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ABSTRACT 

In the context of modeling route choice behavior, modelers generate objective choice sets by 

selecting a path generation technique and its parameters according to personal judgments. 

The current paper proposes an experimental setting and a methodological approach to provide 

indications about objective judgments for effective route choice set generation.  

Initially, path generation techniques are implemented within a synthetic network to generate 

possible subjective choice sets considered by travelers. Next, “true model estimates” and 

“postulated predicted routes” are assumed from the simulation of a route choice model. Then, 

objective choice sets are applied for model estimation and results are compared to the “true 

model estimates”. Last, predictions from the simulation of models estimated with objective 

choice sets are compared to the “postulated predicted routes”.  

Meta-analysis allows synthesizing the effect of judgments on the implementation of path 

generation techniques, since a large number of models generate a large amount of results that 

are otherwise difficult to summarize and to process. Meta-analysis estimates suggest that 

modelers should apply stochastic approaches with the possibility of correcting for unequal 

sampling probability while maintaining a fairly reasonable level of variance. Estimation of 

models would greatly improve and the issue of the coverage of observed behavior would not 

be raised because the correction would cover for adding alternatives not generated. 
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1. INTRODUCTION  

In the context of modeling route choice behavior in transport networks, travelers are 

presumed to choose the best alternative from a set of routes connecting origin and destination 

of their trip. Although most equilibrium assignment techniques implicitly assume that all 

existing paths between origin and destination are available to travelers, conceptual and 

empirical reasons suggest that explicit path generation prior to discrete choice model 

estimation or path-based traffic assignment is preferable. 

Conceptually, choice set formation and choice from alternatives are distinct mental 

processes calling for separate modeling: choice set formation is trial-and-error determined 

(1), preference-driven (2) and constraint-related (3), while choice from alternatives is usually 

represented as a compensatory decision (see 4, 5). Empirically, various case-studies show 

advantages of explicit choice set formation: higher flow prediction accuracy is illustrated for 

path-based solutions to the Stochastic User Equilibrium (SUE) problem (6), unrealistic and 

inefficient paths are found within implicit choice sets for link-based assignment (7), and 

theoretical and computational advantages are shown when choice set generation is performed 

prior to traffic assignment (8). 

Several solutions have been proposed to the explicit path generation problem. 

Deterministic solutions include variations of shortest path algorithms (e.g., 9, 10, 11), 

minimization of generalized cost functions (12), application of heuristic rules combined with 

shortest path searches (e.g., 13, 14), and implementation of a branch-and-bound algorithm 

(15). Stochastic solutions include single stochastic simulation (e.g., 16, 17), doubly stochastic 

simulation (18, 19) and a random walk algorithm (20). Advantages and disadvantages related 

to the implementation of existing path generation techniques are extensively discussed by 

Bovy (4) and Prato (5).  

Even though several solutions have been proposed to the explicit path generation 

problem, guidelines for the implementation of path generation techniques have never been 

provided. As modelers cannot observe the subjective choice sets that contain the routes 

considered by travelers, they generate objective choice sets by selecting a path generation 

technique and its parameters according to personal judgments.  

Although the impact of choice sets on choice probabilities and model performances 

has received increasing attention recently, the effect of path generation techniques on model 

estimates and flow predictions has not been documented. Model performances from the 

estimation of route choice models with two different choice sets generated with (i) branch-

and-bound algorithm and (ii) merged deterministic techniques have been compared in terms 

of likelihood values (21, 22). Unfortunately, the comparison fails to evaluate which technique 

better represents the observed behavior because of the absence of information with respect to 

actual values of model estimates. Choice probabilities from several route choice models for a 

synthetic network with three choice sets containing respectively 6, 10 and 12 alternatives 

have been compared to choice probabilities from a postulated probit model (23). 

Unfortunately, the analysis fails to assess the effects of the implementation of path generation 

techniques because of the peculiar context of a universal realm of only 12 alternatives. 

Convergence properties have been examined for SUE problem solutions with different 

objective function values and choice set sizes (24). Unfortunately, the comparison fails to 

investigate path generation techniques other than the k-shortest path algorithm. In a nutshell, 

existing studies about choice set effects on route choice models focus on the robustness of 

models and methods, rather than on the effects of path generation techniques and on the 

provision of general indications about judgments for generating choice sets.  
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The current study proposes an alternative approach. Initially, subjective choice sets 

possibly considered by travelers are generated by implementing path generation techniques 

within a synthetic network. Next, “true model estimates” and “postulated predicted routes” 

are assumed from the simulation of a route choice model. Then, objective choice sets are 

applied for model estimation and results are compared to the “true model estimates”. Last, 

predictions from the simulation of models estimated with objective choice sets are compared 

to the “postulated predicted routes”. The advantage of this approach is threefold: (i) assuming 

subjective choice sets according to behavioral assumptions behind various path generation 

techniques allows covering a large variety of possible behavior in the absence of any 

indication about actual subjective choice sets considered by travelers; (ii) estimating the same 

model specification within the same synthetic network allows isolating choice set effects 

from model and network effects; (iii) analyzing the possible combinations of subjective and 

objective choice sets allows comparing the relative ability of path generation techniques in 

accurately generating “postulated chosen routes” and reproducing “true model estimates”.  

