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Abstract An analytical model is presented that is able to describe the perfor-
mance of OCT systems in both the single and multiple scattering regimes simul-
taneously. This model inherently includes the shower curtain effect, well-known
for light propagation through the atmosphere. This effect has been omitted in
previous theoretical models of OCT systems. It is demonstrated that the shower
curtain effect is of utmost importance in the theoretical description of an OCT
system. The analytical model, together with proper noise analysis of the OCT sys-
tem, enables calculation of the SNR, where the optical properties of the tissue are
taken into account. Furthermore, by using the model, it is possible to determine
the lateral resolution of OCT systems at arbitrary depths in the scattering tissue.
During the Ph.D. thesis project, an OCT system has been constructed, and the
theoretical model is verified experimentally using this system. A demonstration
of the imaging capabilities of the OCT system is given. Moreover, a novel true-
reflection OCT imaging algorithm, based on the new OCT model presented in this
thesis, is demonstrated. Finally, a theoretical analysis of the Wigner phase-space
distribution function for the OCT geometry, i.e., reflection geometry, is developed.
As in the new OCT model, multiple scattered photons has been taken into account
together with multiple scattering effects. As an important result, a novel method
of creating images based on measurements of the momentum width of the Wigner
phase-space distribution is presented, and compared with conventional OCT.
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1 Introduction

Optical coherence tomography (OCT) has developed rapidly since its potential for
applications in clinical medicine was first demonstrated in 1991 [1]. OCT performs
high-resolution, cross-sectional tomographic imaging of the internal microstructure
in materials and biologic systems by measuring backscattered or backreflected
light.
The origin of OCT lie in the early work on white-light interferometry that led

to the development of optical coherence-domain reflectometry (OCDR), a one-
dimensional optical ranging technique [2],[3]. OCDR uses short coherence length
light and interferometric detection techniques to obtain high sensitivity, high res-
olution range information. OCDR was developed for finding faults in fiber-optic
cables and network components [2],[3]. However, its ability to perform ranging
measurements in the retina [4],[5] and other eye structures [4],[5],[6] was soon rec-
ognized. D. Huang et al. [1] then extended the technique of OCDR to tomographic
imaging in biological systems by developing the OCT system. The OCT system
performs multiple longitudinal scans at a series of lateral locations to provide a
two- or three-dimensional map of reflection sites in the sample.
In the original OCT system [1], low-coherence light from a broad bandwidth

superluminescent diode (SLD) centered at 830 nm is coupled into a single-mode
fiber-optic Michelson interferometer. Light exiting the sample arm fiber is focused
into the specimen being measured. Light retroreflected from tissue structures is
combined in the fiber-optic beamsplitter (50/50) with light from a scanning ref-
erence mirror. Interference occurs at the detector only when the distance of the
reflection from the sample is matched to the length of the reference arm to within
the coherence length of the source. A longitudinal scan of the sample is then per-
formed by scanning the reference mirror position and simultaneously recording
the interferometric signal. The interferometric signal is demodulated using band
pass filtering and envelope detection. The signal is then digitized and stored on
a computer. To acquire data for a two-dimensional image, a series of longitudinal
scans are performed with the optical beam position translated laterally between
scans. The data set is then displayed as either a false-color or gray-scale image.
The longitudinal resolution of an OCT image is determined by the coherence

length of the light source. For a light source having a Gaussian spectrum, the
coherence length lc = ( 2 ln(2)/π)λ2/∆λ, where λ and ∆λ are the center wave-
length and the FWHM spectral bandwidth, respectively [7]. This is the expression
for the coherence length used throughout this thesis. Other definitions of the co-
herence length than the one used here and in Ref.[7] yield similar expressions [8].
The first OCT system had a longitudinal resolution of 17µm in air [1].
The lateral resolution of an OCT image is determined by the spot size of the

sample beam at the depth being probed in the tissue. In a random medium like
tissue, it is necessary to take the scattering of the light into account when deter-
mining the spot size.
Since the development of the first OCT system [1] described above, a lot of effort

has been put into the improvement of the system. Regarding a system based
on the original concept, the main focus areas have been: the light source, the
interferometer, and the beam scanning optics. A comprehensive review of the
progress within these areas is given in Ref. [9].
A superluminescent diode, as used in the first OCT system, comes close to being

the ideal source for OCT imaging due to the high irradiance and relatively low
cost. However, the coherence length of SLD’s, which is typically 10− 20µm, is in-
sufficient to image individual cells or subcellular structures such as nuclei in tissue.
The highest longitudinal resolution OCT achieved to date was, according to the
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author’s knowledge, obtained by using a femtosecond Ti:sapphire laser [10]. Us-
ing this source, in vivo subcellular imaging with longitudinal resolution of ∼1µm
was demonstrated [11]. Femtosecond lasers are not, however, without limitations
as sources for OCT. The cost, complexity, and environmental instability of these
lasers make their clinical application cumbersome.
In addition to a higher irradiance of the light source, other interferometer con-

figurations than the conventional Michelson interferometer may also lead to an
improved signal-to-noise ratio (SNR). By using interferometers with balanced de-
tection, the intensity noise of the light is suppressed [12]. The choice of a bal-
anced OCT configuration versus an unbalanced OCT configuration with optimized
reference-arm attenuation has been investigated [13]. Moreover, a family of power-
conserving fiber-optic interferometer designs have been introduced that use optical
circulators, unbalanced couplers, and (or) balanced detection [14], [15].
In the first OCT system [1], a stepper motor stage was used to scan the refer-

ence mirror. Since then, several techniques have been applied in the attempt to
make the image acquisition faster. Real time in vivo imaging has recently been
demonstrated [16]. The reference scanning was performed by using a delay line
in the reference arm that was developed for femtosecond pulse shaping [17],[18],
and recently applied to OCT [19],[20]. It is important to note that faster image
acquisition requires detection electronics with broader bandwidth, thus decreasing
the SNR.
The most advanved clinical applications of OCT to date have been for non-

invasive, high-resolution imaging of intraocular structures [21],[22],[23]. Ophthalmic
OCT imaging studies have demonstrated significant potential for routine clinical
examinations of the anterior eye, crystalline lens, and retina. A specialized version
of OCT for retinal examination has been commercialized and several thousand pa-
tients have been examined using this method (Humphrey Systems, Dublin, CA).
Sub-surface OCT imaging in highly scattering tissues is a topic of considerable cur-
rent interest. Optical imaging in non-transparent biological tissues is, in general, a
difficult problem, primarily due to the scattering of the tissue. The attractive spec-
tral region for OCT imaging in non-transparent biological tissues is near 1.3µm,
where light scattering is low relative to scattering of light in the visible region, and
the tissue absorption is low. In this wavelength region near 1.3µm, several inves-
tigators have demonstrated imaging up to 2-3mm deep in the tissue, dependent
on the tissue type examined [24], [25]. For a review of the biomedical and clinical
applications of OCT, the reader is referred to Ref. [25].

1.1 Scope of the thesis
Mathematical models have been developed to promote understanding of the OCT
imaging process and thereby enable development of better imaging instrumen-
tation and data processing algorithms. One of the most important issues in the
modeling of OCT systems is the role of the multiple scattered photons, an issue,
which up to now is not yet fully understood. The scope of this thesis is the devel-
opment of a model that is able to describe the performance of the OCT system
in both the single and multiple scattering regimes simultaneously. Such a model,
where the contribution to the OCT signal from multiple scattered photons has
been taken into account together with multiple scattering effects, is essential in
the calculation of the SNR of the OCT system. A determination of the lateral
resolution of the OCT system at arbitrary depths in the scattering tissue is also
made possible by such a model. Another important aspect of the thesis is an
experimental verification of the model carried out using phantoms with optical
properties typical for tissue.

8 Risø—R—1217(EN)



1.2 Organization of the thesis
In chapter 2 of this thesis, a new analytical model is presented where the contri-
bution to the OCT signal from multiple scattered photons has been taken into
account. This model inherently includes the shower curtain effect, well-known for
light propagation through the atmosphere [26],[27]. This effect has been omitted in
previous theoretical models of OCT systems. It is demonstrated in this thesis that
the shower curtain effect is of utmost importance in the theoretical description of
an OCT system. The analytical model, together with a proper noise analysis of
the OCT system, enables a calculation of the SNR, where the optical properties
of the tissue have been taken into account. Moreover, by using the model, it is
possible to determine the lateral resolution of the OCT system at arbitrary depths
in the scattering tissue. An experimental verification of the new OCT model is
presented in chapter 3 of the thesis.
The main part of chapter 4 is devoted to a demonstration of the imaging ca-

pabilities of the OCT system, which has been developed during the Ph.D. thesis
project. The last section in that chapter deals with a novel true-reflection OCT
imaging algorithm, which is based on the new OCT model presented in this thesis.
Finally, in chapter 5, a theoretical analysis of the Wigner phase-space distri-

bution function for the OCT geometry is presented. As in the new OCT model,
multiple scattered photons has been taken into account together with multiple
scattering effects. The fundamental difference of measuring the Wigner phase-
space distribution and the OCT signal is discussed. Furthermore, a novel method
of creating images based on measurements of the momentum width of the Wigner
phase-space distribution is presented, and compared with conventional OCT.

Risø—R—1217(EN) 9



2 Modeling optical coherence to-
mography systems

2.1 Introduction
Since the first paper describing the use of the optical coherence tomography (OCT)
technique for noninvasive cross-sectional imaging in biological systems [1], various
theoretical models of the OCT system have been developed. The primary motiva-
tion has been optimization of the OCT technique based on these models thereby
improving the imaging capabilities. The first theoretical models were based on
single-scattering theory [28, 29]. These models are restricted to superficial layers
of highly scattering tissue in which only single scattering occurs. Single scattering
or single backscattering refer to photons which do not undergo scattering either
to or from the backscattering plane of interest, i.e., ballistic photons. However, at
larger probing depths, the light is also subject to multiple scattering. The effects
of multiple scattering have been investigated on an experimental basis [30], and
by using a hybrid Monte Carlo/analytical model [31], analysis methods of linear
systems theory [32], a model based on the extended Huygens-Fresnel principle
[33], and Monte Carlo simulations [34]. As shown by these investigations, the pri-
mary effects of multiple scattering are a reduction of the imaging contrast and
resolution of the OCT system, and a less steep slope of the signal intensity depth
profile than the slope given by the single-backscatter model [30, 32].

2.2 Analytical OCTmodel based on the extended
Huygens-Fresnel principle
In this section, a new theoretical description [35],[36],[37],[38],[39] of the OCT
technique when used for imaging in highly scattering tissue is presented. The de-
scription is based on the extended Huygens-Fresnel principle. It is shown that
the theoretical model, based on this principle and the use of mutual coherence
functions, describes the performance of the OCT system in both the single and
multiple scattering regimes simultaneously. In a standard OCT system [1] with
diffuse backscattering from the tissue discontinuity being probed, and a distance
between the focusing lens and the tissue, the so-called shower curtain effect [26],[27]
is present. This effect has been omitted in previous theoretical models [33]. How-
ever, it is demonstrated in this section that inclusion of this effect is of utmost
importance in the theoretical description of an OCT system.

The extended Huygens-Fresnel principle

When an optical wave propagates through a random medium, e.g. tissue, both the
amplitude and phase of the electric field experience random fluctuations caused
by small random changes in the index of refraction. Several different theoretical
approaches have been developed for describing these random amplitude and phase
fluctuations, based upon solving the wave equation for the electric field of the wave
or for the various statistical moments of the field.
By assuming a sinusoidal time variation in the electric field, it has been shown

[40],[41],[42],[43] that Maxwell’s equations for the vector amplitude E(R) of a
propagating electromagnetic wave through a nonabsorbing refracting medium lead
directly to

∇2E + k2n2(R)E + 2∇[E ·∇ lnn(R)] = 0, (1)

10 Risø—R—1217(EN)



where R denotes a point in space, k is the wave number of the electromagnetic
wave, and n(R) is the index of refraction whose time variations have been sup-
pressed. We now assume that the magnitude of the index of refraction fluctua-
tions is small in comparison with unity. This means, that the index of refraction

n(R) = n(R) + nf(R), where nf(R) is the small fluctuating part of the index

of refraction with zero mean and a root-mean-square value much less than unity.
This assumption is in general valid for tissue [44]. In this case it has been shown,
that the last term on the left-hand side of Eq. (1), which is related to the change
in polarization of the wave as it propagates, is negligible if the wavelength of the
radiation λ 2πl0, where l0 is a measure of the smallest random inhomogeneities
in the medium [42],[43]. The structures that dominate light propagation in tissue,
for example the cells, have a size of 2µm or more, which means that the crite-
ria for neglecting the depolarization term is fulfilled in the case of interest where
λ 1.0µm. By dropping this term, Eq. (1) simplifies to

∇2E + k2n2(R)E = 0, (2)

which is now easily decomposed into three scalar equations, one for each compo-
nent of the field E. If we let U(R) denote one of the scalar components that is
transverse to the direction of propagation along the positive z-axis, then Eq. (2)
may be replaced by the scalar stochastic equation

∇2U + k2n2(R)U = 0. (3)

Equation (3) cannot be solved exactly in closed form. Some early attempts to
solve Eq. (3) were based on the geometric optics approximation [45], which ig-
nores diffraction effects, and on perturbation theories widely known as the Born
approximation and Rytov approximation [41].
One approach to solving Eq. (3) by other than perturbation methods was de-

veloped, independent of each other, in the United States by Lutomirski and Yura
[46] and in the former Soviet Union by Feizulin and Kravtsov [47]. This technique
is called the extended Huygens-Fresnel principle. As the name indicates, it is an
extension of the Huygens-Fresnel principle to a medium that exhibits a random
spatial variation in the index of refraction. That is, the field due to some arbitrary
complex disturbance specified over an aperture can be computed, for propagation
distances that are large compared with the size of the aperture, by superimposing
spherical wavelets that radiate from all elements of the aperture.
This principle follows directly from Green’s theorem [48] and the Kirchhoff

approximation [48] applied to the scalar wave equation together with a field reci-
procity theorem between an observation point and a source point of spherical
waves in the random medium. On the basis of this principle, the geometry of
the problem, i.e., the aperture field distribution, can be separated from the prop-
agation problem, which is determined by the way a spherical wave propagates
through the medium. Furthermore, Yura and Hanson [49],[50] have applied the
extended Huygens-Fresnel principle to paraxial wave propagation through an ar-
bitrary ABCD system in the presence of random inhomogeneities. An arbitrary
ABCD system refers to an optical system that can be described by an ABCD ray-
transfer matrix [51]. In the cases of interest in this thesis, the ABCD ray-transfer
matrix is real, and the field in the output plane is then given by [49]

U (r) = U0(p)G (p, r)dp, (4)

where r and p are two-dimensional vectors transverse to the optical axis in the
output plane and input plane, respectively. The quantity U0(p) is the field in
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Figure 1. The sample arm geometry of the OCT system.

the input plane, and G (p, r) is the extended Huygens-Fresnel Green’s function
response at r due to a point source at p, which is given by [46],[49]

G (p, r) = G0(p, r) exp [iφ(p, r)] , (5)

where G0(p, r) is the Huygens-Fresnel Green’s function for propagation through
an ABCD system in the absence of random inhomogeneities, and φ(p, r) is the
random phase of a spherical wave propagating in the random medium from the
input plane to the output plane. The Huygens-Fresnel Green’s function G0(p, r)
is given by [49]

G0(p, r) =− ik

2πB
exp − ik

2B
Ap2 − 2p · r +Dr2 , (6)

where A, B, and D are the ray-matrix elements for propagation from the input
plane to the output plane. In the following, it is assumed that φ is a normally
distributed zero-mean random process.

