Technical University of Denmark



#### Human health-related externalities in energy system modelling

Zvingilaite, Erika

Publication date: 2009

Link back to DTU Orbit

*Citation (APA):* Zvingilaite, E. (2009). Human health-related externalities in energy system modelling. Paper presented at 5th Dubrovnik Conference on Sustainable Development of Energy, Water and Environment Systems, Dubrovnik, Croatia.

#### DTU Library Technical Information Center of Denmark

#### **General rights**

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- · You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

## Human health-related externalities in energy system modelling

The 5th Dubrovnik conference on sustainable development of energy, water and environmental systems

September 29-October 3 2009, Dubrovnik, Croatia

Erika Zvingilaite

PhD Student

System Analysis Division

Risø DTU National Laboratory for Sustainable Energy



#### **Introduction - motivation**



- Air pollution cause health effects
- Including into energy planning
- Co-benefits local and global
- Gap between air pollution & health impact assessment and energy models
- Adapting energy models



#### Outline

- BACKGROUND:
  - Sector contribution
  - Example of three plants
- THE MODEL AND SCENARIOS
- RESULTS
- CONCLUSIONS

#### Air pollution – PM25, NOx, SO2 in Denmark in 2007





from www.DMU.dk

#### Air pollution – PM25, NOx, SO2 in Denmark in 2007





from www.DMU.dk

#### Air pollution – PM25, NOx, SO2 in Denmark in 2007





from www.DMU.dk

# Health related externalities and energy production





based on Andersen et al., 2008

#### The model - Balmorel

a linear optimisation model of heat and power sectors (Denmark)



#### Scenarios - 2005, 2015, 2030



| Scenario               | Description                                                                          |
|------------------------|--------------------------------------------------------------------------------------|
| No Externalities       | No health externalities – only an external cost of CO <sub>2</sub> - 15 EUR/t        |
| Uniform cost           | The single <u>average local externality cost</u> in addition to CO <sub>2</sub> cost |
| Different area<br>cost | Different local area externality costs in addition to CO <sub>2</sub> cost           |

| Health related external costs included in the model |                 |                 |                  |  |
|-----------------------------------------------------|-----------------|-----------------|------------------|--|
|                                                     | SO2 Cost, EUR/t | NOx cost, EUR/t | PM2,5 Cost EUR/t |  |
| Average cost                                        | 9100            | 5870            | 10900            |  |
| High cost                                           | 13542           | 10483           | 18533            |  |
| Low cost                                            | 5962            | 2533            | 7595             |  |







adopted from Bernd Möller, Aalborg University 2008

15/12/2009

#### **Results I – The external costs**





#### **Results I – The external costs**





### Results II – pollution emissions in areas



## **Results II – pollution emissions in areas**



■ No externalities

Different area cost

Uniform cost



### Results III – fuels used for heat production





#### **Results III – fuels used for heat production**





## Results IV – fuels used for electricity production



# Results IV – fuels used for electricity production



#### **Results IV – System costs**



#### Conclusions



- Internalising local externalities leads to around <u>18%</u> decrease in local external cost of the system
- Considering different local area costs leads to further reduction in local external cost by around <u>7%</u>
- Reflecting
  - Technology
  - Goals
  - Location
- Identify areas with different health costs of air pollution:
  - atmospheric pollution modelling
  - health impact assessment modelling

# Thank you for attention!

The presented study is a part of the research of the Centre for Energy, Environment and Health, financed by The Danish Strategic Research Program on Sustainable Energy under contract no 2104-06-0027.

For more information visit www.ceeh.dk

Risø DTU National Laboratory for Sustainable Energy