The appraisal of the coverage of the postulated behavior with the objective choice sets 

and the assessment of the effects of path generation techniques on estimation and prediction 

accuracy are performed with a meta-analytic approach. Even though meta-analysis is 

generally used to review findings across different empirical studies, this paper proposes the 

application of meta-analysis to synthesize the effect of judgments when a large number of 

models generate a large amount of results that are otherwise difficult to summarize and to 

process. Judgments concern the path generation technique to be implemented and its 

parameters to be defined, and the meta-analysis examines a large number of combinations of 

subjective and objective choice sets to provide modelers with general requirements for 

obtaining better coverage of postulated behavior and higher accuracy in model estimates and 

flow predictions.   

The remainder of the paper is structured as follows. Section 2 presents the rationale 

behind the consideration of path generation techniques for constructing subjective and 

objective choice sets. Section 3 describes the synthetic data and the methods for evaluating 

model estimates and flow predictions. Section 4 synthesizes estimation and prediction results. 

Section 5 summarizes the findings from the analysis. 

2. GENERATING SUBJECTIVE AND OBJECTIVE CHOICE SETS 

Judgments about path generation techniques and their parameters are examined by 

considering a variety of techniques that are included in the analysis according to the 

following four considerations. 

The first consideration concerns the distinction between deterministic and stochastic 

techniques. Even though intuitively superior, considering only stochastic approaches would 

bias the current analysis by providing answers before questions about path generation 

effectiveness are even formulated.  

The second consideration involves the selection of deterministic approaches. Even 

though their evolution suggests the superiority of more recent developments with respect to 

shortest path algorithms, considering only one deterministic technique would again bias the 

current analysis. The first deterministic technique considered is the most straightforward 

approach to the choice set generation problem consisting in the computation of K-shortest 

paths, as this technique is relevant because still largely applied in practice. The second 

deterministic technique considered is the iteration of the shortest path search after heuristic 

rules penalize links on the last shortest path computed in the iterative process, with link 

penalty (14) preferred to link elimination (13) to avoid network disconnection problems. The 
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third deterministic technique considered is the enumeration of the paths connecting origin and 

destination of a trip under behavioral and logical constraints (15).  

The third consideration concerns the selection of stochastic approaches. The current 

analysis examines the effects of three techniques most recently developed and used in route 

choice modeling. The first stochastic technique considered is the most straightforward 

stochastic simulation approach to the path generation problem consisting in the iteration of 

the shortest path search after randomization of link impedances (e.g., 17, 19). The second 

stochastic technique considered is the natural evolution of the previous approach considering 

a generation function with an error term for the traffic network variations and an error term 

for traveler taste heterogeneity (e.g., 18, 19). The third stochastic technique considered is a 

random walk algorithm that is biased towards the search for the shortest path (20).  

The fourth consideration playing a role in the selection of path generation techniques 

involves the parameters for their implementation being relevant for model estimation and 

model implementation. For the k-shortest path, five values of K are selected to cover from a 

fairly small to a very large window of admissible path costs. For the link penalty, five 

combinations with increasing penalizing factor are chosen to cover from a small to a large 

variation of the alternatives in the generated choice sets. For the branch-and-bound, five 

combinations of thresholds of the branching rule (15) are defined in order to assess the effect 

of increasing choice set size and route heterogeneity in the generation process. For the 

stochastic simulation, a gamma distribution (see 18) is preferred over normal distribution (see 

16, 25) and truncated normal distribution (see 15, 26). Five combinations of shape and scale 

parameters are selected in order to have a mean equal to the link impedance and a range of 

increasing variances. For the doubly stochastic simulation, a gamma distribution is chosen for 

the error component representing impedance variation at the link level, and a log-normal 

distribution is selected for the error component representing heterogeneity in travelers’ utility 

functions. Five variations are considered in order to cover a range of growing variances in 

both the perception of the traffic network and the preferences of the travelers. For the random 

walk algorithm, five values of the parameters of the Kumaraswami distribution of the weights 

(20) are accounted for in order to encompass a range of variance with respect to the shortest 

path in the generation process.  

Summarizing, five variations are considered for each of six path generation 

techniques in order for the analysis to account for judgments in terms of selection of the type 

of technique, application of the specific technique, definition of the level of variance of the 

parameters, and generation of small or large choice sets. 

3. EXPERIMENTAL SETTING 

3.1. Synthetic data 

The experimental setting applies six path generation techniques to the synthetic network 

represented in figure 1 that consists of 38 nodes and 64 links, with link length proportional to 

the length of the figure and some links having speed bumps. The network is originally a part 

of a real network of the city of Borlänge (Sweden) and has been presented by Frejinger et al. 

(20). The universal realm consists of 170 alternative routes between origin O and destination 

D, among which 29 have equal minimum length. 

Subjective choice sets are unknown and hence their definition is hypothesized 

according to the behavioral assumptions behind the six path generation techniques applied 

(see 5). Table 1 reports parameters of the five variations for each path generation technique. 

Parameters are defined from very small to very large variance, where very small (large) 

variance suggests that the resulting choice set is fairly small (large) since increasing the 
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number of iterations or the variance of distribution parameters does not produce (produces) 

additional routes. 
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FIGURE 1  Network for experimental design (source: 20). 

Datasets of 4,000 observations for estimation purposes and 1,000 observations for 

prediction purposes are generated from the five variations of the six path generation 

techniques. This procedure results into 30 datasets of 4,000 subjective choice sets for model 

estimation and 30 datasets of 1,000 subjective choice sets for model prediction.  

For each dataset of subjective choice sets, a PSC-Logit model (28) is postulated. The 

advantage in using the PSC-Logit is twofold: (i) the model accounts for similarities across 

alternatives while maintaining a simple Logit structure; (ii) MNL modifications are robust 

with respect to variations in the number of alternatives and in the composition of the choice 

sets (e.g., 22, 23).  