The OCT signal

A conventional OCT system [1] consists of a superluminescent diode (SLD), a
Michelson interferometer with movable reference mirror, and a photodetector. The
rotationally symmetric sample arm geometry of the OCT system is shown in Fig. 1.
The tissue discontinuity being probed arises from a refractive index discontinuity
between two tissue layers (n = n1 in Fig. 1). Therefore, the discontinuity, placed at
a depth z in the tissue, is characterized by a Fresnel reflection coefficient Rd. A lens
with focal length f is placed at a distance d from the tissue surface. In the system
of interest, the focal plane coincides with the tissue discontinuity. Furthermore,
the reference arm optical path length in the Michelson interferometer is matched
to the focal plane optical depth.
In the case of human skin, light scattering in the bulk tissue is predominantly

in the forward direction for the wavelengths of interest in the NIR region [52].
Hence, we neglect bulk backscattering, and use the extended Huygens-Fresnel
principle [46],[47] to describe the light propagation in the bulk tissue. This is
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justified by the fact that the extended Huygens-Fresnel principle is based on the
paraxial approximation and therefore valid for small-angle forward scattering. In
particular, it can be shown that the paraxial approximation is valid up to 30◦(i.e.,
0.5 rad) [51]. Because most tissues are characterized by rms scattering angles
below this limit, the extended Huygens-Fresnel principle may be used to describe
light propagation in tissue retaining both amplitude and phase information. The
bulk tissue absorption is neglected [52]. Thus, the bulk tissue is characterized by
a scattering coefficient µs, a root mean square scattering angle θrms or asymmetry
parameter g [53], and a mean index of refraction n. Furthermore, the bulk tissue
is modeled as a material with scatterers randomly distributed over the volume of
interest. Note, that in the present analysis polarization effects are not included.
By mixing the sample field, US, reflected at the discontinuity in the tissue at

depth z, with the reference field, UR , on the photodetector of the OCT system,
we obtain that the heterodyne signal current i (z) can be expressed as [33]

i (z) ∝ Re UR (p, t)U
∗
S (p, t+ τ) dp , (7)

where the integration is taken over the area of the photodetector, Re denotes the
real part, and τ is the difference between the propagation times of the reference
and sample beams. In practice, the heterodyne signal current i (z) is measured
over a time much longer than the source coherence time. In this case, it can be
shown that [33]

i (z) ∝ |g (τ )|Re UR (p)U
∗
S (p) dp , (8)

where |g (τ)| is the modulus of the normalized temporal coherence function of the
source.
Because the detailed structure of the tissue is unknown a priori, it is necessary

and appropriate to treat the optical distortions as a random process and, as is
commonly done in the literature, to specify certain measures of the average per-
formance, e.g., the mean (i.e., ensemble average) square heterodyne signal current.
It can be shown that the mean square heterodyne signal current i2 (z) , which is
proportional to the heterodyne signal power, is given by [33, 26]

i2 (z) = 2α2 |g (τ)|2Re ΓS(p1, p2; z)ΓR (p1, p2) dp1dp2 , (9)

where

ΓR (p1, p2) = UR (p1)U
∗
R (p2) (10)

ΓS (p1, p2; z) = US (p1; z)U
∗
S (p2; z) (11)

are the mutual coherence functions of the reference and the reflected sample optical
fields in the mixing plane. The angular brackets denote an ensemble average both
over the statistical properties of the tissue and the reflecting discontinuity, which
are assumed to be statistically independent. For simplicity, the heterodyne mixing
process has been chosen to take place directly behind the lens at the side facing
the tissue, and p1, p2, p are two-dimensional vectors in this plane transverse to the
optical axis. The quantity α is a conversion factor for power to current and equals
qeη/hν, where qe is the electronic charge, η is the detector quantum efficiency,
ν is the optical frequency, and h is Planck’s constant. In the case of interest,
the reference arm optical path length in the Michelson interferometer is always
matched to the sample arm optical path length, from which it follows that |g (τ)| =
|g (0)| = 1 [33].
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For the heterodyne detection scheme, the spatial coherence properties of the
sample field contained in the mutual coherence function ΓS are of utmost impor-
tance in the determination of the corresponding signal. In particular, if the spatial
coherence of the sample field is degraded with respect to the reference field, one
obtains a corresponding degradation in the signal-to-noise ratio.
The reference field and the input sample field, USi , in the lens plane are assumed

to be of Gaussian shape and given by

UR (p, t) =
PR
πw20

exp −p
2

2

1

w20
+
ik

f
exp [iωRt+ φR (t)] (12)

USi (p, t) =
PS
πw20

exp −p
2

2

1

w20
+
ik

f
exp [iωSt] , (13)

where PR and PS are the powers of the reference and input sample beams, respec-
tively, w0 is the 1/e intensity radius of these beams in the lens plane, k = 2π/λ,
where λ is the center wavelength of the source in vacuum, ωR and ωS are the
angular frequencies of the reference and input sample beams, respectively, and φR
is the phase of the reference field relative to the input sample field.
In the determination of the mutual coherence function ΓS, we use the extended

Huygens-Fresnel principle to obtain a viable expression for US (p; z), i.e., the re-
flected sample optical field in the mixing plane. Using Eq. (4), we have

US (p; z) = UB (r; z)G (r, p; z)dr, (14)

where UB (r; z) is the reflected sample field in the plane of the tissue discontinuity,
r, r1, r2 are two-dimensional vectors in this plane transverse to the optical axis,
and G (r, p; z) is the extended Huygens-Fresnel Green’s function response at p due
to a point source at r, which includes the effects of scattering in the intervening
medium. Combining Eqs. (11) and (14) yields

ΓS (p1, p2; z) = UB (r1; z)U
∗
B (r2; z)G (r1, p1; z)G

∗ (r2, p2; z) dr1dr2.(15)

For simplicity in notation, we omit in the following the explicit dependence of the
various quantities on z.
We next assume that the statistical properties of the bulk tissue and the tissue

discontinuity are independent, and that the propagation to the tissue discontinuity
is statistically independent from the corresponding reflected propagation path.
The former seems to be a reasonable assumption for a medium like tissue. The
latter means that enhanced backscattering is neglected. The criteria for neglecting
enhanced backscattering is discussed in section 5.2. From these assumptions it
follows that

UB (r1)U
∗
B (r2)G (r1, p1)G

∗ (r2, p2) = UB (r1)U
∗
B (r2) ×

G (r1, p1)G
∗ (r2, p2) . (16)

The first term on the right hand side of Eq. (16) relates to both the mean value
over statistics of the bulk tissue in propagating from the lens plane to the tissue
discontinuity, and the reflection statistics of the discontinuity. The second term
on the right hand side of Eq. (16) relates to the corresponding average over the
statistics of the bulk tissue when propagating back from the discontinuity to the
mixing plane.
Assuming diffuse backscattering from the tissue discontinuity, we have [26, 54]

UB (r1)U
∗
B (r2) =

4π

k2
δ (r1 − r2) IB (r1) , (17)
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where δ (r) is the two-dimensional Dirac delta function, and IB (r1) is the mean
backscattered irradiance distribution in the plane of the discontinuity. An ade-
quate analytic approximation for this mean backscattered irradiance distribution
is obtained by multiplying the approximate expression for the mean irradiance
distribution, derived in the section ”The lateral resolution” in chapter 2, by the
reflection coefficient Rd. The expression, which is valid for arbitrary values of the
optical depth µsz, is given by

IB (r) =
RdPS
π

e−µsz exp −r2 w2H
w2H

+
(1− e−µsz) exp −r2 w2S

w2S
. (18)

The first term in the brackets on the right hand side of Eq. (18) can be interpreted
to represent the attenuated distribution obtained in the absence of the inhomo-
geneities, and the corresponding second term represents a broader halo resulting
from scattering by the inhomogeneities. The quantities wH and wS are the 1/e ir-
radiance radii or spot sizes in the discontinuity plane in the absence and presence
of scattering, respectively, given by

w2H = w20 A− B
f

2

+
B

kw0

2

(19)

w2S = w20 A− B
f

2

+
B

kw0

2

+
2B

kρ0

2

. (20)

A and B are the ray-matrix elements for propagation from the lens plane to the
discontinuity plane. For the geometry of interest, A and B are given by A = 1

and B = f = d + z/n [51]. The quantity ρ0 appearing in Eq. (20) is the lateral
coherence length of a spherical wave in the lens plane due to a point source in the
discontinuity plane [26]. The lateral coherence length is discussed in detail below,
see also Appendix A.
Combining Eqs. (15)—(17) and simplifying yields

ΓS (p1, p2) =
4π

k2
IB (r) G (r, p1)G

∗ (r, p2) dr. (21)

Using Eq. (5), the second term in the integral on the right-hand side of Eq. (21)
may be written as

G (r, p1)G
∗ (r, p2) = G0 (r, p1)G∗0 (r, p2)Γpt, (22)

where G0 (r, p) is the Huygens-Fresnel Green’s function when propagating from
the discontinuity plane to the lens plane, and Γpt is the mutual coherence function
of a point source located in the discontinuity plane and observed in the lens plane,
which is given by

Γpt = exp [i (φ (p1)− φ (p2))] . (23)

The mutual coherence function Γpt contains the effects of the scattering inhomo-
geneities. Using Eq. (6), the Green’s function G0 (r, p) is given by

G0 (r, p) = − ik

2πBb
exp − ik

2Bb
Abr

2 − 2r · p+Dbp2 , (24)

where Ab, Bb, and Db are the ray-matrix elements for backpropagation to the
lens plane. These quantities are given by: Ab = D = 1, Bb = B = d + z/n, and
Db = A = 1 [49]. In order to obtain an analytical solution, we have to use an
approximate expression for the mutual coherence function Γpt. The expression,
which is derived in the section ”The lateral resolution” in chapter 2, is given by

Γpt (ρ) e−µsz + (1− e−µsz) exp −ρ2 ρ20 , (25)

Risø—R—1217(EN) 15



where ρ = |p1 − p2|.
Substituting Eqs. (10), (12), (18), (21), (22), (24), and (25) into Eq. (9) and

performing the indicated Gaussian integrations over p1, p2, and simplifying yields

i2 (z) =
2α2PRPSσb

π2
×

e−µsz exp −r2 w2H
w2H

+
(1− e−µsz) exp −r2 w2S

w2S

2

dr, (26)

where the effective backscattering cross section of the tissue discontinuity σb =

4πRd k2. It is important to note that the algebraically simple result given in Eq.
(26) are, strictly speaking, valid only for propagation geometries where A = D, as
is obtained in the case of interest. Performing the integration over the discontinuity
plane in Eq. (26) and simplifying, we obtain the following expression for the mean
square heterodyne signal current

i2 (z) =
α2PRPSσb

πw2H
e−2µsz +

2e−µsz (1− e−µsz)
1 +w2S/w

2
H

+ 1− e−µsz 2 w2H
w2S

≡ i2
0
Ψ (z) . (27)

The quantity i2
0
= α2PRPSσb πw2H is the mean square heterodyne signal cur-

rent in the absence of scattering, and the terms contained in the brackets is the
heterodyne efficiency factor Ψ (z). A comparison between the analytic approxima-
tion of the heterodyne efficiency factor, given in Eq. (27), and the exact numerical
calculation is given in Appendix B.
Physically, Ψ (z) can be looked upon as the reduction in the heterodyne signal-

to-noise ratio due to the scattering of the tissue. The first term in the brackets
of Eq. (27) represents the contribution due to single scattering. The correspond-
ing third term is the multiple scattering term, and the second term is the cross
term. Physically, the cross term is the coherent mixing of the unscattered and the
multiple scattered light.
When the focal plane coincides with the tissue discontinuity (i.e., fA = B), we

obtain

w2H =
f

kw0

2

;
w2H
w2S

=
1

1+ 2w0
ρ0(z)

2 . (28)

The quantity ρ0 (z) is the lateral coherence length of the reflected sample field
in the mixing plane. For lateral separations much less (greater) than ρ0 (z), the
field can be considered to be mutually coherent (incoherent). Because of the dif-
fuse backscattering from the tissue discontinuity, ρ0 (z) is determined only by the
propagation back through the tissue from the tissue discontinuity to the mixing
plane. As a consequence, ρ0 (z) is the lateral coherence length of a point source
located in the tissue discontinuity plane, as observed in the mixing plane. For the
geometry of interest, it is shown in Appendix A that

ρ0 (z) =
3

µsz

λ

πθrms
1 +

nd (z)

z
, (29)

where d (z) = f − (z/n), and θrms 2(1− g). The second term in the brackets
of Eq. (29) indicates, that the lateral coherence length increases with increasing
distance between the tissue surface and the mixing plane. This well-known de-
pendence of the lateral coherence length on the position of the scattering medium
relative to the observation plane, is the so-called shower curtain effect [26, 27].
In general, the shower curtain effect implies that the lateral coherence length

obtained for the case when the scattering medium is close to the radiation source
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is larger than the case when the scattering medium is close to the observation
plane. Physically, this is due to the fact that a distorted spherical wave approaches
a plane wave as it further propagates through a non-scattering medium. As a
consequence, e.g., one can see a person immediately behind a shower curtain,
but the person cannot see you. The effect is well-known for light propagation
through the atmosphere as discussed by Dror et al. [27], but has been omitted in
previous theoretical OCT models [33]. However, due to the finite distance between
the focusing lens and the tissue, the effect is inevitably present in practical OCT
systems and could facilitate system optimization.
The reflection characteristics of the tissue discontinuity play a vital role for

the shower curtain effect. If we, instead of diffuse backscattering, had a specu-
lar reflection at the tissue discontinuity, the corresponding inhomogeneous mutual
coherence function for plane waves would apply. Using this mutual coherence func-
tion, we have [55]

Ψ (z) = e−2µsz + 1− e−2µsz w2H
w2S

(30)

and

ρ0 (z) =
1

2µsz

λ

πθrms
. (31)

It is obvious from Eq. (31) that the shower curtain effect would not be present
in the case of a specular reflection at the tissue discontinuity, in contrast to the
case of diffuse backscattering. However, it is important to note that it is diffuse
backscattering which actually occurs in the case of (skin) tissue.

Numerical results The heterodyne efficiency factor Ψ (z) is shown as a func-
tion of depth z of the tissue discontinuity in Fig. 2 for typical parameters of
human skin tissue with diffuse backscattering and the shower curtain effect in-
cluded (dashed) and specular reflection (solid), respectively. For comparison, we
show the case of diffuse backscattering with exclusion of the shower curtain ef-
fect (dash-dot) and the case of pure single scattering (dotted). At shallow depths
single backscattering dominates. Due to multiple scattering, the slope is changed
and Ψ (z) becomes almost constant for three cases (curve 1—3). The important
difference is, however, that the change of slope occurs at different depths. This is
due to the shower curtain effect leading to an appreciable enhancement of Ψ (z),
and with it the heterodyne signal, which is obtained by comparing curve 1 and 2
in Fig. 2. Physically, this increase in the heterodyne signal is due to an enhanced
spatial coherence of the multiple scattered light.
In Fig. 3, the heterodyne efficiency factor Ψ (z) is shown as a function of depth

z for µs = 10mm−1 and three values of g within the range of validity of the
extended Huygens-Fresnel principle. The curves are computed for the case of a
diffuse backscattering at the discontinuity, and inclusion of the shower curtain ef-
fect. This figure demonstrates the degree of sensitivity of the heterodyne efficiency
factor with respect to changes in the asymmetry parameter.
Moreover, in Fig. 4, the heterodyne efficiency factor Ψ (z) is shown as a function

of depth z for g = 0.95 and three values of µs within a range of interest with respect
to tissue [52]. The curves are computed for the case of a diffuse backscattering at
the discontinuity, and inclusion of the shower curtain effect. This figure demon-
strates the degree of sensitivity of the heterodyne efficiency factor with respect to
changes in the scattering coefficient.

Choice of scattering function In the present novel modeling of the OCT
geometry, we use a Gaussian volume scattering function [7], as discussed in the
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Figure 2. The heterodyne efficiency factor Ψ (z) as a function of depth z for diffuse
backscattering with the shower curtain effect included (curve 1), and for specular
reflection (curve 3). Curve 2 is calculated for diffuse backscattering but with the
shower curtain effect excluded, and curve 4 is the case of pure single backscattering
(λ = 814 nm, µs = 20mm−1, g = 0.955 (θrms = 0.3 rad), n = 1.4, f = 5mm,
w0 = 0.5mm).
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Figure 3. The heterodyne efficiency factor Ψ (z) as a function of depth z for µs =
10mm−1 and three values of g within the range of validity of the extended Huygens-
Fresnel principle. The curves are for the case of a diffuse backscattering at the
discontinuity, and inclusion of the shower curtain effect (λ = 814 nm, n = 1.4,
f = 5mm, w0 = 0.5mm).
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Figure 4. The heterodyne efficiency factor Ψ (z) as a function of depth z for
g = 0.95 and three values of µs within a range of interest with respect to tis-
sue. The curves are for the case of a diffuse backscattering at the discontinuity,
and inclusion of the shower curtain effect (λ = 814 nm, n = 1.4, f = 5mm,
w0 = 0.5mm).

section called ”The lateral resolution” in chapter 2. The motivation for this choice
of scattering function is the ability to obtain an accurate analytic engineering
approximation, valid for all values of the optical depth. In the case of the Henyey-
Greenstein scattering function [56], which has been widely used in approximating
the angular scattering dependence of single-scattering events in some biological
media [57],[52], the corresponding analytic approximation is not as accurate as
for the case of a Gaussian scattering function. However, a numerical computation
using the exact expressions may be carried out instead. Hence, both scattering
functions may be used in the modeling of the OCT geometry presented in this
thesis.

