by a plot of the �uid �ow.
The lowest plot is the residuals from the �t from each day, this is
referred to in a later in the paper.

state grey-box model ToComp1, described in Section E.2 was �tted to 10 minutes
average values on the days with varying cloud cover. This data is plotted in
Figure E.3. The model was �tted to data from each day separately and �nally
to all the data from four days pooled together. In addition to the ToComp1
model four other grey-box models have been �tted to the data from the 10'th of
May resampled to 30 second average values. This gives N = 1413 data points,
which are plotted in Figure E.4. The additional four models are expanded as
more detailed versions of ToComp1. There are two ways to expand the model:
either more inputs (explanatory variables) can be used, or - since the models are
lumped models - a better representation can maybe be achieved by lumping the
system into more parts (also called compartments, states, zones, or nodes). The
latter approach is considered in the following. The �rst two expanded models are
made more detailed by lumping the collector into more than one compartment
in the �ow direction of the collector �uid, such that the temperature of the
collector is represented by two or more temperature state variables. This allows
for a better representation of the temperature di�erences between the inlet -
the cold side when solar radiation level is high - and the outlet of the collector.
Furthermore this also gives a better description of the delay introduced since
it takes time for the �uid to �ow through the collector. For the current setup
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Figure E.4: The 30 seconds averaged data for which the modelling is applied.
The upper plot is of the inlet-, outlet-, and the ambient tempera-
ture. Below this is a plot of the direct- and di�use solar radiation,
followed by the plot of the �uid �ow.

and the �ow of the 10'th of May, this is around 1 minute. These two models
are denoted by ToComp2 and ToComp3. The third expanded model is denoted
by ToTmComp1 and in this model the collector is lumped in two parts: one
representing the �uid and one representing the solid part of the collector. This
is a better description of the system, in which the solar radiation �rst heats up
the collector which then heats up the �uid. Finally, the fourth expanded model
TmToComp2 is a combination of the two approaches, where the collector is �rst
divided in two parts - one for the �uid and one for the collector - which then
each are divided into two compartments in the �ow direction of the �uid.



E.5 Applied grey-box models 135

E.5.1 Models with multiple compartments in the �ow di-

rection

The ToComp1 model can be expanded to a nc compartment model with the
system equations

dTo1 =
(
F ′U0(Ta − Tf1) + nccfQf(Ti − To1) + F ′(τα)enKταb(θ)Gb (E.12)

+ F ′(τα)enKταdGd

) 2

(mC)e
dt+ σ1dω1

dTo2 =
(
F ′U0(Ta − Tf2) + nccfQf(To1 − To2) + F ′(τα)enKταb(θ)Gb

+ F ′(τα)enKταdGd

) 2

(mC)e
dt+ σ2dω2

...

dTonc
=
(
F ′U0(Ta − Tfnc

) + nccfQf(To(nc−1) − Tonc
) + F ′(τα)enKταb(θ)Gb

+ F ′(τα)enKταdGd

) 2

(mC)e
dt+ σnc

dωnc

where nc is the number of compartments. The accompanying measurement
equation is

Yk = Tonck + ek (E.13)

Two models of this type are �tted to the data: ToComp2 with two compart-
ments, and ToComp3 with three compartments. A diagram illustrating To-
Comp2 is shown in Figure E.5

F ′(τα)enKταb(θ)Gb

F ′(τα)enKταdGd

QfcfTi

QfcfTo2

Ufa(Ta − Tf2)

Tf1 = Ti+To1
2

TiTf2 = To1+To2
2

To1

Ufa(Ta − Tf1)

F ′(τα)enKταb(θ)Gb

F ′(τα)enKταdGd

To2

QfcfTo1

Figure E.5: The ToComp2 model with two compartments in the �ow direction
of the �uid.
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E.5.2 Models divided into a collector and a �uid part

The TmToComp1 model illustrated in Figure E.6, where the panel is divided
into two parts, has the system equation

dTm =
(
F ′(τα)enKταb(θ)Gb + F ′(τα)enKταdGd + Ufm(Tf − Tm) (E.14)

+ Uma(Ta − Tm)
) 1

(mC)e
dt+ σmdωm

dTo =
(
Ufm(Tm − Tf) + cfQf(Ti − To)

) 2

(mC)e
dt+ σodωo

It is seen that the solar radiation enters the collector part, which then heats
up the �uid by conduction. Of the considered models the most detailed model
is TmToComp2, in which the collector is both divided into two parts and 2
compartments in the �uid �ow direction for each part. The following system
equations is formulated for a model with two parts having each nc compartments

dTm1 =
(
F ′(τα)enKταb(θ)Gb + F ′(τα)enKταdGd + Ufm(Tf1 − Tm1) (E.15)

+ Uma(Ta − Tm1)
) 1

(mC)e
dt+ σm1dωm1

dTo1 =
(
Ufm(Tm1 − Tf1) + nccfQf(Ti − To1)

) 2

(mC)e
dt+ σo1dωo1

dTm2 =
(
F ′(τα)enKταb(θ)Gb + F ′(τα)enKταdGd + Ufm(Tf2 − Tm2)

+Uma(Ta − Tm2)
) 1

(mC)e
dt+ σm2dωm2

dTo2 =
(
Ufm(Tm2 − Tf2) + nccfQf(To1 − To2)

) 2

(mC)e
dt+ σo2dωo2

...

dTmnc =
(
F ′(τα)enKταb(θ)Gb + F ′(τα)enKταdGd + Ufm(Tfnc − Tmnc)

+Uma(Ta − Tmnc)
) 1

(mC)e
dt+ σmncdωmnc

dTonc
=
(
Ufm(Tmnc

− Tfnc
) + nccfQf(To1 − Tonc

)
) 2

(mC)e
dt+ σonc

dωonc

i.e. the TmToComp2 model has nc = 2.
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E.6 Results

In this section the results of the parameter estimation with the described models
are presented. Firstly, the results from the traditional MLR models �tted on the
entire data set of 10 minutes values is presented, secondly from grey-box model
ToComp1 �tted on individual days of 10 minutes values, and �nally all grey-
box models �tted on 30 seconds values from the 10'th of May. The parameter
estimates together with the their standard deviation are presented in tables,
and time series of the residuals together with other relevant error measures are
plotted. A short outline of the model identi�cation carried out is also provided.

E.6.1 MLR models

The parameter estimates are listed in Table E.1. The estimates are clearly within
the typical range for this type of collector, see Perers (1993) and Solar Keymark
homepage (Solar Keymark, 2011). The collector under test has been in operation
for 15 years, this a�ects the parameter values compared to todays products. The
standard deviations show that the parameters are very accurately determined.
The only non-signi�cant term are F ′U1 in MLR3, which leads the conclusion
that MLR2 is the most appropriate model of the three. For evaluation of the
model �t the measured collector output versus the predicted is plotted in Figure
E.7. It is seen that the measured output is predicted very well, although it does
seems like the variance increase slightly with the output. This is most likely due
to the periods with low �ow rate for some of the days. Furthermore the inlet
temperature variation range is not fully as high as speci�ed in the standard for
the selected days.

F ′(τα)enKταb(θ)Gb

F ′(τα)enKταdGd

QfcfTi

QfcfTo

Uma(Ta − Tm)

Tf =
Ti+To

2To Ti

TmUfm(Tm − Tf)

Figure E.6: Diagram illustrating the TmToComp1 model. The collector is
divided into a part representing the �uid and another part repre-
senting the collector.
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Parameter MLR1 MLR2 MLR3 Units

F ′(τα)en 0.737 (0.0031) 0.741 (0.0030) 0.746 (0.0043)
b0 0.166 0.172 0.175
Kταd 0.891 0.904 0.895

F ′U0 2.18 (0.45) 2.13 (0.045) 2.02 (0.082)
[
W/(m2K)

]
F ′U1 0.0031∗ (0.0020)

[
W/(m2K)

]
F ′Uw 0.192 (0.034) 0.179 (0.035)

[
W/(m2K)

]
(mC)e 4699 (130) 4751 (127) 4788 (129)

[
J/(m2K)

]
Table E.1: Parameter estimates with MLR models. The standard deviation of

the estimate is in parenthesis to the right of the estimated value.
Insigni�cant terms are marked with ∗.

0 200 400 600
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Figure E.7: Measured versus the predicted collector output from MLR2.

E.6.2 ToComp1 �tted to 10 minutes values

The single state grey-box model de�ned in Equation (E.6) is �tted to both
10 minutes values from four separate days and all four pooled together. The
estimated parameter are listed in Table E.2. Clearly the parameter estimates
matches the estimates from the MLR models quite well considering the standard
deviations, especially the parameters F ′(τα)en and F ′U0, which are the most
important parameters for evaluation of the collector performance. A very ap-
parent deviation of the results between the days is that the lowest uncertainty
is found on the 5'th of May. This is not a surprise considering a plot of the
residuals, which is shown in the lowest plot of Figure E.3. The level of the
residuals from the �t to this day are smaller than for the other days, and this is
apparently due to the level of the �uid �ow, which is plotted above the residuals
in the �gure. The parameter estimates based on the four days pooled together
seems like a compromise between the estimates from the single days.
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2011-05-02 2011-05-04 2011-05-05

F ′(τα)en 0.755 (0.032) 0.785 (0.032) 0.746 (0.0086)
b0 0.204 (0.039) 0.201 (0.046) 0.18 (0.017)
Kταd 0.903 (0.42) 0.857 (0.11) 0.819 (0.027)
F ′U0 2.07 (1.1) 2.4 (0.35) 1.73 (0.13)
(mC)e 6050 (1060) 6200 (1130) 5040 (279)

2011-05-10 Pooled

F ′(τα)en 0.758 (0.014) 0.763 (0.011)
b0 0.182 (0.023) 0.195 (0.020)
Kταd 0.867 (0.049) 0.839 (0.034)
F ′U0 2.16 (0.26) 2.05 (0.18)
(mC)e 5020 (92) 5666 (638)

Table E.2: Parameter estimates from ToComp1 �tted to 10 minutes values
from single days and all four days pooled. The standard deviation
is given in parenthesis to the right of the estimate.

E.6.3 Grey-box models �tted to 30 seconds values

The �ve grey-box models described are �tted to the data from the 10'th of May
resampled to 30 seconds averages. The parameter estimates are listed in Table
E.3. First, it is noticed that the parameters of the three models pre�xed with To
are not representing the same physical entities as they do in the models pre�xed
with ToTm, since the collector is lumped di�erently in the models. The increase
of the value of F ′(τα)en from To to ToTm models is found to be consistent
with the physical representation, since the reference temperature is closer to
the absorber surface. This means that the estimated optical parameter for the
ToTm models is rather τα. The value F ′ is in the range of 0.95 for this collector
design, which leads to an estimate of F ′(τα)en to 0.752 for ToTmComp2.