The following utility function is specified for each alternative j and observation n: 

jn length j bumps j turns j PSC j jnU Length SpeedBumps Turns PSC          (1) 

where Lengthj is the length,  SpeedBumpsj is the number of speed bumps, Turnsj is the 

number of turns and PSCj is the Path Size Correction of alternative j. The “true model 

estimates” are assumed equal to -1 for length, -0.10 for bumps, - 0.30 for turns, 1 for PSC, and 

error terms jn are independently and identically distributed extreme value with scale 1 and 

location 0. The Path Size Correction of alternative j is defined as (28): 

ln
j

a
j al

a l Cj

L
PSC

L


 

 
    

 
   (2) 

where Lj is the length of route j, La is the length of link a, Γj is the set of links belonging to 

route j, and δal is the link-path incidence dummy (equal to one if links a belongs to route l 

and zero otherwise).    

For each dataset of subjective choice sets, 4,000 “postulated chosen routes” for 

estimation purposes and 1,000 “postulated predicted routes” for prediction purposes are 
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simulated by selecting the alternative with the highest utility within the choice set of each 

observation n. 

TABLE 1  Parameters of Path Generation Techniques 

Path generation technique parameter 
very small 

variance 

small 

variance 

average 

variance 

large 

variance 

very large 

variance 

k-shortest path 

define length limit in order to define k-shortest paths 

length limit  35 36 37 40 51 

k 33 51 88 104 170 

link penalty 

iterate shortest path searches and penalize shortest path links 

penalty factor 2% 3% 5% 10% 20% 

iterations 50 50 50 100 100 

branch-and-bound 

connect origin and destination of the trips with five behavioral and logical thresholds 

directional 100% 100% 110% 110% 110% 

temporal 17 25 33 44 62 

detour 100% 100% 110% 110% 120% 

similarity 85% 80% 80% 75% 70% 

movement 4 4 4 5 5 

stochastic simulation 

iterate shortest path searches after extracting link length from gamma distribution 

Gamma mean length length length length length 

Gamma st.dev 0.25 length 0.50 length length 2 length 3 length 

doubly stochastic 

simulation 

iterate shortest path searches after extracting link length from gamma distribution 

and travelers’ preferences from log-normal distribution 

Gamma mean length length length length length 

Gamma st.dev 0.50 length 0.50 length length length 2 length 

LogN mean -1 -1 -1 -1 -1 

LogN st.dev 0.25 0.25 0.5 1 1 

random walk 

calculate route probabilities from link probabilities based on link weights that are 

Kumaraswami distributed with two parameters b1 and b2 

b1 10 7 5 3 1 

b2 1 1 1 1 1 

 

3.2. Evaluation of model estimates and flow predictions 

Objective choice sets are generated for model estimation and model prediction purposes from 

the 30 applied variations of path generation techniques.  

For each dataset of objective choice sets, 30 models are estimated while considering 

as chosen alternatives the “postulated chosen routes” from the 30 datasets of subjective 

choice sets. Observations where the objective choice sets do not contain the “postulated 

chosen routes” are not considered for model estimation, and the coverage of the “postulated 

chosen routes” is evaluated for each of the 900 objective-subjective combinations: 

 , ,

100
sub n obj n

n
obj sub

I R C

Cov
N





 


 (3) 

where Covobj-sub is the coverage of the dataset obj of objective choice sets with respect to the 

“postulated chosen routes” from the dataset sub of subjective choice sets, I(·) is an indicator 

function equal to 1 when the “postulated chosen route” Rsub,n belongs to the objective choice 

set Cobj,n of observation n, and N is the total number of observations. 

Models are estimated by defining the deterministic part of the utility function: 
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 jn length j bumps j turns j PSC jV Length SpeedBumps Turns PSC         (4) 

where µ is the scale parameter. It should be noted that length is fixed to -1 and µ, bumps, turns 

and PSC are estimated in order to have the same scale for all models and to compute the t-test 

with respect to the corresponding “true model estimates”. When the random walk algorithm 

is used to generate datasets of objective choice sets, the deterministic part of the utility 

function is: 

   lnjn length j bumps j turns j PSC j jn jV Length SpeedBumps Turns PSC k q          (5) 

where kjn is the number of time route j is sampled for observation n, qj is the probability of 

sampling route j, and the logarithmic term corrects for the unequal sampling probabilities of 

the routes. 

Accuracy of the model estimates with respect to the “true model estimates” of the 

postulated model is calculated for each of the 3,600 estimated parameters: 

,

,

,

100
par obj sub par

par obj sub

par obj sub

est expest
Acc Prob t

stderrest







 
    

 

 (6) 

where Accpar,obj-sub is the accuracy of the estimate of the parameter for the model with dataset 

obj of objective choice sets and “postulated chosen routes” from dataset sub of subjective 

choice sets, estpar,obj-sub is the estimate, stderrestpar,obj-sub is its standard error, expestpar is the 

expected “true model estimate”, and t is the critical value of the Student distribution with n 

degrees of freedom.  

