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Abstract—Neuroimaging studies have over the past decades
established that language is grounded in sensorimotor areas of
the brain. The same neuronal circuits seem involved whether
we literally pick up a ball or in a phrase refer to grasping
an idea. However recent findings have demonstrated that not
only leg, hand and face related but also emotional action verbs
activate premotor systems in the brain. Hypothesizing that the
force and spatial parameters which define action based language
might also be reflected in the latent semantics of words, we
select motor and emotion related verbs and apply latent semantic
analysis, multidimensional scaling, hierarchical clustering and
network graph analysis to quantify their interaction and identify
parameters of force and spatial differentiation which we propose
cognitively relate emotions to sensorimotor action schemas.

I. INTRODUCTION

Whether we move our hands, only imagine doing so, or
recognize a similar gesture when looking at other people,
mirror neurons in the brain are activated in Broca’s area, a
part of the frontal lobe involved in speech articulation [1].
Mounting evidence for a multimodal mapping of actions to
words has provided a foundation for the recently proposed
theory of action-based language [2], where the literal or
metaphorical meaning of words is mentally simulated by
mapping how we physically interact with objects into abstract
concepts that relate verbs constrained by parameters of force
and motion. In turn reflecting how mirror neurons in the brain
translate spatial positions of entities into sequences of motor
programs, that enable us to audiovisually locate, reach out
and grasp an object [3]. And thereby impose a structure on
action concepts based on neural parameters which might e.g.
define the levels of duration or force to differentiate an action
like ‘push’ from ‘shove’ [4]. Lately neuroimaging studies have
demonstrated that the sensorimotor system provides a binding
not only for word categories related to leg, arm or face motion
but also for verbs with an abstract emotional meaning [5].
Showing a large overlap in activation elicited by emotion, face
and hand related words, the findings indicate that the neuronal
circuits of both action concepts and affective expressions are
closely linked to their verbal representations.

It has recently been proposed that neurosemantics might
benefit from simulating the correlated activation of word forms
in language areas of the brain using combinatorial statistics of
word co-occurrences in large scale text corpora [6], whether

based on neural networks [7], independent components anal-
ysis ICA [8] or latent semantic analysis LSA [9]. Cogni-
tive component analysis COCA, defined as an unsupervised
learning of features resembling how we perceive the world,
suggests that sensory structures can be modeled by reducing
dimensionality and treating objects in space and time as
linear mixtures that enable machine learning ranging from
classification of musical genres [10] to phonemes in speech
processing [11]. We have earlier applied COCA to song lyrics
by combining LSA with tensor decomposition [12], in order
to extract parameters defining emotional dimensions.

Going beyond the original COCA approach, we explore in
the current paper the connectivity and clustering of 4 × 10
leg, hand, face and emotion related action verbs by modeling
them as nodes within weighted graphs constituting cognitive
semantic networks. Hypothesizing that the force and spatial
parameters which define action-based language might also
be reflected in the co-variances of words underlying their
latent semantic structure, we apply LSA to the selected verbs
based on two large scale text corpora HAWIK and TASA
available online 12. Subsequently we use multidimensional
scaling MDS [13] to analyze the parameters linking action
verbs, hierarchical clustering and network graph analysis to
quantify their connectivity [14], in order to compare the
cognitive semantic network structures against current findings
in action-based language and neuroimaging. In the following
sections we outline methods, results and discuss the parameters
which we propose cognitively relate the meaning of emotion
and action verbs to sensorimotor schemas.

