Technical University of Denmark

Black Char and Green Char

Egsgaard, Helge

Publication date: 2010

Link back to DTU Orbit

Citation (APA): Egsgaard, H. (2010). Black Char and Green Char [Sound/Visual production (digital)]. Seminar: Instituto Nacional del Carbon, Oviedo (ES), 17 Feb, 01/01/2010

DTU Library

Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

DTU

Black Char and Green Char Helge Egsgaard

Biosystems Division, Biomass Gasification Group Risø National Laboratory for Sustainable Energy, Technical University of Denmark, Denmark

Lay out of talk

- Risø National laboratory
- Biomass gasification Group
- Applications

Lay out of talk

- Risø National laboratory
- Biomass gasification Group
- Applications

National Laboratory for Sustainable Energy

www.risoe.dtu.dk

Risø's history in brief

- **1956** Object: Peaceful utilization of nuclear energy
- **1976** Object: Nuclear energy and other energy sources
- 1986 Object: Energy
- **1990** Object: Technological research and development with energy as main focus area
- **1994** State-owned enterprise
- 2000 The last nuclear reactor is decommissioned
- 2007 merged with the Technical University of Denmark

Organisation

Technical University of Denmark													
Management													
	IT Service	e	Administration										
Building	and Construc	tion Service	Inf	Information Service									
Wind Energy	Systems Analysis	Materials Research		Solar Energy	Optics and Plasma Research		Bio Systems	Radiation Research					

Biomass Gasification Group

Research Areas

- Gasification processesTwo-stage fixed bed gasification (Viking)
- Low temperature fluid bed gasification (LT-CFB)
- Pyrolysis processes
- Gas cleaning
- Particle filtration
- Tar reduction through partial oxidation and tar char reactions

Thermal Gasification at Risø DTU

The Viking TwoStage Gasifier

DTU

Thermal Gasification at Risø DTU The Viking TwoStage Gasifier

New Research Areas

Torrefaction of Biomass and Waste

Torrefaction is a new thermo-chemical pretreatment primarily used for upgrading the fuel properties of biomass.

The process is characterized by an operating temperature of 200 – 300 °C, absence of oxygen and low heating rates.

DTU

New Research Areas

Fundamental Understanding of Pelletization

Objectives:

- Flexible and effective utilization of biomass as fuel
- Standardised fuel with clean burning properties
- Upgrading of waste residues to high value fuel
- New knowledge in the border area between energy engineering and wood science

On the chemistry of char

An isotope study

The potential of isotopes in chemistry

Isotopic labelled compounds are close to the ideal chemical internal standard

Isotopes may be used to disclose hidden reactions

- Tracer studies
- Fine variations in the natural abundance of isotopes

Analysis by GC/MS

Reactivity of char

Eksperimental techniques :

Reversible binding by high temperature GC (200-400 °C)

Covalent binding by dedicated oven systems

Low temperature binding of benzene to char

Adsorption enthalpy: -71 kJ/mol

Reactivity of char

Eksperimental techniques :

Reversible binding by high temperature GC (200-400 °C)

Covalent binding by dedicated oven systems

Stable isotope experiments

Deuterium labeling to study the presence of labile hydrogen's in char.

Carbon labeling to study the built up of carbon in char

Isotope studies with char

Analysis of exhaust for organic and isotope ratios

Transmission of benzene as function of temperature

Carbon isotopes in char

Temperature 700 °C; transmission 35 %; char bound 50 %

GC/MS analysis of D_6 -benzene without char at 800 °C (left panel) and with char bed at 600 °C (right panel).

Free radical mechanisms are most likely to account for the isotope exchange and binding.

Solid-state NMR has been used to visualise the nature of char-bound benzene.

Solid-state NMR has been used to visualise the nature of char-bound benzene.

Maintaining this covalently bound benzene/char system for additional 16 hours leads to a reduction of the solid-state NMR signal.