Signal-to-noise ratio (SNR) Without loss of generality, an OCT system with
shot-noise limited operation is considered in a calculation of the signal-to-noise
ratio (SNR). The only significant source of noise is the shot-noise caused by the
reference beam. For a photoconductive detector the mean square noise power Np
can then be expressed as [58]

Np = 2αqeG
2
caRlBwPR, (32)

where Rl is the resistance of the load, Gca is the gain associated with the current
amplifier, and Bw is the system bandwidth. The corresponding mean heterodyne
signal power S (z) is given by [59]

S (z) = i2 (z) G2caRl, (33)

where i2 (z) is given by Eq. (27). Hence, the mean signal-to-noise ratio SNR (z)
is given by

SNR (z) =
S (z)

Np

= (SNR)0Ψ (z) , (34)
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where the signal-to-noise ratio in the absence of scattering (SNR)0 is given by

(SNR)0 =
ηPS
2hνBw

σb
πw2H

. (35)

In the case of interest where the focal plane coincides with the tissue discontinuity,
we get the following expression for (SNR)0

(SNR)0 =
2ηPS
hνBw

w0
f

2

Rd, (36)

where it has been used that σb = 4πRd/k2.

The lateral resolution

As already discussed, the lateral resolution of an OCT system is determined by the
spot size at the depth being probed in the tissue. Therefore, we want to determine
the mean irradiance distribution or the intensity pattern of the optical field as a
function of the probing depth z in the tissue. In highly scattering tissue, the mean
irradiance distribution, and with it the lateral resolution, are dependent on the
scattering properties of the tissue. The formalism presented in this thesis enables
the calculation of the lateral resolution in highly scattering tissue, which is shown
below.
For small-angle scattering, where the paraxial approximation is valid, the ex-

tended Huygens-Fresnel principle yields that the mean irradiance distribution is
given by [49]

I (r) =
k

2πB

2

K (ρ) exp
ik

B
ρ · r Γpt (ρ)d2ρ, (37)

where

K (ρ) = exp − ikA
B

ρ · P USi P + ρ/2 U∗Si P − ρ/2 d2P, (38)

and ρ = p1 − p2. For an OCT system focused at a depth z in the tissue A = 1,
and B = f .
The mutual coherence function Γpt can be expressed as [54]

Γpt = exp [i (φ (p1)− φ (p2))]

= exp [−s (1− bφ (ρ)) ] , (39)

where we have assumed that the phase φ is a normally distributed zero-mean
random process. The quantity s is the phase variance, and bφ (ρ) is the normalized
phase autocorrelation function for a point source whose origin is at the probing
depth z. It can be shown [60] that the phase variance s = µsz, which is the optical
depth. The normalized phase autocorrelation function bφ (ρ) is given by [54]

bφ (ρ) =

L

0 dz
∞
0 σ (θ; z )J0 (kpsθ) θdθ

L

0 dz
∞
0 σ (θ; z ) θdθ

, (40)

J0 is the Bessel function of the first kind, of order zero,

ps =
Bb (z )

Bb
ρ, (41)

where Bb (z ) is the B-matrix element for backpropagation from the probing depth
z to a distance z , and σ (θ; z ) is the volume scattering or phase function with θ

being the scattering angle. For the OCT geometry Bb (z ) = z /n for 0 ≤ z ≤ z,
L = d + z, and σ (θ; z ) = σ (θ) for 0 ≤ z ≤ z, and zero otherwise. In this
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model, we use a Gaussian volume scattering function, which in the small-angle
approximation is given by

σ (θ) = exp −θ2/θ20 , (42)

where g = cos θ 1− θ2 /2, and θ0 = θ2 2 (1− g).
Substituting Eqs. (41) and (42) into Eq. (40) and performing the indicated

integrations yields the following equation for the normalized phase autocorrelation
function

bφ (ρ) =

√
π

2

ρφ
ρ
erf ρ/ρφ , (43)

where erf (·) denotes the error function, and ρφ is the phase correlation length
given by

ρφ =
λ

π 2 (1− g) 1 +
nd

z
. (44)

Hence, the mutual coherence function Γpt is given by Eq. (39) with bφ (ρ) given
by Eq. (43).
Thus, for specific values of both s and g, the mutual coherence function is

completely determined, and for a given value of the initial optical wave function
USi, numerical results for the mean irradiance can be obtained directly from Eq.
(37). Here USi is given by Eq. (13), and we get the following equation for the mean
irradiance distribution at the probing depth z in the tissue

I (r) =
PS

2π (f/kw0)
2

∞

0

exp −x
2

4
xJ0 (ux)Γpt (xw0)dx, (45)

where J0 is the Bessel function of the first kind of order zero, and

u =
r

f/kw0
(46)

is a normalized transverse coordinate.
As indicated above, numerical results can readily be obtained. However, it is

useful to have an analytic approximation so that OCT system parameter studies
can be performed. Examination of Eq. (39) reveals for large values of the optical
depth, that Γpt is nonzero for s (1− bφ (ρ)) less than the order unity, that is,
for bφ (ρ) near unity. Expanding bφ (ρ) in powers of ρ and retaining the first two
nonzero terms yields from Eq. (43) that bφ (ρ) 1−ρ2/3ρ2φ, from which it follows
that

Γpt exp −ρ2/ρ20 , s 1 (47)

where ρ0 =
√
3ρφ/

√
s. We expect that the ballistic, i.e., unscattered component of

the irradiance pattern is proportional to e−µsz. Thus, we approximate the mutual
coherence function as

Γpt e−µsz + 1− e−µsz exp −ρ2/ρ20 . (48)

Substituting Eqs. (13) and (48) into Eq. (37), and performing the integration
yields the following approximate expression for the mean irradiance distribution
at the probing depth z in the tissue

I (r)
PS
π

e−µsz exp −r2/w2H
w2H

+
(1− e−µsz) exp −r2/w2S

w2S
. (49)

The first term in the brackets on the right hand side of Eq. (49) can be interpreted
to represent the attenuated distribution obtained in the absence of the inhomo-
geneities, and the corresponding second term represents a broader halo resulting
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from scattering by the inhomogeneities. The quantities wH and wS are the 1/e
irradiance radii in the absence and presence of scattering, respectively, given by

w2H = w20 A− B
f

2

+
B

kw0

2

(50)

w2S = w20 A− B
f

2

+
B

kw0

2

+
2B

kρ0

2

. (51)

For the OCT system, we have

wH =
f

kw0
(52)

wS = w2H +
2f

kρ0

2

. (53)

It is only in the very superficial layers of highly scattering tissue that it is possible
to achieve diffraction limited focusing. In this region, the lateral resolution is
given by 2wH. At deeper probing depths the lateral resolution is dependent on the
scattering properties and given by 2wS. It is seen from Eqs. (53) and (29) that the
lateral resolution is degraded due to multiple scattering when the probing depth
is increased. This is illustrated in Fig. 5, where the intensity pattern is shown as
a function of the probing depth z in the tissue using Eq. (49).
Moreover, in Fig. 6, wS/wH is shown as a function of the asymmetry parameter

g at z = 0.5mm for three values of the scattering coefficient. This figure demon-
strates how the lateral resolution at a given depth in the tissue is degraded with
decreasing asymmetry parameter, and increasing scattering coefficient.
Finally, it is important to note that the shower curtain effect leads to an in-

creased lateral resolution.

Design considerations

The numerical aperture NA is an important design parameter of an OCT system.
Thus, in this section it is shown how the heterodyne efficiency factor and the mean
square heterodyne signal depend on the choice of numerical aperture.
Fig. 7 shows the heterodyne efficiency factor as a function of the focal length f ,

or numerical aperture NA, for the case where the 1/e intensity radius of the sample
beam is kept fixed, the depth z = 0.5mm, and the shower curtain effect is included
using Eq. (29). The dashed and solid curves are calculated for the case of a low
(2mm−1) and a high (10mm−1) scattering coefficient, respectively. In contrast to
the case where the shower curtain effect is excluded and the heterodyne efficiency
factor is constant (not shown in Fig. 7) as a function of the focal length, the two
curves increase with increasing focal length (for µs = 2mm

−1 the increase is very
small). It is important to note that the slopes of the two curves are not equal. This
is a consequence of the fact that the shower curtain effect is a multiple scattering
effect thus playing a crucial role in a medium with a high scattering coefficient.
Furthermore, it is important to note that the increase in the heterodyne efficiency
factor is obtained at the expense of the lateral resolution because of a larger spot
size in the discontinuity plane.
To emphasize this difference between media with a low and a high scattering

coefficient, the corresponding mean square heterodyne signal current i2 is shown
in Fig. 8 (µs = 2mm−1) and Fig. 9 (µs = 10mm−1) as a function of the focal
length f , or numerical aperture NA, with (solid curve) and without (dashed curve)
the shower curtain effect. For the purpose of system optimization in terms of
maximum signal it is obvious from Fig. 8 and Fig. 9 that the optimal choice of
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Figure 5. The intensity pattern as a function of the probing depth z in the tissue
(λ = 814 nm, µs = 10mm−1, g = 0.955 (θrms = 0.3 rad), n = 1.4, f = 5mm,
w0 = 0.5mm).
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Figure 7. The heterodyne efficiency factor Ψ (z) as a function of the focal length
f, or numerical aperture NA, when the probing depth z = 0.5mm, and the shower
curtain effect is included. The dashed and solid curves are calculated for the case
of a low (2mm−1) and a high (10mm−1) scattering coefficient, respectively (λ =
814 nm, g = 0.955 (θrms = 0.3 rad), n = 1.4, w0 = 0.5mm).

focal length is to keep it as short as possible. However, as a direct consequence of
the shower curtain effect, the advantage of choosing a short focal length decreases
with increasing value of the scattering coefficient, or the optical depth µsz.
We now consider the case where the numerical aperture, and subsequently the

lateral resolution, are kept constant while the distance d from the lens to the
tissue is varied, and the probing depth z is constant. If the shower curtain effect is
excluded, we get that the heterodyne efficiency factor decreases when the distance
from the lens to the tissue increases. On the other hand, if the shower curtain
effect is included, we get that the heterodyne efficiency factor is independent of
the distance from the lens to the tissue. The latter is intuitively correct for the
geometry of interest. This is due to the fact that the reference beam or local
oscillator can be projected onto the surface of the tissue, and as long as the
numerical aperture is kept constant, the local oscillator will be the same. Therefore,
we expect the heterodyne efficiency factor to be independent of the distance from
the lens to the tissue as long as the numerical aperture is kept constant.

Calculation of the maximum probing depth

The maximum probing depth is of considerable interest in the characterization
and optimization of an OCT system when used for imaging in highly scattering
tissue. Therefore, a calculation of the maximum probing depth, which is based
on the OCT model described above, is presented in this section. Without loss of
generality, the calculation is performed for a shot-noise limited system.
The calculation of the maximum probing depth zmax, which is carried out in

this section, is based on the minimum acceptable signal-to-noise ratio. The mini-
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Figure 8. The mean square heterodyne signal current i2 as a function of the
focal length f , or numerical aperture NA, with (solid curve) and without (dashed
curve) the shower curtain effect. The scattering coefficient µs = 2mm

−1, and the
probing depth z = 0.5mm (λ = 814nm, g = 0.955 (θrms = 0.3 rad), n = 1.4,
w0 = 0.5mm).

mum acceptable signal-to-noise ratio is closely related to the maximum acceptable
uncertainty in the determination of the amplitude and position of the OCT signal
when the envelope detection is performed. In these calculations, the value 3 is
used as the minimum acceptable signal-to-noise ratio, i.e., SNR (zmax) = 3. Thus,
using Eq. (34) and Eq. (36), we have to solve the following equation with respect
to zmax in order to determine the maximum probing depth

2ηPS
hνBw

w0
f

2

RdΨ (zmax) = 3. (54)

The heterodyne efficiency factor Ψ is given by either Eq. (27) or Eq. (30) depend-
ing on the reflection characteristics of the probed discontinuity. As can be seen
from Eq. (54), this calculation of the maximum probing depth is based on the
design variables of the OCT system, the detector characteristics, and the optical
properties of the tissue.
Fig. 10 shows the maximum probing depth zmax as a function of the scattering

coefficient µs for a typical OCT system. The solid curve represents the case found
in tissue where the probed discontinuity is giving a diffuse backscattering and
the shower curtain effect is present. The dashed curve represents three different
cases which all give the same dependence of the maximum probing depth on the
scattering coefficient. The three different cases are diffuse backscattering at the
discontinuity with exclusion of the shower curtain effect, specular reflection at
the discontinuity, and pure single backscattering. It is important to note that the
shower curtain effect, which is a multiple scattering effect, alone is responsible for
the marked difference between the solid and the dashed curves. This demonstrates
that multiple scattering and the shower curtain effect are important effects to
consider when calculating the maximum probing depth in tissue.
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Figure 9. The mean square heterodyne signal current i2 as a function of the
focal length f , or numerical aperture NA, with (solid curve) and without (dashed
curve) the shower curtain effect. The scattering coefficient µs = 10mm−1, and
the probing depth z = 0.5mm (λ = 814nm, g = 0.955 (θrms = 0.3 rad), n = 1.4,
w0 = 0.5mm).

Fig. 11 shows zmax as a function of µs and the reflection coefficient Rd of the
probed tissue discontinuity for the case found in tissue where the discontinuity
is giving a diffuse backscattering and the shower curtain effect is present. The
3D plot shows zmax with common parameters for skin tissue, and commonly used
OCT system parameters. The range of Rd is based on the values of the index of
refraction of the various layers of human skin given by V. V. Tuchin et al. [61]. The
range of the scattering coefficient has been chosen from commonly cited values in
the literature [52],[61].
The focal length of the focusing lens in the sample arm and the 1/e intensity

radius of the sample beam being focused are important design variables of the
OCT system. In order to investigate how these parameters influence the maximum
probing depth, zmax is shown as a function of µs and the focal length f in Fig. 12
for a typical OCT system. As in Fig. 11, the calculations are carried out for the
case found in tissue where the discontinuity is giving a diffuse backscattering and
the shower curtain effect is present.
Fig. 12 shows that, in general, the maximum probing depth depends on the focal

length at small values of the scattering coefficient, but is independent of the focal
length at larger values of the scattering coefficient. A similar behavior is observed
for the maximum probing depth as a function of µs and the 1/e intensity radius of
the sample beam being focused. This behavior is due to multiple scattering of the
light in the tissue. At scattering coefficients found in human skin tissue [52],[61],
for example, it may be concluded from Fig. 12 that the maximum probing depth
is independent of the focal length f . This is an important conclusion because the
depth of focus and the lateral resolution of the OCT system may then be chosen
independently of the maximum probing depth. For example, if no scanning of the
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Figure 10. The maximum probing depth zmax as a function of the scattering coeffi-
cient µs for a typical OCT system. Solid curve: diffuse backscattering at disconti-
nuity and shower curtain effect included. Dashed curve: represents three different
cases yielding similar results; (i) diffuse backscattering at discontinuity and the
shower curtain effect excluded, (ii) specular reflection at discontinuity, and (iii)
pure single backscattering (λ = 814nm, g = 0.955 (θrms = 0.3 rad), n = 1.4,
Rd = 0.05%, f = 16mm, w0 = 0.125mm, PS = 650µW, Bw = 10 kHz, η = 0.8).

focal plane in the tissue is desirable and, therefore, a large depth of focus has been
chosen, the same maximum probing depth is obtained as for a system with a short
depth of focus where the focal plane is scanned to keep it matched to the reference
arm. This conclusion is not surprising or contrary to assumptions already held in
the field. However, the theoretical analysis in this section provides a theoretical
foundation for these. This agreement may also be taken as a validation of the new
OCT model.

