Technical University of Denmark

Rapid and Simultaneous Determination of Np and Pu in Environmental Samples Using Sequential Injection Anion Exchange Chromatography and ICP-MS

Qiao, Jixin

Publication date: 2009

Link back to DTU Orbit

Citation (APA): Qiao, J. (2009). Rapid and Simultaneous Determination of Np and Pu in Environmental Samples Using Sequential Injection Anion Exchange Chromatography and ICP-MS [Sound/Visual production (digital)]. NKS-B RadWorkshop, Risø, Denmark, 16/11/2009

DTU Library Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- · You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Rapid and Simultaneous Determination of Np and Pu in Environmental Samples Using Sequential Injection Anion Exchange Chromatography and ICP-MS

PhD student: Jixin Qiao

Supervisor: Xiaolin Hou Co-supervisor: Per Roos, Manuel Miró

Risø-DTU, Technical University of Denmark

NKS-B Workshop on Radioanalytical chemistry for Radioecology and Waste Management, 16-20th Nov. 2009

Plutonium isotopes (^{238,239,240,241}Pu) and Neptunium (²³⁷Np) are highly hazardous radioactive pollutants in the environment due to:

- 1) long radioactive half-lives;
- 2) high radiological toxicities;
- 3) long-term persistence in environment.

Isotope	Half-life	Specific activity (Bg/g)	Principal decay mode	Decay energy (MeV)
²³⁸ Pu	87.7yr	6.338×10 ¹¹	α	a 5.499 (70.9%)
²³⁹ Pu	2.411×10 ⁴ yr	2.296×10 ⁹	α	a 5.157 (70.77%)
²⁴⁰ Pu	6.561×10 ³ yr	8.401×10 ⁹	α	a 5.168 (72.8%)
²⁴¹ Pu	14.35yr	3.825×10 ¹²	β ->99.99%	a 4.896 (83.2%)
²³⁷ Np	2.411×10 ⁶ yr	2.603×107	α	α 4.788 (51%)

 Table 1. Nuclear Properties of Important Plutonium Isotopes

The determination of plutonium isotopes and Neptunium in the environment is important for:

- environmental risk assessment and monitoring of sites around nuclear facilities;
 emergency preparedness;
- 3) **surveys** for the contaminated area resulting from nuclear weapon tests, nuclear accidents, and the discharge of nuclear waste.

- 1)The **levels of plutonium** isotopes and **neptunium** in the environment are very **low** and depending of the location.
- 2)**Plutonium** and **neptunium** often coexist with **matrix elements** (Ca, Mg, Al, V...) and **other radionuclides** (Th, U, Am, Cm...).

Sample	²³⁸ Pu	^{239,240} Pu
Soil, Bq/kg	0.07	0.1-7
Herbaceous plants ,Bq/kg	4.5×10 ⁻⁴	0.3-2
Lichen, Bq/kg	-	4-10
Grain, vegetables, Bq/kg	(0.2-14)×10 ⁻⁴	(4-89)×10 ⁻⁴
Lake water ,Bq/L	-	(0.1-29)×10 ⁻⁶
Sea water, Bq/L	-	(0.7-52)×10 ⁻⁶

Table 2. Environmental level of ²³⁸Pu and ^{239,240}Pu

4

Fig. 1 Analytical procedure for the determination of Pu and Np in environmental samples

OBJECTIVE

🖄 Objective:

To develop a **new** analytical method for determination of plutonium isotopes and neptunium in environmental samples.

Main Points: 1)Automatic 2)Rapid 3)Simultaneous

MAIN CHALLENGES

- Small column size
- Same behavior of Pu and Np on the column
- Valence adjustment
- High chemical yields
- Good decontamonation factors (U, Th, Pb)

Samples

<u>Soil</u>: Danish soil, reference material from a laboratory roundrobin intercomparison. The reference values of ²³⁹Pu and ²⁴⁰Pu are 0.140 \pm 0.008 and 0.098 \pm 0.006 Bg/kg.

