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Acoustofluidics 10: Scaling laws in
acoustophoresis
Henrik Bruus

DOI: 10.1039/c2lc21261g

In Part 10 of the thematic tutorial series

‘‘Acoustofluidics – exploiting ultrasonic
standing waves forces and acoustic
streaming in microfluidic systems for cell
and particle manipulation’’, we present and
analyze a number of scaling laws relevant

for microsystem acoustophoresis. Such

laws are useful both in understanding,

designing, and analyzing acoustofluidic

devices.

I. Introduction

In physics, scaling laws are statements

about how dependent variables scale with

the independent variables, e.g. the flow

rate Q in a microfluidic system scales like

the pressure drop Dp to the power one,

written asQfDp, and the speed of sound

c0 in a liquid scales like the density r0 of the

liquid to the power minus one-half,

written as c0fðr0Þ�
1
2. Scaling laws are

helpful in gaining a basic physical under-

standing of a given system, and they are

intimately related to dimensional analysis

and to the concept of characteristic

dimensionless groups or numbers, such as

the Reynolds number.

In the following we shall see examples of

scaling laws relevant for acoustofluidics

and also identify important dimensionless

groups, often derived by dimensional

analysis combined with physical insight. In

line with the context of this tutorial series,

we shall see how the scaling laws are useful

for understanding, designing, and

analyzing acoustofluidic devices.

The treatment is divided into four

sections covering (i) laminar flow in mi-

crofluidic channels, (ii) molecular diffu-

sion in laminar flow streams, (iii)

ultrasound acoustics, and (iv) motion of

microparticles.

II. Laminar flow

As a first example of scaling laws and

dimensional analysis we take the Pois-

euille flow, analyzed in Part 1 of the

tutorial series1 and sketched in Fig. 1.

A. Dimensional analysis of the flow

rate

Let us ask the question of how the flow

rateQ scales with the physical parameters

of the problem: pressure dropDp, channel

length L, cross sectional dimensions

(radius a for a circle, and width w and

height h for parallel plates), as well as

density r0 and viscosity h of the liquid.We

know the full answer to be1

Q ¼ pa4

8hL
Dp; circular tube; (1a)

Q ¼ h3w

12hL
Dp; parallel-plates; (1b)

but how can we obtain this from dimen-

sional analysis?

First we list the SI units (marked by

square brackets) of the involved quantities:

[Q]¼m3 s�1, [Dp]¼ Pa, [h]¼ Pa s, [L]¼ [h]

¼ [w]¼ [a]¼m.We leave out r0, as density-

related inertial effects are negligible in mi-

crofluidics systems.1 Then we look at the

driving force, here the pressure drop Dp,

and note that in the linear regime, the flow

resistance ensures that flow rate scales like

QfDp. Since the left-hand side contains 1/

s, we must divide the right-hand side by h,

the only remaining quantity containing the

unit of time, Q f Dp/h. As a result, the

right-hand side needs to be multiplied by

some length l to the power 3 to balance the

units, Q f l 3Dp/h. But which physical

lengths enters l 3 and to which power? Here

we must go beyond the dimensional anal-

ysis and bring in some physical insight.

Clearly, the longer the channel, the smaller

a flow rate for a given pressure drop Dp, so
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for a linear response we getQf l 4Dp/(hL),
where the length scale l 4 now only involves

the cross-sectional geometry. Since Q f

vA , where v is the average flow velocity and

A the area of the cross section, we have

Qf
l 2A
hL

Dp; (2)

where l is now solely related to the scaling

of v with the cross-sectional geometry.

From the general nature of viscous flows,

we know that l must be associated with

the smallest distance from the center of

the channel to the side walls, as this

determines the shear stress hv/l domi-

nating the flow resistance. The scaling law

eqn (2) is how far we can come from

a purely dimensional analysis of the

Poiseuille flow for a given constant pres-

sure Dp. A circular tube of radius a will

have l ¼ a and A ¼ pa2, while a parallel-

plate channel with h < w will have l ¼ h/2

and A ¼ wh, whereby we nearly recover

the exact result eqn (1a) and (1b), except

for the numerical factors 1/8 and 1/3,

respectively. Without solving any differ-

ential equations, we can infer the expected

proportionalityQf Dp/(hL), and the less

obvious, but experimentally very

important, dependence of Q on the

smallest length scale of the cross-section,

Qf a4 (circle) andQf h3 (parallel plate).

A linear down-scaling of a channel cross

section by a factor of 2 thus reduces the

flow rate by a factor of 16 for the circular

pipe and by 8 for a parallel-plate channel.

B. Characteristic dimensionless

numbers

The above example shows the problems

that occurs when dimensionless groups or

numbers appear, e.g. the length ratio l /L.
Dimensional analysis alone cannot

determine to which power it enters the

final expression. It is therefore important

firstly to identify the dimensionless

numbers, and secondly to determine how

the sought relation depends on them.

A formal way to determine the number

N of dimensionless groups is by using the

so-called Buckingham p-theorem,2

stating that

N ¼ D � F , (3)

where D is the number of dependent

variables in the given problem, and F is

the number of independent, fundamental

dimensions (3 in mechanics: length L,

time T, and mass M). Let us apply the

theorem for the Poiseuille flow in

a circular tube described by D ¼ 6

dependent variables, a, v,Dp, h, r0, and L.