For each dataset of subjective choice sets, Monte-Carlo simulation is applied by 

applying the estimates of the 30 models using the same dataset. The obtained “simulated 

predicted routes” are compared to the “postulated predicted routes” after translating both into 

network flows by counting the number of travelers on each link. Prediction accuracy is 

evaluated with the calculation of the following error measures for each combination of 

estimated model and dataset of subjective choice sets: 

 
2
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   (8) 

where RMSEsim-pos is the root mean square error and MAPEsim-pos is the mean absolute 

percentage error between simulated and predicted routes, A is the number of links in the 

network, Nsim,a is the flow on link a as calculated by translating the “simulated predicted 

routes”, and Npos,a is the flow on link a as calculated by translating the “postulated predicted 

routes”. 

Given the 900 coverage values, the 3,600 accuracy values from model estimation, and 

the 900 mean absolute percentage errors, meta-analysis considers coverage, estimation 

accuracy and prediction error as dependent variables and characteristics of the choice sets as 

independent variables. Characteristics of the objective choice sets for model estimation 

include the technique applied and the degree of variance, while characteristic of the 

subjective choice sets for obtaining “postulated chosen routes” comprise  choice set size (i.e., 

small for less than 30 alternatives, medium for 30 to 50 alternatives, large for more than 50 
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alternatives), degree of heterogeneity across routes (i.e., homogeneous for average path size 

less than 0.10), and consistency with the objective choice sets (i.e., both generated with the 

same path generation technique and same parameters). 

4. RESULTS 

4.1. Subjective and objective choice sets 

Table 2 summarizes the characteristics of the choice sets from the implementation of the 30 

variations of path generation techniques. Expected trends are that (i) the increase in the 

variance of the parameters for each path generation technique produces larger choice sets, (ii) 

deterministic techniques generate the same alternative routes for the same origin-destination 

pair, an unreasonable characteristic when considering that most likely different travelers have 

different subjective choice sets, and (iii) stochastic techniques produce different alternative 

routes for the same origin-destination pair, a desirable feature that seems behaviorally more 

plausible.  

TABLE 2  Summary of Characteristics of Generated Choice Sets 

Path generation technique measure 
very small 

variance 

small 

variance 

average 

variance 

large 

variance 

very large 

variance 

k-shortest path min 33 51 88 104 170 

 max 33 51 88 104 170 

 mean 33 51 88 104 170 

 st.dev. - - - - - 

link penalty min 22 29 43 53 49 

 max 22 29 43 53 49 

 mean 22 29 43 53 49 

 st.dev. - - - - - 

branch-and-bound min 17 25 33 44 62 

 max 17 25 33 44 62 

 mean 17 25 33 44 62 

 st.dev. - - - - - 

stochastic simulation min 24 28 33 44 49 

 max 38 44 56 72 76 

 mean 30.9 35.2 43.8 57.5 62.3 

 st.dev. 4.3 5.8 8.3 11.0 11.4 

doubly stochastic simulation min 24 28 34 37 47 

 max 40 46 59 64 73 

 mean 31.7 35.7 45.6 49.9 58.6 

 st.dev. 4.6 6.1 8.7 9.6 11.1 

random walk min 25 27 33 36 44 

 max 42 50 55 66 71 

 mean 33.2 38.5 44.0 51.8 58.7 

 st.dev. 6.0 7.8 9.1 10.8 11.6 
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Table 3 summarizes the coverage of the datasets of objective choice sets with respect 

to the “postulated chosen routes”. As 900 comparisons are computed, the table summarizes 

the relationship of the 30 variations of the path generation techniques with respect to 

“postulated chosen routes” by combining results for the five variations of each technique. 

Expectedly, regardless of the postulated behavior, (i) enlarging the number of alternatives 

considered in the k-shortest path and relaxing the thresholds in the branch-and-bound 

algorithm increases the coverage, (ii) the branch-and-bound outperforms competing 

deterministic techniques, and (iii) doubly stochastic simulation outperforms competing 

stochastic techniques. Unexpectedly, increasing the variance and enlarging objective choice 

sets does not boost the coverage. Possibly, the snapshot loses part of the information when 

considering jointly all five variations of each technique, and larger variance of the parameters 

of path generation techniques generates irrelevant routes that are not created under different 

parameters.  

TABLE 3  Coverage of Objective Choice Sets with Respect to “Postulated Chosen 

Routes” 