Sediment, plants, seawater...

Anion exchange chromatographic column Column size: 16mL (1.0 x 20 cm) 8mL (0.7 x 20 cm) 4mL (0.7 x 10 cm) 2mL (0.5 x 10 cm) 2mL (0.7 x 5.0 cm) Resin: AG 1x2 (50-100mesh), AG 1x4 (50-100mesh), AG 1x4(100-200mesh), AG 1x8(50-100mesh).

Fig.3. Scheme of the experimental setup

Instrumentation

2)ICP-MS Thermo X-series inductively coupled plasma mass spectrometry (ICP-MS)

RISØ

Separation & detection

Experimental paramaters for comparison

- Column size
- Resin type
- Washing solution (1.0-8.0 mol/L HNO₃)
- Elution soultion (NH₂OHHCI-HCI, 0.1-1.0mol/L HCI)
- Flow rate (1.0-5.0 mL/min)

Key factors for evalution of experimental results

- Chemical yields of Pu and Np
 >85%
 <85%
- Ratio between the chemical yield of ²³⁷Np and ²⁴²Pu
 ©0.9-1.1 ©otherwise
- Mearured values of ²³⁹Pu and ²⁴⁰Pu

©agree well with the reference values

Otherwise

Deconatmination factors for U, Th and Pb

☺>10³ **⊗**<10³

Table 3. comparison of different experimental conditions for the separation of Pu and Np (1)

Column	Resin	Separation	Chemical	Chemical	Ration	²³⁹ Pu measured	²⁴⁰ Pu measured	Deco	ntamination fac	tor **
size		condition#	yield 01 -⊶i d, Υ _{Pu} (%)	Y _{Np} (%)	Y _{Np} /Y _{Pu}	(Bq/kg) *	(Bq/kg) *	238 U	²³² Th	Pb
	AG1 × 2		102.3 ± 5.1	95.8 ± 4.8	0.9	0.14 ± 0.0	0.10 ± 0.01	3.3 ×10 ³	1.9 ×104	1.4 ×10⁴
16mL (1.0 × 20cm)	AG1 × 4	W-1, 2.5	99.9 ± 5.0	94.8 ± 4.7	0.9	$\textbf{0.23} \pm \textbf{0.02}$	0.08 ± 0.01	3.0 ×10 ²	2.9 ×10 ³	5.6 ×10 ³
	AG1 × 8	E-1, 1.0	96.4 ± 4.8	90.9 ± 4.5	0.9	1.39 ± 0.14	0.11 ± 0.01	4.2 ×10 ¹	3.8 ×10 ²	1.2 ×10 ⁴
	AG1 × 2		71.5 ± 3.6	67.4 ± 3.4	0.9	0.17 ± 0.02	0.12 ± 0.01	1.1 ×10 ³	5.2 ×10 ³	3.1 ×104
	AG1 × 4	W-1, 2.5 E- 2, 1.0	100.0 ± 5.4	100.0 ± 5.3	1.0	0.16 ± 0.02	0.10 ± 0.01	1.6 ×10 ³	6.4 ×10 ³	3.9 ×10 ³
8mL (0.7 × 20cm)	AG1 × 8		94.2 ± 4.7	87.9 ± 4.4	0.9	0.16 ± 0.02	0.10 ± 0.01	3.2 ×10 ²	7.8 ×10²	8.1 ×10 ³
	AG1 × 8	W-1, 5.0 E-2, 2.5	91.9 ± 4.6	80.1 ± 4.0	0.9	0.18 ± 0.02	0.12 ± 0.01	1.1 ×10²	9.1 ×10 ¹	8.8 ×10 ³
	AG1 × 2		71.2 ± 3.6	48.4 ± 2.4	0.7	0.12 ± 0.01	0.06 ± 0.01	2.1 ×10 ³	4.4 ×10 ³	1.1 ×10⁴
	AG1 × 4	W-1, 2.5	100.0 ± 5.0	98.2 ± 4.9	1.0	0.12 ± 0.01	0.10 ± 0.01	1.3 ×10 ³	2.4 ×10 ³	2.2 ×10 ⁴
4mL (0.7 × 10cm)	AG1 × 8	E-2, 1.0	98.7 ± 4.9	97.2 ± 4.9	1.0	0.16 ± 0.02	0.10 ± 0.01	1.0 ×10 ³	8.9 ×10 ²	8.6 ×10 ³
. ,	AG1 × 8	W-1, 5.0 E-2, 2.5	92.6 ± 4.6	86.3 ± 4.3	0.9	0.17 ± 0.02	0.12 ± 0.01	2.2 ×10 ²	9.8 ×10 ¹	2.7 ×10 ³