According to Buckingham’s theorem, this

results in N ¼ 6 � 3 ¼ 3 dimensionless

numbers. Buckingham also provided

a method to determine them.2 The first

step is to resolve the physical dimension of

the D dependent variables

dk � La1k Ta2kMa3k (k ¼ 1, 2, ., D) in

powers of the F fundamental dimensions

(with index j¼ 1, 2,.,F ), such as in [Dp]

¼ Pa ¼ kg/(s2m) � L�1T�2M1. Then we

construct the F � D matrix P with

elements (P)jk ¼ ajk, which in our case

becomes

P ¼

0
BB@

a v r0 h Dp L
L 1 1 �3 �1 �1 1
T 0 �1 0 �1 �2 0
M 0 0 1 1 1 0

1
CCA;

(4)

where for clarity the row and column

labels are shown. The dimensionless

groups or numbers can now be deter-

mined as the N null vectors pi (here p1,

p2, and p3) to the matrix P,

P$pi ¼ 0, for i ¼ 1, 2, ., N , (5)

because the components of these

vectors contains the powers bjk of

the dependent variables dk leading to

the power zero of fundamental jth

dimension, d
bj1
1 d

bj2
2 /d

bjD
D

h i
¼ 0. Three

possible dimensionless groups for the

matrix in eqn (4) are

p1¼

0
BBBBBB@

1
1
1
�1
0
0

1
CCCCCCA
; p2 ¼

0
BBBBBB@

1
0
0
0
0
�1

1
CCCCCCA
; p3 ¼

0
BBBBBB@

�1
1
0
1
�1
0

1
CCCCCCA
; (6)

corresponding respectively to the dimen-

sionless groups or numbers

N1 ¼ avr0
h

; N2 ¼ a

L
; N3 ¼ hv

aDp
: (7)

The first of these numbers is the Reynolds

number1 Re, the second is the aspect ratio

of the channel, and the third is ratio of the

shear-induced stress h(v/a) and the driving

pressure Dp. The values of these respective

numbers reveal information about the

physical state of the system. It is only if the

Reynolds number is small, Re ¼ N1 ( 1,

Fig. 1 Poiseuille flow of a liquid with density r0 and viscosity h through a straight channelU (blue),

where the flow is subject to the no-slip boundary condition on the surface vU. The channel is

translational invariant in the x direction, and it has an arbitrarily shaped cross-sectionC (dark blue)

in the yz-plane. The pressure at x ¼ 0 (left) is Dp higher than at x ¼ L (right).

Henrik Bruus

Prof. Henrik Bruus received his B.Sc. in mathematics

and physics from the University of Copenhagen in 1984

and his M.Sc. and Ph.D. degrees in physics from the

Niels Bohr Institute, University of Copenhagen in 1986

and 1990, respectively. He was postdoctoral fellow at

Nordic Institute of Theoretical Physics 1990–92, Yale

University 1992–94 and CNRS Grenoble 1994–96. He

returned to the Niels Bohr Institute as an associate

professor 1997–2001, before he joined the faculty at

DTU Nanotech, Technical University of Denmark in

2002. He was promoted to full professor there in 2005.

He has (co)authored more than 100 peer-reviewed

journal papers on condensed matter physics and micro-

fluidics, as well as 120 peer-reviewed conference contri-

butions and 2 monographs, the latest being ‘‘Theoretical

Microfluidics‘‘, Oxford University Press (2008).

This journal is ª The Royal Society of Chemistry 2012 Lab Chip, 2012, 12, 1578–1586 | 1579



that it makes sense to exclude the density as

a relevant parameter in the dimensional

analysis in Section II A. Likewise, it is only

if the channel aspect ratio is small,N2 ( 1,

that we can determine l 2 in eqn (2).

Consequently, the identification of the

dimensionless numbers is an important

part of dimensional analysis.

An important caveat regarding the

dimensionless numbers is that they are

not uniquely determined. Any linear

combination of the null vectors pi results

in a null vector. The following set is also

a possible solution,

p�
1 ¼

0
BBBBBB@

1
1
1
�1
0
0

1
CCCCCCA
; p�

2 ¼

0
BBBBBB@

�1
0
0
0
0
1

1
CCCCCCA
; p�

3 ¼

0
BBBBBB@

0
2
1
0
�1
0

1
CCCCCCA
; (8)

corresponding respectively to the dimen-

sionless groups or numbers

N�
1 ¼ avr0

h
; N�

2 ¼ L

a
; N�

3 ¼ r0v
2

Dp
: (9)

Here N*
1 ¼ N1 is the Reynolds number Re

as before, N*
2 ¼ 1/N2 is the inverse aspect

ratio of the channel, while N*
3 ¼ N1N3 is

the ratio of the kinetic pressure to the

driving pressure. For very low flow

velocities, N*
3 � N3 and the shear stress

dominates over the kinetic pressure. For

higher velocities the situation reverses, as

is of course evident from the relationship

N*
3/N3 ¼ Re.

C. Entrance length

In acoustofluidics, one is often in a situa-

tion where several flow streams are

brought together at the entrance of the

region (here a long straight channel) of

the microfluidic chip where the active

acousto-activated particle separation

takes place. The question naturally arises

at which distance L down-stream from

the entrance point is the laminar flow

a fully developed steady-state Poiseuille

flow profile.