Plots of the residual series from each model are shown in Figure E.8. Clearly the
level of the residuals decrease from the upper to the lower plot and the highest
errors occur when a cloud passes by and the level of direct solar radiation shifts
rapidly. The decreased level of the variation of the residuals indicates that the
more detailed models are better. To verify this, statistical likelihood-ratio tests
is applied as described by Bacher and Madsen (2011). The log-likelihood of the
�t for each model is listed in Table E.4, together with the number of parameters,
and the p-value of tests for model expansion. The tests for expansion is a model
versus the expanded model a single step to the right in the table, except for
nl2TmToComp1, from which the expansion is from nl2ToComp2. The results
of the tests are very clear, all expansions are signi�cant. Hence it is concluded
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Prm. ToComp1 ToComp2 ToComp3

F ′(τα)en 0.767 (0.0036) 0.751 (0.0027) 0.743 (0.0015)
b0 0.172 (0.0063) 0.177 (0.0017) 0.18 (0.00044)
Kταd 0.942 (0.015) 0.933 (0.0042) 0.931 (0.002)
Ufa 2.55 (0.076) 2.31 (0.049) 2.2 (0.023)
Ufm

Uma

Cf 6960 (80) 8020 (17) 8580 (36)
Cm

Prm. TmToComp1 TmToComp2

F ′(τα)en 0.816 (0.0025) 0.792 (0.00096)
b0 0.188 (0.0038) 0.189 (0.00067)
Kταd 0.929 (0.008) 0.927 (0.0021)
Ufa

Ufm 49.8 (2.5) 83.7 (0.83)
Uma 2.37 (0.042) 2.22 (0.016)
Cf 3750 (114) 3390 (54)
Cm 962 (64) 1690 (22)

Table E.3: The parameter estimates from the grey-box models �tted to 30 seconds
values from the 10'th of May. Note that the parameters represent dif-
ferent physical entities from the three �rst model (pre�xed with To) to
the last two models (pre�xed with TmTo) and therefore cannot be di-
rectly compared. For each estimate the standard deviation is given in
parenthesis to the right of the estimate.

that nl2TmToComp2 is the most suitable model of these �ve models and that
it might very well be, that the model could be further expanded. Finally, the
auto-correlation function (ACF) and the cumulated periodogram (CP) Madsen
(2007) of the residuals are shown in Figure E.9. The dashed blue lines indicate
95% con�dence intervals for a white noise. According to theory, presented in
Section E.2, then if the residual series are white noise this indicates that the
grey-box model is consistent with the observed heat dynamics of the collector.
From the ACF and CP it is seen that the residuals are close to having white
noise properties. Interestingly it is seen that residuals from ToComp1 are more
white noise like than the residuals from TmToComp1. It is found that this is
caused by a low signal to noise ratio in the residuals for ToTmComp1, i.e. the
dominating errors are on a high frequency which have characteristics like white
noise. As the detailed models includes the faster dynamics, the high frequency
errors are decreased, and they do not �hide� the remaining signal components
in the residuals. However for the most detailed model almost all the systematic
variation in the data is described.
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Figure E.8: The residual series from the grey-box models �tted to 30 seconds
values from the 10'th of May. The greyed series are the direct
solar radiation.

nl2ToComp1 nl2ToComp2 nl2ToComp3

Log-likelihood -35.51 454.8 661
Number of prm. 9 12 14
p-value ≈ 0 ≈ 0

nl2TmToComp1 nl2TmToComp2

Log-likelihood 1185 1307
Number of prm. 13 18
p-value ≈ 0 ≈ 0

Table E.4: Log-likelihood, number of parameters, and p-value of likelihood-
ratio tests for model expansion for each of the grey-box models.
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Figure E.9: Plots of the auto-correlation function (ACF) and the cumulated
periodogram of the residuals from each of the grey-box models
�tted on 30 seconds values.
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E.7 Discussion and applications

In general the results from the MLR models and the grey-box are found to match
well, but it is noted that the result the from grey-box model ToComp1 �tted on
separate days - which have di�erent conditions, especially in the �uid �ow level
- gives some variation to the estimates. Therefore it is concluded that attention
has to be put on the experimental design in order to ensure stable and accurate
parameter estimation for collector testing with grey-box models. Regarding the
more detailed grey-box models �tted to 30 seconds values, it is found that since
the likelihood is not saturated, i.e. the likelihood-ratio tests are very signi�cant,
further expansion of the TmToComp2 is still possible. From the plots of the
residuals in Figure E.8, it is seen that the error level certainly is highest just
after the direct radiation shifts its level very rapidly, and it is this e�ect that
seems to be improved as the more detailed models are used. Hence the main
improvement from the one-state model ToComp1 to the multi-state models
are in the description of the fast dynamics, which includes the delay caused by
movement of the �uid through the collector, e.g. when the direct radiation shifts
from a high to a low level, the �uid passing out of the collector are still hot for
some time. This also indicates the importance of the experiment design, since
for dynamic condition the frequency, with which the system is excited, a�ect
which grey-box model is optimal. For example if the direct radiation varies with
a lower frequency, a simpler model might be in favour over more complex models,
whereas for variation with a higher frequency the inclusion of the fast dynamics
are more important. Therefore if the main excitation of the system, i.e. the
direct radiation, can be controlled, it will be possible to achieve fast and accurate
parameter estimation. This could be carried out with a simple shadowing device,
which should be controlled with PRBS signal to gain maximum information of
the heat dynamics of the system (Madsen and Holst, 1995). Higher accuracy
can also be achieved with more systematic variation of the inlet temperature,
this also applies for the MLR modelling. The right experiment design will allow
inclusion of night measurements - which will improve the separation of heat loss
and radiation e�ects and thereby more accurate estimation - and furthermore
allow for inclusion of more e�ects, such as wind and non-linear radiation e�ects
between the collector and the surroundings. Finally, dividing the collector into
more parts, e.g. one representing the �uid, one representing the metal, and one
representing the surrounding collector body could be tried.

E.7.1 Applications

The most apparent application of grey-box modelling of the heat dynamics of
solar collectors are for the development of fast and accurate performance testing,
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especially for some types of collectors multi-state models are needed to obtain
a required level of accuracy. Especially vacuum tube collectors of dewar type
can have an extra time delay due to the high thermal resistance between the
heat transfer �uid and absorber surface that is not fully taken up by the present
collector model used for performance testing. The new approach described here,
particularly with the TmTo models, has the potential to deal with this in an
accurate way. Additional applications include optimization of operation with
model predictive control, which the grey-box models are perfectly suited for.
Especially larger solar thermal plants might be able to gain much in performance
by applying grey-box modelling and model predictive control.

E.8 Conclusion

Successful modelling of a the heat dynamics of a solar collector with grey-box
models has been carried out. The results have been compared to the EN-
standard MLR modelling and they are in agreement. It is shown that high
accuracy parameter estimates was obtained with measurements from a single
day resampled to 30 seconds average values. This will enable lowering of testing
time signi�cantly compared to current test methods. Highly detailed models
of the heat dynamics of the solar collector can be applied, which can be useful
for many types of collectors. It is found that the conditions under which the
experiment was carried out in�uence the parameter estimates. Therefore it is
concluded that experiment design is the key to achievement of fast, reliable and
high accuracy collector testing methods with grey-box models. Experiments
with PRBS variation of direct radiation with shadowing device should be car-
ried out to obtain higher accuracy and reproducibility of the results, and �nally
models with more explanatory variables, such as wind and long-wave radiation
should be further elaborated.
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Abstract

This paper present a method for forecasting the load for space heating in a
single-family house. The forecasting model is built using data from sixteen
houses in Sønderborg, Denmark, combined with local climate measurements
and weather forecasts. Every hour the hourly heat load for each house the
following two days is forecasted. The underlying basis of the method is physical
knowledge of building heat dynamics, which, combined with statistical models,
leads to a grey-box modelling approach. The forecast models are adaptive linear
time-series models and the climate inputs used are: ambient temperature, global
radiation, and wind speed. The adaptivity over time is achieved with a recursive
least squares scheme, which is computationally very e�cient. Also included is
a diurnal curve for modelling patterns in the residents behavior, for example a
nightly setback. The models are optimized to �t the individual characteristics
for each house, such as the level of optimal adaptivity and the thermal dynamical
response of the building, which are modelled with simple transfer functions. The
identi�cation of a model, which is suitable for application to all the houses, is
carried out. The results show that the one-step (one hour) ahead errors are
close to white noise and that practically all correlation to the climate variables
are removed with the model. Furthermore the analysis of the results shows that
the main sources to forecast errors are related to: unpredictable high frequency
variations in the heat load signal (predominant only for some houses), shifts in
resident behavior, and uncertainty of the weather forecasts for longer horizons,
especially the solar radiation is a challenge.

F.1 Introduction

The transition to an energy system based on renewables requires methods for
forecasting of energy load and production. In Denmark around 40% of the total
energy consumption is related to buildings and around 29% of the energy for
space heating is covered by individual oil or gas �red furnaces (Danish Com-
mission on Climate Change Policy, 2010b), which is neither an economically
feasible nor environmentally friendly technology. The Danish Commission on
Climate Change Policy recommends replacement with alternative technologies,
especially heat pumps, since this is one of the socio-economically cheapest ini-
tiatives in the transition to an energy system without fossil fuels in Denmark.
Hence, new and alternative technologies for building space heating based on
renewable energy production are of high interest, both for individual and dis-
trict heating. Especially electrical heating systems since large amounts of wind
power are available, which creates a need for �exible load in order to absorb the
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volatile production. As the level of electrical load increase, even load-shifting in
shorter periods of time for peak-shaving of the diurnal electrical consumption is
a valuable service to the grid (Danish Commission on Climate Change Policy,
2010a). Flexible load can be achieved with thermal energy bu�ering, both in
individual heating and district heating, where huge thermal storage capacity is
available. Several studies are considering the possibilities for �exible heating,
for example Pedersen et al. (2011) and Chen (2001) who presents methods for
energy storage in the thermal mass of the building, and Reddy et al. (1991)
and Henze et al. (2004) who consider load-shifting for cooling of buildings. The
present paper presents a method for forecasting of the power load for space
heating in a single-family house. The heat load forecasts can be used as input
to model predictive control, which can be used for load-shifting, for example for
operation under energy markets, where relocation of load to periods with cheap
energy will be rewarded. The method can just as well be used for forecasting of
cooling load and used for load-shifting with cool thermal storage. Perers et al.
(2011) presents solar combisystems, which is a heating system based on a so-
lar thermal collector and electrical heating, where a hot water tank is used for
thermal energy storage. Forecasting of the heat load is vital for optimal and
e�ective use of the thermal storage in such a system.

Forecasting of the load for space heating is carried out for sixteen houses in
Sønderborg, Denmark. Every hour a new forecast is calculated of the hourly
heat load up to 42 hours ahead. The houses are generally built in the sixties
and seventies, with a �oor plan in the range of 85 to 170 m2, and constructed in
bricks. Climate observations - which are measured at the local district heating
plant within 10 kilometers from the houses - together with numerical weather
predictions (NWPs) are used as input to the forecasting model. The NWPs
are from the HIRLAM-S05 model and provided by the Danish Meteorological
Institute. For each house only the total heat load, including both space heating
and water heating, is available. The heat load signal is �rst separated into
two signals: a signal for space heating and a signal for water heating. The
space heating signal is then forecasted. The splitting allows for a clear view of
the e�ects stemming from heat loss to the ambient and heat gains from solar
radiation etc., since the noisy peaks from how water heating is �ltered out. The
indoor temperature is not available, which is accounted for in the models by
including a diurnal curve to model nightly setback and behavioral patterns of
the residents e.g. heat from electrical appliances used for cooking.