Table 3. comparison of different experimental conditions for the separation of Pu and Np (2)

Column	Resin	Separation	Chemical	IicalChemicalRation239Pu240PuDecontamination factor242Pu,yield of 237Np,ofmeasuredmeasured(%)Y _{Np} (%)Y _{Np} /Y _{Pu} (Bq/kg) *(Bq/kg) *238U238U232Th	or **					
size		condition#	yleid of ²⁴² Pu, Y _{Pu} (%)	yield of ²⁵⁷ NP, Y _{Np} (%)	Of Y _{Np} /Y _{Pu}	(Bq/kg) *	(Bq/kg) *	238	²³² Th	Pb
	AG1 × 2	W-2, 2.5 E-2, 2.5	75.0 ± 3.8	19.0 ± 1.0	0.3	0.26 ± 0.03	0.08 ± 0.01	3.2 ×10 ²	2.0 ×10²	2.6 ×10³
		W-2, 5.0 E-2, 2.5	48.6 ± 2.4	35.7 ± 1.8	0.7	$\textbf{0.15} \pm \textbf{0.02}$	0.10 ± 0.01	8.9 ×10²	6.8 ×10²	9.3 ×10 ³
	AG1 × 4	W-2, 2.5 E-2, 2.5	103.0 ± 5.2	106.0 ± 5.3	1.0	0.14 ± 0.01	0.09 ± 0.01	3.9 ×10 ³	2.4 ×10⁴	2.7 ×10⁴
		W-2, 5.0 E- 2, 2.5	94.0 ± 4.7	89.7 ± 4.5	1.0	$\textbf{0.25} \pm \textbf{0.03}$	0.09 ± 0.01	3.9 ×10²	6.7 ×10 ³	1.6 ×10⁴
2mL (0.5 × 10cm)	AG1 × 8	W-2, 2.5 E-2, 2.5	90.5 ± 5.0	88.7 ± 4.9	1.0	$\textbf{0.25} \pm \textbf{0.03}$	0.09 ± 0.01	3.4 ×10²	2.7 ×10²	9.0 ×10 ⁵
		W-2, 5.0 E-2, 2.5	100.5 ± 5.0	98.7 ± 4.9	1.0	$\textbf{0.29} \pm \textbf{0.03}$	0.07 ± 0.01	4.8 ×10 ¹	×10 ² 2.1 ×10 ²	2.9 ×10⁵
	AG1 × 4	W-2, 2.5 E-4, 2.5	72.9 ± 3.6	64.1 ± 3.2	0.9	$\textbf{0.18} \pm \textbf{0.02}$	0.12 ± 0.01	1.6 ×10 ³	1.7 ×10⁴	6.1 ×10³
		W-3, 2.5 E-4, 2.5	81.8 ± 4.1	69.2 ± 4.1	0.8	$\textbf{0.38} \pm \textbf{0.04}$	0.10 ± 0.01	2.1 ×10 ³	1.3 ×10⁴	7.5 ×10³
		W-4, 2.5 E-4, 2.5	80.2 ± 4.0	63.8 ± 4.1	0.8	0.19 ± 0.02	0.09 ± 0.01	2.4 ×10 ³	1.4 ×10⁴	1.5 ×10⁴
		W-5, 2.5 E-4, 2.5	39.6 ± 2.0	20.6 ± 4.1	0.5	$\textbf{0.20} \pm \textbf{0.02}$	0.15 ± 0.02	2.6 ×10 ³	1.1 ×10⁴	9.4 ×10 ³
		W-6, 2.5 E-4, 2.5	31.0 ± 1.6	11.7 ± 4.1	0.4	0.19 ± 0.02	0.20 ± 0.02	3.1 ×10 ³	5.0 ×10⁴	1.2 ×10⁵