For very low flow velocities, it is ex-

pected that the entrance length L scales

like the smallest distance l from the

center of the channel to the side walls

in the cross-sectional geometry (a for the

circle and h/2 for the parallel-plate with h

< w), L f l . This must be so, as l in

this case is the only length scale in

the problem. However, as the velocity

is increased and the Reynolds

number exceeds unity, another (kine-

matic) length scale appears, namely L f

Re l .
As in Section II, a more physical

insight is needed to obtain a more precise

statement, so let us consider a simplified

situation, where instead of several

flow streams meeting at the inlet of the

channel, we just assume that the

velocity profile differs from the fully

developed Poiseuille profile and is, say,

the constant v across the inlet. Due to

mass conservation in the long straight

channel we are analyzing, the average

velocity remains v. In a reference frame

where the channel walls are fixed, the

steady-state flow profile has a spatial

development, it simply changes its shape

as a function of axial position x. In

a reference system moving with the

average, constant flow speed v, the

development of the flow profile is

temporal and not spatial. It can be

analyzed using the Navier–Stokes equa-

tion in the form of the velocity diffusion

equation1 vtv ¼ nV2v, where n ¼ h/r0 is

the momentum diffusivity or kinematic

viscosity, which for water is v ¼ 10�6 m2

s�1. Diffusion length (here the shortest,

transverse channel dimension l ) and time

s is described by the exponential factor

exp[–l 2/(2vs)] in one spatial dimension as

studied in the following section. If we

define the full development of the flow

profile as when the developing profile is

within 5% of the steady-state value, then

exp[–l 2/(2vs)] z 0.05 or l 2 z 6vs. The
entrance length L in the fixed frame of

reference can therefore be estimated as

L zvszl 2v=ð6nÞ ¼ 1

12
Re l , where we

use the usual definition of the Reynolds

number Re ¼ (2l )vr0/h. In summary, our

scaling law for the entrance length in

straight-channel Poiseuille flow becomes

L zmax

�
l ;

Re

12
l
�
: (10)

In Fig. 2 is shown a numerical simula-

tion of the entrance effects for the axial

velocity field in a straight parallel plate

channel of height h. The inlet velocity

profile is the constant v in the axial

direction at x¼ 0. In this case l ¼ h/2, and

in panel (a) it is seen how L z h/2 for the

low Reynolds number Re ¼ 0.1, while

L zðRe=12Þh=2 ¼ 0:042Re h ¼ 4:2h for

the medium Reynolds number Re ¼ 100

in accordance with eqn (10). We note that

for typical microchannels used in acous-

tophoresis with h¼ 0.2 mm, the Reynolds

number Re ¼ 12 for which the scaling

changes from one behavior to another in

eqn (10), corresponds to the relatively

high average velocity v z 6 cm s�1. We

therefore expect that the entrance length

in acoustofluidics in most cases is given by

half the channel height, L z l , for h < w.

D. Inertial time scale

In spite of the dominance of viscosity in

microfluidics systems, it can nevertheless

be of interest to determine the time scale

of inertial effects of the liquid flow. In

Part 1 of the Tutorial Series1 this was

briefly treated in terms of hydraulic

inductance. As an example we study here

the inertial-related time, siner, it takes

a liquid with density r0, viscosity h, and

kinematic viscosity v ¼ h/r0, to reach rest

after an instantaneous removal of the

pressure difference, driving a steady-state

Poiseuille flow through a circular micro-

channel of radius a and length L. Here

‘‘instantaneous’’ of course refers to the

Fig. 2 Color plots of the axial velocity from zero (dark blue) to vmax (dark red) in a parallel-plate

channel (side view) of length L and height h. The velocity field on the inlet to the left is set to be

a constant. (a) In the low Reynolds number limit (Re ¼ 0.1) the entrance length over which a full

Poiseuille flow profile is established is given by L zð1=2Þh. (b) In the medium Reynolds number

limit (Re ¼ 100) the entrance length is given by L zðRe=24Þh.

1580 | Lab Chip, 2012, 12, 1578–1586 This journal is ª The Royal Society of Chemistry 2012



small acoustic time scale sacou ¼ L/c0 of

pressure (or sound) wave propagation

along the channel given the speed of

sound c0 of the liquid.

For this problem the Buckingham P-

matrix becomes

P ¼

0
BB@

a L siner c0 h r0
L 1 1 0 1 �1 �3
T 0 0 1 �1 �1 0
M 0 0 0 0 1 1

1
CCA;

(11)

with the set ofN ¼D�F ¼ 6� 3¼ 3 null

vectors,

p1¼

0
BBBBBB@

1
�1
0
0
0
0

1
CCCCCCA
; p2¼

0
BBBBBB@

0
1
�1
�1
0
0

1
CCCCCCA
; p3¼

0
BBBBBB@

2
0
�1
0
�1
1

1
CCCCCCA
; (12)

corresponding to the dimensionless

groups or numbers

N1 ¼ a

L
; N2 ¼ sacou

siner
; N3 ¼ a2

nsiner
: (13)

The first of these is the aspect ratio of

the channel, the second is the ratio of the

axial propagation time of pressure waves

relative to the stopping time, while the last

is the ratio of the momentum diffusion

time relative to the stopping time. In the

case of a long, narrow channel (N1 � 1),

and a propagation time of sound much

shorter than the stopping time (N2 � 1),

the liquid flow stops due to the sidewards

diffusion of momentum over the distance

a, with the momentum diffusivity n.

Dimensional analysis thus leads to sinerz
a2/v, while standard diffusion theory for

two spatial dimensions provides another

factor of 1/4. We therefore arrive at the

scaling law for the inertial stopping time,

siner z
a2

4n
: (14)

To provide a numerical example, we

take the channel dimensions to be a ¼ 0.1

mm and L ¼ 10 mm, and the liquid to be

water at room temperature, i.e. v ¼ 10�6

m2 s�1 and c0 ¼ 1500 m s�1. The pressure

propagation time becomes L/c0 z 10 ms

and the inertial stopping time is siner z 3

ms, and the conditions N1 � 1 and N2 �
1 for the analysis are thus fulfilled. We

note that siner z 3 ms for a ¼ 0.1 mm

combined with the a2 scaling law implies,

that for channels 10 times wider the iner-

tial time scale approaches 1 s, while 10

times more narrow leads to inertial time

scales approaching the pressure propa-

gation time scale. In Fig. 3 we show in

detail how the axial velocity profile vx(r, t)

develops in time from the initial removal

of the driving pressure at t ¼ 0 in units of

the characteristic stopping time siner of

eqn (14), for details of the calculation see

ref. 3 and 4. The figure shows how the

velocity profile does indeed decay on

a time scale given by siner.