II. METHODS

Initially selecting 10 leg motion verbs plus a subset of 3×10
hand, face and emotion related action verbs used in a recent
neuroimaging study [5], which applied fMRI functional mag-
netic resonance imaging to measure hemodynamic responses
in a passive reading task, we submit this subset of action verbs
to an LSA analysis [9], in order to define similarities between
each pair of the 4×10 verbs based on the HAWIK and TASA

1Technical University of Denmark: LSA software & HAWIK corpus
matrices http://dl.dropbox.com/u/5442905/LSA.zip DTU Informatics, 2010

2University of Colorado: LSA latent semantic analysis based on TASA
general reading corpus http://lsa.colorado.edu CU Boulder, 1998



text corpora. After removing the most common words using
a standard stop words list, the text corpora are indexed to
generate matrices consisting of rows of words and columns
of documents which in turn makes it possible to model the
verbs as linear combinations of the multiple sentences in which
they occur. Applying singular value decomposition SVD new
matrices of lower dimensionality are generated in which words
that have similar meanings in different contexts are squeezed
into a reduced number of rows and columns, corresponding
to eigenvectors which capture orthogonal directions in the
original matrix. Dimensionality is reduced from millions to
a few hundred by keeping only the eigenvectors which cor-
respond to the highest eigenvalues in the original matrix. In
order to explore to what degree the latent semantics of action
verbs generalize we define cosine similarities based on two
different large scale collections of texts: the HAWIK corpus
generated at The Technical University of Denmark (consisting
of 22829 words found in 67380 excerpts of Harvard Classics
literature, Wikipedia articles and Reuters news - both LSA
software & HAWIK matrices are available for download), and
for reference the online LSA made available by the University
of Colorado based on the TASA corpus (consisting of 92409
words in 37651 texts taken from the general reading material
US students have been exposed to when entering college).

To determine the optimal number of eigenvectors for the
HAWIK matrix we adjusted the LSA setup using a synonymy
test based on questions from the TOEFL ‘test of english
as a foreign language’ i.e. comparing the distances between
synonyms while varying the number of dimensions until an
optimal percentage of correct TOEFL answers are returned [9].
For the HAWIK corpus we found a best fit of 71,2% correctly
identified synonyms for 125 dimensions, above the 64.5%
TOEFL average test results achieved by non-native speaking
college applicants, and in line with previous results obtained
using either LSA or latent dirichlet allocation LDA [15].
Subsequently we project the verbs into this latent semantic
space and define the similarity of words as the cosine to the
angle between their vector representations. And after setting
all negative values to zero generate a 40 × 40 adjacency
matrix defining the pairwise interaction between verbs based
on their cosine similarity. As well as performing a hierarchical
clustering to analyze how the verbs are merged into groups.

Visualizing the interaction of verbs, we take the Pearson
correlation of their mutual cosine similarities and project them
into a two-dimensional space using MDS [13]. Repeatedly
adjusting the pairwise distances between nodes until a stress
function is minimized, action verbs with high similarity
values will spatially be positioned close to each other. Next
to quantify the connectivity we model the 4 × 10 action
verbs as nodes using a force directed graph algorithm [16],
whereby the links are weighted in proportion to their LSA
cosine similarity thresholded at values above 0.20. Here the
strength of node xi is given by its degree and weights of links
i.e. the adjacency and weight matrices of nodes i and j. And
to quantify the connectivity we calculate the betweenness
centrality
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Fig. 1. Adjacency matrix defining the interaction between 4 × 10 emotion,
face, hand and leg related verbs, weighted by their LSA cosine similarity
using the HAWIK corpus consisting of 22829 words found in 67380 excerpts
of Harvard Classics literature, Wikipedia articles and Reuters news.
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Fig. 2. Adjacency matrix defining the interaction between 4 × 10 emotion,
face, hand and leg related verbs, weighted by their LSA cosine similarity using
the TASA corpus consisting of 92409 words found in 37651 texts reflecting
the reading material students have been exposed to when entering college.

xi =
∑

i 6=j,i 6=k,j 6=k

σjk(i)

σjk

where σjk are the total number of shortest paths from j to
k and σjk(i) the fraction of those which go through node
i, assuming that these connections would reflect the most
efficient global structure for linking subgraphs within the
network.
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III. RESULTS

