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Periodic codes (spectral)

» Probably the simplest codes to make

e Easy and fast to develop, a master study

e Easy, fast and compact to run, a bachelor study

e Can use fairly high number of modes on a single CPU: 2048x2048
e Can reach fairly high Reynolds numbers: Re(2D) = UL/u<20.000

e Can fairly easy be parallelized using MPI: linear speedup using 100 CPUs
on a 2048x2048 grid

» Note that the domain is infinite with a periodic restriction!
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Periodic codes (spectral)

e Solutions are expanded into Fourier modes (global)

o(X,Y,t) o () 2rimx 2riny
(w(x,y,t)j gg(vxma)] ( N ]exp( y J

= Vorticity equation

ow
9P LI, 0)= W2 = V(mn) : 2m Ty VZw
P (v, w)= (mn): ot [W ]mn mn

[V/’a):lmn: o Oy dow Oy dw
oX oy oy ox]J .

Fast Fourier Transformation will take 75 % of computational time
De-aliasing scheme, zero pad the largest 1/3 of the modes

= The Poisson equation is trivial: k’y, = o,
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The Risgs Euler code
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Kuznetsov et al POP 19, 105110 2007

Inverse cascade
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*1024x1024 points

*512x512 modes

«de-aliased removes upper 1/3
K ax=340

*Taken account for viscosity leave
us with approximately 2 decades!
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Solid boundaries

Periodic

Periodic

Poisson equation
Ve =0=

2
Vk:%—kzgék =0, =

vk : A, ¢ =, +BC
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*Finite difference in x, Fourier expansion in y

sMultiplication simple, derivatives complex

afi 0 fi +1Afi -1

OX 2dx
AN g
ox’ (AX)?

Banded matrix, solved by Gauss elimination

-1 1
1 -2 1
. 1 -2 1
i:sz '
1 -2 1
1 -2 1
1 -1
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Diffusion equation
0w

—o =V (D) + - =

(A - AtV - (DX, )V))a(t + At) 0 o(t) + -
Generally gives a complicated matrix, has to be solved by iteration (Petsc)

D=D , Helmholtz equation

(1 - AtD,V)a(t + At) = w(t)
banded matrix, Gauss elimination possible
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Finite difference, ESEL
e Global model with self-consistent profiles
e Simulation domain include both edge, SOL and limiter shadow regions
e 2D approximation; parallel loss mechanism modeled by a parameterize
loss term
e Input; basic plasma parameters
e Test on TCV, JET, ASDEX with reasonable results
» Collisional diffusion coefficients and parallel loss terms from first principal
e It is a very simple 2D model!
WALL
SHADOW
Several
millions
time point

7 Risg DTU, Technical University of Denmark su September 2009



Finite difference, ESEL

Interchange model

1=

(94
an | (#)-0(n) = A, A,=-—+D Vi
dt TD,a
dT 2 7 2T? Subsonic advection:
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((n=7n)/ngy |n—n>25n,.)

Conditionally averaged density blob structure

TCV-ESEL Comparison
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PDF of particle density flux

Direct comparison with experimental results from the TCV-Tokamak,
Lausanne: excellent quantitative agreement

Garcia et al. PPCF 48, L1 (2006)
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TCV-ESEL Comparison

Density profile and relative fluctuations

Particle flux profiles
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Good agreement between experiment and turbulence simulations

Garcia et al
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S00000 porticles redeasod im 39 < ¥ < 41

S00000 porticles releasod in 38 = < 41 P oalson ot a0
ni

Pasition at t=1000
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X
Fig 4: Particles released inside LOFS, £ = 1000 Fig 5: Particles released inside LCFs, t = 2500
500000 particles released in39 < x < 41
10000 T : .
. . —10000
Passive particles 8000 —25000|
t 50000
x(t) = x(0) + Iv(x,t)dt = 6000 i
0 = , |
< 4000;