III. Molecular diffusion

The handling of biological cells using

acoustofluidics often involves the transfer

of cells from one laminar buffer flow

stream to another flowing in parallel. The

acoustic forces are controlling the transfer

of cells between the flow streams, while

concentration gradients give rise to

exchange of solutes between the buffers.

In this section we study the latter.

To the extent that the solutes are not

undergoing chemical reactions, they are

conserved, and we can derive a continuity

equation for the concentration field

ca(r, t) for a given solute characterized by

the index a. The SI unit for ca is m�3 or

M ¼ mol L�1, where 1 M ¼ 6.02 � 1026

m�3. To derive the continuity equation for

ca we begin by stating the current density

Ja in analogy to the procedure for the

buffer, Sec. IV in ref. 1,

Ja ¼ �DaVca + cav, (15)

where the first term on the right-hand side

is Fick’s first law for concentration-

induced solvent current density with

solute diffusivity,Da, in the given solvent,

and the second term represents the

contribution from advection to the

current density from the velocity field v of

the buffer. The resulting advection–

diffusion equation, valid for weak solu-

tions ca ( 0.1 M, is1,3

vtca þ ðv$VÞca ¼ DaV
2ca (16)

In the dilute limit the solutes are not

affecting the velocity field of the solvent, so

in the following the velocity field v is

assumed to be known from solving the flow

problem separately. Moreover, for dilute

solute concentrations the advection–diffu-

sion equation is linear in ca, and all effects

scales trivially with the concentration level,

which therefore can be left out of the

Buckingham P-matrix here,

P ¼
0
@ a L v Da

L 1 1 1 2
T 0 0 �1 �1

1
A: (17)

The P-matrix has N ¼D � F ¼ 4� 2¼ 2

null vectors,

p1 ¼

0
BB@

1
�1
0
0

1
CCA; p2 ¼

0
BB@

1
0
1
�1

1
CCA; (18)

corresponding to the dimensionless

groups or numbers

N1 ¼ a

L
; N2 ¼ av

Da

: (19)

The first of these is the aspect ratio of the

channel, and the second is the ratio of the

axial advection speed relative to the

transverse diffusion speed and is known

as the P�eclet number P�e

Pe�¼ av

Da

: (20)

Whether P�e is larger or smaller than unity

is important for determining if advection

or diffusion dominates. In this respect P�e

Fig. 3 The evolution in time from the initial Poiseuille paraboloid at t¼ 0 to a zero velocity profile

at t¼N of the velocity profile vx(r, t) in a cylindrical channel of radius a for a decelerating Poiseuille

flow due to the abrupt disappearance of the driving pressure Dp at t ¼ 0. The time is expressed in

units of the inertial time scale siner ¼ a2/(4v) of eqn (14). Adapted from ref. 3.

This journal is ª The Royal Society of Chemistry 2012 Lab Chip, 2012, 12, 1578–1586 | 1581



resembles Re, and interestingly, the latter

can be written as Re ¼ av/v, showing that

the Reynolds number is for momentum

diffusion with diffusivity nwhat the P�eclet

number is for molecular diffusion with

diffusivity Da.

The molecular diffusivity for all small

ions in water, such as Na+ and Cl�, is

around 2 � 10�9 m2 s�1. For a typical

microfluidic channel with a z 0.1 mm,

this results in a threshold velocity v ¼
Da/az 20 mm s�1, above which advection

effects become important. This is a rela-

tively low velocity, so advection is ex-

pected to play a role for diffusion

processes in microfluidic systems.

We now return to our problem of

deriving the scaling laws for transverse

diffusion between two parallel laminar

buffer streams in a long, straight micro-

fluidic channel of small height h and large

width w, such that h � w as shown in

Fig. 4(a). Let the channel have length L,

and for simplicity let the two flow streams

have the same width w/2. One buffer is

pure water (light blue), and the other is

a dilute aqueous solution (dark blue),

such that the viscosity and density of the

two buffers are approximately equal. The

average axial (x-direction) flow speed in

the channel is called v0, and there is no

velocity in the transverse direction (y-

direction). The steady-state advection–

diffusion problem thus becomes

v0vxca ¼ Dav
2
yca, (21)

where we have assumed that the trans-

verse concentration gradients are much

larger than the axial. This can also be in-

terpreted as the normal diffusion equa-

tion vtca ¼ Dav
2
yca, with ‘‘time’’ t ¼ x/v0.