A. Multidimensional scaling

Taking the adjacency matrices defining the LSA cosine
similarities of action verbs (Fig. 1 and 2) and applying
MDS, the resulting low dimensional representations can be
interpreted as reflecting neural parameters similar to those
providing the structure in action-based language. Based on
the HAWIK corpus (Fig. 3), parameters of distance and size
differentiate verbs such as ‘reach’ characterizing the outer
bounds when extending the arm (top), from close-up small
gestures related to eating like ‘swallow’ (bottom). Likewise
on a vertical axis contrasting parameter values of velocity
as well as energy separate ‘yawn’ (upper left) from ‘jump’
(lower left). While horizontally different parameter values of
applied force and temporal duration juxtapose ‘stroll’ (left)
against ‘shake’ (right). Similar linear contrasts can be found
in the layout of action verbs based on the TASA corpus (Fig.4),
where parameters of distance and size divide small close range
gestures like ‘swallow’ (top right) from actions of extended
motion like ‘reach’ (bottom right). Horizontally parameters of
velocity and energy differentiate drawn out expressions such
as ‘yawn’ (left) from powerful sudden actions like ‘jump’
(right). Whereas different levels of applied force and temporal
duration characterize aspects of relaxed leisurely motion like
‘stroll’ (lower left) versus controlled repetitive patterns as in
‘shake’ (center).

B. Network structure

Applying a force-directed algorithm to generate weighted
graphs of action verbs thresholded at a LSA similarity of
0.20, results in a HAWIK graph with 88 cliques of connected
nodes with an average size of 6, among which 3 are fully
interconnected subgraphs i.e. maximum cliques of size 10
shaded in grey, while strong links with a LSA cosine similarity
above 0.50 are visualized as solid lines (Fig.5). Analyzing
the global structure within the HAWIK graph by calculating
pairwise distances between all edges to identify the nodes
which channel the shortest paths, the highest betweenness
centrality values are found for ‘gasp’: 0.066 and ‘stare’: 0.064
(M = 0.017). Here the latter node ‘stare’ functions as a bridge
connecting strongly linked eye motion and emotional expres-
sions such as ‘glance’ and ‘laugh’, with another subgraph
of nodes characterized by forceful aroused gestures such as
‘cry’ and ‘shake’. Overall forming a cluster of strongly linked
emotional expressions which are channeled through the central
node ‘gasp’, providing the most efficient connection to another
part of the graph, consisting of weakly but mutually fully
interlinked maximum cliques of hand and mouth gestures such
as ‘suck’ and ‘pinch’.

The TASA graph thresholded at LSA cosine similarity 0.20
contains 108 cliques of connected nodes with an average
size of 10, where 5 are maximum cliques with 15 mutually
interconnected nodes shaded in grey, while strong links with
an LSA cosine similarity above 0.50 are visualized as solid
lines (Fig.6). Analyzing the global network structure in the



TASA graph, the node ‘stare’ again stands out as well as the
node ‘shake’ having the highest betweenness centrality values
of 0.061 and 0.056 respectively (M = 0.011). Also here ‘stare’
fuses the shortest paths of strongly linked nodes characterized
by relaxed eye motion and emotional expressions such as
‘gaze’ and ‘smile’, which are connected with other clusters
consisting of agitated highly energetic verbs like ‘shout’ and
‘scream’. Whereas the node ‘shake’ connects the five weakly
linked but mutually fully interconnected maximum cliques.

C. Hierarchical clustering

Performing a hierarchical clustering analysis on the derived
LSA distances to determine structural patterns by iteratively
merging the closest pairs into groups largely divides the action
verbs into three main branches; forceful aroused gestures,
close-up tongue and hand actions, extended motion and emo-
tional expressions (Fig.7 and 8).