Table 3. comparison of different experimental conditions for the separation of Pu and Np (3)

Column	Resin	Separation	Chemical vield of ²⁴² Pu,	Chemical vield of ²³⁷ Np,	Ration of	²³⁹ Pu measured	²⁴⁰ Pu measured	Decon	tamination fac	ctor **
size		condition #	Y _{Pu} (%)	Y _{Np} (%)	Y _{Np} /Y _{Pu}	(Bq/kg) *	(Bq/kg) *	238 U	²³² Th	Pb
		W-2, 2.5 [§] E-3, 2.5	61.0 ± 3.1	64.9 ± 3.2	1.1	0.18 ± 0.02	0.12 ± 0.01	3.1 ×10 ³	2.8 ×10⁴	1.2 ×104
2mL (0.5 × 10cm)		W-2, 2.5 E-4, 2.5	91.6 ± 4.6	91.0 ± 4.6	1.0	0.14 ± 0.01	0.10 ± 0.01	6.9 ×10 ³	1.7 ×10⁴	1.0 ×10 ³
	AG1 × 4, 100-200 mesh	W-2, 2.5 E- 5, 2.5	66.8 ± 3.3	74.6 ± 3.7	1.1	0.14 ± 0.01	0.09 ± 0.01	8.6 ×10 ³	1.2 ×10⁴	1.0 ×10 ³
		W-2, 2.5 E-6, 2.5	78.5 ± 3.9	81.6 ± 4.1	1.0	0.14 ± 0.01	0.07 ± 0.01	6.3 ×10 ³	1.9 ×10⁴	1.5 ×10³
		W-3, 2.5 E-4, 2.5	35.9 ± 1.8	61.2 ± 3.1	1.7	0.22 ± 0.02	0.19 ± 0.02	3.4 ×10 ³	3.1 ×10⁴	2.9 ×10³
		W-4, 2.5 E-4, 2.5	82.3 ± 4.1	80.9 ± 4.0	1.0	0.21 ± 0.02	0.12 ± 0.01	3.8 ×10 ³	1.4 ×10⁴	4.3 ×10⁴
		W-5, 2.5 E-4, 2.5	63.6 ± 3.2	30.1 ± 1.5	0.5	0.19 ± 0.02	0.10 ± 0.01	4.5 ×10 ³	3.1 ×10⁴	1.8 ×10⁴
2mL (0.7 × 5cm)	AG1 × 4, 100-200 mesh	W-2, 2.5 E-4, 2.5	40.4 ± 2.0	37.1 ± 1.9	0.9	0.18 ± 0.02	0.07 ± 0.01	1.1 ×10⁴	1.6 ×10 ³	7.2 ×10³
1mL (0.5 × 5cm)	AG1 × 4, 100-200 mesh	W-2, 2.5 E-4, 2.5	50.7 ± 2.5	44.8 ± 2.2	0.9	0.14 ± 0.02	0.10 ± 0.01	4.1 ×10 ³	4.0 ×10 ³	1.5 ×10 ⁴