Very many approaches to load forecasting are found in the literature. A good
overview of references are given by Mestekemper (2011), who built load forecast-
ing models using dynamic factor models. Dotzauer (2002) use a model based on
the ambient temperature and a weekly pattern for forecasting of the heat load in
district heating, i.e. the total heat load for many houses. Zhou et al. (2008) use
a grey-box model based on transfer functions for building thermal load predic-
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tion and validates it on a 50 �oors multi purpose building. The models applied
in the present study are originally developed and used for forecasting of heat
load in district heating, as described in (Nielsen et al., 2000) and (Nielsen and
Madsen, 2006). The total heat load for many houses together have less high
frequency variation, due to the averaging e�ects, compared to the heat load for
a single house. Emphasis in the present study is put on the variability in heat
load among the individual houses, for example some react more than others to
solar radiation, and especially the diurnal pattern is very di�erent among the
studied houses.

The paper starts with a section in which the data and the NWPs are described.
This is followed by a presentation of the modelling approach and the model
identi�cation, where a suitable forecasting model is found together with a dy-
namic model for the remaining noise. Finally the results are presented, and the
method is discussed and concluded.

F.2 Data

The data used in the study consist of heat load measurements from sixteen
houses in Sønderborg, Denmark, and local climate measurements and NWPs.
All times are in UTC and the time stamp for average values are set to the end
of the time interval.

F.2.1 Heat load measurements

The houses are typical Danish single family houses from the sixties and seventies.
Only houses with radiator heating is considered. A single signal for each house is
used, which consist of both the energy for space heating and hot water heating.
The heat load measurements consist of 10 minutes average values. Time series
plots over the entire period, spanning nearly two and a half years, for four of the
houses are shown in Figure F.1. Also shown, with red lines, is the distribution
over time, which are estimates of the 0%, 2%, . . . , 98%, 100% quantiles. They are
estimated using local quantile regression (Koenker, 2005), where the weighting
is local in time. They clearly indicate that the distribution of the heat load
is heavily skewed, for example only two percent of the values are between the
two upper lines, which cover more than half of the range. The reason for this
skewness is seen from Figure F.2, where 10 days of heat load for the same four
houses is plotted. The heat load for water heating consist of high frequency
spikes added to the more slowly varying space heating signal. The highest peaks
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Figure F.1: The heat load for four selected houses over the entire period, which
is nearly spanning two and a half years. The red lines are esti-
mates of the 0%, 2%, . . . , 98%, 100% quantiles, which indicate the
distribution of the heat load at a given time.

are from showers and cause the high skewness. Since it is wanted to study the
space heating part, then each signal is splitted into a space heating part and a
water heating part - with the method described in (Saint-Aubain, 2011) used
causally. On the �gure the part of the signal identi�ed as water heating is
marked with red, note that it is added on top of the space heating signal in
the plot. After the splitting the series are resampled into hourly average values.
The hourly space heating for a single house is denoted by

{Qt; t = 1, . . . , N} (F.1)

whereN = 21144 and the unit is kW. Notice that no distinguishment in between
the houses is used in the notation, but when the results are presented the house
number, ranging from 1 to 16, is clearly stated.

F.2.2 Local climate observations

The local climate observations are from a weather station at the district heating
plant in Sønderborg, which is less than 10 kilometers from the houses. The data
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Figure F.2: Heat load for four selected houses for the �rst 10 days of March
in 2010. The peaks marked with red are the parts which are
identi�ed as water heating and the black line is the space heating
part. Note that the water heating is added on top the space
heating signal.

is resampled to hourly average values and the following time series are used:

Ambient temperature:
{
T a,obs
t ; t = 1, . . . , N

}
(F.2)

Global radiation:
{
Gobs
t ; t = 1, . . . , N

}

Wind speed:
{
W s,obs
t ; t = 1, . . . , N

}

F.2.3 Numerical weather predictions

The numerical weather predictions (NWPs) used for the forecasting are pro-
vided by the Danish Meteorological Institute. The NWP model used is DMI-
HIRLAM-S05, which has a 5 kilometer grid and 40 vertical layers (DMI, 2011).
The NWPs consist of time series of hourly values for climate variables, which
are updated four times per day and have a 4 hour calculation delay (e.g. the
forecast starting at 00:00 is available at 04:00). Since a new two day heat load
forecast is calculated every hour, then - in order to use the latest available in-
formation - every hour the latest available NWP value for the k'th horizon at
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time t is picked as

Ambient temperature (◦C): T a,nwp
t+k|t (F.3)

Global radiation (W/m2): Gnwp
t+k|t

Wind speed (m/s): W s,nwp
t+k|t

Wind direction (◦azimuth): W d,nwp
t+k|t

F.2.4 Combining local observations with NWPs

To include the building heat dynamics in an e�cient way, the inputs are low-
pass �ltered as explained in Section F.3.3. Hence, for the forecast calculated at
time t, past values of the inputs are being used. In order to use the information
embedded in the local measurements they are combined with the NWPs. The
combining is carried out by forming the time series for each of the inputs at
time t, for a speci�c horizon k, by

{
T a
t+k|t

}
=
{
. . . , T a,obs

t−1 , T a,obs
t , T a,nwp

t+1|t , T
a,nwp
t+2|t , . . . , T

a,nwp
t+k|t

}
(F.4)

{
Gt+k|t

}
=
{
. . . , Gobs

t−1, G
obs
t , Gnwp

t+1|t, G
nwp
t+2|t, . . . , G

nwp
t+k|t

}

{
W s
t+k|t

}
=
{
. . . ,W s,obs

t−1 ,W s,obs
t ,W s,nwp

t+1|t ,W
s,nwp
t+2|t , . . . ,W

s,nwp
t+k|t

}

{
W d
t+k|t

}
=
{
. . . ,W d,nwp

t−1|t ,W
d,nwp
t|t ,W d,nwp

t+1|t ,W
d,nwp
t+2|t , . . . ,W

d,nwp
t+k|t

}

Notice that local observations are not available for the wind direction.

F.3 Models

As mentioned earlier the applied models are similar to the models used by
Nielsen and Madsen (2006) for modelling of the total heat load for many houses.
The models are based on prior physical knowledge of the heat dynamics of
buildings, which in combination with statistical time series models, forms a grey-
box modelling approach. This allows for inclusion of heat transfer e�ects related
to the climate variables in a combination with time adaptivity for modelling of
changing condition. Furthermore, in order to describe of patterns in resident
behavior, a diurnal curve is included. The forecasting models are �tted, by
optimizing the parameters to minimize the RMSE in an o�-line setting. The
�tting is carried out separately for each house and for each horizon k, which
means that the same model formulation - i.e. same inputs and model structure
- is used, but the parameter values for each house and horizon can be di�erent.
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F.3.1 Time adaptive models

The models are �tted with the k-step recursive least squares scheme described
by Bacher et al. (2009). This means that the coe�cients in the model can change
over time and thereby adapt optimally to changing conditions. The coe�cients
are recursively updated, which means that only a few matrix operations are
required to make a new forecast, hence the scheme is computationally very fast.
It is a recursive implementation of a weighted least squares estimation, where
the weights are exponentially decaying over time. A single parameter is required,
the forgetting factor λ, which determines how fast input data is down-weighted.
The weights are equal to

w(∆t) = λ∆t (F.5)

where ∆t is the age of the data in hours. This means that for λ = 0.98 the
weights are halved in 34 hours, for λ = 0.995 they are halved in 138 hours (∼ 6
days), and for λ = 0.999 in 693 hours (∼ 29 days).

F.3.2 Diurnal curve

A curve for describing systematic diurnal patterns in the heat load is included
in the models, which for example can be caused by a nightly setback and free
heat from electrical appliances. The curve is modelled as a harmonic function
using a Fourier series

µ(ttod, αdiu) =

nhar∑

i=1

αdiu
i,1 sin

( ttodiπ

12

)
+ αdiu

i,2 cos
( ttodiπ

12

)
(F.6)

where ttod is the time of day in hours at time t and nhar is the number of
harmonics included in the Fourier series. For all the applied models a curve is
�tted for working days and another curve for weekends.

F.3.3 Low-pass �ltering for modelling of building dynam-

ics

The heat dynamics of a building can be described by lumped parameter RC-
models, see for example (Madsen and Holst, 1995), (Braun and Chaturvedi,
2002), and (Jiménez et al., 2008). As described by Nielsen and Madsen (2006)
the response in the heat load to changes in the climate variables can be modelled
with rational transfer functions, which is a description of the low-pass �ltering
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e�ect of the building with an RC-model. In the present models the simplest
�rst order low-pass �lter, with a stationary gain equal to one, is used. This is
a model of the building heat dynamics formed by an RC-model with a single
resistance and a single capacitor. As an example the transfer function from the
ambient temperature to the heat load is

Qt = Ha(q)T a
t (F.7)

where

Ha(q) =
1− aTa

1− aTaq
−1

(F.8)

and where q−1 is the backward shift operator (q−1xt = xt−1) (see (Madsen,
2007)) and aTa

∈ [0, 1] is a parameter, which is equivalent to the time constant
for the part of the building a�ected by changes in ambient temperature. A
building with a high thermal mass and good insulation will have a relatively
high aTa , hence the �lter parameter needs to be estimated for each building in
order to describe the heat dynamics properly. First order low-pass �lters are
also applied for wind speed and global radiation, with the �lter parameter is
estimated for matching of the response of the building to each of the climate
variable separately.

F.3.4 Parameter optimization

As described above several parameters needs to be optimized for each house and
horizon. The optimization is carried out in an o�-line setting by minimizing the
root mean square error for each of the sixteen houses and for each horizon k =
1, . . . , 42 separately. This does require some computational power, especially
the low-pass �ltering of the inputs. Therefore a simple bisectioning scheme is
applied for the optimization, since this allows for performing a �ltering of the
inputs only once for parameter values in a given range. Then these series can
be used for optimization for all the houses and horizons.

The following parameters are optimized

• The forgetting coe�cient: λ

• The number of harmonics in the diurnal curve: nhar

• The coe�cients for input low-pass �lters: aTa
, aG, and aWs
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F.4 Model identi�cation

Forecasting models, which include di�erent types of heat transfer e�ects related
to the climate variables, are applied to identify which of the inputs are important
to include. Furthermore di�erent ways for the inputs to enter the model are
tried. See (Nielsen and Madsen, 2006) for a description of how a physical model
can be rewritten into the identi�able models, which are used here. The model
which include all energy contributions is

Qt+k = Q̂t+k|t + et+k (F.9)

where

Q̂t+k|t = Qa +Qg +Qw (F.10)

where the Qname variables on the right side of the equation represents the heat
contributions from the considered heat transfers, which are described below.