This is tentatively assigned the subsequent transformation of the covalently bound benzene into the rigid part of the char exhibiting longer relaxation times for the carbon nucleus and, hence, lower signal strength

High temperature chemistry of phenol

Chromatogram Plot

 File: c:\saturn\data\gfciso\pheol#6.ms
 Operator: HAWO

 Sam ple: 13C PHENOL OPSA M LING RUN 5 DOUBLE
 Operator: HAWO

 Scan Range: 1 - 3600 Time Range: 0.00 - 30.00 min.
 Date: 07-01-08 11:27

 Sam ple Notes: 13 C PHENOL OPSA M LING RUN 5 DOUBLE SPIKED (HELE PROEVEN)
 Date: 07-01-08 11:27

GC/MS analysis of naphthalene generated during loading of ¹³C₆phenol at 800 °C. The sample is spiked with naphthalene (m/z 128)

High temperature chemistry of phenol

The rate determining step in the pyrolysis of phenol

High temperature chemistry of phenol

Formation of naphthalene and methylindenes

DTU

Gasification - The use of ¹³C-labelled char

 $C + H_2O \longrightarrow CO + H_2$

 $CO + H_2O \implies CO_2 + H_2$

 $CH_4 + H_2O \implies CO + 3H_2$

The gaseous products are formed as a result of a series of coupled reactions

Gasification - The use of ¹³C-labelled char

Determination of ¹³C abundance of carbon monoxide and carbon dioxide.

Conclusion – isotope study

A trend in the binding efficiency, namely: benzene < naphthalene < phenanthrene was found.

Phenol behaved different from the other aromatic compounds studied. It partly undergoes decarbonylation leading to formation of naphthalene in a specific and well defined reaction pathway.

Isotope exchange reactions provided some evidence for a free radical mechanism as being responsible for the binding the compounds to the char bed.

Gasification of the labelled chars suggests that 95 % the incorporated carbon (benzene) loss its chemical history in the char bed.

From Biomass to Bio-char

Application of bio-char to soil has been proposed as a significant and long-term sink for carbon dioxide in terrestrial ecosystems.

An improved understanding of the mechanisms involved in bio-char application to soil is crucial in the ongoing debate about the addition of bio-char to soil to offset human-induced climate change.

Black is the new green

From Biomass to Bio-char

Bio-char is the carbon-rich product obtained by heating biomass at oxygen starvation and relatively low temperature (< 700 °C).

We are currently studying the <u>co-production</u> of bio-oil/bio-char based on wheat straw using an innovative fast pyrolysis centrifuge in the temperature range 475 – 575 °C and a residence time in the order 1 s.

N. Bech, N, K. Dam-Johansen, P.A. Jensen, Pyrolysis Method and Apparatus, PCT Application WO 2006/117005, 2006.

Summary

We have developed methods for characterization of bio-char/bio-oil based on analytical flash pyrolysis in combination with GCMS. These methods allow:

- □ Simulation of bio-oil composition
- Determination the origin of specific compound classes
 found in the bio-oil

Determination of residual organic compound classes in bio-char

Instrumentation – Analytical flash pyrolysis

Analytical flash pyrolysis

Controlled fast heating is achieved by two DC pulses:

- I. 30- 40 A for 5-10 ms
- II. 5-10 A for 1-2 s

Ohmic heating using platinum foil (14 x 3 x 0.03 mm)

Instrumentation – Analytical flash pyrolysis

Process-near characterization

Biomass – dominant substructures

Analytical flash pyrolysis – Lignin

Analytical flash pyrolysis at 600 °C and 2 s of lignin

Backbone	Η	Me	Et	HC=CH ₂	HC=CHMe
Gu	124	138	152	150	164
Sy	154	168	182	180	194

Analytical flash pyrolysis – Bio-char

Investigation of the bio-availability of bio-char revealed that in the order 10 % of the carbon may be released as CO_2 in approximately100 days when bio-char is applied to soils.

Classical chemical methods indicates high concentrations of glucan in the bio-char, e.g. 10 - 2 % decomposing by a first order kinetics.

Conclusion

New methods for characterization of bio-char/bio-oil system have been developed:

- ✓ Simulation of bio-oil composition by process-near methods
- Determination the origin of specific compound classes
 found in the bio-oil
- Determination of residual organic compound classes in bio-char

Acknowledgements

Isotope study:

Jesper Ahrenfeldt Ulrik B. Henriksen Hanne Wojtaszewski

Bio-char:

Esben W. Bruun Henrik Hauggaard-Nielsen Per Ambus Hanne Wojtaszewski

Niels Bech Norazana Ibrahim, Peter A. Jensen