Summary

A new theoretical description of the OCT technique when used for imaging in
highly scattering tissue has been presented. The description is based on the ex-
tended Huygens-Fresnel principle. It is shown that the theoretical model describes
the performance of the OCT system in both the single and multiple scattering
regimes simultaneously. The model inherently includes the shower curtain effect.
This effect has been omitted in previous theoretical models of OCT systems. It
has been demonstrated in this chapter that the shower curtain effect is of utmost
importance in the theoretical description of an OCT system.
The analytical model enables a calculation of the SNR, where the optical prop-

erties of the tissue have been taken into account. A method for calculating the
maximum probing depth based on the SNR has been presented. Finally, the model
enables the determination of the lateral resolution of the OCT system at arbitrary
depths in the scattering tissue.
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Figure 11. The maximum probing depth zmax as a function of the scattering coef-
ficient µs and the reflection coefficient Rd for a typical OCT system together with
diffuse backscattering at the discontinuity and the shower curtain effect included
(λ = 814 nm, g = 0.955 (θrms = 0.3 rad), n = 1.4, f = 16mm, w0 = 0.125mm,
PS = 650µW, Bw = 10kHz, η = 0.8).
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Figure 12. The maximum probing depth zmax as a function of the scattering co-
efficient µs and the focal length f for a typical OCT system together with dif-
fuse backscattering at the discontinuity and the shower curtain effect included
(λ = 814 nm, g = 0.955 (θrms = 0.3 rad), n = 1.4, Rd = 0.05%, w0 = 2mm,
PS = 650µW, Bw = 10kHz, η = 0.8).
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Figure 13. The OCT system used in the experimental verification of the OCT
model.

3 Experimental verification of the
new OCT model

The new OCT model is verified by measurements on liquid phantoms consisting of
aqueous suspensions of microspheres, and solid phantoms [35], [36],[37],[39]. The
measurements are carried out by using a conventional OCT setup [1], which has
been constructed during the Ph.D. thesis project.

3.1 Experimental setup
A schematic of the OCT system is shown in Fig. 13. It consists of a superlumines-
cent diode (SLD), Superlum SLD-361/A-BUT-SM, with a center wavelength of
814 nm, a FWHM spectral bandwidth of 22.8 nm, and an output power of 1.9mW.
The measured spectrum of the SLD is shown in Fig. 14, which was obtained by us-
ing a 600 l/mm spectrograph. The light from the SLD is coupled into a single-mode
fiber-optic Michelson interferometer with a 50/50 beamsplitter. In the sample arm,
the beam, having a 1/e intensity radius w0 of 0.125mm, is focused in the phantom
by a lens with a focal length f of 16mm. In the reference arm, the light is reflected
at a mirror attached to a piezo-stack, which is placed on a computer-controlled
translation stage. The reference mirror is scanned by the piezo (translation stage
stationary) when measurements are carried out on the liquid phantoms. This is
due to the fact that the phase and the amplitude of the scattered electric field are
modulated because of the random motion of the scattering microspheres in the
liquid phantoms [62]. These modulations appear as fluctuations in the measured
interference signal. The piezo enables capturing of a large number of scans on a
time-scale which is short compared to the fluctuations. Each scan is then analyzed
to determine the maximum amplitude of the envelope, and their mean value is
used in the determination of the heterodyne efficiency factor.
The light reflected at the probed discontinuity in the phantom and at the ref-

erence mirror are mixed at a silicon detector, and the resulting interference signal
is amplified. Within the scan range used of the translation stage and the piezo,
the velocity v is constant. The constant-velocity movement of the reference mir-
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Figure 14. The measured spectrum of the superluminescent diode.

ror shifts the center frequency of the interference signal to the Doppler frequency
fd = 2v/λ, which facilitates removal of the dc background and low-frequency
noise. Therefore, after the amplification, the interference signal is bandpass fil-
tered by a filter centered at fd. The Doppler frequency and the bandpass filter
used in the case of the translation stage scanning and piezo scanning are 15 kHz,
10− 20kHz, and 3.5kHz, 2− 5 kHz, respectively. After the bandpass filtering, the
interference signal is digitized with a 12-bit analog-digital converter and trans-
ferred to a computer. The data acquisition is carried out by using appropriate
LabVIEW programs1.
The envelope of the low-coherence interference signal is determined by using

the Hilbert transform [63]. The envelope is given by |is + iHt(is)|, where is is the
interference signal, Ht is the Hilbert transform, and i is the imaginary unit. The
maximum amplitude of the envelope is then used in the determination of the
heterodyne efficiency factor.
An example of a measured interference signal with envelope is shown in Fig. 15.

The signal is from a polymer-air interface of one of the solid phantoms described
below. The coherence length lc, determined from this measurement (FWHM), is
16.7µm. This should be compared with the value of the coherence length obtained
by using the equation lc = ( 2 ln(2)/π)λ2/∆λ for a Gaussian spectrum, where λ
and ∆λ (FWHM) are determined from the measured spectrum of the SLD shown
in Fig. 14 [7]. The coherence length obtained in this way is 19.3µm, which is in
good agreement with the measured value.

3.2 Measurements on liquid phantoms
The liquid phantoms consist of latex (polyvinyltoluene) microspheres with a mean
diameter of 2.04µm (std. dev. 2.2%) suspended in distilled, deionized water. Mie
theory [53] is used to calculate g and µs, using the sphere diameter, the index
of refraction (1.59 @ 589 nm (25 ◦C)), the specific weight (1.05g/ml), and the

1LabVIEW 5.0 is a program development environment that uses a graphical programming
language, G, to create programs in block diagram form.
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Figure 15. An example of a measured interference signal with envelope.

concentration of the microspheres (g/g), together with the index of refraction
(1.33) and the specific weight (1.00 g/ml) of liquid water. The absorption of these
liquid phantoms is negligible.
In the first experiment, the liquid phantoms are placed in a 1.0mm (internal

thickness) glass cuvette. Apart from the front glass plate of the cuvette, the ge-
ometry is identical to the one shown in Fig. 1 with z = 1.0mm. In this case, the
probed liquid - glass discontinuity gives a specular reflection.
Fig. 16 shows the theoretical prediction (solid line) and measurements (circles)

of the heterodyne efficiency factor Ψ as a function of the scattering coefficient µs
for this case with specular reflection at the discontinuity. Note, that the cuvette
glass plate in front of the liquid phantoms has been taken into account in the
theoretical analysis by using the following equation for d (z)

d (z) = f − z

n
+ δ 1− 1

ng
, (55)

where δ and ng are the thickness and index of refraction of the glass plate, respec-
tively. As shown in Fig. 16, excellent agreement between theory and experiment
is obtained. Note that this agreement is obtained without any kind of fitting. As
seen from the figure, the multiple scattering regime, which is indicated by the
change of slope of the curve, has not been reached in this experiment.
In the second experiment, the liquid phantoms are placed in a 0.5mm (internal

thickness) glass cuvette with a changeable back plate. In the measurements, both
a silicon and a glass plate giving diffuse backscattering and specular reflection,
respectively, are used to define the probed liquid - back plate discontinuity. Apart
from the front glass plate of the cuvette, the geometry is identical to the one shown
in Fig. 1 with z = 0.5mm.
Fig. 17 shows the theoretical predictions and measurements of the heterodyne

efficiency factor Ψ as a function of the scattering coefficient µs for the case of dif-
fuse backscattering (dashed (no fit) and solid (fitted curve; fitting parameter: w0)
lines; squares) and specular reflection (dash-dot line; circles) at the discontinuity.

32 Risø—R—1217(EN)



0 2 4 6 8 10
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 
H
et
er
od
yn
e 
ef
fic
ie
nc
y 
fa
ct
or
 Ψ

Scattering coefficient µs [mm
-1]

Figure 16. The theoretical prediction (solid line) and measurements (circles) of the
heterodyne efficiency factor Ψ as a function of the scattering coefficient µs for the
case of specular reflection at the discontinuity at depth z = 1.0mm (g = 0.929

(θrms = 0.38 rad), n = 1.33, δ = 1.15mm, ng = 1.5).

As shown in Fig. 17, excellent agreement between theory and experiment in the
case of specular reflection is obtained. As for the first experiment, this agreement
is obtained without any kind of fitting. In the case of diffuse backscattering, the
experimental data show deviations from theory (dashed line; no fit). However,
there is no doubt that the experimental results show a clear deviation from what
would be obtained in the absence of the shower curtain effect (i.e., specular reflec-
tion). At µs = 7mm

−1, the experimental value of the heterodyne efficiency factor
is a factor of about 5 larger than the value that would be obtained in the absence
of the shower curtain effect. This means that we have certainly demonstrated how
the shower curtain effect increases the heterodyne signal through enhanced spatial
coherence of the multiple scattered light.
The strong fluctuations of the interference signal caused by the motion of the

scattering microspheres may be the reason for the deviation from the theoretical
curve.

3.3 Measurements on solid phantoms
In order to further verify the validity of the new OCT model, and to sustain the
claim regarding the motion of the microspheres given above, measurements are
carried out on solid phantoms. In this experiment, the geometry is identical to the
one shown in Fig. 1. Solid phantoms consisting of scattering microspheres (approx-
imate diameter size 10µm) in polymer are used as the scattering medium with
thickness z. The optical parameters of the solid phantoms, i.e., the asymmetry pa-
rameter, the scattering coefficient, and the absorption coefficient, were determined
by carrying out integrating sphere and collimated transmission measurements, and
using the inverse adding-doubling method [64]. All phantoms used had a negligible
absorption. The probed discontinuity is defined by the phantom-air interface. This
discontinuity is giving a diffuse backscattering.
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Figure 17. The theoretical curves and measurements of the heterodyne efficiency
factor Ψ as a function of the scattering coefficient µs for the case of diffuse
backscattering (dashed (no fit) and solid (fitted curve; fitting parameter: w0) lines;
squares) and specular reflection (dash-dot line; circles) at the discontinuity. The
probing depth z is 0.5mm, and the typical standard deviation for the squares is
± 7.8% (g = 0.929 (θrms = 0.38 rad), n = 1.33, δ = 1.256mm, ng = 1.5).

Fig. 18 shows the theoretical curves and the measurements of the heterodyne
efficiency factor Ψ as a function of the scattering coefficient µs for two different
probing depths z (z = 5.25mm (dashed; square) and z = 7.55mm (dash-dot;
circle)) and diffuse backscattering at the probed discontinuity. The theoretical
curves are created by fitting to the experimental points using g as the only fitting
parameter. The values of g obtained in this way are 0.994 for z = 5.25mm and
0.989 for z = 7.55mm. These values are lying within the experimental errors of
the measured asymmetry parameters (g = 0.996 and g = 0.997, respectively),
which means that we have a good agreement between theory and experiment. The
author is aware that this conclusion is based on a limited number of measure-
ments. However, this experiment may be taken as a supplement to the other two
experiments.

3.4 Summary
The new OCT model has been verified by measurements on liquid phantoms
consisting of aqueous suspensions of microspheres, and solid phantoms.
In the two experiments with liquid phantoms and a specular reflection, excellent

agreement between theory and experiment were obtained for Ψ as a function of
µs. This agreement was obtained without any kind of fitting.
In the experiment with liquid phantoms and a diffuse backscattering, it was

demonstrated how the shower curtain effect increases the heterodyne signal through
enhanced spatial coherence of the multiple scattered light. The validity of the
model in the case of diffuse backscattering was further supported by an experi-
ment with solid phantoms.
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Figure 18. The theoretical curves and measurements of the heterodyne efficiency
factor Ψ as a function of the scattering coefficient µs for two different probing
depths (z = 5.25mm (dashed; square) and z = 7.55mm (dash-dot; circle)) and
diffuse backscattering at the probed discontinuity (n = 1.5).

The measurements were carried out by using a conventional OCT setup, which
has been constructed during the Ph.D. thesis project.
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Figure 19. The OCT imaging system

4 OCT imaging

In this chapter, OCT images of human skin, a mouse ear, and a table tennis
ball is presented. The aim is to demonstrate the imaging capabilities of the OCT
system, which has been developed during the Ph.D. thesis project. Furthermore,
a new true-reflection OCT imaging algorithm is presented, and the principle is
demonstrated by measurements on a solid phantom.

4.1 Experimental setup
In the last chapter, a description was given of the OCT system used in the exper-
imental verification of the new OCT model. The main part of this OCT system is
also used in the imaging system. In the following, the elements, which are specific
for the imaging system, will be described.
A schematic of the OCT imaging system is shown in Fig. 19. The probe module,

consisting of the end of the sample arm fiber with a collimating GRIN lens, and
a focusing lens or microscope objective, is placed on a xyz computer-controlled
translation stage. This enables the lateral scanning of the sample, which is neces-
sary in order to obtain OCT images. The distance between adjacent longitudinal
or depth scans is 10µm in the OCT images shown in this thesis. Only one longi-
tudinal scan is taken in every lateral position, so no averaging is performed. The
longitudinal scans are performed using the translation stage described in the last
chapter. The optical power on the sample is 500µW.
The data acquisition is carried out by using an appropriate LabVIEW program.

A C++ program has been developed to handle the processing of the data and the
creation of the OCT images2. As in the processing of the phantom measurements,
the envelope of the individual depth scans is determined by using the Hilbert
transform [63]. The resulting data array is then viewed directly as a false-color or
gray-scale image.

2The C++ program was developed by Thomas M. Jørgensen, Risø National Laboratory,
Denmark.
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Figure 20. In vivo OCT image of healthy skin on the left forearm (volar side) of
a human volunteer (2.0mm lateral × 0.955mm longitudinal).

4.2 OCT images of human skin
OCT images of healthy skin on the forearm (volar side) of two human volunteers
have been obtained in vivo. In order to prevent surface movement, the area imaged
is placed in contact with a glass window, and index-matching oil is used to reduce
the reflection of light from the skin surface. The probe module is adjusted along
the optical axis until the skin surface is brought into focus. In this case, a lens
with a focal length of 10mm is used. Using Eq. (52), the upper limit of the
lateral resolution is 20.7µm. The longitudinal resolution in the human skin tissue
is 19.3µm/1.4 = 13.8µm, where 1.4 is used as the mean index of refraction of the
human skin tissue [52].
The OCT images of the healthy skin on the forearm (volar side) of the two

human volunteers are shown in Fig. 20 and Fig. 21. Fig. 20 is from the left forearm,
and Fig. 21 is from the right forearm. The images are shown with a logarithmic
false-color palette (blue:low - red:high), and they have not been subject to image
processing. The size of these images is 2.0 × 0.955 mm (lateral × longitudinal).
The images have been expanded by a factor of four in the lateral direction, and
they consist of 200 × 880 pixels (lateral × longitudinal). This corresponds to a
pixel spacing of 10µm× 1.09µm (lateral × longitudinal). The scale shown on the
right hand side of the images has been corrected by a value of 1.4 for the index of
refraction of the human skin tissue [52].
The horizontal lines in the upper part of both images is the glass/skin interface.

The horizontal green line just below the glass/skin interface in Fig. 21, and the
horizontal lines in the lower part of both images are so-called ghosts caused by
the system itself. They may be due to reflections, a non-Gaussian spectrum, or
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Figure 21. In vivo OCT image of healthy skin on the right forearm (volar side) of
a human volunteer (2.0mm lateral × 0.955mm longitudinal).

dispersion.
At the forearm region, the uppermost layer, the stratum corneum, has a thick-

ness of only 10−20µm. Other investigations have shown that the border between
the stratum corneum and the living epidermis cannot be distinguished with OCT
systems having a longitudinal resolution around 10µm [65]. This means, that the
first skin layer with low signal in Fig. 20 and Fig. 21 may be the epidermis, consist-
ing of stratum corneum and the living part of epidermis. This is supported by the
thickness of this layer in both images, which is in good agreement with the values
of 50 to 150µm given by the literature for the thickness of the stratum corneum
together with the living epidermis [66],[67]. The more signal-dense region below
the epidermis can then be assigned to the upper part of the dermis. This interpre-
tation of OCT images from the volar side of the forearm is in accordance with the
interpretation given by Knüttel et al. in a recent publication [68]. The attenuation
of the OCT signal is visible in the lower part of the images. It is important to note
that a shadowing effect is seen in the middle of Fig. 21, which is probably due
to absorption in the epidermis. The maximum probing depth reached in the skin
with this OCT system is about 500µm. This is comparable with the maximum
probing depth obtained in other investigations of human skin using a similar OCT
system around 800nm [69].