F.4.1 First step in model selection

To select a suitable forecasting model a forward selection approach is used. In
the �rst step the modelD

Q̂t+k|t = αia + µ(ttod, αdiu) (F.11)

which do not include the climate inputs, is �tted. In this model the heat load is
simply modelled as a diurnal curve with an o�set. Note that αia then represents
a constant di�erence between the indoor and the ambient temperature and the
diurnal part will try to capture diurnal patterns in both the indoor and ambient
temperature. Due to the time adaptive scheme the model will be able to track
the slow changes in the temperatures over the year. Finally note also that the
coe�cients could have been denoted with: a t to indicate that they are changing
over time, a house number to indicate that they are �tted to each house, and a
k to indicate that the model is �tted for each horizon separately, but this have
been left out for better readability.

To �nd out if there is useful information available in the climate series as in-
puts to the model, the cross-correlation function (CCF), see (Box et al., 1976),
between the one-step ahead (k = 1 hour) error for modelD and the available
input series is calculated - which is prefered over the NWPs, as it is mainly
the observations which are used for the one-step ahead forecast. Since it is too



F.4 Model identi�cation 157

cumbersome to analyze the error series for each house separately, the average
error

ēt+k =
1

nhouses

nhouses∑

i=1

eHouse i
t+k (F.12)

where nhouses = 16 are the number of houses and eHouse i
t+k is the error series for

House i, is used. In this way the CCF to the inputs is summarized for all the
houses in a single plot. This will of course only show if an input is generally
important to include and not the e�ects for each individual house. The e�ects
related to each house - which are di�erent - are considered in later parts of the
paper.

The CCF between the average errors from modelD to the inputs can be seen in
Figure F.3a. Clearly very signi�cant correlations between the error and both
the ambient temperature and the global radiation, but apparently none to the
wind speed, are found. It is decided to add the ambient temperature as input
to the model, which leads to modelA

Q̂t+k|t = Qa (F.13)

where

Qa = αi + µ(ttod, αdiu) + αaHa(q)T a
t+k|t (F.14)

The Ha(q) is the low-pass �lter modelling the dynamics of the building envelope,
i.e. the response of in heat load to changes in ambient temperature. Notice that
the intercept αi is representing a constant indoor temperature modi�ed by the
diurnal curve.

In order to �nd out if any gain in forecasting performance is achieved from
modelD to modelA the root mean square error is used for evaluation as described
in the following.

F.4.1.1 Root mean square error evaluation

To evaluate the models the root mean square error (RMSE) for the k'th horizon

RMSEk =

(
1

N

N∑

t=1

e2
t+k

) 1
2

(F.15)

is used together with the RMSEk improvement

IRMSE = 100 · RMSEref − RMSE

RMSEref
(%) (F.16)
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(c) Step three: CCF for modelA.G errors to
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(d) Step four: CCF for modelA.G.W errors to
the inputs.

Figure F.3: The cross-correlation function (CCF) between the average error
series for the one-step ahead forecast (horizon k = 1) and the local
observations of the inputs, since the inputs for the one-step ahead
forecasts are primarily formed by the observations. The plots are
for the errors from the selected model in the four steps of model
identi�cation carried out.
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over the currently selected model as reference. It is noted values not in the
heating season - which starts the 15'th of September and ends 15'th of May in
Denmark - and values before the 15'th of March 2009, which is used as a burn-
in period, are excluded from the RMSEk calculation. For evaluation of the
inclusion of ambient temperature, the RMSEk improvement for modelA over
modelD is calculated. The average improvement for all horizons (from k = 1
to k = 42) for each house is plotted in Figure F.4a. A RMSEk improvement
for the each house in the range from 5 to 25 percent and around 14 percent in
average is achieved. This is clearly a signi�cant improvement, hence modelA is
preferred over modelD.

F.4.2 Second step in model selection

To explore the possibilities for further expansion of modelA the CCFs from the
average errors (de�ned in Equation (F.12)) to each of the climate series are
calculated. They are plotted in Figure F.3b. The correlation to the ambient
temperature is much lower than for modelD and the correlation to the global
radiation is more or less the same. The correlation to the wind speed has
increased, most likely this correlation was "overshadowed" by the correlation to
the ambient temperature for the modelD errors. Notice that there is a signi�cant
correlation decaying over 12 to 24 hours to the lagged inputs, which indicates
that dynamics should be included by low-pass �ltering.

To �nd the most important extension of modelA several extensions involving
the global radiation or the wind speed are �tted (i.e. the RMSEk is minimized
by tuning the parameters listed in Section F.3.4 for each house).

The �rst considered expansion is modelA.G

Q̂t+k|t = Qa + αgHg(q)Gt+k|t (F.17)

where the heat gain from solar radiation is included by letting the global radi-
ation enter through a low-pass �lter, which models the dynamic response from
the global radiation to the heat load of the building. The second expansion is
modelA.W

Q̂t+k|t = Qa + αwsHw(q)W s
t+k|t (F.18)

where the cooling of the building from wind is modelled by letting the wind speed
enter through a low-pass �lter. This is a model of wind cooling not depending on
the ambient temperature, however - due to the time-adaptive modelling scheme
- is does include the slow changes in temperature di�erence between indoor and
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Figure F.4: Improvements over the previously selected model for the models
in each step of the selection.
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ambient temperature. The third expansion is modelA.V

Q̂t+k|t = Qa + αventW
s
t+k|t (F.19)

which include an e�ect of ventilation modelled by inputting the instant e�ect of
wind speed to the heat load.

The RMSEk improvements averaged over all horizons for each house for the
considered expansions is plotted in Figure F.4b. It is seen that the performance
increase is highest for all the houses for modelA.G, hence this model is preferred
and used for expansion in the following step. In the remaining of the paper the
heat contribution from solar radiation is denoted by

Qg = αgHg(q)Gt+k|t (F.20)

F.4.3 Step three: Inclusion of wind speed in the model

In the third step of the model identi�cation several ways of including the wind
speed is considered. First the CCFs between the one-step ahead error, from the
model selected in the previous step, modelA.G and the inputs, are studied to see
if any useful information is remaining in the climate series.

First it is noted that the correlation to the global radiation has decreased com-
pared to the CCF plot for modelA, but that some is still left, indicating that the
dynamic e�ects are not entirely described by the model. Secondly it is noted
that there is a signi�cant cross-correlation to the wind speed and therefore it is
chosen to seek an expansion which include the wind speed. Five di�erent ways
of letting the wind speed enter the model are tried as described in the following.

The �rst expansion is formed by adding the wind speed through a low-pass �lter
for modelling of cooling of the building in modelA.G.W

Q̂t+k|t = Qa +Qg + αwsHw(q)W s
t+k|t (F.21)

and, for modelling ventilation, the instant e�ect of wind speed is added in
modelA.G.V

Q̂t+k|t = Qa +Qg + αwsW
s
t+k|t (F.22)

In the two models above the wind speed enter the model without the interac-
tion with ambient temperature, which means that the temperature di�erence
between the indoor and ambient temperature is modelled as constant and that
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changes are only tracked with the adaptivity of the model. In the following two
expansions the interaction is also included, with a �lter in modelA.G.Wa

Q̂t+k|t = Qa +Qg + αwsHw(q)W s
t+k|t + αwsaHw(q)W s

t+k|tT
a
t+k|t (F.23)

and as an instant e�ect in modelA.G.Va

Q̂t+k|t = Qa +Qg + αwsW
s
t+k|t + αwsaW

s
t+k|tT

a
t+k|t (F.24)

Finally the wind speed input coe�cient is conditioned on the wind direction in
modelA.G.Wd

Q̂t+k|t = Qa +Qg +

4∑

i=1

αiHw(q)K(u)W s
t+k|tT

a
t+k|t (F.25)

where the kernel function

K(u) = (1− |u|)1{|u|≤1} (F.26)

with

u =
((
W d,nwp
t+k|t + 45 + (i− 1) · 90

)
mod 4

)
− 1 (F.27)

makes four input series, which are linearly interpolated as a function of the
wind direction. The center of the kernels is thus at the most prevailing wind
directions in Denmark, especially southwest in the winter period (Cappelen and
Jørgensen, 1999).

The plot in Figure F.4c shows the improvements over modelA.G for the �ve mod-
els. The improvement is quite di�erent for each house, for some it is negative,
which is because the forecasting model becomes over-parametrized. It is also
seen that the pattern of the improvement among the houses are quite similar
for the �ve models, which indicates that for some houses the wind have a more
prevalent e�ect than for others. Since modelA.G.W generally have the most pos-
itive improvement and since it is the simplest extension, it is preferred over the
others. In the remaining of the paper the model part describing the e�ect of
wind is denoted with

Qw = αwsHw(q)W s
t+k|t (F.28)

F.4.4 Step four: Enhancement of the solar model part

In the �nal step the model part for solar radiation is enhanced in di�erent ways,
as described in the following. Studying the CCFs for modelA.G.W in Figure F.3d
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only very little correlation between the errors and the inputs are seen. There
is a little left to the ambient temperature and solar radiation. From studying
plots of the forecasts it is found that it could be possible to improve the model
part, where the e�ect of solar radiation is included.

First an additional input for the solar gain is added the model, this ismodelA.G2in.W

Q̂t+k|t = Qa +Qg + αg2Hg2(q)Gt+k|t +Qw (F.29)

This will allow for an additional dynamic response of the building to solar ra-
diation. Notice that an additional �lter coe�cient for the Hg2(q) �lter is �tted
here.

Secondly the solar radiation part is enhanced by using a two-pole �lter instead
of the one-pole �lter

Q̂t+k|t = Qa + αgH2pol(q)Gt+k|t +Qw (F.30)

where

H2pol(q) =
1− a1 − a2

1− a1q−1 − a2q−2
(F.31)

and

a1 = ag1 + ag2 and a2 = −ag2 (F.32)

The two �lter coe�cients thereby relate to di�erent dynamics: ag1 is related to
the highest time constant (slow response) and ag2 is related to the lowest time
constant of the building (fast response).

In the third model the solar radiation is separated into three inputs: one for the
morning, one for the noon, and one for the evening. This allows for the building
to have di�erent solar gains during the day. The modelA.Gspl.W is

Q̂t+k|t = Qa + αg1Hg(q)Gmorning
t+k|t + αg2Hg(q)Gnoon

t+k|t (F.33)

+ αg3Hg(q)Gevening
t+k|t +Qw

The three inputs are

Gmorning
t+k|t = Gt+k|t 1{t+k∈[trise, trise+∆t]} (F.34)

Gnoon
t+k|t = Gt+k|t 1{t+k∈[trise+∆t, tset−∆t]}

Gevening
t+k|t = Gt+k|t 1{t+k∈[tset−∆t, tset]}

where 1{} is the indicator function, trise and tset is the time of sunrise and sunset,
respectively, and ∆t = (tset − trise)/3 is a third of the day length.
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Finally two more possible enhancement is applied by projecting the solar radi-
ation onto a vertical surface tracking the solar azimuth angle. The projection
to vertical is carried out by �rst splitting the global radiation into a direct and
a di�use component as in (Ruiz-Arias et al., 2010) and onto a vertical surface
with the Hay and Davies model (Hay and Davies, 1980), see also (Reindl et al.,
1990). The e�ect of the projections is mostly an increased level of solar radia-
tion in the morning and in the evening (or afternoon), when the sun elevation
is low. In modelA.Gver.W

Q̂t+k|t = Qa + αgHg(q)Gver,tr
t+k|t +Qw (F.35)

the total vertical radiation is inputted and in modelA.Gbdv.W

Q̂t+k|t = Qa + αg1Hg(q)Gbeam,tr
t+k|t + αg2Hg(q)Gdiffuse,tr

t+k|t +Qw (F.36)

the direct (or beam) and the di�use component is inputted separately.