The solute concentration of the solution

buffer is denoted c*. As solutes begin to

leave the solution buffer by diffusion as

sketched in Fig. 4(b), the concentration at

the interface (taken to be at y ¼ 0)

between the two buffers remains at the

value c�=2 for symmetry reasons. By

inspection, it is straightforward to show

that the solution to eqn (21) can be written

in terms of the complementary error

function erfcðsÞh 2ffiffiffi
p

p
ðN
s

e�u 2

du,

cð y; t. 0Þ ¼ 1

2
c�erfc

�
yffiffiffiffiffiffiffiffiffiffi
4Dat

p
�
: (22)

As erfc(s) is related to the Gauss

distribution exp(–s2), it follows that the

time s it takes to diffuse the length l is

roughly given by

l 2 z 2Das. (23)

We can now easily derive the scaling

law for mixing by diffusion between the

two buffer streams of our problem. The

transit or advection time, sadv, through
the channel for a small group of solutes is

given by sadv ¼ L/v0. The diffusion time

sdiff,a, for the same molecules to cover the

transverse distance w/2 and fill the pure

water stream, is found by eqn (23) to be

sdiff ;a ¼ w2

8Da

: (24)

The threshold for mixing is when sadv ¼
sdiff,a, and the corresponding flow velocity

va obeys the scaling law

va z
8DaL

w2
: (25)

In the limit v0 � va or P�ea � 1 the a-

solute mixes completely by diffusion,

while v0[ va or P�ea[ 1 corresponds to

advection with negligible spread by

diffusion. Taking L ¼ 10 mm, w ¼ 0.1

mm, and Da ¼ 2 � 10�9 results in the

threshold velocity va z 10 mm s�1 which

is a very convenient value as both larger

and smaller flow velocities are easily set

up experimentally, either by adjusting the

driving pressure or the channel geometry

through the factor w2/L.

Given two solutes (index 1 and 2) with

different diffusivitiesD1 <D2, the H-filter

can be used to a partial separation of the

solutes as illustrated in Fig. 4(a) by the big

red particles (index 1) and the small

yellow particles (index 2). Given that v1�
v0 � v2 or equivalently sdiff,2 � sadv �
sdiff,1, the top-right output will contain

a nearly 50% dilution of the original

concentration of the small a ¼ 2 particles

and nearly zero concentration of the big

a ¼ 1 particles. Given the scaling law

eqn (25), the H-filter is only efficient if the

diffusivities D1 and D2 are sufficiently

different.

The last scaling to mention relating to

advection–diffusion is the one for the

effective diffusivity Deff in Taylor disper-

sion, the flow-induced enhancement of

dispersion of concentration fields.5–7

Consider a circular channel of radius

a initially containing a thin slab of solute

which has a constant concentration c*

inside a narrow axial region of width

dx � a and zero outside. If the flow

velocity of the solvent is zero, the slab will

broaden in time by diffusion governed by

the diffusivityDa. If now a Poiseuille flow

profile of average velocity v0 is estab-

lished, the slab will be stretched unevenly

in the axial direction due to the non-

uniform velocity profile, which is zero at

the walls and maximum in the center.

Consider a time step sdiff long enough to

Fig. 4 (a) An xy-plane top view of a flat H-filter (height h) consisting of a central channel (length L and width w) with two inlet channels to the left and

two outlet channels to the right. A pure buffer liquid (light blue) and a buffer liquid (dark blue) containing big (red) and small (yellow) solutes are

introduced via the top-left and bottom-left inlet, respectively, and form a pressure-driven, steady state, laminar flow with average velocity v0. (b)

Concentration profiles c(y, t ¼ x/v0), in units of c*, in the central channel as a function of the transverse direction y at different positions x along the

channel. Adapted from ref. 3.
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imply a radial diffusion distance squared

of (Dr)2 ¼ (a/2)2 ¼ a2/4 which samples the

radial gradient of the axial velocity well.

During the time sdiff the one-dimensional

axial diffusion distance squared due solely

to molecular diffusion is half of that in the

two-dimensional radial direction

ðDxÞ2 ¼ ðDrÞ2=2 ¼ a2=8. However, the

transverse diffusion implies an additional

axial diffusion step of the order D~x z
v0sdiff, where sdiff ¼ (Dx)2/(2Da). Thus the

total axial diffusion distance squared is.

ðDxÞ2 þ ðD~xÞ2 ¼
�
1þ 1

32
ðv0a=DaÞ2

�
DxÞð 2

As Da ¼ (Dx)2/(2sdiff), it is natural

to define the effective dispersion

as Deff ¼
h
ðDxÞ2 þ ðD~xÞ2

i.	
2sdiff



, and

we arrive the scaling law for Deff,

Deff z
ðDxÞ2þðD~xÞ2

ðDxÞ2 Da (26a)

¼
�
1þ 1

32

�
Pe�

�2
�
Da: (26b)

As before the numerical pre-factor in the

scaling law is not accurate, and the correct

expressions for the effective diffusivity

are5–7

Deff ¼
�
1þ 1

48

�
Pe�

�2
�
Da;

circular channel;

(27a)

Deff ¼
�
1þ 2

105

�
Pe�

�2
�
Da;

parallel-plate channel;

(27b)

The scaling law shows that the effective

axial diffusivity is much larger than the

molecular diffusivity and scales like the

P�eclet number to the power two, Deff f

(P�e)2Da, for P�e [ 1. We have seen that

P�e z 1 for v0 z 20 mm s�1 for typical

acoustofluidic channel with a z 0.1 mm,

so in practice we often have P�e [ 1.

IV. Ultrasound acoustics

The basics of ultrasound acoustics for

microsystems acoustophoresis is re-

viewed in earlier parts of the Tutorial

Series: In Part 2 the ultrasound modes

are treated in simplified microfluidic

channels;8 Part 3 includes the continuum

mechanics of the elastic walls;9 and Part

4 treats the piezo electric transducers

generating the ultrasound waves.10 It is

difficult to derive scaling laws for the

complete acoustical system consisting of

the elastic chip containing the micro-

fluidic channel and the attached piezo

transducer, because of the many

parameters that have identical physical

dimensions. The geometry of the full

system contains a number of length

scales characterizing each sub-system,

and likewise each material has its own

acoustic parameters, see Table 1.