The reference values of ²³⁹Pu and ²⁴⁰Pu concentration in the Danish soil were reported to be 0.140 ± 0.008 Bq/kg and 0.098 ± 0.006 Bq/kg.* Experimental results are given as the average of three replicates \pm standard deviation. ** The relative standard deviations were in all instances better than 10%. § flow rate, mL/min.# W-1: washing sequence 200mL of 8 mol/L HNO₃ + 100mL of 9 mol/L HCl; W-2: 100mL of 8 mol/L HNO₃ + 100mL of 9 mol/L HCl; W-3: 100mL of 6 mol/L HNO₃ + 100mL of 9 mol/L HCl; W-4: 100mL of 4 mol/L HNO₃ + 100mL of 9 mol/L HCl; W-5: 100mL of 2 mol/L HNO₃ + 100mL of 9 mol/L HCl; W-6: 100mL of 1 mol/L HNO₃ + 100mL of 9 mol/L HCl; Pu eluting solution: E-1:Pu elution solution 200mL of 0.1 mol/L NH₂OH·HCl-2 mol/L HCl; E-3: 40mL of 0.1 mol/L HCl; E-4: 40mL of 0.5 mol/L HCl; E-5: 40mL of 1.0 mol/L HCl; E-6: 40mL of 1.0 mol/L HCl.

Table 3. Comparison of different experimental conditions for the separation of Pu and Np (1)

Column	Resin	Separation	Chemical	Chemical	Ration	²³⁹ Pu	²⁴⁰ Pu	Decontamination factor **		
size		condition#	Yeld 01Pu, Y _{Pu} (%)	Y _{Np} (%)	Y _{Np} /Y _{Pu}	(Bq/kg) *	(Bq/kg) *	238 U	²³² Th	Pb
	AG1 × 2		\odot	\odot	\odot	\odot		\odot	٢	\odot
16mL (1.0 × 20cm)	AG1 × 4	W-1, 2.5 E-1, 1.0	\odot	\odot	\odot	\otimes	8	\bigotimes	٢	\odot
	AG1 × 8		\odot	\odot	\odot	\otimes	\odot	\otimes	\otimes	\odot
	AG1 × 2		\bigotimes	\bigotimes	\odot	\odot	C	٢	٢	\odot
8mL	AG1 × 4	W-1, 2.5 E- 2, 1.0	\odot	\odot	\odot	\odot		\odot	\odot	\odot
(0.7 × 20cm)	AG1 × 8		\odot	\odot	\odot	\odot	\odot	\otimes	\otimes	\odot
	AG1 × 8	W-1, 5.0 E-2, 2.5	\odot	\bigotimes	\odot	\otimes	8	\otimes	\otimes	\odot
	AG1 × 2		\bigotimes	8	8	\odot	\bigotimes	٢	\odot	\odot
4mL (0.7 × 10cm)	AG1 × 4	W-1, 2.5 E-2, 1.0	\odot	\odot	\odot	\odot	C	\odot	\odot	\odot
	AG1 × 8		©	()	\odot	\otimes		\odot	\otimes	()
	AG1 × 8	W-1, 5.0 E-2, 2.5	\odot	\odot	\odot	\otimes	8	\bigotimes	\bigotimes	\odot

Table 3. Comparison of different experimental conditions for the separation of Pu and Np (2)

Column	Resin	Separation	Chemical	Chemical	Ration	²³⁹ Pu	²⁴⁰ Pu	Decontamination factor **		
size		condition#	Yield of ²⁴² Pu, Y _{Pu} (%)	Yield of ²⁵⁷ NP, Y _{Np} (%)	ОГ Y _{Np} /Y _{Pu}	(Bq/kg) *	(Bq/kg) *	238 U	²³² Th	Pb
	AG1 × 2	W-2, 2.5 E-3, 2.5	$\overline{\mathbf{S}}$	\bigotimes	8	\otimes	8	\otimes	\bigotimes	\odot
2mL (0.5 × 10cm)		W-2, 5.0 E-3, 2.5	8	8	8	\odot	\odot	\otimes	\bigotimes	\odot
	AG1 × 4	W-2, 2.5 E-3, 2.5	\odot	\odot		\odot	\odot	٢	\odot	0
		W-2, 5.0 E- 3, 2.5	\odot	\odot	\odot	\otimes	C	\bigotimes	\odot	\odot
	AG1 × 8	W-2, 2.5 E-3, 2.5	\odot	\odot	\odot	\bigotimes	C	\otimes	\bigotimes	\odot
(0.0 ********)		W-2, 5.0 E-3, 2.5	\odot	\odot	\odot	\bigotimes	\bigotimes	8	8	\odot
	AG1 × 4	W-2, 2.5 E-4, 2.5	8	8	\odot	\otimes	\bigotimes	\odot	\odot	\odot
		W-3, 2.5 E-4, 2.5	8	8	8	\otimes	\odot	\odot	\odot	\odot
		W-4, 2.5 E-4, 2.5	8	8	\bigotimes	\bigotimes	C	\odot	\odot	\odot
		W-5, 2.5 E-4, 2.5	8	8	8	\bigotimes	\bigotimes	\odot	\odot	\odot
		W-6, 2.5 E-4, 2.5	8	8	8	\otimes	\bigotimes	٢	\odot	\odot