The models are �tted to each house and the improvements over modelA.G.W are
calculated and plotted in Figure F.4d. For modelA.G2in.W and modelA.G2po.W

only a little di�erence in performance is seen, and for modelA.Gspl.W the perfor-
mance has decreased. These three models become over-parametrized, however
it is noted that for short horizons the improvement for modelA.Gin2.W is pos-
itive for all the houses. For the last two: modelA.Gver.W and modelA.Gbdv.W,
the change in performance depends on the house. One interesting pattern is
that the houses with the highest change (both decreased and increased) are the
houses which bene�t most from addition of the solar radiation to the model,
as seen in the plot in Figure F.4b. This indicates that increased performance
can be gained with a model which modi�es the solar gain over the day. Such
a model should learn an optimal diurnal solar gain curve for each house. In
general no signi�cant overall increase in performance is found for any of the �ve
models, hence the model selection is ended and the results in the remaining of
the paper are from modelA.G.W, together with a model of the noise, which is
described in the following section.

F.5 Noise model

Considering the auto-correlation for the one-step ahead error for the houses,
shown in the upper plot of Figure F.5, it is found that a model is useful for de-
scribing dynamical information embedded in the errors. A simple auto-regressive
(AR) model is �tted to the errors with the recursive least squares scheme (Bacher
et al., 2009). The AR(1) model

et+k = aeet + enoise
t+k (F.37)
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Figure F.5: The auto-correlation function (ACF) for each house. The upper
plot is the ACF of the errors before the AR(1) noise model is
applied and the lower plot shows the ACF of the errors after.

is �tted for the errors from the selected model modelA.G.W for each horizon
k. The ACF of the noise error enoise

t+k can be seen in the lower plot of Figure
F.5. Compared to the upper plot almost all of the auto-correlation is for lag
1 is removed. Clearly, some of the houses still have signi�cant auto-correlation
left and for the short horizons an error model, which include more lags could
improve the performance. However it was tried to include one more lag (lag 2),
but this did only improve the overall performance marginally, mainly because
no performance improvement is achieved on longer horizons. The houses which
have the highest ACF (in particular House 11 and 16) have some high frequency
oscillations embedded in the heat load signal, as described in the following sec-
tion where the results are discussed. The average RMSEk improvement over all
horizons is in the range of 0.35% to 6.7%, hence a quite signi�cant improvement,
especially for some of the houses. The RMSEk improvement for the one-step
ahead forecasts is in the range 1.3% to 19%, which clearly shows that the noise
model is most important for short horizons.

F.6 Results

In this section the results from forecasting with the selected model are presented
and discussed. First the parameters, which are �tted for each house, are reported
and then the performance for individual houses is discussed.
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Figure F.6: Values of the parameters �tted for each house.

F.6.1 Model parameters

The parameters which are �tted for each house are listed in Section F.3.4. Since
there is a value for each horizon for each house for each parameter, they are
reported with the plots in Figure F.6. It is the general patterns which are
discussed in the following. Starting with the upper most plot in the �gure,
which is of the forgetting coe�cient λ in the recursive least squares scheme, it
can be seen that it has a tendency to be lower for the �rst couple of horizons: for
k = 1 the average over all the house is 0.9755, which means that the weighting
of the input data is halved in only 28 hours. This fast forgetting is most likely
optimal, because it is pro�table for the forecasting model to be able to react fast
to changes in to the system, e.g. residents increase the indoor temperature or
open the windows, which can be tracked on short horizons. On longer horizons
the forgetting is on a stable level: for k = 5 the average is 0.9953 increasing to
0.9963 for k = 42, which means that the weighting of the input data is halved
in around 8 days.

The second plot from the top in Figure F.6 is of the optimized number of
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House 1 2 3 4 5 6 7 8

aTa 0.96 0.91 0.91 0.96 0.94 0.96 0.95 0.96
τTa (hours) 27 11 10 25 16 27 21 26

House 9 10 11 12 13 14 15 16

aTa 0.94 0.97 0.95 0.96 0.95 0.94 0.96 0.92
τTa (hours) 17 32 18 24 19 15 25 13

Table F.1: Values of optimized low-pass �lter coe�cient for the response from
ambient temperature to heat load and corresponding RC time con-
stant τTa

in hours.

harmonics in the diurnal curve: a higher number means that it is pro�table to
include harmonics up to higher frequencies in the diurnal curve. Clearly, a huge
variation among the houses is found, which is very reasonable, since the diurnal
patterns are very di�erent as shown later in the paper.

The middle plot of the �gure is of the optimized coe�cient for the low-pass �lter
transfer function from the ambient temperature to the heat load. Except for
the two lowest lines the variation for each house as a function of the horizon k is
actually quite little (in the range of ±0.01), which leads to the conclusion that
this does describe very well, how fast the response of heat load is to changes in
ambient temperature for the house. In Table F.1 the average coe�cient for each
house is listed together with the equivalent RC time constants. The values are
within a reasonable range compared to values found in other studies (Nielsen
and Madsen, 2006), (Reddy et al., 1991).

The �tted values of low-pass �lter coe�cient for global radiation aG and for
wind speed aWs

are shown in the lower two plots of Figure F.6. The values
are all in the same range, generally between 0.8 and up to near 1, but with
some lower values for a couple of the houses, which are houses where the solar
radiation and wind speed are not very important inputs.

F.6.2 Forecasting performance

In this section the forecasting performance is presented and discussed, espe-
cially the di�erences in performance among the houses. For evaluation of the
performance the normalized root mean square error for each horizon

NRMSEk =
RMSEk
Q̄t

(F.38)
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Figure F.7: The NRMSEk as a function of the horizon k for modelA.G.W for
each house.

is used, where Q̄t is the average heat load for the house, which is calculated
with the same values as used for calculation of the RMSEk (see the text below
Equation (F.15)).

The plot in Figure F.7 shows the NRMSEk as a function of the horizon k
for each house using the selected modelA.G.W. Clearly the poorest forecasting
performance is for House 8. The explanation is found by considering the plot
for House 8 in Figure F.8, which shows the heat load together with the 1 hour
and 24 hour forecasts. The main reason for the poor forecasts is a very irregular
diurnal curve. A nightly setback makes a huge di�erence in heat load from day
to night and furthermore the time of day, where the heat is turned high again,
varies among the days and is probably controlled manually by the residents.
This is opposed to the nightly setback for House 10, which have a much more
regular pattern that can be much better forecasted.

Another source for high errors is seen in the plots for House 2 and 16, where noisy
�uctuations occur on the higher frequencies in the signals. The smaller �uctu-
ations are probably partly from water heating, which was not well separated
from the space heating, but clearly higher peaks not related to water heating
are seen. For House 11 a more steady, but still quite unpredictable, �uctuation
is seen, which is likely to come from some oscillation in the thermostatic control
of the heat system.

The heat load signals for House 1, 9, and 15 are much less volatile. These houses
are also the ones with a lower NRMSEk, as seen from the plot in Figure F.7.
The most obvious thing to notice is the deviation between the 1 and the 24 hour
forecasts. Starting with the drop on the 21'st of February, which is followed well
by the 1 hour forecast, but not by the 24 hour forecast. This drop is clearly
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caused by solar radiation. It is a clear-sky day as seen by the high level of
observed global radiation (the second uppermost plot of Figure F.8), which is
also predicted by the 24 hour NWP. However the drop is not followed by the 24
hour load forecast, since the previous day was also forecasted as a clear-sky day
by the 24 hour NWP, but it was not a clear-sky day as seen by the low observed
level. Hence there is a much higher uncertainty on the global radiation input to
the 24 hour model compared to the 1 hour model, which use mostly observations
as input, and therefore the global radiation is not given much weight in the 24
hour forecasting model. From the 1'st of March a sunny period begins and it can
be seen how the 24 hour forecasts starts to track the mid-day drops in heat load,
as more weight is put on the global radiation input due to the time adaptivity
of the modelling scheme. Finally it is noted that the drop the 23'th of February
and the peak the 27'th of February in the heat load for House 15 are not seen
in the other heat loads. It is attributed to residents behavior, which cannot be
forecasted - though it is tracked in the 1 hour forecast, but with a delay.

F.7 Discussion

For the data used in the study the indoor temperature was not available and
it is therefore modelled as constant modi�ed with a diurnal curve. If the in-
door temperature is available it will allow for advancements of the method by
including it as an input to the model. The estimation of a time constant for the
building can be carried out with higher accuracy, which will allow the method to
be used for smart grid applications, such as load-shifting by use of the building
structure for thermal storage.

Regarding the model part in which the solar radiation is entering, further ad-
vancements could be tried. For example more information about the individual
buildings such as the azumuth angle of the walls, would provide a more de-
tailed projection of the radiation from horizontal to vertical surfaces. However
it will be favorable for operation if no speci�c information about the buildings
is needed. The possibilities are then to try non-linear functions, which could
be applied with piecewise linear or regime switching functions depending on the
level of solar radiation, or a non-parametric approach could also taken with an
o�-line method for learning how the building respond to solar radiation over the
day. Finally it is found that performance can be increased by using di�erent
models depending on the horizon, especially it is more relevant to increase the
model complexity for shorter horizons.
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F.8 Conclusion

A method for forecasting the load for space heating in a single-family house
is presented. It is formed by adaptive linear time-series modelling techniques,
using local observations and weather forecasts as input. Based on measurements
from sixteen houses a model, which is suitable for all the houses, is identi�ed by
using a forward selection approach. It is shown how the forecasting performance
increases when the ambient temperature, global radiation, and wind speed are
added as inputs to the model. For inclusion of the heat dynamics of the building
into the model simple transfer functions are used. Several further advancements
to the model are tried, but this makes the model over-parametrized and results
in decreased performance. In a second step an auto-regressive model is applied
for modelling of the remaining dynamic information in the error. After this
it is shown that almost no auto-correlation is left in the errors and thereby
that the heat load is modelled very well. The model parameters, which have
been �tted individually for each house, are analyzed and it is found that they
provide reliable information about the dynamic response of the building. The
forecasting results are then analyzed thoroughly to give insight into the sources
of error, for example unpredictable behavior of the residents and uncertainty
in the inputs, especially from the solar radiation weather forecasts. Finally, a
discussion is given with ideas for further advancements.
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Revisions

Compared to the originally published paper the included paper has the following
revisions:

• The estimates of the parameters related to the system and measurement
noise have been included in Appendix G.9 together with a short discussion.
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Abstract

The present paper suggests a procedure for identi�cation of suitable models for
the heat dynamics of a building. Such a procedure for model identi�cation is
essential for better usage of readings from smart meters, which is expected to be
installed in almost all buildings in the coming years. The models can be used for
di�erent purposes, e.g. control of the indoor climate, forecasting of energy con-
sumption, and for accurate description of energy performance of the building.
Grey-box models based on prior physical knowledge and data-driven modelling
are applied. This facilitates insight into otherwise hidden information about the
physical properties of the building. A hierarchy of models of increasing com-
plexity is formulated based on prior physical knowledge and a forward selection
strategy is suggested enabling the modeller to iteratively select suitable models
of increasing complexity. The performance of the models is compared using
likelihood ratio tests, and they are validated using a combination of appropriate
statistics and physical interpretation of the results. A case study is described in
which a suitable model is sought after for a single storey 120 m2 building. The
result is a set of di�erent models of increasing complexity, with which building
characteristics, such as: thermal conductivity, heat capacity of di�erent parts,
and window area, are estimated.