The order of magnitude of the speed of

sound cj of a given material j is given by

the density rj and bulk modulus

Kj ¼ �Vvp/vV (the inverse of the

compressibility kj) from the relative

changes in volume V for a change in

pressure p as

cjf

ffiffiffiffiffi
Kj

rj

s
: (28)

The density of liquids and solids is

typically in the range 103–104 kg m�3, the

bulk modules in the range 2–200 GPa,

and the speed of sound is in the range

1–10 km s�1. For solids, the scaling law

eqn (28) is complicated by the existence of

more than one speed of sound depending

of the polarization of the sound wave

(longitudinal or transverse) and for

crystal structures also the propagation

direction relative to the crystal axes.

A. Resonances

We limit the following scaling analysis of

acoustic resonances to the case dominated

by those in water, with the sound speed

cwa ¼ 1500 m s�1, inside a rectangular

water-filled channel of length L, width w,

and height h, surrounded by infinitely

hard walls. In ref. 8 the resonance

frequencies of this system are found to be

fnx ;ny ;nz ¼
cwa
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2x
L2

þ n2y
w2

þ n2z
h2

s
;

with nx; ny; nz ¼ 0; 1; 2; 3; 4;.

(29)

We study a long, flat channel for which

h ( w � L, and for the numerical esti-

mates we take h ¼ 0.15 mm, w ¼ 0.4 mm,

and L ¼ 40 mm, corresponding to the

channels used in ref. 15 and 16. To

establish a resonance with a half-wave-

length or more in the z-direction,

a frequency of at least f0,0,1 ¼ cwa/(2h) z
5 MHz is needed. For frequencies below

this cut-off, only waves in the axial and

wide transverse directions can be excited.

The corresponding resonances are

fnx ;ny ;0 ¼
cwa
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2x
L2

þ n2y
w2

s
: (30)

In the classic acoustophoretic separa-

tion device,8,17–19 one seeks to work with

the transverse half-wavelength resonance

f0,1,0 ¼ cwa/(2w) z 2 MHz. The spacing

Table 1 List of values of material parameters at 20 �C for typical liquids [water (wa), NaCl solution (scs), percoll (pc), glycerol (gl)] and solids [pyrex
(PY), polystyrene (PS), polymethacrylate (PM), melamine resin (MR), a representative biological cell (Cell)] used in microchannel acoustophoresis

Material Density r [kg m�3] Compressibility k [1/TPa] Longitudinal speed of sound c [m s�1] Viscosity h [mPa$s]

waa 998.2 456 1482 1.002
scsb 1071 365 1599 1.170
pcc 1130 390 1507 100
gla 1261 219 1904 1412
PYa 2230 27.8 5674 —
PSc 1050 172 2350 —
PMc 1190 148 2380 —
MRc 1510 67.5 3132 —
Celld 1100 400 1500 —

a From ref. 11. b Sodium chloride solution of salinity S¼ 0.1, from ref. 12. c From Sigma-Aldrich Production GmbH and Fluka data sheets. d From ref.
13 and 14.

This journal is ª The Royal Society of Chemistry 2012 Lab Chip, 2012, 12, 1578–1586 | 1583



Df(nx) between modes fnx,1,0 is estimated

byDf(nx)z [vfnx,1,0/vnx]DnxwithDnx¼ 1,

D f ðnxÞ ¼ w2

L2

nxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w2

L2
n2x

r f0;1;0: (31)

For the lower modes with nx ( L/w z
100, we find

Df ðnxÞzw2

L2
f0;1;0 nx; for nx (

L

w
: (32)

For nx z 20 we find Df(nx) z 4 kHz.

We note that the longer the channel, the

smaller the separation of resonance

frequencies and the more resonances are

contained within a given frequency

bandwidth. It is relevant to compare the

mode separation to the width df of the

resonances given by the Q-value (not to be

confused with the flow rate Q). Experi-

mentally it is found that Q z 500 is

a typical Q-value,9,15 and consequently

d f z
1

Q
f0;1;0 z 4 kHz: (33)

Thus the mode separation Df is

comparable to the mode width df, and the

resonances are expected to be marginally

separated. This is also seen experimen-

tally15,16 as discussed in Part 7 and 8 of the

Tutorial Series.19,20 For lower Q-values

the resonances overlap more, resulting in

broad-band, blurred axial waves, while

maintaining the well-defined transverse

half-wave. Quantitatively, the scaling law

is again not accurate; the experimentally

observed values are Df z df z 10 kHz.

B. Energy density

As shown in the following section, the

acoustic force in acoustophoretic particle

handling scales like the acoustic energy

density Eac of the standing ultrasound

wave to the power one. It is therefore of

interest to study the scaling law for Eac.

An acoustic wave can be thought of as

a harmonic oscillator, where the energy

during an oscillation period changes

between kinetic energy of the liquid and

pressure-related potential energy. We

therefore expect the scaling relationEacf

p2a, where pa is the amplitude of the

standing pressure wave. Since both Eac

and pa have the SI unit J m�3 ¼ Pa,

dimensional analysis requires that we

must divide p2a by a quantity of unit Pa to

obtain Eac. The only relevant quantity

available in the problem is the bulk

modulus of eqn (28), K0 ¼ r0c
2
0, where

index ‘‘0’’ refer to the liquid. Hence, we

have the scaling law Eac f p2a/K0, and an

exact analysis brings in a factor of
1

4
,

Eac ¼ p 2
a

4K0

¼ p 2
a

4r0c
2
0

¼ 1

4
k0p

2
a; (34)

where k0 ¼ 1/K0 is the compressibility of

the liquid.