4.3 OCT images of a mouse ear
OCT images of a mouse ear have been obtained in vitro. The mouse ear is placed
in formalin in a closed sample holder with a glass window. The probe module
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Figure 22. In vitro OCT image of a mouse ear (2.0mm lateral × 0.782mm

longitudinal).

is adjusted along the optical axis until the inside surface of the glass window is
brought into focus. A lens with a focal length of 10mm is used. Using Eq. (52),
the upper limit of the lateral resolution is 20.7µm. The longitudinal resolution
in the mouse ear tissue is 19.3µm/1.4 = 13.8µm, where 1.4 is used as the mean
index of refraction of the mouse ear tissue.
Two OCT images from the same site on the mouse ear are shown in Fig. 22

and Fig. 23. The images are shown with a logarithmic false-color palette (light
blue:low - red:high), and they have not been subject to image processing. The size
of these images is 2.0 × 0.782 mm (lateral × longitudinal). The images have been
expanded by a factor of four in the lateral direction, and they consist of 200 ×
720 pixels (lateral × longitudinal). This corresponds to a pixel spacing of 10µm×
1.09µm (lateral × longitudinal). The scale shown on the right hand side of the
images has been corrected by a value of 1.4 for the index of refraction of the mouse
ear tissue.
The horizontal red line in the upper part of both images is the inside surface

of the glass window. Based on the large signal obtained from this surface, it is
concluded, that there is no direct contact between the glass and the mouse ear at
the specific site being probed. This means, that the top of the curved layer defines
the surface of the mouse ear. The horizontal blue lines just above and below the
glass surface, and the horizontal green line in the lower part of both images are
ghosts. Furthermore, the vertical blue lines in the upper part of the images are
due to noise. Note, that the upper value of the palette is optimized to the signal
from the mouse ear and not to the large signal from the glass surface.
In mouse skin, the entire epidermis, i.e., stratum corneum and living epidermis,

has a thickness of about 30µm [70]. This means, that the curved layer seen in
the OCT images mainly consists of the dermis, and that the very thin epidermis
cannot be distinguished from the dermis in this case. It has not been possible
to find OCT images of a mouse ear in the literature for comparison. The two
OCT images, which are from exactly the same site on the mouse ear, demonstrate

Risø—R—1217(EN) 39



Figure 23. In vitro OCT image of a mouse ear (2.0mm lateral × 0.782mm

longitudinal).

excellent reproducibility.

4.4 OCT images of a table tennis ball
In order to demonstrate the difference of using a probe module with a low and a
high numerical aperture when generating OCT images, images of a table tennis
ball are obtained. A cross-sectional view of the geometry is shown in Fig. 24. The
focal plane of the sample beam is lying in the tangential plane of the contact point,
which is perpendicular to the plane of the paper in Fig. 24. The imaging plane is
lying in the plane of the paper, and the OCT images are generated by scanning
the sample beam as indicated in Fig. 24. The longitudinal resolution in the shell
of the table tennis ball is 19.3µm/1.5 = 12.9µm, where 1.5 is used as the mean
index of refraction of the celluloid shell of the table tennis ball.
Two OCT images have been obtained by using a probe module with a low and

a relatively higher numerical aperture, and the images are shown in Fig. 25 and
Fig. 26, respectively. The images are shown with a logarithmic false-color palette
(light blue:low - red:high), and they have not been subject to image processing.
The size of these images is 4.0 × 1.0125mm (lateral × longitudinal). The images
have been expanded by a factor of two in the lateral direction, and they consist
of 400 × 548 pixels (lateral × longitudinal). This corresponds to a pixel spacing
of 10µm× 1.85µm (lateral × longitudinal).
The images shown in Fig. 25 and Fig. 26 were obtained by using a microscope

objective with a focal length of 14.8mm and 4.3mm, respectively. This means that
the corresponding lateral resolution in the focal plane, and the depth of focus are
30.7µm,1.8mm and 8.9µm,0.15mm, respectively. The differences in the lateral
resolution and the depth of focus are expressed in the OCT images. Due to the
higher lateral resolution, the OCT image of the table tennis ball in Fig. 26 is less
coarse-grained than the OCT image in Fig. 25. However, due to the smaller depth
of focus, a backscattered signal is only obtained from the upper part of the table
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Figure 24. The geometry used in the imaging of the table tennis ball.

Figure 25. OCT image of a table tennis ball obtained by using a low numerical
aperture (4.0mm lateral × 1.0125mm longitudinal).

tennis ball in Fig. 26 as compared with Fig. 25, and the reflected signal from the
internal ball-air interface is weaker. This demonstrates why a depth of focus, which
is small compared with the thickness of the object under investigation, should be
combined with dynamic focusing [71]. This means that the focal plane is always
matched to the coherence gate, which also results in a depth-independent lateral
resolution in the case of diffraction limited focusing [71].

4.5 True-reflection OCT imaging algorithm
The interpretation of conventional OCT images like the ones shown above is not
always an easy task. One reason for this is the fact that an OCT signal, measured
at a given position in a nonabsorbing scattering medium, is a result of not only
the amount of light reflected at the given position, but also the attenuation due to
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Figure 26. OCT image of a table tennis ball obtained by using a high numerical
aperture (4.0mm lateral × 1.0125mm longitudinal).

scattering when the light propagates through the scattering medium. Therefore,
to make images, which give a direct measure of the amount of light reflected at a
given position, thereby making interpretation of OCT images easier, it is necessary
to be able to separate reflection and scattering effects. This is actually possible by
using the new OCT model described in this thesis. It was shown in section 2.2,
Eq. (27), that the mean square heterodyne signal current for light reflected at a
depth z can be expressed as

i2 (z) = i2(z)
0
Ψ (z) , (56)

where i2(z)
0
is the mean square heterodyne signal current in the absence of

scattering, and Ψ (z) is the heterodyne efficiency factor, which includes all of the
scattering effects. The maximum of the envelope of the measured interference
signal corresponds to i2 (z) . By dividing the envelope of the measured inter-
ference signal with Ψ (z), we are able to correct for the scattering effects and
determine the envelope that would be obtained in the absence of scattering. It
is important to note, that in addition to the system parameters λ, f , and w0,
knowledge about µs, θrms, and n of the scattering medium is necessary in order to
be able to calculate Ψ (z). However, in practice, µs and θrms may be obtained by
fitting the expression for i2 (z) to a measured depth scan of the homogeneous
backscattering tissue using an estimated value of n and the appropriate system
parameters. Implementing this procedure as an option in the imaging program
gives the opportunity to make what may be called true-reflection OCT images.
To demonstrate the principle of this algorithm, an experiment has been carried

out using a solid phantom. The phantom is shown in Fig. 27. This solid phantom
is of the same type as the ones used in the experimental verification of the OCT
model. It consists of scattering microspheres (approximate diameter size 10µm) in
a polymer. The optical parameters of the solid phantom, i.e., the asymmetry pa-
rameter, the scattering coefficient, and the absorption coefficient, were determined
by carrying out integrating sphere and collimated transmission measurements, and
using the inverse adding-doubling method [64]. It turned out that the phantom
had negligible absorption.

42 Risø—R—1217(EN)



5 .2m m

2 .0m m

S am p le  b eam

Figure 27. A schematic of the solid phantom used in the demonstration of the
true-color OCT imaging algorithm

In the experiment, 40 longitudinal (horizontal) scans are performed across the
step as indicated in Fig. 27. The distance between adjacent longitudinal scans is
10µm, and only one longitudinal scan is taken in every lateral position. The light is
reflected at the air-phantom discontinuity (z = 0.0mm) and at the two phantom-
air discontinuities at z = 2.0mm and z = 5.2mm, respectively, which all give a
diffuse backscattering and are characterized by the same reflection coefficient. The
backscattering from the bulk of the phantom is negligible and cannot be detected.
A lens with a focal length of 16mm is used in this case.
The original unprocessed envelopes of the 40 longitudinal scans are shown in

Fig. 28 with the use of a linear false-color palette. The orientation is similar to
the orientation in Fig. 27. The first signal from the right is due to light reflected
at the air-phantom discontinuity, which will be denoted the first discontinuity in
the following. The signal from the phantom-air discontinuity at z = 2.0mm (the
second discontinuity) is difficult to distinguish, and the signal from the phantom-
air discontinuity at z = 5.2mm (the third discontinuity) cannot be distinguished in
Fig. 28. This is due to the scattering of the light in the phantom, which attenuates
the signal.
By using the true-reflection algorithm described above to correct for the scat-

tering effects, we get the envelopes shown in Fig. 29. The optical parameters
of the solid phantom, which were used in the algorithm, are µs = 1.815mm−1,
θrms = 0.1096 rad (g = 0.994), and n = 1.5. Because the three discontinuities are
characterized by the same reflection coefficient, the same signal level is expected
at the three discontinuities in Fig. 29. This is nearly obtained in one position at
each discontinuity. A reasonable explanation of the lateral variations of the signal
is speckle [7]. The variation of the signal close to the step may also be due to a
partly reflection of the beam.
The experimental errors of the measured values of µs and g of the solid phantom

have been estimated to be ± 5% and ± 1%, respectively. Values of µs + 5% and
−5% have been used in the algorithm, but the changes of the signal levels were
very small. This is in contrast to the observation when a value of g−1% was used
in the algorithm, and the envelopes are shown in Fig. 30. Note that the maximum
signal of the second discontinuity is now slightly larger than the signal from the
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Figure 28. The original unprocessed envelopes of the 40 longitudinal scans.

Figure 29. The envelopes of the 40 longitudinal scans when the true-reflection
algorithm has been used.
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Figure 30. The envelopes of the 40 longitudinal scans when the true-reflection
algorithm has been used together with a value of g − 1%.

first discontinuity. However, the maximum signal levels of the second and third
discontinuities seem to be closer to the signal level of the first discontinuity as
compared to Fig. 29.
Fig. 31 shows, for comparison, the envelopes obtained if only the single scatter-

ing term is used in the expression for Ψ in Eq. (27). It is obvious that the single
backscattering model is not sufficient in this case, and it further demonstrates the
importance of taking multiple scattering effects into account.
In conclusion, the principle of a so-called true-reflection OCT imaging algo-

rithm has been demonstrated. This algorithm makes it possible to make images,
which give a direct measure of the amount of light reflected at a given position by
correcting for the scattering effects. Such images may be easier to interpret than
conventional OCT images.

4.6 Summary
In order to demonstrate the imaging capabilities of the OCT system, which has
been developed during the Ph.D. thesis project, OCT images of human skin, a
mouse ear, and a table tennis ball have been obtained.
The OCT images of human skin are of healthy skin on the forearm (volar side)

of two human volunteers and have been obtained in vivo. The maximum probing
depth reached in skin tissue is comparable with the maximum probing depth
obtained in other investigations of human skin using a similar OCT system around
800 nm.
Two OCT images of a mouse ear were obtained in vitro at exactly the same

site, and an excellent reproducibility was demonstrated.
Two OCT images of a table tennis ball have been obtained by using a probe

module with a low and a relatively higher numerical aperture. The differences in
the lateral resolution and the depth of focus in the two cases were expressed in the
OCT images. It was demonstrated why a depth of focus, which is small compared
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Figure 31. The envelopes obtained by using the true-reflection algorithm when only
the single scattering term is used in the expression for Ψ.

with the thickness of the object under investigation, should be combined with
dynamic focusing.
Finally, a new true-reflection OCT imaging algorithm has been presented, and

the principle has been demonstrated experimentally by measurements on a solid
phantom. This algorithm facilitates making images, which give a direct measure
of the amount of light reflected at a given position by correcting for the scattering
effects, hence the label true-reflection OCT. Such images may be easier to interpret
than conventional OCT images.
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5 The Wigner phase-space distri-
bution function for the OCT geom-
etry

5.1 Introduction
Recently the Wigner phase-space distribution [72] for multiple light scattering
in biological media has received considerable attention. This is because it has
been suggested by numerous authors that new venues for medical imaging may
be based on coherence tomography using measurements of Wigner phase-space
distributions [73, 74, 75]. It has been suggested that the Wigner phase-space dis-
tribution is particularly useful for biomedical imaging because the phase-space
approach provides maximum information, i.e., both space and momentum (angu-
lar) information, about the light being used. Therefore, it is important to show
that a closed-form solution for the Wigner phase-space distribution function can
readily be obtained directly from the extended Huygens-Fresnel [46] solution for
the optical field.
In all cases considered here, as well as in Refs. [73],[76],[77],[78],[74],[75], the

Wigner phase-space distribution function is positive definite [79], and hence the
Wigner function and the specific radiance may be used interchangeably.
As indicated in Fig. 32, we are primarily concerned with a standard OCT prop-

agation geometry, and, as such, we consider a sample beam reflected at a discon-
tinuity giving rise to diffuse backscattering. Although some theoretical analyses
of the Wigner phase-space distribution regarding direct transmission appear in
the literature [76],[77], [78],[74],[75], to the best of our knowledge, no theoretical
models relating to diffuse reflection in an OCT geometry exist in the literature.
For completeness, it should be mentioned that a model of the Wigner phase-

space distribution for light backscattered from the bulk of a random medium has
been published [80]. In contrast to the analysis presented in this thesis, this model
consider the case where the scattering particles are smaller than a wavelength. In
this case, the bulk backscattering is stronger due to nearly isotropic scattering, and
it is more appropriate to use the diffusion approximation [41] than the extended
Huygens-Fresnel principle used in this thesis. Therefore, this model published by
Wax et al. [80] does not apply to the OCT geometry where the light scattering in
the bulk tissue is predominantly in the forward direction.
In section 5.2, on the basis of the extended Huygens-Fresnel principle, we derive

a general expression for the Wigner phase-space distribution within the paraxial
approximation that is valid in both the single and multiple scattering regimes.
This solution is also valid for both an arbitrary small-angle volume scattering
function within the paraxial approximation, and (real) optical ABCD systems. In
section 5.3 we discuss some general features of the Wigner phase-space distribution
function and derive asymptotic results that are valid in the multiple scattering
regime. In particular, we investigate two different types of scattering functions:
the quadratic type and the linear type.
Because most of the previous published work regarding the Wigner function

are carried out for the direct transmission geometry, it is important to note that,
within the paraxial approximation, the extended Huygens-Fresnel principle and
the ABCD matrix formalism can be used successfully to describe this case. There-
fore, for completeness, we present in Appendix C the general closed-form solution
for the Wigner phase-space distribution function in ABCD paraxial optical sys-
tems for propagation through a random scattering medium, i.e., transmission ge-
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Figure 32. Schematic illustration of the propagation geometry. For clarity, we show
the standard OCT geometry, where the focal and discontinuity planes coincide.
The discontinuity at a depth z gives rise to diffuse backscattering. In principle,
the space between the lens plane and the scattering medium may contain optical
elements that are characterized by ABCD ray matrices.

ometry. In particular, for the special case of direct propagation through a spatially
uniform random scattering medium, it is noted that the solution of the transport
equation in the small-angle approximation is identical to the corresponding solu-
tion obtained directly from the extended Huygens-Fresnel principle. This impor-
tant equivalence is proved in section 5.4. Furthermore, in Appendix D we extend
the result of Appendix C to an absorbing medium, where it is pointed out that all
previous treatments where absorption effects were included as just an overall at-
tenuation factor are, strictly speaking, incorrect and should be used with caution
in applications where absorption effects are important.
In section 5.5, we derive and discuss the Wigner phase-space distribution func-

tion in the context of an OCT geometry for both types of scattering functions.
Furthermore, a novel method of creating OCT images based on measurements of
the momentum width of the Wigner phase-space distribution is proposed.
We note that the theoretical results presented in this chapter and the corre-

sponding appendices, have been obtained in close collaboration with Harold T.
Yura [81].