Path generation technique variation k-path 
link  

penalty 

branch  

and bound 

stochastic 

simulation 

doubly 

stochastic 

simulation 

random  

walk 

k-shortest path very small var 54.7 41.0 50.0 42.2 42.2 41.3 

 small var 82.0 71.7 76.9 70.8 70.8 69.7 

 average var 94.7 87.3 87.2 87.3 87.3 86.8 

 large var 97.6 91.3 92.2 93.0 95.6 91.2 

 very large var  100.0 100.0 100.0 100.0 100.0 100.0 

link penalty very small var 73.5 69.2 71.1 66.8 66.7 65.2 

 small var 61.1 75.8 66.7 64.7 64.4 62.6 

 average var 79.4 84.8 83.6 75.0 74.5 73.8 

 large var 72.4 85.1 78.0 75.3 75.4 73.6 

 very large var  61.4 77.1 70.1 62.8 62.8 61.5 

branch-and-bound very small var 59.6 61.7 73.7 56.0 55.4 54.3 

 small var 76.4 77.6 91.0 73.6 73.5 72.1 

 average var 81.2 82.3 93.2 77.4 77.4 75.8 

 large var 87.2 92.0 97.3 87.3 86.9 85.4 

 very large var  99.5 99.9 100.0 99.7 99.7 99.1 

stochastic simulation very small var 95.5 96.4 96.5 96.4 95.8 94.9 

 small var 94.9 95.8 96.1 96.3 95.4 94.4 

 average var 93.1 93.8 94.4 94.8 93.5 92.5 

 large var 85.6 87.6 87.6 88.9 86.5 85.5 

 very large var  80.0 82.7 82.5 85.0 81.2 80.3 

doubly stochastic simulation very small var 95.7 96.4 96.7 95.9 96.8 95.0 

 small var 94.8 96.0 96.3 95.4 96.5 94.4 

 average var 92.3 93.3 93.7 92.8 94.1 91.9 

 large var 90.5 92.0 92.1 91.1 92.8 90.4 

 very large var  84.4 87.1 86.7 85.7 88.2 84.9 

random walk very small var 84.8 87.2 87.2 86.5 86.0 88.5 

 small var 83.0 85.5 85.6 85.8 84.4 87.6 

 average var 79.5 82.7 83.1 82.0 81.7 85.3 

 large var 73.9 77.5 77.3 76.8 76.0 80.7 

 very large var  59.2 65.7 65.4 64.5 63.5 71.0 
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The difficulty in interpreting coverage results from table 3 motivates the meta-

analysis for the 900 comparisons. Table 4 presents estimates of the regression model that 

suggest how coverage of postulated behavior increases with the implementation of stochastic 

techniques, average to large variance of their parameters, and obviously application of the 

same technique for generating objective and subjective choice sets. Among deterministic 

techniques, branch-and-bound and link penalty contribute increasing coverage with respect to 

the k-shortest paths. Among stochastic techniques, the doubly stochastic simulation 

contributes augmenting coverage with respect to the stochastic simulation and even more the 

random walk. If the finding for deterministic techniques is expected, as the increase in 

coverage agrees with the growth in realism of the behavioral assumptions, the finding for 

stochastic techniques is less expected, as the more recently developed random walk does not 

outperform stochastic simulation. Coverage of “postulated chosen routes” benefits also from 

the analysis of large and homogeneous subjective choice sets, suggesting that path generation 

techniques perform better when the subjective choice sets are numerous and the alternatives 

are similar. 

Meta-analysis estimates suggest that results from the snapshot of the coverage in table 

3 might indeed be unexpected not only because of actual characteristics of the choice sets, but 

also because of results aggregated in the attempt to summarize findings from a large amount 

of models. The proposed approach allows not only considering every single combination of 

datasets of objective and subjective choice sets, but also suggesting general judgments in the 

implementation of path generation techniques regardless of the postulated behavior.  

TABLE 4  Meta-Analysis Estimates of the Coverage 

Parameter  est. t-stat 

characteristic related to the technique used to generate choice sets  

deterministic technique 
a
 - - 

stochastic technique 26.718 23.76 

k-shortest path 
a
 - - 

link penalty 22.826 20.18 

branch-and-bound 27.185 24.04 

stochastic simulation 4.418 5.61 

doubly stochastic simulation  8.060 8.87 

random walk 
a
 - - 

small variance -10.896 -20.04 

average variance 
a
 - - 

large variance 4.064 7.63 

characteristic related to the technique used to postulate choices  

low heterogeneity 
a
 - - 

medium/high heterogeneity -26.576 -30.99 

small choice set size -8.345 -10.64 

medium choice set size 
a
 - - 

large choice set size 7.655 15.77 

consistent with generation 16.478 17.20 

constant 39.122 62.36 

N  3600 

R
2
  0.751 

Notes: a reference category. 
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4.2. Accuracy of parameter estimates 

Table 5 illustrates model estimates for the “postulated chosen routes” from the dataset of 

subjective choice sets corresponding to complete path enumeration (i.e., k-shortest path with 

170 routes). This snapshot allows initial considerations about model estimates. Firstly, all the 

variations of the random walk algorithm allow obtaining unbiased model estimates, most 

likely because of the correction for unequal sampling probabilities of routes. None of the 

competing path generation techniques allows obtaining unbiased model estimates 

consistently, and only large to very large variance in their parameters allows reproducing the 

“true model estimates”, suggesting that a larger generated choice set helps increasing 

estimation accuracy. Secondly, link penalty, branch-and-bound and both stochastic 

approaches fail almost in every circumstance to reproduce the “true model estimates”, 

suggesting that obtaining higher coverage is not synonym of having higher accuracy in model 

estimation. Thirdly, k-shortest path shows some promise, but most likely because the 

“postulated chosen routes” are generated with a k-shortest path algorithm rather than for 

actual higher accuracy. Last, the parameter βbumps seems to be recovered almost consistently, 

while the scale parameter µ appears to be recovered only sporadically. 