2000}

200

Summer student S. Boudaux, (2005) 0
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Solid boundaries - Disk =
o
*Radial points are cosine distributed
hebysh | Is calculated Al 6,1) @ (1)
*Chebyshev polynomials calculated via cosine _ B - .
transformation G(r, 0,1) | = 2. 2| Upa(©) | T, (1) exp (-ing)
r,o,t "o t
*The Poisson equation decouples in 6, a series of banded 1D w(r.0,t) Vi (1)
problem to be solved in r re[-1:1],6 €[0: 2x]
*r=0 should be a regular point
«As r->0 the grid spacing in © decreases: 1/(21r) T,(x) = cos(ncos™(x)) = cos(nz)
*Even thought these scales are well below the viscosity scale they T, =1 T)=x T,,()=2xT,(x) -T,,(X)
are extremely unstable and have to be removed manually (zero TEY)=CD", T =1
1 1 1 1 1 1 1
-11 -11 -11 -11 -11
[Poisson equation X X X X X
Vi =0= X X X X X
X X

2
VK:aarqu" +raairk—k2¢k =r’em, =
vk A 4 =0 +BC

|
I

Energy Spectrym: E(r,n) = %Zyﬁ(r,t) +2(r,1)
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Spectral versus finite difference

Close-up

_Spectral 1024

T=0.00 T=1.00 T=2.00

FDe 1024

Fic. 5.6. A close-up of vorticity contours for runs with the same parameters as in Figure 5.4

Fia. 5.4, Tume evolution of the vorticity field for the interaction of a Lamb-dipole with a no-slip at T'= 4.0 and Re = 2.000. Top: Spectral scheme. Middle: Arakowa scheme using an equidistant
wall. The spectral scheme has been used with M = N = 1024 and Re = 2.000. Notice that only a radial grid. Bottom: Amkawa scheme using eosine distribuced rudial grid poincs. Left resolusion 512
R L R and right reselution 1024, The dot in each frame locates the position where the time development is

part of the computational domain s displayed. compared; see Figure 5.7,

(V. Naulin and A.H. Nielsen 25, 104-126 SIAM J. SCI. COMPUT 2003 )
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Spectral versus finite difference
Spectral
_k
10,
2 4:_\ \.\‘\\_.
Solve the vorticity equation with solid boundaries in 5 10°p % el Teo
annulus geometry 5 N
5107 T
< o “+
a—w+[a) 1=wW?0, Vy=-0, ll|y=0 o
at ’ W ’ l// ’ oD 1055 *
10'3 | | 1 | 1 |
We used a spectral code (Chebyshev-Fourier expansion) 256 S12 768 1024
and finite difference code (cosine distributed radial resolution
points). A Lamb dipole gfwf.iél-; i 300 {sobd e LOD (fosed ), 2000 (dashad ), 4000 (dshoddoticd
Finite difference
24U 10°
———J,(4r)cos(@) ,r <R +.
o =< J,(AR) R
‘—\l-!nk“n 1\\\\
0 ,r >R 10.1%-. % + o g
was used as initial condition and let it interact with the g )
outer wall for different Reynolds numbers, Re=UL/v. f
<
Conclusion:
e Spectral schemes are more accurate than FD using I
the same resolution BUT o L L
e Using the same computer power we can obtain similar 256 512 768 1024
results for the two different schemes resolution

Fie. 5.10. I'mtegrated ervor caleu
number: 200 (solid line),

(V. Naulin and A.H. Nielsen 25, 104-126 SIAM J. SCI. COMPUT 2003 )
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DIESEL

e Global version of “ESEL”
e Covers the full toroidal domain

on (g0} = pu,Von +cV.n
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[INormalisation[4], space and time X — X >yt
a

[ Interchange growth rate: y = /ics
ar

0 ¢, in normalized unites: ¢, — ,/25
a
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Vorticity

DIESEL

1 Global modd using full toroidal geometry on closed magnetic field lines
[JModdl, at present, based on a simple interchange mode, see e.g. [1,2]
Ong. 2-D drift planes each covering the full cross section of the torus
[JIn the above equationsi €[1;n,.,] and denotes the particular drift plane
[ Parallel numerical code, based on spectral expansion of the solutions

] Scale linearly at least upto 100 CPU using 1024x2048 pr. drift plane

J Estimated maximum number of CPU is above 1.000!? (to be tested)

[ Thedrift planes are separated toroidally by L. =2zR/ n,,

[JParallel velocitites are parameterized using c, and V,

g entersin the two paralld terms:
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