IV. DISCUSSION

Neuroimaging experiments using functional magnetic res-
onance imaging fMRI to measure what areas in the brain
are activated during a passive reading task, have established
that action verbs somatotopically activate the same parts of
the motor cortices involved when actually moving legs, hands
or the tongue. Hypothesizing that the neural co-activation of
associated word forms in the brain might also be reflected in
the combinatorial semantics of words, we selected a subset
of action verbs used in a recent fMRI neuroimaging study
showing that emotional verbs also activate areas in the brain
overlapping with premotor areas in the brain [5]. Modeling
the 4 × 10 emotion, face, hand and leg related action verbs
as nodes within LSA weighted graphs to quantify their inter-
action, a number of shared characteristics within the HAWIK
and TASA seem apparent. Despite different patterns of action
verb usage in the two large scale text corpora, their betweeness
centrality assuming that the shortest paths provide the most
efficient patterns of connectivity, are correlated for emotion
r = 0.77 and facial expressions r = 0.75, and to a lesser
degree for hand r = 0.37 and leg r = 0.34 related actions.

In both networks emotional expressions such as ‘smile’ and
‘laugh’ are intertwined with clusters of eye motion formed
by nodes like ‘gaze’ and ‘glance’. These parts of the net-
works stand out separate from subgraphs consisting of weakly
linked but fully interconnected maximum cliques of hand and
mouth gestures such as ‘suck’ and ‘pinch’. Thereby suggesting
modular structures not unlike those identified in the above
fMRI neuroimaging study of action verbs, which demonstrated
distinct but overlapping patterns characterized by higher acti-
vation for emotional verbs in the left prefrontal regions of
the brain. In terms of left and and right lateralization in the
brain, the hand action verbs were found to dominate the left
lateral premotor and motor regions, whereas face related verbs
additionally triggered the supramarginal gyrus in the right
hemisphere. Emotional verbs showed a stronger activation in
the orbitofronal and dorsolateral prefrontal regions compared
to the mouth and hand related verbs [5].

Graph theory emphasizes analysis of connectivity patterns
based on the topological layout of nodes, which is likewise
relevant for analysis of brain networks characterized by a high
degree of clustering, where closely positioned regions have a
higher likelihood of being connected, while remote modules
are typically linked through high centrality nodes functioning
as hubs. The inherent modular structure in brain networks
can be estimated by hierarchical clustering, which makes the
heavily interlinked subgraphs stand out as they are often only
sparsely connected with nodes in other modules [14].

Related to the hierarchical clustering and graph analyses of
action verbs, the separation of emotional expressions from the
hand and mouth related verbs, is in line with neuroanatomical
findings of lateralization within the two hemispheres of the
brain. In particular the fully interconnected maximum cliques
of verbs such as ‘bite’ and ‘pinch’ resemble in functionality
the posterior part of Broca’s area, which has been shown to
partake in both speech processing and hand movement [2].
A network structure similar to that of the hand and mouth
action verbs characterized by clusters of closely connected
nodes, would assure a robust resilience against errors if any of
the links should fail. While high centrality nodes functioning
as bridges channeling the shortest paths would provide the
most efficient transfer of information within a larger functional
network structure [14].

Also the division between the fully interconnected nodes
representing close-up mouth and hand gestures from the
subgraph of expanding motion as well as eye and emotional
expressions, might reflect differences in attentional processing
within the two halves of the brain. Vigilant, alert and sustained
attention are primarily right part brain processes related to in-
tensity, whereas selectivity understood as focused and divided
attention are shifted towards the left hemisphere. Meaning,
the left part provides a narrow and close-up attentional focus
complementary to the perception of depth and temporally
sustained attention supported by the right part of the brain.
When it comes to interpreting emotional facial expressions,
clinical studies involving patients with lesions in the left part
indicate that this part of the brain is literally only capable
of reading the lips and features of the mouth. Whereas the
right hemisphere which plays a larger role in interpreting
reciprocal affective aspects, is responsible for integrating the
more complex expressions conveyed by the eyes as well as
storing facial features into memory [17].