G.1 Introduction

This paper describes a new method for obtaining detailed information about the
heat dynamics of a building based frequent readings of the heat consumption,
indoor temperature, ambient air temperature, and other climate variables. Such
a method is considered to be of uttermost importance as a key procedure for
better usage of readings from smart meters, which is expected to be installed in
almost all buildings in the coming years. The method is based on a procedure
for selecting a suitable model of the heat dynamics for a building. Rabl (1988)
gives an overview of techniques for steady state and for dynamic analysis of en-
ergy use in a building, the latter implicate modelling of the heat dynamics of the
building. Such dynamic models can be realized with a set of di�erential equa-
tions, as carried out by Sonderegger (1978) and Boyer et al. (1996). Parameter
estimation in dynamical models is known as system identi�cation and a survey of
di�erent approaches for buildings is found in Bloem (1994). The applied models
in the present method are grey-box models, which consist of a set of continuous
time stochastic di�erential equations coupled with a set of discrete time mea-
surement equations. Grey-box modelling is well proven as a comprehensive and
accurate method to model dynamical systems and thereby obtain knowledge of
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the thermal properties of a building, see Madsen and Holst (1995), Andersen
et al. (2000), and Jiménez et al. (2008). The problem of identifying a suitable
model is both �nding a model that is in agreement with the physical reality
and �nding a model, which has a complexity that is in agreement with the level
of information embedded in data, which means that the model should neither
be under-�tted nor over-�tted. The most suitable model is identi�ed from a
set of models of increasing complexity. A forward selection strategy is used, in
which the modeller starts out with the simplest feasible model and iteratively
selects models of increasing complexity. In each iteration the models are com-
pared using likelihood-ratio tests and the models performances are evaluated.
The selection procedure runs until no signi�cant improvement of the model is
found. See Pawitan (2001) and Madsen and Thyregod (2010) for an in-depth
assessment of likelihood theory and model selection. The procedure is demon-
strated by identifying a suitable model for a single storey 120 m2 building. The
building is part of the experimental distributed energy system, Syslab, at Risø
DTU in Denmark. It is constructed of wood on the outside and plaster boards
on the inside, with a layer of insulation wool in between. The data used spans
6 days and stems from a set of experiments for building energy performance,
which was carried out in the winter period of 2009. It is thoroughly described
in Bacher and Madsen (2010).

The remaining of the article is organized as follows. The applied grey-box
modelling technique is described in Section G.2, and in Section G.3 the statistical
test used for model selection is described. Then the suggested procedure for
identifying a suitable model is outlined in Section G.4. The following section
is devoted to a case-study, where the procedure is applied. It starts with a
description of the building and the data, followed by an outline of the applied
models and the selection, and ends with a discussion of the results. Finally a
perspective of the applications are given in Section G.6 and the conclusions are
drawn in Section G.7.

G.2 Grey-box models of a dynamic system

A grey-box model is established using a combination of prior physical knowledge
and statistics, i.e. information embedded in data. The prior physical knowledge
is formulated by a set of �rst-order stochastic di�erential equations, also called a
stochastic linear state-space model in continuous time. The equations describe
a lumped model of the heat dynamics of the building. It is emphasized that the
physical interpretation of the parameters is dependent on how the building is
divided into entities in the model.
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Figure G.1: RC-network of the model described by Equation (G.1) and (G.2).
The model is divided into di�erent parts indicating the corre-
sponding part of the building.

An example of a feasible model is given here. It has two state variables, one
describing the interior temperature Ti and one representing the temperature
of the building envelope Te. The �rst-order dynamics are represented by the
stochastic di�erential equations

dTi =
1

RieCi
(Te − Ti)dt+

1

Ci
Φhdt+

1

Ci
AwΦsdt+ σidωi (G.1)

dTe =
1

RieCe
(Ti − Te)dt+

1

ReaCe
(Ta − Te)dt+ σedωe (G.2)

where t is the time, Rie is the thermal resistance between the interior and the
building envelope, Rea is the thermal resistance between the building envelope
and the ambient air, Ci is the heat capacity of the interior, Ce is the heat capacity
of the building envelope, Φh is the energy �ux from the heating system, Aw is
the e�ective window area, Φs is the energy �ux from solar radiation, Ta is the
ambient air temperature, {ωi,t} and {ωe,t} are standard Wiener processes, and
σ2

i and σ2
e are the incremental variances of the Wiener processes. The model can

be represented with the RC-network depicted in Figure G.1, where the model
is divided into di�erent parts to show the corresponding parts of the building.

The physical model part is coupled with the data-driven model part with which
the information embedded in observed data is used for parameter estimation.
The data-driven part in the considered example is represented by the discrete
time measurement equation

Yk = Tik + ek (G.3)

where k is the point in time tk of a measurement, Yk is the measured interior
temperature and ek is the measurement error, which is assumed to be a Gaussian
white noise process with variance σ2. This assumption enables evaluation and
tests of the performance of the model, since if it is met, this indicates that the
physical model is consistent with the observed heat dynamics of the building.
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G.2.1 Maximum likelihood estimation of parameters

Given a grey-box model, as described above, maximum likelihood estimates of
the parameters can be obtained. Let the observations be represented by

YN = [YN , YN−1, . . . , Y1, Y0] (G.4)

then the likelihood function is the joint probability density

L(θ;YN ) =

(
N∏

k=1

p(Yk|Yk−1, θ)

)
p(Y0|θ) (G.5)

where p(Yk|Yk−1, θ) is a conditional density denoting the probability of observ-
ing Yk given the previous observations and the parameters θ, and where p(Y0|θ)
is a parameterization of the starting conditions. The maximum likelihood esti-
mates of the parameters are then found by

θ̂ = arg max
θ

{
L(θ;YN )

}
(G.6)

Due to the previously mentioned assumptions about the noise process and the
fact that the model is linear, it follows that the conditional densities in Equa-
tion (G.6) are Gaussian densities. Since the conditional densities are Gaussian a
Kalman �lter can be used to calculate the likelihood function, and an optimiza-
tion algorithm can be applied to maximize it, thereby calculating the maximum
likelihood estimates, see Kristensen et al. (2004) for a detailed discussion. This
is implemented in the computer software CTSM, which has been used for car-
rying out the parameter estimation, see more about the software at 1 and in
Kristensen and Madsen (2003).

G.3 A statistical test for model selection

Statistical tests can be utilized in the search for the most suitable model. If a
model is a sub-model of larger model, then a likelihood ratio test can determine
if the larger model performs signi�cantly better than the sub-model. Using a
sequence of such tests a strategy for selection of the best model can be evolved.

G.3.1 Likelihood ratio tests

Let a model have parameters θ ∈ Ω0 where Ω0 ∈ Rr is the parameter space and
r = dim(Ω0) is the number of parameters in the model. Let a larger model have

1www.imm.dtu.dk/~ctsm

www.imm.dtu.dk/~ctsm


G.4 Model selection procedure 181

parameters θ ∈ Ω where Ω ∈ Rm and dim(Ω) = m, and assume that

Ω0 ⊂ Ω (G.7)

i.e. the �rst model is a sub-model of the second model and r < m.

The likelihood ratio test

λ(YN ) =
supθ∈Ω0

L(θ;YN )

supθ∈ΩL(θ;YN )
(G.8)

where YN is the observed values, can then be used to test the hypothesis

H0 : θ ∈ Ω0 vs. Ha : θ ∈ Ω \ Ω0 (G.9)

since under H0 the test statistic −2log
(
λ(YN )

)
converges to a χ2 distributed

random variable with (m − r) degrees of freedom as the number of samples in
YN goes to in�nity. If H0 is rejected then the likelihood of the larger model
is signi�cantly higher than the likelihood of the sub-model, and it is concluded
that YN is more likely to be observed with the larger model. Hence the larger
model is needed over the sub-model to describe the information embedded in
data. For more details see Madsen and Thyregod (2010).

G.3.2 Forward selection

In a forward selection procedure the modeller starts with the smallest feasible
model and then in each step extends the model with the part that gives the
lowest p-value, i.e. the most signi�cant improvement. The possible candidates
for improvement that are selected in each iteration are the smallest possible
extensions to the current model. The procedure stops when no extensions to
the model yields a p-value below a pre-speci�ed limit, usually set to 5%.

G.4 Model selection procedure

Di�erent strategies for identifying a suitable model is proposed in the literature
and �nding an appropriate strategy depends on the speci�c modelling setup.
An purely algorithmic and exhaustive selection procedure is seldomly feasible,
hence iterative methods, in which the modeller is partly involved in the selection,
are commonly applied. Here, a forward selection procedure is suggested for
identi�cation of a suitable model for the heat dynamics. It is based on likelihood
ratio testing, which is described in Section G.3.1.
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Model �tting

Begin with the simplest
model

Likelihood-ratio tests of
extended models

End selection

Evaluate the selected model

All p-values > 5%

OK

Not OK

Figure G.2: Illustration of the model selection procedure

G.4.1 Model selection

The procedure starts by a formulation of the simplest feasible model having
parameter space Ωm and a full model with parameter space Ωfull, such that

Ωm ⊂ Ωfull. (G.10)

Within this range a set of models can be formed, in which a suitable model
is to be identi�ed. A suitable model is a su�cient model, which is the small-
est model that describes all information embedded in the data (Madsen and
Thyregod, 2010). The selection is initiated with the simplest model and then
extensions of the model are iteratively added. The selection stops when all of the
extensions to the selected model, gives a likelihood-ratio test p-value above the
pre-speci�ed limit. Hence the procedure will stop with a model from which no
larger model can be found, with which it is signi�cantly more likely to observe
the data. As mentioned above a purely algorithmic procedure is not possible,
hence the modeller must be involved to evaluate the models estimated in each
iteration. The evaluation is carried out by analyzing the properties of residuals
and parameter estimates, and if some of the properties are not in line with the
assumptions and physical reality, then the modeller may have to in�uence the
choice of model. The procedure is illustrated in Figure G.2 and the steps are

Model �tting The models which are extended from the current model are
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�tted to the data by maximum likelihood estimation of the parameters.

Likelihood-ratio tests Calculate the likelihood-ratio test statistic for the cur-
rent model versus each of the extended models. Stop if none of the tests
have a p-value below 5% and use the current model as the �nal model,
else then select the extended model which yield the lowest p-value.