5.2 General considerations
Consider a CW quasi-monochromatic optical wave propagating through a non-
absorbing random small-angle scattering medium, reflecting off a discontinuity
giving a diffuse reflection and subsequently propagating back to the initial plane.
We denote the resulting optical field in the initial plane perpendicular to the optic
axis by US(P ), where P is a two-dimensional vector in this plane. For simplicity
in notation, we omit the time dependence. The Wigner phase-space distribution,
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W (P, q) may be written as [82]

W (P , q) =
dp

(2π)2
US(P + p/2)U

∗
S (P − p/2) exp[iq · p], (57)

where angle brackets denote the ensemble average. That is, the Wigner phase-
space distribution function is a two-dimensional Fourier transform of the indicated

mutual coherence function US(P + p/2)U
∗
S (P − p/2) and as such, contains the

same information about the optical field as does the mutual coherence function.
The quantity q is a transverse momentum, and in the small-angle approximation
its magnitude q can be related directly to the scattering angle simply as q =
2k sin θ/2 kθ, where k is the free-space wave number. In addition, because in
the small-angle approximation the differential element of the solid angle dΩ =

2π sin θdθ 2πθdθ = 2πqdq/k2, it is easily verified that the integral of W (P , q)

over all q (i.e., over solid angle) equals the intensity I(P ), i.e., US(P )
2

, at the

observation point P . Hence, to within a multiplicative constant, the Wigner phase-
space distribution is equal to the specific radiance distribution of the optical field
at the observation point of interest for those cases where the Wigner phase-space
distribution is positive definite. More specific, the specific radiance distribution
N(P, θ) = k2W (P, kθ) within the paraxial approximation.
In the present analysis, we neglect polarization effects, bulk backscattering, and

enhanced backscattering, which is obtained very close to the optic axis.
In random media where the scattering particles are large compared with the

wavelength and the index of refraction ratio is near unity, the bulk backscattering
efficiency is much smaller than the scattering efficiency. Moreover, the scattering
is primarily in the forward direction, which is the basis of using the paraxial
approximation. Therefore the bulk backscattering may be neglected when one
is considering the light propagation problem, since its contribution is small. An
example of this is skin tissue with cell sizes of 5-10 µm diameter and index of
refraction ratio of 1.45/1.4 = 1.04.
It is well known that a medium with random scattering inhomogeneities will

produce an amplification effect of the mean intensity in the strictly backward
direction, as compared with the corresponding intensity obtained in the homoge-
neous medium [83]. This so-called enhanced backscattering is due to multichannel
coherence effects, i.e., interference at a source point between waves transmitted in
the forward and backward directions by the same inhomogeneities in the medium.
Additionally, because of conservation of energy, enhanced backscattering is accom-
panied by a corresponding reduction in intensity in directions close to the strictly
backward direction. In general, as discussed in Ref. [83], the linear dimension of
the region surrounding the strictly backward direction where enhanced backscat-
tering is obtained is of the order of or less than the transverse intensity correlation
length, l. The corresponding reduction of intensity occurs near the surface of a
cone of angle of the order l/Z, where Z is the one-way propagation distance in the
medium. Strictly speaking, enhanced backscattering effects are obtained in situa-
tions where the linear dimensions of the illuminated region, a, in the backscattering
plane satisfy a2 λZ, where λ is the wavelength. When the radiation at some
point P in the observation plane results from illuminated regions that are large
compared with

√
λZ, P will not be in the strictly backscattered direction with

respect to the reflected light, and, as a consequence, enhanced backscattering will
not be manifested. In all cases considered here a

√
λZ, and therefore enhanced

backscattering effects are neglected.
As indicated in Fig. 32, the signal of interest results from diffuse reflection at

the discontinuity of interest only. As discussed above, the statistics of the forward-
and backpropagating optical waves are assumed here to be independent. This case
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was treated in section 2.2, and from Eq. (21) with p1,2 = P ± p/2, the extended
Huygens-Fresnel solution for the mutual coherence function for diffuse reflection
in the discontinuity plane and for observation in the lens plane is given by

US P + p/2 U∗S P − p/2 =
4π

k2
dr IB (r) G0 r, P + p/2

×G∗0 r, P − p/2 Γpt (p) . (58)

As defined in section 2.2, IB (r) is the mean backscattered irradiance distribu-
tion in the plane of the discontinuity, and Γpt (p) is the mutual coherence function
of a point source located in the discontinuity plane and observed in the lens plane,
where p = |p1 − p2|. Furthermore, G0(r, p), which is the Huygens-Fresnel Green’s
function for non-scattering homogeneous media when propagating from the dis-
continuity plane to the lens plane, is given by (Eq. (24))

G0(r, p) = − ik

2πBb
exp − ik

2Bb
Abr

2 − 2r · p+Dbp2 , (59)

where Ab, Bb, and Db are the (real) ABCD ray-matrix elements for backprop-
agation through the optical system. In Fig. 32 we illustrate for clarity the OCT
geometry. However, in principle, the space between the lens plane and the scat-
tering medium may contain optical elements that are characterized by ABCD
ray-matrices. To be as general as possible, we assume an arbitrary ABCD optical
system between the lens and the discontinuity planes.
For the OCT geometry, we recall that Ab = Db = 1 and Bb = d+ z/n, where d

is the distance from the lens to the tissue surface, n is the mean index of refraction
of the tissue, and z is the depth of the discontinuity.
As shown in section 2.2, the mutual coherence function Γpt (p) is given by

Γpt(p) = exp{−s[1− bφ(p)]}, (60)

where the optical depth s = µsz. The quantity µs is the bulk scattering coefficient,
and bφ(p) is the normalized phase autocorrelation function of a point source whose
origin is in the discontinuity plane given by

bφ(p) =

z

0 dz
∞
0 σ(θ; z )J0(kpsθ)θdθ

z

0 dz
∞
0 σ(θ; z )θdθ

, (61)

J0 is the Bessel function of the first kind, of order zero,

ps =
Bb(z )

Bb
p, (62)

where Bb(z ) is the B-matrix element for backpropagation from the discontinuity
plane to a distance z , and σ(θ; z ) is the volume scattering function as a function
of position measured from the discontinuity plane in the optical system. Strictly
speaking, Eq. (60) applies to the case where the scattering is in the near-forward
direction and all of the scattered light is contained within the collection solid angle
of the optical system being used. For propagation in an inhomogeneous medium
where appreciable light is scattered outside the collection solid angle, the mu-
tual coherence function of Eq. (60) becomes Γpt (p) = exp{−sW − sN [1− bφ (p)]},
where the subscripts N andW refer to the near-forward and wide-angle contribu-
tions to the optical depth, respectively [76],[77],[78]. That is, the portion of the
light scattered outside the collection solid angle thus appears much like an effec-
tive absorption coefficient for propagation in the near-forward direction. We note
that all correlation functions of interest here can be expressed directly in terms of
the spectral densities through the relation σ (θ) = 2πk4Φn (kθ), where Φn is the
three-dimensional spectrum of the index of refraction inhomogeneities, and we
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have omitted the functional dependence on path length for notational simplicity
[60].
For the OCT geometry, we have σ(θ; z ) = σ(θ) for 0 ≤ z ≤ z, and 0 otherwise;

Bb(z ) = z /n for 0 ≤ z ≤ z, and Bb(z ) = z/n+ z − z for z ≤ z ≤ d+ z.
In this analysis it is assumed that we are dealing with a statistically station-

ary and isotropic random medium. Then, it is well-known that all second-order
spatial correlation functions of the optical field, such as Γpt(p), are functions of
the magnitude of the difference of the spatial coordinates and satisfy the identity
Γpt(−p) = Γ∗pt(p) [60].
Because the point-source mutual coherence function given in Eq. (60) is valid for

arbitrary values of s [60], the results given below for the Wigner phase-space dis-
tribution function are valid in both the single and the multiple scattering regimes.
Substituting Eqs. (58) and (59) into Eq. (57) and simplifying yields

W (P , q) =
1

πB2b

dp

(2π)2
exp ip · q − kDb

Bb
P Γpt(p)H(p), (63)

where

H(p) = dr IB (r) exp i
k

Bb
p·r (64)

is related to the Fourier transform of IB (r) . In Appendix E it is shown that

H(p) = RdΓpt(−p)K(−p) = RdΓ∗pt(p)K(−p), (65)

where Rd is the reflection coefficient of the discontinuity,

K (r) = dRUSi R+ r/2 U∗Si R− r/2 exp −ikA
B
r ·R , (66)

and USi (r) is the initial optical wave function. Substituting Eq. (65) into Eq. (63)
yields

W (P , q) =
Rd
πB2b

dp

(2π)2
|Γpt(p)|2K(−p) exp ip · q − kDb

Bb
P

=
Rd

2π2B2b

∞

0

dpp |Γpt(p)|2K(p)J0 q − kDb
Bb

P p . (67)

(for axially symmetric USi)

This is the required general solution for the Wigner phase-space distribution func-
tion for diffuse reflection in the paraxial approximation. That is, for a given initial
optical wave function and a medium whose scattering function is known, Eq. (67)
is the solution for the Wigner phase-space distribution function, i.e., specific ra-
diance. Note that I(P ) = W (P, q)dq = RdP0/πB

2
b, where P0 is the transmitted

power. As expected for diffuse reflection, the intensity in the observation plane is
constant, independent of position.

5.3 Discussion and special cases
For general scattering functions σ(θ), the integral indicated in Eq. (67) cannot be
obtained analytically, although numerical results may be readily obtained. How-
ever, some general features of the Wigner phase-space distribution function may
be obtained by direct examination of the general formula.
First, examination of Eq. (67) reveals that, in general, the Wigner phase-

space distribution attains its maximum along the line given by P = Bbq/kDb =
Bbθ/Db.
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Additionally, because Γpt(p) in Eq. (60) can be rewritten as

Γpt(p) = e
−s + e−s{exp[sbφ(p)]− 1}, (68)

we may conclude from Eqs. (67) and (68) that in general, the Wigner phase-space
distribution function consists of three terms. The square of the first term on the
right-hand side of Eq. (68), which corresponds to the ballistic photons, leads to an
attenuated distribution of what would be obtained in the absence of the scattering
inhomogeneities. The square of the corresponding second term represents a broader
halo resulting from multiple scattering in the medium. The third term is a cross
term between the ballistic and the multiple scattering contributions. Physically,
the cross term is the coherent mixing of the unscattered and the multiple scattered
light.
Next, for sufficiently large values of s, examination of Eq. (60) reveals that Γpt

is nonzero for s[1 − bφ(p)] less than the order unity, that is, for bφ(p) near unity.
As shown in section 2.2, expanding bφ(p) in powers of p and retaining the first
two nonzero terms allows one to obtain asymptotic results. In the limit s 1,
for all cases of practical concern the resulting width of |Γpt(p)|2 is much narrower
than K(p), and without loss of generality, we may replace K(p) by its value at
the origin K(0) = P0, the transmitted power.

Quadratic-type scattering function

We distinguish between two types of scattering functions σ(θ). The first and most
common type is scattering functions that lead to phase correlation functions such
that near the origin bφ(p) 1− p2/3ρ2φ, where ρφ is the phase correlation length.
Such scattering functions include the Gaussian form, which is commonly used in
statistical optics [7]. As shown in section 2.2, we get the following equation for Γpt
in this case

Γpt (p) exp[−p2/ρ20], s 1, (69)

where ρ0, the point source lateral coherence length, is given by

ρ0 =

√
3ρφ√
s
. (70)

For the ABCD system indicated in Figure 32 it follows from Appendix A that

ρ0 =
3

s

λ

πθrms

nBb
z

, (71)

where λ is the wavelength, and θrms is the root-mean-square scattering angle given
by [54]

θrms =

∞
0 dθ θ σ(θ)θ2

∞
0 dθ θ σ(θ)

. (72)

It is assumed here that all scattering functions of interest are such that the integrals
indicated in Eq. (72) are finite. We note that the so-called shower curtain effect
is represented by the term in parentheses on the right-hand side of Eq. (71), as
discussed in section 2.2. In view of Eq. (68), an analytic engineering approximation
for the point-source mutual coherence function for scattering functions that have
a quadratic dependence on spatial separation near the origin, valid for arbitrary
values of s, is given by

Γpt(p) e−s + (1− e−s) exp[−p2/ρ20] . (73)
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Substituting Eq. (69) into Eq. (67), and performing the integration yields for s 1

that

W (P , q) =
P0ρ

2
0Rd

2π(2πBb)
2
exp −ρ

2
0

8
q − kDb

Bb
P

2

. (74)

Linear-type scattering function

A second type of scattering function is one that leads to a phase correlation func-
tion that has a linear dependence on spatial separation near the origin. An exam-
ple of such a function is the Henyey-Greenstein scattering function [56], which has
been widely used in approximating the angular scattering dependence of single-
scattering events in some biological media [57],[52]. This function is given by [84]

σ(θ) =
1

4π

1− g2
(1 + g2−2g cos θ)3/2 , (75)

where θ is the scattering angle and g, the asymmetry parameter [53], is defined as

g =

π

0 σ(θ) cos θ sin θdθ
π

0 σ(θ) sin θdθ
. (76)

Here we are concerned with the case of small-angle forward scattering where g is
greater than ∼ 0.9. For sufficiently small θ, we have that cos θ 1 − θ2/2, and
Eq. (75) becomes

σ(θ)
1

4π

1− g2
(θ2HG + θ2)3/2

, θ 1, (77)

where

θHG =
1− g√
g
. (78)

Substituting Eq. (77) into Eq. (61) and performing the indicated integration yields

bφ(p) =
1− exp[−p/r0]

p/r0
, (79)

where the Henyey-Greenstein phase correlation length, r0, is given by

r0 =
1

kθHG

nBb
z

=
λ
√
g

2π(1− g)
nBb
z

. (80)

The so-called shower curtain effect is represented by the term in parentheses on
the right-hand side of Eq. (80). Near the origin, we have that bφ(p) 1− p/2r0.
That is, for the Henyey-Greenstein scattering function, the corresponding phase
correlation function near the origin has a linear dependence on spatial separation.
As a result, we obtain

Γpt(p) = exp [−sp/2r0] for s 1. (81)

Similarly, the corresponding analytic engineering approximation for the point-
source mutual coherence function for scattering functions that have a linear de-
pendence on spatial separation near the origin, valid for arbitrary values of s, is
given by

Γpt(p) e−s + (1− e−s) exp [−sp/2r0] . (82)

Substituting Eq. (81) into Eq. (67) and performing the indicated integration yields
for s 1 that

W (P , q) =
P0Rd

π(2πBb)
2

r0
s

2 1

1 + r0
s

2
q − kDb

Bb
P

2 3/2
. (83)
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5.4 The transmission geometry
Because most of the previous published work regarding the Wigner function has
been carried out for the direct transmission geometry using radiation transport
theory, it is important to note that, within the paraxial approximation, the ex-
tended Huygens-Fresnel principle and the ABCD matrix formalism may also be
used successfully to describe this case.
Therefore, for completeness, we present in Appendix C the general closed-form

solution for the Wigner phase-space distribution function in ABCD paraxial op-
tical systems for propagation through a random scattering medium.
Furthermore, in Appendix D, we extend the results of Appendix C to an ab-

sorbing medium. It is pointed out in Appendix D that all previous treatments
where absorption effects are included as just an overall attenuation factor are,
strictly speaking, incorrect and should be used with caution in applications where
absorption effects are important.

Spatially uniform random scattering medium

In all cases considered in this thesis, as well as in Refs. [73], [76],[77],[78],[74],[75],
the Wigner phase-space distribution function is positive definite [79], and hence
the Wigner function and the specific radiance may be used interchangeably.
Using the paraxial approximation and the extended Huygens-Fresnel principle,

Yura [85] obtained a closed-form solution for the Wigner phase-space distribution
function that is valid for one-way propagation through a random medium char-
acterized by an arbitrary small-angle scattering function, that is independent of
position along the propagation path. Yura’s result is given in Eqs. (C.1)-(C.6)
using the present notation and Fourier transform sign convention. This result
is easily extended to an arbitrary ABCD optical system by using the extended
Huygens-Fresnel principle, and the result is given in Appendix C.
As indicated by Yura in Ref. [85], his result for the Wigner function is identi-

cal to the result of Arnush [86], who first obtained the corresponding solution for
the Wigner function based on the solution of the full transport equation within
the small-angle approximation. In this regard we note that the transport equa-
tion solved by the authors of Refs. [76],[77],[78],[75] is identical to that solved by
Arnush, and as a consequence one must view the solution for the Wigner func-
tion given in Refs. [76],[77],[78],[75] as a ”rediscovery” of previous known results.
No solution of the corresponding transport equation for arbitrary ABCD optical
systems is available in the literature.
The important equivalence of solutions obtained by using the Boltzmann equa-

tion in the small-angle approximation and the extended Huygens-Fresnel principle
is proven below. This is done by showing that the result obtained by Arnush [86]
is identical to the result of Yura [85], which is given in Eqs. (C.1)-(C.6). Note that
the result given in Eqs. (C.1)-(C.6) is for the Wigner function W .
Arnush’s result for the specific radiance, which is given in Eq. (9) of Ref. [86],

is expressed as

f (u, r, z) = (2π)−4 e−µaz d2kd2pF0 p+ zk, k Gei(p·u+k·r), (84)

G = exp −µsz + µs
z

0

dξQ p+ ξk , (85)

where u is a given ray direction at the point (r, z) in a cylindrical coordinate
system, and z is the propagation distance. Note that the symbols used in the
present thesis for the volume absorption coefficient and the scattering coefficient
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have been applied. Using Eq. (6) of Arnush [86], F0(p+ zk, k) is given by

F0 p+ zk, k = d2r d2u e−i(k·r +(p+zk)·u )f0 (u , r ) , (86)

where f0 (u , r ) is the specific radiance at z = 0, and u is a given ray direction
at the point (r , 0) in the cylindrical coordinate system. Furthermore, using Eq.
(7) of Arnush [86], Q(p+ ξk) is given by

Q p+ ξk = d2u e−iu·(p+ξk)Σ (u) , (87)

where Σ (u) is the normalized scattering function. The volume scattering function
is given by µsΣ (u). We consider nonabsorbing media, so µa = 0 in the following.
Furthermore, for simplicity, we consider the case where the index of refraction of
the medium is 1.
Substituting Eq. (86) into Eq. (84) yields

f (u, r, z) = (2π)
−4

d2kd2p d2r d2u Gf0 (u , r )

× exp i p · (u− u ) + k · (r − r − zu ) . (88)

Equation (88) can now be compared directly with Eqs. (C.1) and (C.3). The
quantity G corresponds to F (p, r) given by Eqs. (C.4)-(C.6). By using the fol-
lowing changes of variables it is straightforward to show that the result ob-
tained by Arnush [86] is identical to the result of Yura [85]: r = R − Zq /k,
k = km

Z (rE HF − pEH F ), u = q /k, u = q/k = θ, p = kpEH F , r = P , z = Z, and
ξ = z . Note the use of the subscript ”EHF” for extended Huygens-Fresnel in order
to avoid confusion regarding notation.