Table 3. Comparison of different experimental conditions for the separation of Pu and Np (3)

Column	Resin	Separation	Chemical vield of ²⁴² Pu.	Chemical vield of ²³⁷ Np.	Ration of	²³⁹ Pu measured	²⁴⁰ Pu measured	Decontamination factor **			
size		condition *	Y _{Pu} (%)	Y _{Np} (%)	Y _{Np} /Y _{Pu}	(Bq/kg) *	(Bq/kg) *	238 U	²³² Th	Pb	
		W-2, 2.5 [§] E-3, 2.5	\bigotimes	$\overline{\boldsymbol{\otimes}}$	\odot	\bigotimes	\otimes	\odot	\odot	\odot	
		W-2, 2.5 E-4, 2.5	\odot	\odot	\odot	\odot	\odot	\odot	\odot	\odot	
2ml	AG1 × 4, 100-200	W-2, 2.5 E- 5, 2.5	\bigotimes	\bigotimes	\odot	\odot	\odot	\odot	\odot	\odot	
(0.5 × 10cm)	mesh	W-2, 2.5 E-6, 2.5	\bigotimes	\bigotimes	\odot	\odot	\bigotimes	\odot	\odot	\odot	
		W-3, 2.5 E-4, 2.5	\bigotimes	\bigotimes	8	\bigotimes	\bigotimes	\odot	\odot	\odot	
		W-4, 2.5 E-4, 2.5	\bigotimes	\bigotimes	\odot	\bigotimes	\bigotimes	\odot	\odot	\odot	
		W-5, 2.5 E-4, 2.5	\bigotimes	8	8	\bigotimes	C	\odot	\odot	\odot	
2mL (0.7 × 5cm)	AG1 × 4, 100-200 mesh	W-2, 2.5 E-4, 2.5	8	8	\odot	8	8				
1mL (0.5 × 5cm)	AG1 × 4, 100-200 mesh	W-2, 2.5 E-4, 2.5	\bigotimes	\bigotimes	٢	٢	C		\odot		

The reference values of ²³⁹Pu and ²⁴⁰Pu concentration in the Danish soil were reported to be 0.140 ± 0.008 Bq/kg and 0.098 ± 0.006 Bq/kg.* Experimental results are given as the average of three replicates \pm standard deviation. ** The relative standard deviations were in all instances better than 10%. § flow rate, mL/min.# W-1: washing sequence 200mL of 8 mol/L HNO₃ + 100mL of 9 mol/L HCl; W-2: 100mL of 8 mol/L HNO₃ + 100mL of 6 mol/L HNO₃ + 100mL of 9 mol/L HCl; W-3: 100mL of 6 mol/L HNO₃ + 100mL of 9 mol/L HCl; W-4: 100mL of 4 mol/L HNO₃ + 100mL of 9 mol/L HCl; W-5: 100mL of 2 mol/L HNO₃ + 100mL of 9 mol/L HCl; W-6: 100mL of 1 mol/L HNO₃ + 100mL of 9 mol/L HCl; Pu eluting solution: E-1:Pu elution solution 200mL of 0.1 mol/L NH₂OH·HCl-2 mol/L HCl; E-2: 100mL of 0.1 mol/L NH₂OH·HCl-2 mol/L HCl; E-3: 40mL of 0.1 mol/L HCl; E-5: 40mL of 0.1 mol/L HCl; E-6: 40mL of 1.0 mol/L HCl.