Evaluate The modeller evaluates the selected extended model. If the result is
satisfactory the model is kept and next iteration can be started; if not,
the previous step should be repeated to select another extension.

If two extensions show an almost identical improvement, i.e. the p-values of
the tests are nearly equal, the selection can be branched and extensions with
di�erent parts examined separately. The procedure will then end with several
models, which cannot be tested directly against each other, and it is then up
to the modeller to decide which should be preferred. This should be done by
comparing the likelihoods, where if two models have almost equal likelihoods
the smaller model should be preferred, and furthermore by an evaluation of the
residuals and parameter estimates. It can also happen that several models have
only marginal di�erence in performance and that each of them can be considered
to be a su�cient model.

G.4.2 Model evaluation

In each step the selected model must be evaluated. This serves both to check
if the model meet the assumptions and if it gives reasonable estimates from a
physical point of view. Furthermore the evaluation can reveal model de�cien-
cies from which it can be learned which parts of the model should be further
elaborated. The evaluation should consist of the following:

• The assumption of white noise residuals should be inferred upon using the
auto-correlation function (ACF) and the cumulated periodogram (CP),
which can also reveal how well dynamics on di�erent timescales are mod-
elled.

• Plots of the inputs, outputs, and residuals. These plots can be used to
understand which e�ects are not described properly by the model.

• Evaluation of the estimated physical parameters. Clearly the results should
be consistent among di�erent models, e.g. estimate of the thermal resis-
tance of the building envelope should not change signi�cantly among the
models. Furthermore the modeller have to judge if the results are consis-
tent with reality.
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(a) (b)

Figure G.3: (a) the north facade and (b) is the south facade of the building.

G.5 Case study: model identi�cation for a build-

ing

The method is demonstrated by applying it to identify a suitable model for a
building. The building, named FlexHouse, is part of the experimental energy
system Syslab, at Risø DTU in Denmark. It is well suited for such experiments
since it has a controllable electrical heating system. Measurements consisting
of �ve minute values over a period of six days are used, for further details see
Bacher and Madsen (2010), in which a thorough description of the experiments
and data is given. This section starts with a description of the building and
measurement equipment, then the data is presented, followed by an outline of
the considered models, and �nally the model identi�cation and evaluation is
given.

G.5.1 Description of the building and measurement equip-

ment

The outer walls of the building are constructed of wood on the outside and
plaster boards on the inside, with a layer of insulation wool in between. An
image of the north facade and an image of the south facade of the building can
be seen in Figure G.3. The building rests on piles, leaving an air gab between
the ground and the building. The roof is �at and covered with roo�ng felt. The
dimensions of the �oor plan is approximately 7.5 times 16 meters. In Figure
G.4 the �oor plan of the building is shown. A server system is installed in the
building, which can control the electrical heaters located as indicated on the �oor
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Figure G.4: The �oor plan of the building.

plan. To measure the indoor temperature Hobo U12-012 Temp/RH/Light/Ext
sensors mounted on a small piece of wood was hanged freely in the middle of each
each room. A small climate station is located two meters east of the building,
the position relative to the building is indicated in Figure G.4.

G.5.2 Data

The present study is based on data collected during a series of experiments
carried out in February to April 2009. The following time series consisting of
�ve minute average values are used:

y (◦C) A single signal representing the indoor temperature. It is formed as the
�rst principal component of the measurements of the indoor temperature
from the Hobo sensors.

Ta (◦C) Observed ambient air temperature at the climate station.

Φh (kW) Total heat input from the electrical heaters in the building.

Φs (kW/m2) The global irradiance measured at the climate station.

Plots of the time series can be found in Figure G.5. The controlled heat input is
a pseudo-random binary sequence (PRBS), which has white noise properties and
no correlation with the other inputs. It is designed to excite the heat dynamics
at several ranges of frequencies in which the time constants of the building
is expected to be, such that the information embedded in data is optimized
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for estimation of the heat dynamic properties of the building, see Madsen and
Schultz (1993).

G.5.3 Applied models

The proposed procedure is such, that the modeller starts with the simplest
model and iteratively selects more complex models. This implies �tting a set of
models from the simplest model to the most feasible complex model, denoted
the full model. In this section the set of applied models and the result of the
iterative selection procedure is described. All the models are grey-box models,
in which the physical part is stochastic linear state-space model (as presented
in Section G.2) and where the dynamics of the states can be written

dT = ATdt+ BUdt+ dω (G.11)

where T is the state vector and U is the input vector, and none of the state
variables or input variables are in A or B which only consist of parameters. All
the considered models have an input vector with three inputs

U = [Ta,Φs,Φh]T (G.12)

All the models are lumped, but with a di�erent structure, which implies that a
given parameter does not necessarily represent the same physical entity in each
model. For example the parameter Ci is representing the heat capacity of the
entire building in the simplest model, whereas this heat capacity is divided into
�ve heat capacities in the full model, in which the parameter Ci represents the
heat capacity of the indoor air. This is elaborated further in Section G.5.5.2,
where the parameter estimates for the models are presented. Furthermore it
should be kept in mind that these models are linear approximations to the real
system.

In the following sections the full and the simplest model are described, since they
represent the range of applied models. First the full model is outlined to give a
complete overview of all the individual parts, which is included in the models.
Then the simplest model is presented, since it is the �rst model applied in the
selection procedure and furthermore it illustrates how the models are lumped.
Each model is named from its state vector and where needed a few parameter
names. See G.8 for a list of RC-networks corresponding to all applied models.
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Figure G.5: The data set. From the top, the �rst plot shows the observed
indoor temperature y, the second shows the ambient air temper-
ature Ta, followed by a plot of the heat input Φh, and �nally the
lower plot shows the global irradiance Φs.
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Figure G.6: The full model TiTmTeThTsAeRia with the individual model
parts indicated. This model includes all parts which is included
in any of the applied models.

G.5.3.1 The full model TiTmTeThTsAeRia

The RC-network of the full model, which is the most complex model applied,
is illustrated in Figure G.6. This model includes all the individual parts of the
building, which it is found feasible to include in linear models, with the current
available data. The individual model parts are indicated on the �gure. The
model parts are:

Sensor The temperature sensors are modelled with a heat capacity and a ther-
mal resistance to the interior.

Interior In the full model the interior is considered to be the indoor air (again
remember that, since the models are lumped models, the building part
represented by �Interior� is mostly di�erent for each model) and it is mod-
elled as a heat capacity connected to other parts by thermal resistances.

Medium A thermal medium inside the building is the interior walls and furni-
ture, which is modelled with a heat capacity and a thermal resistance to
the interior.

Heater The heaters are modelled by a heat capacity and a thermal resistance
to the interior.

Solar The heat input from solar radiation is modelled by the global irradiance
multiplied with the e�ective window area.
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Envelope The building envelope is modelled with a heat capacity and thermal
resistances to both the interior and the ambient. A thermal resistance
directly coupled to the ambient is also included.

Ambient The ambient is represented by the observed ambient air temperature.

The full model includes �ve state variables, that each represents the temperature
in a part of the building, and they are:

Ts The temperature of the sensor, which for the full model is used as the model
output, i.e. Yk in the measurement equation

(
Equation (G.19)

)
.

Ti The temperature of the interior, i.e. the indoor air.

Tm The temperature of an interior thermal medium, i.e. interior walls and fur-
niture.

Th The temperature of the heaters.

Te The temperature of the building envelope.

The parameters of the model represent di�erent thermal properties of the build-
ing. This includes thermal resistances:

Ris between the interior and the sensor,

Rim between the interior and the interior thermal medium,

Rih between the heaters and the interior,

Ria between the interior and the ambient,

Rie between from the interior and the building envelope,

Rea between the building envelope and the ambient.

The heat capacities of di�erent parts of the building are represented by:

Cs for the temperature sensor,

Ci for the interior,

Cm for the interior walls and furniture,

Ch for the electrical heaters,
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Ce for the building envelope.

Finally two coe�cients are included, each representing an estimate of an e�ective
area in which the energy from solar radiation enters the building. They are:

Aw The e�ective window area of the building.

Ae The e�ective area in which the solar radiation enters the building envelope.

The set of stochastic di�erential equations describing the heat �ows in the full
model are

dTs =
1

RisCs
(Ti − Ts)dt+ σsdωs (G.13)

dTi =
1

RisCi
(Ts − Ti)dt+

1

RimCi
(Tm − Ti)dt+

1

RihCi
(Th − Ti) (G.14)

1

RieCi
(Te − Ti)dt+

1

RiaCi
(Ta − Ti)dt+

1

Ci
AwΦsdt+ σidωi (G.15)

dTm =
1

RimCm
(Ti − Tm)dt+ σmdωm (G.16)

dTh =
1

RihCh
(Ti − Th)dt+

1

Ch
Φhdt+ σhdωh (G.17)

dTe =
1

RieCe
(Ti − Te)dt+

1

ReaCe
(Ta − Te)dt+

1

Ce
AeΦsdt+ σedωe (G.18)

and the measurement equation is

Yk = Ts,k + ek (G.19)

since the observed temperature is encumbered with some measurement error.

G.5.3.2 The simplest model Ti

The simplest model considered is illustrated by the RC-network in Figure G.7.
The model has one state variable Ti and the following parameters:

Ria The thermal resistance from the interior to the ambient.

Ci The heat capacity of the entire building, including the indoor air, interior
walls, furniture etc., and the building envelope.

Aw is the e�ective window area of the building.
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Figure G.7: RC-network of the model Ti, which is the simplest feasible model.

The stochastic di�erential equation describing the heat �ow is

dTi

dt
=

1

RiaCi
(Ta − Ti) +

1

Ci
AwΦs +

1

Ci
Φh + σi

dωi

dt
(G.20)

and the measurement equation is

Yk = Ti,k + ek (G.21)

Note the di�erences in representation of the building parts between the simplest
and full model, e.g. Ria represent the thermal resistance of the building envelope
in the simplest model, whereas this is represented by a coupling of Ria, Rie, and
Rea in the full model.

G.5.4 Model identi�cation

The identi�cation procedure is applied to �nd a su�cient model in the set
of models ranging from Ti to TiTmTeThTsAeRia. The log-likelihood of each
model, which is �tted, is listed in Table G.1 ordered by the iterations of the
model selection. The procedure begins with the simplest model. Then in the �rst
iteration four extended models are �tted and TiTh is selected since it has the
highest log-likelihood, hence the lowest p-value of the likelihood-ratio tests (the
four models have the same number of parameters). The selection procedure is
carried out until no signi�cant extension can be found, which occurs in iteration
number �ve. During each iteration the current selected model is evaluated,
see Section G.5.5. It is found that the models selected in each iteration are all
satisfying the evaluation with respect to improvement of the results etc. In Table
G.2 the result of likelihood-ratio tests for model expansion in each iteration is
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Iteration Models

Start Ti
l(θ;YN ) 2482.6
m 6

1 TiTe TiTm TiTs TiTh
3628.0 3639.4 3884.4 3911.1
10 10 10 10

2 TiThTs TiTmTh TiTeTh
4017.0 5513.1 5517.1
14 14 14

3 TiTeThRia TiTeThAe TiTmTeTh TiTeThTs
5517.3 5520.5 5534.5 5612.4
15 15 18 18

4 TiTeThTsRia TiTmTeThTs TiTeThTsAe
5612.5 5612.9 5614.6
19 22 19

5 TiTmTeThTsAe TiTeThTsAeRia
5614.6 5614.7
23 20

Table G.1: Log-likelihood l(θ;YN ) for the �tted models ordered by iterations
of the model selection procedure and in each row by log-likelihood.
In each iteration the extended model with highest log-likelihood is
selected, which is the rightmost models in the table. The number
of estimated parameters for each model is indicated by m.

listed. Clearly, the expansions carried out in the �rst three iterations indicate
very signi�cant improvements of the model. In iteration four, the improvement is
still below 5%, whereas no signi�cant improvement is found in iteration �ve. The
procedure thus ends with TiTeThTsAe as a su�cient model, which is illustrated
by the RC-network in Figure G.8.