5.5 Applications to optical coherence tomogra-
phy
It follows from the analysis in section 2.2 that the SNR in a standard OCT system
can be expressed as

SNR = constant (89)

×Re ΓR(P + p/2, P − p/2)ΓS(P + p/2, P − p/2)dPdp ,

where Re denotes the real part, and ΓR and ΓS are the mutual coherence functions
of the deterministic reference beam and the sample beam, respectively, in the mix-
ing plane. Because the Wigner phase-space distribution function and the mutual
coherence function are Fourier transform related, the SNR can be rewritten as

SNR = constant× Re WR(P,−q)WS(P, q)dPdq , (90)

where WR and WS are the corresponding Wigner phase-space distribution func-
tions of the reference and the sample beams, respectively. Eq. (90) indicates, in
particular, that the SNR of a standard OCT system is related globally to the
Wigner phase-space distribution function of the sample beam. That is, images ob-
tained from standard OCT systems contain global, rather than local, information
of the Wigner phase-space distribution function of the sample beam.
Improved OCT imagery can thus be obtained only from systems that make

use of the local properties of the Wigner phase-space distribution function, rather
than globally where information is inevitably lost. Below we derive expressions for
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the Wigner phase-space distribution function of the sample beam for a standard
OCT geometry for both classes of scattering functions discussed in section 5.3.
Consider an OCT system where the initial optical wave function, i.e., immedi-

ately following the lens, is given by

USi(r) =
P0
πw20

exp −r
2

2

1

w20
+
ik

f
, (91)

where w0 is the initial 1/e intensity radius and f is the focal length. For an OCT
system that is focused at a tissue discontinuity at depth z, i.e., B = f , we then
get the following equation

K(r) = P0 exp − r2

4w20
. (92)

Quadratic-type scattering function

We now obtain analytic engineering approximations for the Wigner phase-space
distribution function, valid for all values of s, for bφ that are quadratic near the
origin. Substituting Eqs. (73) and (92) into Eq. (67) and simplifying yields

W (P , q)
RdP04w

2
0

(2πf)2
[e−2s exp −Q2w20

+e−s(1− e−s) ρ̃
2
0

4w20
exp −Q

2ρ̃20
4

+(1− e−s)2 ρ̃20
8w20

exp −Q
2ρ̃20
8

], (93)

where

1

ρ̃20
=
1

ρ20
+

1

4w20
, (94)

ρ0 is given by Eq. (71) with Bb = f , and

Q = q − k
f
P . (95)

The first, second, and third terms on the right-hand side of Eq. (93) represent the
ballistic, cross, and multiple scattering contributions, respectively, to the Wigner
phase-space distribution function discussed below Eq. (68).
In the limit of s 1, examination of Eq. (93) reveals that for P = 0, the 1/e

transverse momentum width, ∆q, of the Wigner phase-space distribution is given
by ∆q = 1/w0. Furthermore, in the limit s 1, ∆q = 2

√
2ρ̃−10 , where ρ̃0 ∼= ρ0.

In this case, ∆q ∝ z3/2 in the presence of the shower curtain effect, which, as
discussed above, manifests itself in the standard OCT geometry. For comparison,
∆q ∝ z1/2 in the absence of the shower curtain effect.

Linear-type scattering function

We have not been able to obtain a corresponding analytic approximation, valid
for all values of s, for the Henyey-Greenstein type of scattering function. For this
case we can only conclude that

W (P , q)
RdP0
(2πf)2

(1− 2s) exp −Q2w20 for s 1, (96)
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and that

W (P , q)
RdP0

π(2πf)2
r0
s

2 1

1 + r0
s

2
q − k

fP
2 3/2

for s 1, (97)

where r0 is given by Eq. (80) with Bb = f . In the limit of s 1, examination of
Eq. (96) reveals that for P = 0, the 1/e transverse momentum width, ∆q, of the
Wigner phase-space distribution is given by ∆q = 1/w0. Furthermore, in the limit
s 1, it is obtained from Eq. (97) that ∆q = s/r0. In this case, ∆q ∝ z2 in the
presence of the shower curtain effect. For comparison, ∆q ∝ z in the absence of
the shower curtain effect.
It is important to note that for both types of scattering functions, the momen-

tum width increases with increasing depth as zγ , with considerably larger values
of γ being obtained in the presence of the shower curtain effect. Furthermore, the
actual value of γ is strongly dependent on the details of the scattering function.

Improved OCT imagery

As shown above, it is possible to determine the lateral coherence length of the
sample field from measurements of the Wigner phase-space distribution. As is
evident from Eq. (71), the lateral coherence length depends on the optical param-
eters of the tissue, i.e., n, µs, and θrms. Therefore, it is feasible to create images
based on measurements of the lateral coherence length as a function of position
in the tissue. In contrast to OCT signals used to create conventional OCT im-
ages, the lateral coherence length is related only to the propagation of the light in
the tissue, and its magnitude is independent of the amount of light backscattered
or reflected at the probed depth. In general, a discontinuity between two tissue
layers is characterized by a change in the scattering coefficient, the backscatter-
ing coefficient, and the index of refraction. The relative change in the scattering
coefficient and the backscattering coefficient is markedly greater than the corre-
sponding relative change in the index of refraction [52]. In human skin tissue,
for example, the scattering coefficients of epidermis and dermis are 50mm−1 and
21.7mm−1, respectively, while the indices of refraction lie in the range 1.37− 1.5
[52]. On this basis, it may be shown from the analysis above that an imaging
system based on measurements of the lateral coherence length may have a higher
sensitivity to changes in the scattering coefficient than the conventional OCT sys-
tem that probes the corresponding change in the backscattering coefficient. The
higher sensitivity may lead to an improved contrast in the obtained image. These
statements assume adequate measurements of the Wigner phase-space distribution
of the sample field.
It should be mentioned here that methods have been developed for measur-

ing Wigner phase-space distributions using both coherent [75],[87],[78] and low-
coherence [88],[89],[90],[87],[80] light sources. This model and the above discussion
gives more insight into the ideas presented recently that new venues for medical
imaging may be based on coherence tomography with use of measurements of
Wigner phase-space distributions [73, 74, 75].

5.6 Summary
Using the extended Huygens-Fresnel principle, we have obtained a closed-form
solution for the Wigner phase-space distribution function for diffuse reflection
and small-angle scattering in a nonabsorbing random medium. The analysis is
applicable in both the single and multiple scattering regimes and it is general
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in the sense that it applies to both an arbitrary small-angle volume scattering
function and (real) ABCD optical systems.
In particular, we obtained analytic results applicable to OCT systems, where

the corresponding depth dependence of the Wigner phase-space distribution was
discussed. A novel method of creating OCT images based on measurements of
the momentum width of the Wigner phase-space distribution has been suggested.
Moreover, the advantage over conventional OCT has been discussed, i.e., a higher
sensitivity to changes in the scattering coefficient.
Finally, the Wigner phase-space distribution function for the transmission ge-

ometry has been investigated. The important equivalence of solutions obtained by
using the transport equation in the small-angle approximation and the extended
Huygens-Fresnel principle has been verified.
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6 Conclusion

A new theoretical description of the optical coherence tomography (OCT) tech-
nique when used for imaging in highly scattering tissue has been developed. The
description is based on the extended Huygens-Fresnel principle. It is shown that
the theoretical model describes the performance of the OCT system in both the
single and multiple scattering regimes simultaneously. The model inherently in-
cludes the shower curtain effect. This effect has been omitted in previous theoret-
ical models of OCT systems. It has been demonstrated that the shower curtain
effect is of utmost importance in the theoretical description of an OCT system.
The analytical model enables a calculation of the signal-to-noise ratio (SNR),

where the optical properties of the tissue have been taken into account. A method
for calculating the maximum probing depth based on the SNR has been presented.
Furthermore, the model enables the determination of the lateral resolution of the
OCT system at arbitrary depths in the scattering tissue.

The new OCT model has been verified by measurements on liquid phantoms
consisting of aqueous suspensions of microspheres, and solid phantoms.
In the two experiments with liquid phantoms and a specular reflection, excel-

lent agreement between theory and experiment were obtained for the heterodyne
efficiency factor as a function of the scattering coefficient. This agreement was
obtained without any kind of fitting.
In the experiment with liquid phantoms and a diffuse backscattering, it was

demonstrated how the shower curtain effect increases the heterodyne signal through
enhanced spatial coherence of the multiple scattered light. The validity of the
model in the case of diffuse backscattering was further supported by an experi-
ment with solid phantoms.
The measurements were carried out by using a conventional OCT setup, which

has been constructed during the Ph.D. thesis project.

In order to demonstrate the imaging capabilities of the OCT system, images of
human skin, a mouse ear, and a table tennis ball have been obtained.
A new true-reflection OCT imaging algorithm has been presented, and the prin-

ciple has been demonstrated experimentally by measurements on a solid phan-
tom. This algorithm facilitates making images, which give a direct measure of the
amount of light reflected at a given position by correcting for the scattering effects,
hence the label true-reflection OCT. Such images may be easier to interpret than
conventional OCT images.

Using the extended Huygens-Fresnel principle, a closed-form solution for the
Wigner phase-space distribution function for diffuse reflection and small-angle
scattering in a nonabsorbing random medium have been obtained. The analysis
is applicable in both the single and multiple scattering regimes and it is general
in the sense that it applies to both an arbitrary small-angle volume scattering
function and (real) ABCD optical systems.
In particular, we obtained analytic results applicable to OCT systems, where the

corresponding depth dependence of the Wigner phase-space distribution was dis-
cussed. A novel method of creating images based on measurements of the momen-
tum width of the Wigner phase-space distribution has been suggested. Moreover,
the advantage over conventional OCT has been discussed, i.e., a higher sensitivity
to changes in the scattering coefficient.
Finally, the Wigner phase-space distribution function for the transmission ge-

ometry has been investigated. The important equivalence of solutions obtained by
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using the transport equation in the small-angle approximation and the extended
Huygens-Fresnel principle has been verified.

6.1 Perspective
The analytical model enables a calculation of the SNR, where the optical proper-
ties of the tissue have been taken into account. This is an important tool in the
design of future OCT systems. The model may be extended to more layers having
different optical properties, thereby enabling a more realistic modeling for certain
types of tissues. Moreover, such modeling is imperative for the true-reflection OCT
imaging algorithm.
The true-reflection OCT imaging algorithm, which facilitates making images

that give a direct measure of the amount of light reflected at a given position, will
need to be further investigated. A demonstration of the potential of the algorithm
on OCT images of tissue will hopefully verify that the processed images are easier
to interpret than conventional images. Hence, enhanced diagnostic procedures may
be envisioned.
A novel method of creating images based on measurements of the momentum

width of the Wigner phase-space distribution has been suggested in the thesis.
An interesting future development would be the experimental demonstration of
the suggested imaging technique. This technique will provide the medical doc-
tor with a new type of image that will contain additional information compared
to conventional OCT images. Again, such imaging may also enhance diagnostic
procedures.
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A Derivation of the lateral coher-
ence length for the OCT geometry

This appendix contains the derivation of the equation of the lateral coherence
length ρ0 (z) for the OCT geometry in the case of spherical waves.
A direct application of ABCD ray-matrix theory [49] to the work of Lutomirski

[91] yields, that the spherical wave mutual coherence function Γpt (ρ), for an in-
homogeneous scattering medium, can be expressed as

Γpt (ρ) = exp

−ρ2
4

L

0

k2θ2rms (z )µs (z )
Bb(z )

B (L)

2

dz

 , (A.1)

where the propagation variable z is measured from the location of the point
source, i.e., the tissue discontinuity plane, and L is the distance from the point
source to the observation plane, i.e., the lens plane. For the OCT geometry, the
matrix elements Bb (z ) and B (L) in Eq. (A.1) are defined as

Bb (z ) =
z

n
, 0 ≤ z ≤ z (A.2)

B (L) = Bb = B = d+
z

n
. (A.3)

Furthermore, the scattering coefficient µs (z ) and the root mean square scattering
angle θrms (z ) are given by

µs (z ) =
µs, 0 ≤ z ≤ z
0, z < z ≤ L (A.4)

and

θrms (z ) =
θrms, 0 ≤ z ≤ z
0, z < z ≤ L (A.5)

Substituting Eqs. (A.2)—(A.5) and k = 2π/λ into Eq. (A.1) and performing the
integration yields

Γpt (ρ) = exp −ρ
2π2θ2rmsµsz

3λ2
z2

(nd+ z)
2 . (A.6)

Using that for large phase variances Γpt (ρ) should be on the form exp −ρ2 ρ20
[54], we get the following expression for the lateral coherence length ρ0 (z) in the
case of spherical waves

ρ0 (z) =
3

µsz

λ

πθrms
1 +

nd (z)

z
. (A.7)

B Comparison between the ana-
lytic approximation and the exact
numerical calculation of the hetero-
dyne efficiency factor

A comparison between the analytic approximation and the exact numerical cal-
culation of the heterodyne efficiency factor as a function of µs for z = 0.5mm is
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Figure 33. Comparison between the analytic approximation and the exact nu-
merical calculation of the heterodyne efficiency factor as a function of µs for
z = 0.5mm (λ = 814nm, g = 0.955 (θrms = 0.3 rad), n = 1.4, f = 16mm,
w0 = 0.125mm).

shown in Fig. 33 for the Gaussian scattering function. The case of diffuse backscat-
tering at the discontinuity, and inclusion of the shower curtain effect is considered
in this comparison. The term analytic approximation refers to the expression for
the heterodyne efficiency factor given in Eq. (27). The exact numerical calcula-
tion of the heterodyne efficiency factor has been carried out by using the exact
expression for the intensity, given in Eq. (45), and following the same procedure
for the determination of Ψ as given in section 2.2.
The main conclusion is that the analytic approximation and the exact numerical

calculation for the Gaussian scattering function agrees well for optical depths less
than unity and larger than 7-8 [91]. In the intermediate region, the approximation
shows some deviation. However, even in this region it is still considered useful.

C The Wigner phase-space distri-
bution function in ABCD paraxial
optical systems for direct propaga-
tion through random media with-
out absorption

In all cases considered in this thesis, as well as in Refs. [73], [76],[77],[78],[74],[75],
the Wigner phase-space distribution function is positive definite, and hence the
Wigner function and the specific radiance can be used interchangeably. Using the
paraxial approximation and the extended Huygens-Fresnel principle, Yura [85]
obtained a closed-form solution for the Wigner phase-space distribution function
that is valid for one-way propagation through a random medium characterized
by an arbitrary small-angle scattering function, which is independent of position

62 Risø—R—1217(EN)



along the propagation path. As indicated by Yura in Ref. [85], his result for the
Wigner function is identical to the result of Arnush [86], who first obtained the
corresponding solution for the Wigner function based on the solution of the full
transport equation, i.e., the Boltzmann equation in the small-angle approximation.
In this regard we note that the transport equation solved by the authors of Refs.
[76],[77],[78],[75] is identical to that solved by Arnush, and as a consequence one
must view the solution for the Wigner function given in Refs. [76],[77],[78],[75] as
a ”rediscovery” of previous known results.
Here we present the solution for the Wigner distribution function, based on the

extended Huygens-Fresnel principle that applies to one-way propagation through
an arbitrary (real) ABCD paraxial optical system [49, 51]. That is, we consider
the case of paraxial-wave propagation through any optical system that can be
characterized by a real ABCD ray-matrix, i.e., a cascaded series of lenses, mir-
rors, inclined parallel plates, and sections of free space and a section of inhomo-
geneous scattering that can be situated anywhere along the optical path. Using
both the present notation and Fourier transform sign convention, Yura’s result for
the Wigner distribution function, W (P, q), for propagation a distance Z through
a spatially uniform random scattering medium of bulk index of refraction n can
be expressed as [85]

W (P , q;Z) = dRdq H(P −R, q − q ;Z)W (R− Zq /k, q ; 0), (C.1)

where W (R, q; 0) is the (assumed given) Wigner function in the initial plane, i.e.,
in the plane Z = 0, given by

W R, q; 0 =
dr

(2π)
2 U0 R+ r/2 U∗0 R− r/2 exp [iq · r] , (C.2)

where U0 is the initial optical field,

H P −R, q − q ;Z =
km
4π2Z

2

dpdrF (p, r)

× exp i
km
Z
(r − p) · P −R

× exp [ip · (q−q )] , (C.3)

km = 2πn/λ is the optical wave number in the medium,

F (p, r) = exp {−s[1− f(p, r)]} , (C.4)

s =
Z

0

dz dθ σ(θ) = µsZ (C.5)

is the optical depth associated with the small-angle scattering, σ(θ) is the volume
scattering function, and

f (p, r) =
1

s

Z

0

dz dθσ(θ) exp ikθ · z

Z
r + 1− z

Z
p . (C.6)

Equation (C.1) relates the Wigner distribution function in the initial plane to
the Wigner function at propagation distance Z, and hence the quantity H can
be interpreted as the propagation kernel for the Wigner distribution function.
This kernel contains all of the propagation effects of the intervening space. For
propagation in a spatially uniform medium, H is a function of both P − R and
q− q . As discussed in Ref. [85], Eq. (C.1) is identical to the corresponding result
presented in Ref. [86] that was obtained by solving the transport equation in the
small-angle approximation. This important equivalence is proved in section 5.4.