These divisions also come out in the hierarchical clustering
analysis which by iteratively merging the most similar pairs
of action verbs generates three modules; aroused gestures
reflecting high force and velocity parameter values, close-up
tongue and hand actions coupling low parameter values of
distance and size, and eye and emotional expressions combin-
ing low energy with high duration parameter values. Here the
central node ‘stare’ channelling the largest number of shortest
paths is clustered within the module juxtaposing positive and
negative feelings. While the other high betweenness centrality
nodes ‘gasp’ and ‘shake’ are both grouped within clusters of
aroused gestures based on the HAWIK and TASA respectively.



The two clusters thus appear to capture a low dimensional
representation of expressions and gestures that reflect the
valence i.e. how pleasant something is perceived as being
along an axis going from ‘smile’ to ‘fear’, whereas arousal
captures the levels of excitability in action verbs like ‘jump’
or ‘leap’ [12]. Although the three clusters which are generated
based on the HAWIK corpus (Fig.7) appear less distinct when
performing the analysis based on the TASA corpus (Fig.8), 11
out of 14 terms in the clusters representing eye and emotional
expressions nevertheless remain shared across the HAWIK and
TASA corpora. Similarly 6 of the 11 tongue and hand actions,
and 6 of the 15 aroused gestures are shared, when comparing
the hierarchical clustering based on the TASA against the
HAWIK corpus.

Finding these topological structures across two large-scale
text corpora, we propose that the neural co-activation of
associated word forms in the brain might also be reflected
in the combinatorial semantics of words. And suggest that
cognitive component analysis COCA, understood as unsuper-
vised learning of features resembling how we perceive the
world, might be extended to simulate how we map actions into
concepts using combinatorial statistics of word co-ocurrences
in large scale text corpora. That is, the latent semantics of
action verbs modeled by reducing dimensionality and treating
objects in space and time as linear mixtures, might allow us
to retrieve the parameters of force and motion which impose
the structure on action-based language in the sensorimotor
networks of the brain [2].

In that sense one could interpret the MDS derived spatial
contrasts of action verbs exemplified by close-up gestures such
as ‘lick’ and extended motion like ‘reach’, as being not only
defined by the action-based language parameter of distance,
but grounded in the mirror neuron system of the brain. Studies
of parts of the macaque brain corresponding to human pre-
motor areas show that reachable objects within peri-personal
space are transformed into sequences of motor programs. In
turn triggering a series of action concepts like if we ‘glance’,
‘reach’ out and ‘grasp’ an apple in order to take a ‘bite’
and ‘swallow’ it. Similarly controlling an opening and closing
gesture like ‘pinch’ relies not only on parameter values of
granularity, but involves canonical neurons in the brain which
transform features of magnitude into temporal sequences for
how to manipulate an object based on continuous feedback.
Likewise the aspects of motion inherent in action verbs should
not only be thought of as abstract parameter values of velocity
but could literally reflect the firing rate of neurons. As in the
brain of a cat, where the rate at which neurons fire control
motor circuits defining the gait, and thereby determine whether
the cat struts, trotts or gallops [3].

Although a limited number of parameters of force and mo-
tion might suffice to constrain action-based language schemas
underlying how we physically interact with objects or mentally
simulate abstract concepts, modeling these action schemas
still remain daunting as they are constantly being modified
based on the changing context. On the other hand one could
argue that capturing these very complex patterns of features

occurring within multiple contexts, might actually now be
feasible not only based on existing large scale text corpora,
but also by taking advantage of the massive amounts of data
continuously being generated within web search and social
media. We therefore propose that combining latent semantics
with action-based language theory may longer term enable us
to model not only how actions relate to objects but also how
our inner states are linked to perception [18], constrained by
parameters of force and direction in a space encompassing the
extremes of emotional contrasts.
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