G.5.5 Model evaluation

In the following the selected models are evaluated as outlined in Section G.4.2.
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Iteration Sub-model Model m− r −2log(λ(y)) p-value

1 Ti TiTh 4 2857 < 10−16

2 TiTh TiTeTh 4 3212 < 10−16

3 TiTeTh TiTeThTs 4 190.5 < 10−16

4 TiTeThTs TiTeThTsAe 1 4.5 0.035
5 TiTeThTsAe TiTeThTsAeRia 1 0.12 0.73

Table G.2: Tests carried out in the model selection procedure.
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Figure G.8: The �nal selected model TiTeThTsAe with the individual model
parts indicated.

G.5.5.1 Residuals

Plots of output, inputs, and residuals for each model can be seen in Figure G.9.
For each model the auto-correlation function (ACF) of the residuals is plotted
in Figure G.10 and the cumulated periodogram (CP) in Figure G.11. It is seen
directly from the plot of the residuals from the simplest model Ti, that they
do not have white noise properties and that they are not independent of the
inputs. The ACF of the residuals also clearly show a high lag dependency, and
the CP reveals that the model is not detailed enough to describe the dynamics.
Examining the plot of the residuals for the model selected in the �rst itera-
tion, TiTh, it is seen that the level of the residuals is reduced compared to the
residuals for Ti. The ACF and CP indicate that the assumption of white noise
residuals is not ful�lled. From the plot of the residuals for the model selected in
the second iteration, TiTeTh, it is seen that the level of the residuals is reduced
dramatically, but that some dependency of the inputs is still seen, mostly from
the solar irradiance. The ACF reveals that the characteristics of the residuals
are much closer to white noise, which is also seen from the CP, indicating that
the model now describes the heat dynamics of the building quite well. The
plot of the residuals, ACF, and CP for the model selected in the third iteration



194 Identifying suitable models for the heat dynamics of buildings
y

T
a

Φ
h

Φ
s

Output and inputs

e k
(◦
C

)

-0
.1

0.
0

0.
1

Ti

e k
(◦
C

)

-0
.1

0.
0

0.
1 TiTh

e k
(◦
C

)

-0
.0

5
0.

05

TiTeTh

e k
(◦
C

)

-0
.0

5
0.

05

TiTeThTs

0 20 40 60 80 100 120 140

e k
(◦
C

)

-0
.0

5
0.

05

k (h)

TiTeThTsAe

Figure G.9: The upper plot is of the output and inputs, and the following
plots are of the residuals for each of the selected models. On each
plot of the residuals the model name is indicated.



G.5 Case study: model identi�cation for a building 195

0
1

A
C
F
(e

k
)

Ti

0
1

A
C
F
(e

k
)

TiTh

0
1

A
C
F
(e

k
)

TiTeTh

0
1

A
C
F
(e

k
)

TiTeThTs

0 5 10 15 20 25 30

0
1

Lag

A
C
F
(e

k
)

TiTeThTsAe

lag (5 min)

Figure G.10: The auto-correlation function of the residuals for each of the
selected models.



196 Identifying suitable models for the heat dynamics of buildings

0
1

Ti

0
1

TiTh

0
1

TiTeTh

0
1

TiTeThTs

0.0 0.1 0.2 0.3 0.4 0.5

0
1

x

TiTeThTsAe

Frequency (6/h)

Figure G.11: The cumulated periodogram of the residuals for each of the se-
lected models.



G.5 Case study: model identi�cation for a building 197

TiTeThTs, reveals only slight improvements compared to the previous model.
Finally the plots for the �nal selected model TiTeThTsAe, show that almost
no di�erences can be observed from the previous model. The highest level of
error can be observed where the solar irradiance is high, hence it is found that
further improvement of the model should be focused on the part in which the
solar radiation enters the building, or alternatively in letting the incremental
variance of the Wiener process depend on the solar radiation.

G.5.5.2 Parameter estimates

The parameter estimates of the selected models are evaluated in the following.
The estimates are presented in Table G.3 together with the time constants cal-
culated for each of the selected models. The total heat capacity and thermal
resistance of the building envelope estimated by the selected models are pre-
sented in Table G.4. As found by evaluating the residuals, see previous section,
the models Ti and TiTh do not describe the dynamics of the system very well,
which implies that the estimates of the heat capacities are not reliable. Esti-

Model Ti TiTh TiTeTh TiTeThTs TiTeThTsWithAe

Ci 2.07 1.36 1.07 0.143 0.0928
Ce - - 2.92 3.24 3.32
Ch - 0.309 0.00139 0.321 0.889
Cs - - - 0.619 0.0549
Ria 5.29 5.31 - - -
Rie - - 0.863 0.909 0.897
Rea - - 4.54 4.47 4.38
Rih - 0.639 93.4 0.383 0.146
Ris - - - 0.115 1.89
Aw 7.89 6.22 5.64 6.03 5.75
Ae - - - - 3.87

τ1 10.9 0.16 0.129 0.0102 0.0102
τ2 - 8.9 0.668 0.105 0.105
τ3 - - 18.4 0.786 0.788
τ4 - - - 19.6 19.3

Table G.3: The estimated parameters. The heat capacities, Cx, are in
[kWh/◦C]. The thermal resistances, Rxx, are in [◦C/kW]. The
areas, Ax, are in

[
m2
]
. The time constants, τx, are in hours. Note

that the physical interpretation for many of the parameters is dif-
ferent for each model.
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Model Ti TiTh TiTeTh TiTeThTs TiTeThTsAe

Ctotal 2.07 1.67 3.99 4.32 4.36
Renvelope 5.29 5.31 5.40 5.38 5.28
αUA 1.55 1.55 1.52 1.53 1.55

Table G.4: The total heat capacity [kWh/◦C] and thermal resistance [◦C/kW]
of the building envelope estimated by the selected models. The
UA-values αUA are in

[
W/(◦Cm2)

]
.

mates of the heat capacities found by the tree larger models are more credible,
especially it is seen that the time constants are almost equal, indicating that
the models comprise the same dynamics. The exact physical interpretation of
the smaller heat capacities Ci, Ch, and Cs cannot be given, but it is noted that
their sum, for each of the three larger models, is quite close ranging from 1.03
to 1.08 [kWh/◦C].

The estimated total thermal resistance of the building envelope and thereby the
UA-values is quite similar for all models, as seen in Table G.4.

G.6 Applications

Identi�cation of a suitable model of the heat dynamics of a building based on
frequent readings of heat consumption, indoor temperature, ambient air temper-
ature, and climate variables, will be very useful for di�erent purposes. Important
�elds of application are:

Accurate description of energy performance of the building An energy
signature of buildings can provide important information for energy- and
cost e�ective improvements of the building. The most e�ective actions
to be taken for an individual building can be identi�ed. Furthermore the
heat consumption due to physical e�ects, such as a poor isolated build-
ing envelope, can be separated from behavioral e�ects, e.g. a high indoor
temperature.

Forecasting of energy consumption for heating Forecasting of energy con-
sumption for heating can be used for integration of large amounts of renew-
able energy, such as wind- and solar energy. Implementation of electrical
heating with hot water tanks for heat storage in individual houses can be
pro�table in the near future. Knowledge of the heat dynamics of buildings
is essential to forecasting and control of such systems.
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Indoor climate control Control of the indoor temperature, ventilation etc.
to provide a good indoor climate conditions can be carried out with meth-
ods which include models of the heat dynamics. The models can also be
extended to include the e�ect of wind and thereby provide information of
the air tightness of buildings.

G.7 Conclusion

A procedure for identi�cation of the most suitable models for the heat dynamics
of a building has been described and applied on the basis of data from an
experiment carried out in February 2009. The procedure is based on likelihood-
ratio testing combined with a forward selection strategy. The proposed models
are grey-box models, where a combination of prior physical knowledge and data-
driven modelling is utilized. The data used for the modelling consist of: climate
data measured at the location, measurements of the indoor temperature, and a
PRBS controlled heat input.

The results of the identi�cation procedure are evaluated and discussed, both
in a statistical and physical context. The evaluation reveal that the selected
model meet the assumptions of white noise residuals, hence it can be applied
to give reliable estimates consistent with reality and the results are statistically
validated. Furthermore model de�ciencies are pointed out, from which further
advancement of the model should be pursued. For the considered building this is
primarily on the model part where the solar radiation input enters the building.

It has been shown that the method is able to provide rather detailed knowledge
of the heat dynamics of the building. This includes for instance the thermal
resistance of the envelope and thereby the UA-value, parameters describing the
capabilities for storing heat, and the time constants of the building.
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G.8 RC-networks of applied models
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(b) RC-network network of TiTm.
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(d) RC-network network of TiTh.
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G.9 Estimates of system and observation noise

parameters

The estimates of the scaling of the increments in the Wiener process in the
system equations together with the standard deviation of the observation noise
are listed in Table G.5. Considering the level of the estimated system noise for
Ti and TiTh compared to the level of the estimated system noise for each of the
three larger models, it should intuitively be higher, since Ti is a submodel of the
larger models. However, since the residuals for Ti and TiTe are not white noise,
then the system noise is almost surely not a Wiener process. Hence the de�nition
of the parameters are not valid and a direct comparison not possible. For the
three larger models TiTeTh,TiTeThTs, and TiTeThTsWithAe the estimated
level of system noise is high compared to the level of measurement noise. This
indicates that not all information is described by the model, hence that a more
complicated and possibly non-linear model could be identi�ed as more suitable
than TiTeThTsWithAe.

Model Ti TiTh TiTeTh TiTeThTs TiTeThTsWithAe

σi 0.19 4.9 ·10−6 0.017 0.13 0.18
σe 0.27 0.28 0.28
σh 1.4 4.0 ·10−5 7.2 ·10−5 2.7 ·10−5

σs 3.8 ·10−13 2.0 ·10−12

σ 1.7 ·10−11 1.7 ·10−11 2.4 ·10−6 1.1 ·10−6 1.4 ·10−6

Table G.5: The estimated values of system noise and measurement noise
related parameters. The unit of the system noise parameters
σi, σe, σh, σs is ◦C/

√
h and the unit of the measurement noise σ

is ◦C.
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