TABLE 5  Snapshot of Model Estimates for Objective Choice Sets Generated from 

Different Path Generation Techniques  

k-shortest path very small var small var average var large var very large var 

parameter  value est. t-stat est. t-stat est. t-stat est. t-stat est. t-stat 

µ 1.00 0.556 13.1 0.627 11.7 0.780 7.4 0.969 1.2 0.972 1.1 

bumps -0.10 -0.132 -1.2 -0.127 -1.2 -0.101 0.0 -0.106 -0.3 -0.107 -0.3 

turns -0.30 -0.137 5.6 -0.092 13.0 -0.288 0.9 -0.283 1.2 -0.283 1.2 

PSC 1.00 1.250 4.1 1.100 2.5 0.967 -0.8 0.943 -1.4 0.942 -1.4 

LL(0)  -9430.7 -12894.6 -15648.7 -18420.7 -20543.2 

LL(β)  -7284.0 -10369.2 -12311.0 -13471.8 -13472.3 

rho-bar
2
   0.227 0.196 0.213 0.268 0.344 

 
link penalty very small var small var average var large var very large var 

parameter  value est. t-stat est. t-stat est. t-stat est. t-stat est. t-stat 

µ 1.00 0.626 13.9 0.714 10.9 0.953 1.7 0.782 8.6 0.979 0.8 

bumps -0.10 -0.182 -3.9 -0.129 -1.3 -0.501 -14.9 -0.181 -3.5 -0.415 -13.0 

turns -0.30 -0.134 10.8 -0.261 2.6 -0.092 15.3 -0.249 3.9 -0.062 17.1 

PSC 1.00 0.757 -6.1 0.475 -13.0 0.389 -14.5 0.509 -11.9 0.252 -18.8 

LL(0)  -13875.3 -14134.3 -15063.8 -15897.2 -15594.6 

LL(β)  -12688.1 -12244.1 -12021.2 -12142.4 -11591.2 

rho-bar
2
   0.085 0.133 0.202 0.236 0.256 

 
branch-and-bound very small var small var average var large var very large var 

parameter  value est. t-stat est. t-stat est. t-stat est. t-stat est. t-stat 

µ 1.00 1.300 -9.6 0.872 4.9 0.853 5.7 0.834 6.3 0.796 7.7 

bumps -0.10 -0.620 -14.1 -0.469 -18.1 -0.400 -14.2 -0.261 -7.7 -0.105 -0.2 

turns -0.30 -0.530 -10.7 -0.458 -7.6 -0.460 -7.4 -0.060 15.9 -0.281 1.4 

PSC 1.00 -1.050 -43.3 0.256 -17.2 0.399 -14.1 0.465 -12.9 0.924 -1.9 

LL(0)  -11441.2 -12923.5 -13367.1 -15151.7 -16509.2 

LL(β)  -8997.5 -10413.5 -10575.6 -11303.3 -11863.4 

rho-bar
2
   0.213 0.194 0.209 0.254 0.281 

       

stochastic sim very small var small var average var large var very large var 

parameter  value est. t-stat est. t-stat est. t-stat est. t-stat est. t-stat 

µ 1.00 0.392 22.5 0.578 15.6 0.729 10.1 0.841 5.9 0.873 4.7 

bumps -0.10 -0.097 0.1 -0.099 0.0 -0.103 -0.1 -0.110 -0.5 -0.118 -0.8 

turns -0.30 -0.264 2.6 -0.263 2.6 -0.261 2.8 -0.257 3.1 -0.259 2.9 
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PSC 1.00 0.851 -3.7 0.846 -3.8 0.826 -4.3 0.751 -6.2 0.715 -7.1 

LL(0)  -13718.3 -14239.5 -15112.8 -16207.6 -16533.5 

LL(β)  -11919.4 -11527.9 -11610.2 -12146.6 -11610.5 

rho-bar
2
   0.131 0.190 0.231 0.250 0.298 

 
stochastic sim

2
 very small var small var average var large var very large var 

parameter  value est. t-stat est. t-stat est. t-stat est. t-stat est. t-stat 

µ 1.00 0.439 20.8 0.590 15.2 0.750 9.3 0.789 7.8 0.849 5.6 

bumps -0.10 -0.098 0.1 -0.100 0.0 -0.106 -0.3 -0.106 -0.3 -0.111 -0.5 

turns -0.30 -0.264 2.6 -0.264 2.6 -0.259 2.9 -0.259 2.9 -0.256 3.1 

PSC 1.00 0.851 -3.7 0.846 -3.8 0.818 -4.5 0.799 -5.0 0.744 -6.4 

LL(0)  -13818.3 -14299.9 -15278.2 -15637.4 -16284.3 

LL(β)  -11765.2 -11444.2 -11447.5 -11064.4 -11043.7 

rho-bar
2
   0.148 0.199 0.250 0.292 0.322 

 
random walk very small var small var average var large var very large var 

parameter  value est. t-stat est. t-stat est. t-stat est. t-stat est. t-stat 

µ 1.00 0.950 1.9 0.976 0.9 0.977 0.9 0.974 1.0 0.973 1.0 

bumps -0.10 -0.110 -0.5 -0.114 -0.6 -0.124 -1.1 -0.104 -0.2 -0.109 -0.4 

turns -0.30 -0.285 1.1 -0.284 1.1 -0.288 0.9 -0.289 0.8 -0.287 0.9 

PSC 1.00 0.938 -1.5 0.942 -1.4 0.940 -1.5 0.939 -1.5 0.943 -1.4 

lnkq 1.00 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 

LL(0)  -14011.3 -14606.8 -15141.3 -15799.5 -16307.9 

LL(β)  -11810.5 -11240.6 -11777.5 -11422.2 -10813.9 

rho-bar
2
   0.157 0.230 0.222 0.277 0.337 

Notes: length = -1, 4000 observations, t-statistic with respect to the “true value”. 