In Part 4 of the Tutorial Series,10 the

basic theory of piezoelectric actuation of

ultrasonic resonances in water-filled

silicon/glassmicrochannels is presented. It

is shown that a linear relation exists

between the applied peak-to-peak voltage

Upp of the piezo transducer responsible for

exciting the ultrasonic resonance and the

induced acoustic pressure amplitude pa,

Pa f Upp. (35)

From eqn (34), Eac thus scales with the

square of Upp,

Eac f U2
pp. (36)

As summarized in Part 7 of the Tutorial

Series,19 this scaling law was tested in ref.

15 by plotting the values of Eac extracted

by a particle-tracking method versus the

applied piezo-transducer voltage Upp. In

typical acoustophoretic experiments

in water-filled silicon/glass chips Eac ¼
10–100 J m�3.

V. Acoustophoresis

We end this Tutorial with a discussion of

the scaling laws for acoustophoretic

particle handling. It includes dimensional

analysis of the magnitude of the acoustic

radiation force, the Stokes drag force,

transverse acoustophoretic focusing time,

axial advection time, vertical sedimenta-

tion time, and the acoustic streaming.

A. The acoustic radiation force

The fundamental force behind acousto-

phoretic particle handling is Frad, the

acoustic radiation force,12,21,22 which is

due to scattering of ultrasound waves on

the particle, as treated in detail in Part 7 of

the Tutorial Series.19 The scaling law for

Frad can be derived using dimensional

analysis for a spherical particle of radius

a, density rp and compressibility kp

suspended in a fluid of density r0,

compressibility k0, and speed of sound c0
under the influence of a given ‘‘incoming’’

sinusoidal, standing pressure wave pin,

pin(y, t) ¼ pa cos(ky) cos(ut), (37)

of wavelength l, wavenumber k ¼ 2p/l,

frequency f, and angular frequency u ¼
2pf ¼ kc0. We treat the small-particle

limit ka ¼ 2pa/l � 1, and note that

for large particles, a T 3 mm, viscous

effects of the fluid is negligible for ultra-

sound waves in water.12,19 The pressure

wave pin is associated velocity wave19

vin f Vpin.

If the relative compressibility ~k ¼ kp/k0
deviates from unity, the particle acts as

a point scatterer for pressure waves, pscf

(~k� 1)pin. Similarly, if the relative density

~r ¼ rp /r0 deviates from unity, it acts as

a point scatter for velocity waves given by

vsc ¼ (~r � 1)vin. For weak (first-order)

scattering, the monopole and dipole

scattering do not mix. Because the time

average of the harmonically oscillating

standing pressure and velocity waves is

zero, hpini ¼ 0 and hvini ¼ 0, the radiation

force must be a second-order effect for

which the time average does not vanish,

cos2ðutÞ�¼ 1=2. Two types of second-

order terms are linear in the scattered

fields and thus dominating, namely

hpscpini f (~k � 1)k0hp2ini and hvscvini f

(~r � 1)r0hv2ini, where the pre-factors k0
and r0 are inserted to give the two terms

the unit of energy density. The two

acoustic energy densities must be related

to the volume taken up by the particle in

the liquid, so a factor
4

3
pa3 must be

included, resulting in two terms of

dimension energy. We now need a last

factor of unit m�1 to obtain the unit N for

force. This is provided by the wave

number k, the argument being that first-

order scattering is proportional to the

(small) scattering parameter ka � 1.

Equivalently, the wavenumber comes

about from the gradient operator acting

on the sinusoidal functions hp2ini f

cos2(ky) and hv2ini f sin2(ky). Here vin f

sin(ky) because of the Stokes equation

r0vtvin¼�vypin. The resulting scaling law

for the radiation force is then

Frad ¼ � 4

3
pa3V

h
C1

	
~k� 1



k0


p2in

�
þ C2

	
~p� 1



r0


v2in

�i
; (38)
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where C1 and C4 are dimensionless

constants. Detailed treatment

gives C1¼ � 1

2
and C2¼ 1

2

3

2~rþ 1
.

Carrying out the differentiation and col-

lecting terms, we end with the classic

result21,22 for the standing cosine pressure

wave pin of eqn (37) between channel walls

at y ¼ 0 and at y ¼ w,

Frad ¼ 4pF(~k, ~r)ka3Eac sin(2ky), (39a)

F
	
~k; ~r


 ¼ 1

3

�
5~r� 2

2~rþ 1
� ~k

�
; (39b)

where F(~k, ~r) is the acoustophoretic

contrast factor. For the simple standing

half-wavelength, the wavenumber

becomes k ¼ p/w, and the radiation force

focuses all particles with F > 0 at the

central plane at y ¼ w/2. For F < 0 the

particles are focused at the walls.17–19

B. Particle motion in microfluidics

Viscosity dominates in microfluidics in

general and for themotion ofmicrometer-

sized particles in particular. The scaling

law for the acceleration time sacc of

a particle of radius a and density rp
moving in a liquid of viscosity h is easily

found by dimensional analysis,

saccz
rpa

2

h
¼ ~r

a2

n
: (40)

For a 5 mm diameter particle in water sacc
z ~r � 3 ms, a time-scale so short that the

usual assumption about instantaneous

steady-state motion of microparticles is

justified. The frictional force responsible

for this steady-state motion is the Stokes

drag force, Fdrag. The scaling law for Fdrag

for a sphere of radius a moving with the

velocity v through a fluid of viscosity h is

derived from multiplying the surface area

4pa2 with the viscous stress h(v/a), so that

Fdrag z 4phav. An exact treatment3,23

yields

Fdrag ¼ �6pahv. (41)

The time sfoc it takes to focus particles

with F > 0 at the central plane y ¼ w/2 is

found by balancing the radiation force

and the Stokes drag force,

Fradð yÞ ¼ Fdrag ¼ 6pah
dy

dt
: (42)