Risø—R—1217(EN) 63



In contrast to methods that are based on the transport equation, the general-
ization of Eq. (C.1) to an arbitrary ABCD optical system by using the extended
Huygens-Fresnel principle is straightforward. By using the free-space Green’s func-
tion given by [49]

G0(r, p) = − ik

2πB
exp − ik

2B
Ar2 − 2r · p+Dp2 , (C.7)

we can show that

W (P , q;Z) = dRdq H(P,R, q, q ;Z)W (R−Bq /k, q ; 0), (C.8)

where the Wigner propagation kernel for the ABCD system is given by

H P,R, q, q ;Z =
k

4π2B

2

dpdrF (p, r)

× exp i
k

B
R · (p−Ar)− P · (Dp− r)

× exp [ip · (q−q ) + iq · r (A− 1)] , (C.9)

where A, B, and D are the (real) ABCD ray-matrix elements for backpropagation
through the optical system, i.e., from the observation plane to the initial plane,

F (p, r) = exp{−s[1− f(p, r)]} , (C.10)

f(p, r) =
1

s

z+∆z

z

dz dθ σ(θ; z )

× exp ikθ · B(z )

B
r + 1− B(z )

B
p , (C.11)

where σ(θ; z ) is the volume scattering function as a function of position measured
from the observation plane, B(z ) is the B-matrix element for backpropagation
from the observation plane to the distance z , and s = µs∆z is the optical depth of
the scattering layer that is located between z = z and z = z+∆z. The advantage
of this formulation, as well as in all propagation-kernel-type solutions, is the sepa-
ration of the geometry of the problem (which is defined by the spatial/momentum
extent and form of the initial Wigner distribution function) from the propagation
problem (which is defined by the propagation kernel H and contains all of the ef-
fects of the intervening optical system and random scattering medium). In contrast
to propagation through a spatially uniform medium, the propagation kernel H for
ABCD systems is a function of P,R, q ,and q separately. Equation (C.8) is the
general solution for the Wigner phase-space distribution function for propagation
through an ABCD optical system that contains a section of a random scattering
medium. For an ABCD system containing N sections of independent scattering
media, the modification to the results given above is that the right-hand side of
Eq. (C.10) becomes

exp

−
N

j=1

sj [1− fj(p, r)]
 ,

where sj and fj(p, r) are the appropriate quantities that pertain to the jth scat-
tering section. Note that the limits on the z integration of the jth term in the
summation are now from zj to zj +∆zj .
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It should be mentioned that in the special case where there is no scattering
medium, i.e., F = 1, the result for the specific radiance obtained by using Eq.
(C.8) is given by

N(P, θ;Z) = N(DP −Bθ, P
B
− A
B
(DP −Bθ); 0), (C.12)

which is identical to Eq. (16) in Ref. [92] as expected.
Finally, the mutual coherence function,

Γ(P , p;Z) ≡ U(P + p/2;Z)U∗(P − p/2;Z) , (C.13)

corresponding to the Wigner function of Eq. (C.8) obtained by an inverse Fourier
transform, is given by

Γ(P , p;Z) = dRdrG(P, p,R, r;Z)Γ(R, r; 0), (C.14)

where Γ(R, r; 0) is the assumed given mutual coherence function in the initial
plane and the corresponding kernel, G, for the propagation of mutual coherence
is given by

G(P, p, R, r;Z) =
k

2πB

2

F (p, r)

× exp i
k

B
R · (p−Ar)− P · (Dp− r) , (C.15)

and F is given by Eq. (C.10). The mean irradiance distribution in the observation
plane is given by I(P ;Z) = Γ(P, 0;Z), and hence from Eq. (C.14), we obtain

I(P ;Z) = dRdrG(P, 0, R, r;Z)Γ(R, r; 0)

=
k

2πB

2

drK(r)Γpt(r) exp i
k

B
P · r , (C.16)

where

K(r) = dR exp −i k
B
AR · r U(R+ r/2; 0)U∗(R− r/2; 0), (C.17)

and Γpt(r) = F (0, r) is the mutual coherence function of a point source located in
the observation plane and evaluated in the initial plane, i.e., the backpropagated
spherical-wave mutual coherence function. Equation (C.16) for the mean irradi-
ance distribution in an ABCD optical system is identical to Eq. (37) in section
2.2 as expected.

D TheWigner phase-space distri-
bution function in ABCD paraxial
optical systems for direct propaga-
tion through random media with
absorption

Here, for simplicity, we first consider a uniform small-angle scattering medium
characterized by an index of refraction n and volume absorption and scatter-
ing coefficients µa and µs, respectively. The Helmholtz Green’s function in the
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absorbing medium, Ga(R, P ), is given by exp[−ik̃ l(R,P )]/l(R,P ), where k̃ =
2πn/λ − iµa/2 and l(R,P ) is the distance between the vector positions R and P
in the initial and the observation plane, respectively. In the paraxial approxima-
tion, this Green’s function becomes

Ga(R,P ) =
e−ikmZ−µaZ/2

Z
exp −ikm

2Z
(R− P )2 − µa

2Z
(R− P )2 , (D.1)

where Z is the propagation distance between the initial and the observation plane,
respectively, and km = 2πn/λ is the optical wave number in the medium. In
addition to the usual overall multiplicative absorption attenuation factor e−µaZ/2,
the Green’s function contains an additional term, given by the second term in the
exponent of Eq. (D.1), that represents the additional attenuation due to absorption
of the light in propagating off the optic axis from R in the initial plane to P in
the observation plane. Note that in all cases of practical concern, km µa, and

hence k̃
2

= k2m + µ
2
a/4 k2m. Proceeding in a manner similar to that which led

to Eq. (C.1), we obtain that the Wigner function in the presence of an absorbing
medium Wa is given by

Wa(P, q;Z) = dRdq Ha(P −R, q − q ;Z)W (R− Zq /k, q ; 0), (D.2)

where

Ha(P −R, q − q ;Z) = e−µaZ exp − µa
8Z

(p− r)2 + 4(P −R)2

×H(P −R, q − q ;Z). (D.3)

As an example that clearly illustrates the physical effects of the off-axis propaga-
tion term in the Green’s function, we consider a plane wave initially propagating
along the optic axis. Rather than the Wigner function, we consider the correspond-
ing specific radiance N , because it is perhaps easier to visualize physically. The
specific radiance in the initial plane is given by I0δ(θ), where I0 is the initial inten-
sity and δ(·) is the two-dimensional Dirac delta function. For definiteness, consider
a scattering function whose phase correlation function is quadratic near the origin.
Then it can be shown that in the multiple scattering regime, i.e., µsZ 1, the
specific radiance is given by

N(θ;Z) =
e−µaZI0
π θ20a

exp −θ2/θ20a , (D.4)

where

θ20a =
θ20

1 +
µaZ θ20
6

, (D.5)

θ20 = sθ
2
rms = µsZ θ2rms. (D.6)

θrms is the root-mean-square single-scattering angle defined in Eq. (72), and we
have neglected terms of the order θ40 with respect to θ

2
0. In the absence of absorp-

tion, θ20a = θ20. That is, the mean square angular spread of the light in the absence
of absorption is given by the mean square single-scattering angle θ2rms times the
mean number of scattering events µsZ, i.e., a random walk. On the other hand,
examination of Eq. (D.5) reveals that in the presence of absorption, the angular
spread of the multiple-scattered component of the light is a decreasing function of
the absorption depth µaZ, which tends to zero as (µaZ)

−1/2 as µaZ →∞. This is
expected physically because the multiple-scattered light that propagates off axis
travels a greater distance than the corresponding light that propagates near the
axis. Hence the attenuation of the off-axis light is correspondingly greater than
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that which propagates near the axis. That is, in addition to the decrease in mag-
nitude of the specific radiance (Wigner function) with increasing values of µaZ,
the corresponding angular (momentum) spread of the multiple-scattered compo-
nent light progressively narrows. In general, not only does the radiance pattern
(Wigner function) contain an overall absorption attenuation factor but, in addi-
tion, the angular distribution of the radiation pattern is a decreasing function of
the absorption coefficient.
All treatments (see, for example, Refs. [78],[75],[85],[86]) where the effects of

absorption are given only by an overall multiplicative factor of the form e−µaZ

are, strictly speaking, incorrect and should be used with caution in applications of
practical concern where absorption effects are important (e.g., the corresponding
plane-wave radiance (Wigner function) is given by an equation of the form of Eq.
(D.4) with θ20a replaced by θ

2
0, which is independent of the absorption coefficient).

To generalize the results given above to ABCD optical systems, we replace Eq.
(D.3) with

Ha(P ,R, q, q ;Z) = e−µa∆z exp{− µa
8B

[A(p 2 + 4P 2)− 2p · r+Dr 2

−8P ·R+ 4DR2]}H(P,R, q, q ;Z), (D.7)

where, as indicated above, A, B, and D are the (real) ABCD ray-matrix elements
for backpropagation through the optical system, i.e., from the observation plane
to the initial plane, ∆z is the thickness of random medium that is located between
z = z and z = z +∆z, and the quantity H is given by Eq. (C.9).

E Appendix

Consider the Fourier transform, F (q), of the mean irradiance profile

F (q) = dr IB (r) exp (iq · r) , (E.1)

where, for general real ABCD systems, it can be shown that [49]

IB (r) = Rd
k

2πB

2

du exp i
k

B
r · u K (u)Γpt (u) , (E.2)

and the other terms have been previously defined. Substituting Eq. (E.2) into Eq.
(E.1) and performing the r integration yields

F (q) = Rd
k

2πB

2

duK(u)Γpt(u)(2π)
2δ(q + ku/B)

= RdΓpt −B
k
q K −B

k
q , (E.3)

where δ (·) is the two-dimensional Dirac delta function. It follows directly from
Eq. (E.3) and Eq. (64) that

H(p) = F (kp/Bb) = RdΓpt(−p)K(−p) = RdΓ∗pt(p)K(−p). (E.4)
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List of symbols

a linear dimension of illuminated region
bφ normalized phase autocorrelation function
d distance between lens and tissue surface
erf(·) error function
f focal length
f(·) specific radiance (Arnush, section 5.4)
f0(·) specific radiance at z = 0 (Arnush, section 5.4)
fd Doppler frequency
g asymmetry parameter
g(τ) normalized temporal coherence function
h Planck’s constant
i(z) heterodyne signal current
is interference signal
i2

0
mean square heterodyne signal current in the absence of scattering

k wave number
k̃ complex wave number
km wave number in medium
l transverse intensity correlation length
l(R,P ) distance between the vector positions R and P
lc coherence length
l0 scale of smallest random inhomogeneities
n, n1 index of refraction of tissue
nf small fluctuating part of the index of refraction
ng index of refraction of cuvette glass plate
p, p1, p2 two-dimensional position vector
q, q, q transverse momentum
qe electronic charge
r, r1, r2 two-dimensional position vector
r0 Henyey-Greenstein phase correlation length
s optical depth
sj optical depth for the jth scattering section
sN near-forward contribution to the optical depth
sW wide-angle contribution to the optical depth
t time
u normalized transverse coordinate
u, u ray direction (Arnush, section 5.4)
v scan velocity of reference mirror
wH 1/e irradiance radius in discontinuity plane in the absence of scattering
wS 1/e irradiance radius in discontinuity plane in the presence of scattering
w0 1/e intensity radius in the lens plane
z depth of discontinuity in tissue
z propagation variable
zmax maximum probing depth
A,Ab ray-matrix element
B,Bb, B(L) ray-matrix element
Bw system bandwidth
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D,Db ray-matrix element
E electric field
G extended Huygens-Fresnel Green’s function
Ga Helmholtz Green’s function for absorbing medium
Gca current amplifier gain
G0 Huygens-Fresnel Green’s function
H propagation kernel for the Wigner distribution function
Ha propagation kernel for the Wigner distribution function, absorbing medium
Ht Hilbert transform
I, I0 irradiance
IB backscattered irradiance in the discontinuity plane
J0 Bessel function of the first kind of order zero
L distance from discontinuity plane to lens plane
N specific radiance
Np mean square noise power
NA numerical aperture
P two-dimensional position vector
PR power of reference beam
PS power of input sample beam
P0 transmitted power
R point in space
Rd Fresnel reflection coefficient
Rl resistance of load
S mean heterodyne signal power
SNR signal-to-noise ratio
(SNR)0 signal-to-noise ratio in the absence of scattering
U(R) scalar component of E
UB reflected sample field in the discontinuity plane
UR reference field
US sample field
USi input sample field
U0 field in input plane
W Wigner phase-space distribution
Wa Wigner function in the presence of an absorbing medium
WR Wigner phase-space distribution function of reference beam
WS Wigner phase-space distribution function of sample beam
Z one-way propagation distance
α conversion factor for power to current
δ thickness of cuvette glass plate
δ(·) two-dimensional Dirac delta function
η detector quantum efficiency
θ scattering angle
θ ray direction
θ0a root mean square angular spread of light in presence of absorption
θrms rms scattering angle
λ center wavelength
∆λ FWHM spectral bandwidth
µa absorption coefficient
µs scattering coefficient
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ν optical frequency
ρ0 lateral coherence length
ρφ phase correlation length
σ volume scattering function
σb effective backscattering cross section of tissue discontinuity
τ propagation time difference of reference and sample beams
φ random phase of spherical wave
φR phase of reference field relative to input sample field
ωR angular frequency of reference beam
ωS angular frequency of input sample beam
Γpt mutual coherence function of point source
ΓR mutual coherence function of reference field
ΓS mutual coherence function of sample field
∆q 1/e transverse momentum width
∆z thickness of random medium
Σ normalized scattering function (Arnush, section 5.4)
Φn 3d spectrum of the index of refraction inhomogeneities
Ψ heterodyne efficiency factor
Ω solid angle
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An analytical model is presented that is able to describe the performance of OCT
systems in both the single and multiple scattering regimes simultaneously. This
model inherently includes the shower curtain effect, well-known for light propaga-
tion through the atmosphere. This effect has been omitted in previous theoretical
models of OCT systems. It is demonstrated that the shower curtain effect is of
utmost importance in the theoretical description of an OCT system. The ana-
lytical model, together with proper noise analysis of the OCT system, enables
calculation of the SNR, where the optical properties of the tissue are taken into
account. Furthermore, by using the model, it is possible to determine the lateral
resolution of OCT systems at arbitrary depths in the scattering tissue. During
the Ph.D. thesis project, an OCT system has been constructed, and the theoret-
ical model is verified experimentally using this system. A demonstration of the
imaging capabilities of the OCT system is given. Moreover, a novel true-reflection
OCT imaging algorithm, based on the new OCT model presented in this thesis,
is demonstrated. Finally, a theoretical analysis of the Wigner phase-space distri-
bution function for the OCT geometry, i.e., reflection geometry, is developed. As
in the new OCT model, multiple scattered photons has been taken into account
together with multiple scattering effects. As an important result, a novel method
of creating images based on measurements of the momentum width of the Wigner
phase-space distribution is presented, and compared with conventional OCT.
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