 

TABLE 6  Meta-Analysis Estimates of the Accuracy of Model Parameters 

Parameter est. t-stat 

characteristic related to the technique used to generate choice sets 

deterministic technique 
a
 - - 

stochastic technique 16.197 30.00 

k-shortest path 
a
 - - 

link penalty 3.544 6.53 

branch-and-bound 3.630 6.68 

stochastic simulation -6.971 -18.45 

doubly stochastic simulation  -8.580 -19.67 

random walk 
a
 - - 

small variance -5.347 -20.48 

average variance 
a
 - - 

large variance 0.344 1.35 

characteristic related to the technique used to postulate choices 

low heterogeneity 
a
 - - 

medium/high heterogeneity -7.810 -18.97 

small choice set size -5.914 -15.71 

medium choice set size 
a
 - - 

large choice set size 6.484 27.82 

consistent with generation 33.748 73.38 

constant 10.712 35.56 

N  3600 

R
2
  0.698 

Notes: a reference category. 
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Again, the difficulty in interpreting estimation results from table 5 motivates the 

meta-analysis of the accuracy of parameter estimates for the 900 models. Table 6 presents the 

regression model over all the 3,600 parameters, while table 7 focuses on each single 

parameter. Unbiased estimates are obtained when the same path generation technique is 

applied for objective and subjective choice sets. An increase in accuracy is related to the 

implementation of stochastic approaches, preferably random walk rather than stochastic 

simulation. Large variance does not increase estimation accuracy with respect to average 

variance, and small variance decreases it significantly. Estimation accuracy grows when 

models are estimated with respect to postulated behavior from large choice sets with high 

degree of similarity across alternatives. 

Similar results are found when regression models consider single parameters. Notable 

differences are the comparable effectiveness in estimating scale parameters with choice sets 

generated with different stochastic techniques, the inferior relevance of stochastic techniques 

in estimating scale parameters, and the superior relevance of random walk in estimating path 

size estimates. The general interpretation of these differences does not seem intuitive, since 

different techniques are not expected having different effects on the various estimates. 

TABLE 7  Meta-Analysis Estimates of the Accuracy of Single Parameters 

 µ bumps turns PSC 

Parameter est. t-stat est. t-stat est. t-stat est. t-stat 

Characteristic related to the technique used to generate the choice sets 

deterministic technique 
a
 - - - - - - - - 

stochastic technique 3.976 4.28 19.375 16.85 22.559 19.90 19.861 20.78 

k-shortest path 
a
 - - - - - - - - 

link penalty 4.218 4.52 -0.627 -0.54 7.176 6.29 4.310 4.48 

branch-and-bound 6.491 6.95 -3.286 -2.84 4.115 3.61 8.102 8.43 

stochastic simulation -1.739 -2.68 -6.262 -7.78 -5.055 -6.37 -15.105 -22.58 

doubly stochastic simulation  -1.102 -1.47 -8.667 -9.33 -7.529 -8.22 -17.395 -22.52 

random walk 
a
 - - - - - - - - 

small variance -9.866 -21.98 -3.986 -7.17 -5.193 -9.47 -2.659 -5.75 

average variance 
a
 - - - - - - - - 

large variance -0.524 -1.19 -0.072 -0.13 0.338 0.63 0.518 1.14 

Characteristic related to the technique used to postulate choices 

low heterogeneity 
a
 - - - - - - - - 

high heterogeneity 1.568 2.22 -9.401 -10.72 -13.334 -15.43 -10.537 -14.45 

small choice set size -2.069 -3.20 -8.610 -10.74 -8.876 -11.23 -4.493 -6.74 

medium choice set size 
a
 - - - - - - - - 

large choice set size 4.235 10.57 9.240 18.61 8.018 16.39 4.823 11.69 

consistent with generation 31.043 39.26 28.993 29.59 39.628 41.04 33.498 41.14 

constant 8.914 17.21 15.598 24.31 11.162 17.65 6.720 12.60 

N 900  900  900  900  

R
2
 0.626  0.790  0.870  0.648  

Notes: a reference category. 

 

4.3. Accuracy of flow predictions 

Table 8 summarizes the RMSE and MAPE when estimated models are applied to the dataset 

used for obtaining the “postulated chosen routes” and “simulated predicted routes” are 

compared to the “postulated predicted routes” in terms of link flows. Similarly to the 
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coverage, as 900 comparisons are computed, the table summarizes the relationship of the 30 

variations of path generation techniques with respect to “postulated chosen routes” by 

combining results for the five variations of each technique. Expectedly, stochastic techniques 

significantly outperform deterministic ones, most likely because of the more realistic 

behavioral assumptions that for example allow generating different choice sets for different 

travelers. However, link penalty unexpectedly outperforms both k-shortest path and branch-

and-bound, even though its behavioral assumption is simpler and estimation results do not 

suggest better modeling performances. None of the three stochastic techniques emerges as 

preferable for prediction purposes, an interesting result when considering that the random 

walk produces better estimates. Most likely, the fact that the correction term is not used for 

prediction purposes reduces the advantage for the random walk. 

TABLE 8  Prediction Errors of Generated Choice Sets with Respect to Postulated 

Choice Sets 

Path generation technique variation k-path 
link  

penalty 

branch  

and bound 

stochastic 

simulation 

doubly 

stochastic 

simulation 

random  

walk 

k-shortest path RMSE 0.5765 0.9234 1.0198 0.4390 0.4136 0.4663 

 MAPE 0.0950 0.1105 0.1114 0.1092 0.1052 0.1172 

link penalty RMSE 0.2508 0.1420 0.2213 0.1597 0.1658 0.1882 

 MAPE 0.0670 0.0412 0.0569 0.0514 0.0547 0.0622 

branch-and-bound RMSE 0.4654 0.3755 0.2920 0.4158 0.4275 0.4534 

 MAPE 0.1195 0.0982 0.0739 0.1201 0.1234 0.1335 

stochastic simulation RMSE 0.2092 0.1476 0.2177 0.1088 0.1019 0.1728 

 MAPE 0.0505 0.0401 0.0554 0.0372 0.0356 0.0583 

doubly stochastic simulation RMSE 0.2055 0.1488 0.2212 0.1092 0.1006 0.1731 

 MAPE 0.0495 0.0403 0.0560 0.0372 0.0351 0.0584 

random walk RMSE 0.2081 0.1769 0.2340 0.1190 0.1016 0.1837 

 MAPE 0.0459 0.0452 0.0571 0.0388 0.0339 0.0594 

 