This differential equation can be solved

analytically15,19,24 for y(t), but here we just

use dimensional analysis to obtain the

scaling law for sfoc. Since [Eac] ¼ Pa and

[h] ¼ Pa s, we immediately obtain sfoc f
h/Eac. For the standing half wave l ¼ 2w,

and we only have two length scales in the

problem, a and w. So how does the aspect

ratio a/w enter in the scaling for sfoc? As

Frad f a3 and Fdrag f a, we are left with

a factor a2, so the aspect ratio must enter

to the power two, a2/w2, and the smaller

the particle, the longer the focusing takes,

hence sfoc f (w/a)2h/Eac. Solving eqn (42)

for a particle moving from y ¼ 0 to y ¼
w/2, and with sin(py/w) approximated by

its average value 2/p, we obtain

sfocz
3

8F

w2

a2
h

Eac

: (43)

The exact analytical solution only results

in a weak logarithmic correction to this

expression. For 3/(8F)z 1, a¼ 5 mm,w¼
0.4 mm, h ¼ 1 mPas, and Eac ¼ 100 J m�3

we obtain the fairly short focus time of

sfoc ¼ 60 ms. This is a very convenient

value, which by virtue of the scaling law

can easily be adjusted in a wide range to

optimize devices for acoustophoretic

handling.

C. Advection and sedimentation

An important use of the acoustic radia-

tion force is to obtain fractionation of

particles in flow-through mode of a given

microchannel. For an average axial flow

velocity v in a channel of length L, the

advection time sadv for passing through

the channel by advection, is given by

sadv ¼ L

v
: (44)

For an aqueous solution of two types of

particles with radii a1� a2, it is fairly easy

to adjust the parameter to obtain sfoc(a2)
� sadv � sfoc(a1), in which case the large

a2-radius particles are focused at the

center plane well before reaching the

outlet, while the small a1-radius particles

have hardly moved transversely. The

closer the ratio a1/a2 is to unity, the less

sensitive is this separation method. The

most sensitive mode is the binary separa-

tion obtained when F1 and F2 have

opposite signs, as in the seminal micro-

channel acoustophoresis work ref. 17

and 18.

Similarly, it is important to determine

the time ssed it takes a given type of

particle to sediment in a microfluidic

channel. The scaling law for ssed is

obtained by equating the buoyancy

force Fbuoy ¼ ð~r� 1Þ 4
3
pa3r0g with

Stokes drag Fdrag ¼ 6pha(h/ssed), where h
is the sedimentation distance (height of

the channel). The result is

ssed ¼ 9

2ð~r� 1Þ
nh

a2g
: (45)

Acoustophoretic focusing requires sfoc �
ssed, from which the scaling law follows,

ð~r� 1Þ
12F

w2

h2
r0gh � Eac: (46)

It turns out not to be a severe constraint.

For ~r ¼ 2, h ¼ 0.15 mm, w ¼ 0.4 mm, we

obtain Eac [ 1 J m�3.

D. Acoustic streaming

Acoustic streaming is a second-order

time-averaged phenomenon, in which the

fluid is set in motion by the acoustic

wave through momentum exchange in

the viscous boundary layer close to the

walls. Streaming often shows up as

steady vortices.19,25 For an acoustic field

oscillating with the angular frequency u,

the time scale for carrying

information about the changing bulk field

is given by 1/u. The distance d away from

the wall over which the fluid has time to

adjust to one flow direction is given

by23,26,27

d ¼
ffiffiffiffiffi
2n

u

r
z 0:6 mm; (47)

in analogy with eqn (23), and where the

value is for 1 MHz ultrasound in water at

room temperature. The length scale d is

the width of the viscous boundary layer

surrounding any wall. Interestingly, the

boundary-layer does not enter the scaling

law for the magnitude of the streaming

velocity vstr. Since streaming is a second-

order effect, vstr f v2a, where va is the

amplitude of vin, and the only other

velocity in the problem is the speed of

sound in the fluid, so

vstr ¼ J
v2a
c0
: (48)

Here, J is a geometry-dependent factor

of order unity, e.g.J¼ 3/8 for a standing

wave parallel to a planar wall. A particle

kept fixed in an acoustic streaming field

vstr is subject to an acoustic streaming

force Fstr from viscous drag of magnitude
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Fstr ¼ 6phavstr ¼ 6phaJ
v2a
c0
: (49)

We can now obtain an estimate for the

critical particle radius ac, below which the

radiation force Frad f a3 no longer

dominates and the particle motion is

governed by the less understood and less

controlled advection by acoustic

streaming. If we assume that the particle

is kept in place by a force balance between

the radiation force and the force from

acoustic streaming, Frad ¼ Fstr, then

expressions (39a) and (40) for the forces

lead to

2pa3ckr0v
2
aFz6phac J

v 2
a

c0
; (50)

from which we obtain the scaling law for

the critical particle radius ac or diameter

dc,

ac ¼
ffiffiffiffiffiffiffi
3J

2F

r
dz1 mm; (51a)

dc ¼
ffiffiffiffiffiffiffiffi
6
J

F

r
dz2 mm; (51b)

given a numerical pre-factor of the order

of unity.

VI. Concluding remarks

We have discussed various scaling laws in

the broad context of acoustofluidics

acoustophoresis, covering the topics of

laminar flow in microfluidic channels,

molecular diffusion in laminar flow

streams, ultrasound acoustics, and

motion of microparticles under influence

of different forces. By the combination of

the scaling laws with the example values

provided in the text, it is possible to

obtain a fair estimate of which values

must be chosen for the design parameters

for a given acoustophoretic device.
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