RISØ

Main Results

²⁴²Pu performs well as a tracer for both Pu isotope and ²³⁷Np.
 Cross-link of the resins has significant effluence on the separation efficiency. Finally, AG 1x4 resin was chosen as the optimum.

3) Small-sized column packed with 2mL resin suffices up to 10g of soil.

Column size	Resin	Chemical	Chemical viold of	Ration	²³⁹ Pu	²⁴⁰ Pu	Decontar	amination factor ***		
		²⁴² Pu, Y _{Pu} (%)	²³⁷ Np, Y _{Np} (%)	OI Y _{Np} /Y Pu	(Bq/kg) *	(Bg/kg)**	²³⁸ U	²³² Th	²⁰⁸ Pb	
2mL (0.5 × 10cm)	AG1 × 4, 50-100 mesh	103.0 ± 5.2	106.0 ± 5.3	1.0	0.14 ± 0.01	0.09 ± 0.01	3.9 ×10 ³	2.4 ×10 ⁴	2.7 ×10 ⁴	
	AG1 × 4, 100-200 mesh	91.6 ± 4.6	91.0 ± 4.6	1.0	0.14 ± 0.01	0.10 ± 0.01	6.9 ×10 ³	1.7 ×10 ⁴	1.0×10^3	

Table 4. Selected results from the experiment (10g of soil)

*The reference value is 0.140 ± 0.008 Bg/kg. **The reference value is 0.098 ± 0.006 Bg/kg.

** The relative standard deviations were in all instances better than 10%.

Main Results

4) The total time of on-line separation for a single sample is ~ 2.5h. For comparation: 2-3days is need for off-line separation.
5) Chemical yields of Pu and Np equally range from 90% to 100%.

6) Decontamination factor for ²³⁸U, ²³²Th and ²⁰⁸Pb are in the range of 10³ to 10⁴.

Column size	Resin	Chemical	Chemical	Ration	²³⁹ Pu	²⁴⁰ Pu	Decontan	mination factor ***		
		²⁴² Pu, Y _{Pu} (%)	²³⁷ Np, Y _{Np} (%)	OI Y _{Np} /Y Pu	(Bq/kg) *	(Bg/kg)**	²³⁸ U	²³² Th	²⁰⁸ Pb	
2mL (0.5 × 10cm)	AG1 × 4, 50-100 mesh	103.0 ± 5.2	106.0 ± 5.3	1.0	0.14 ± 0.01	0.09 ± 0.01	3.9 ×10 ³	2.4 ×10 ⁴	2.7 ×10 ⁴	
	AG1 × 4, 100-200 mesh	91.6 ± 4.6	91.0 ± 4.6	1.0	0.14 ± 0.01	0.10 ± 0.01	6.9 ×10 ³	1.7 ×10 ⁴	1.0 ×10 ³	

Table 4. Selected results from the experiment (10g of soil)

*The reference value is 0.140 ± 0.008 Bg/kg. **The reference value is 0.098 ± 0.006 Bg/kg.

*** The relative standard deviations were in all instances better than 10%.

1) Innovation: Automatic Rapid Simultaneous Low consumption of resins Low generation of wastes

2) Nexp step: Stability of Np(IV) and Pu(IV)Capacity of the SI systemReusability of the resin

ACKNOWLEDGEMENT

- Xiaolin Hou
- Per Roos
- Manuel Miró
- Radioecology and Tracers Programme (headed by Sven P. Nielsen), Radiation Research Divison, Risø-DTU, Denmark.

Personal e-mail: qiaojixin2004@gmail.com