Again, the difficulty in interpreting prediction results from table 8 suggests the meta-

analysis of the MAPE. Table 9 presents the regression model for the 900 comparisons, whose 

interpretation considers that modeling the error implies negative estimates should be 

interpreted as positive relation to prediction accuracy. As for the estimation accuracy, an 

increase in prediction accuracy is related to the implementation of stochastic approaches, 

preferably random walk rather than stochastic simulation and doubly stochastic simulation. 

Unlike for the estimation accuracy, enlarging variance helps in prediction, suggesting that 

modelers should generate large choice sets for traffic assignment in order to better reproduce 

predicted flows, regardless of the postulated behavior. 

TABLE 9  Meta-Analysis Estimates of the Mean Average Prediction Error 

Parameter  est. t-stat 

characteristic related to the technique used to generate choice sets 

deterministic technique 
a
 - - 

stochastic technique -0.400 -15.54 

k-shortest path 
a
 - - 

link penalty -0.376 -14.52 

branch-and-bound -0.209 -8.06 

stochastic simulation 0.107 5.92 

doubly stochastic simulation  0.143 6.85 
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random walk 
a
 - - 

small variance 0.123 9.84 

average variance 
a
 - - 

large variance -0.035 -2.89 

characteristic related to the technique used to postulate choices 

low heterogeneity 
a
 - - 

medium/high heterogeneity 0.181 9.20 

small choice set size -0.019 -1.06 

medium choice set size 
a
 - - 

large choice set size -0.089 -8.00 

consistent with generation -0.101 -4.60 

constant 0.121 25.31 

N 900  

R
2
 0.835  

Notes: a reference category. 

5. SUMMARY AND CONCLUSIONS 

In the context of modeling route choice behavior, modelers generate objective choice sets by 

selecting a path generation technique and its parameters according to personal judgments. 

The literature demonstrates that these personal judgments affect model estimates and 

predictions (e.g., 21, 22, 23, 24 ), but fails to provide suggestions for the implementation of 

path generation techniques. The current study proposes a methodology and an experimental 

setting that evaluates the effect of path generation techniques on model estimates and flow 

predictions and leads to general indications about personal judgments in path generation.  

Initially, path generation techniques are implemented within a synthetic network to 

generate subjective choice sets possibly considered by travelers. Next, “true model estimates” 

and “postulated predicted routes” are assumed from the simulation of a route choice model. 

Then, path generation techniques are applied to generate objective choice sets for model 

estimation and to compare estimates with the postulated “true model estimates”. Last, 

predictions from the postulation with subjective choice sets and from the simulation of 

models estimated with objective choice sets are compared in terms of link flows. 

This paper illustrates the importance of a meta-analytic approach in the synthesis of a 

large number of models generate a large amount of results that are otherwise difficult to 

summarize and to process. Summary statistics only partially capture the influence of the 

characteristics of path generation techniques on model estimates and flow predictions. On the 

contrary, meta-analysis successfully summarizes the relevance of judgments in the selection 

of path generation techniques and their parameters for increasing coverage of observed 

behavior and augmenting accuracy of model estimation.  

The approach seems easily transferable to any study concentrating on the estimation 

of a large number of models and requiring a summary of the results without involving data 

mining or Bayesian inference that would be much more expensive from a conceptual and a 

computational perspective (29). Moreover, the fit of the meta-analytic models indicates that 

the variation in the results can indeed be explained by modeling judgments. 

The value of the approach consists in providing the first comprehensive indications 

about judgments in the implementation of path generation techniques following the execution 

of a systematic and extensive experimental setting. The coverage of chosen routes increases 

with the implementation of stochastic techniques and the selection of average to large 

variance in their distribution parameters, with better results obtained when covering behavior 
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postulated from large choice sets containing mainly similar alternatives. The accuracy of 

model estimation grows with stochastic methods and in particular with the random walk 

algorithm that exploits the correction for the unequal sampling probabilities of the generated 

routes. Variance of the parameters and estimation of models with the aforementioned 

characteristics of large size and high similarity also contribute to estimation accuracy. The 

accuracy of flow prediction parallels the one of model estimation, with the difference that 

generating even larger choice sets seems to improve prediction performances. 

Results suggest that modelers should apply stochastic approaches with the possibility 

of correcting for unequal sampling probability while maintaining a fairly reasonable level of 

variance. Estimation of models would greatly improve and the issue of the coverage of 

observed behavior would not be raised because the correction would cover for adding 

alternatives not generated. Only the random walk algorithm currently provides this 

opportunity, as a correction term exists for the stochastic simulation (30), but presents severe 

shortcomings. Specifically, problems exist in the approximation of the Gumbel distribution 

with a normal distribution of route costs obtained by summing means and variances over the 

links and in the assumption of equal variance of the route cost distributions across 

alternatives. 

Further research should address the need for a theoretically sound correction term for 

both stochastic simulation approaches, a verification of the efficiency of random walk 

algorithm in more complex networks, and an analysis of the effects of path generation 

techniques on model estimates for larger networks. 
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