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We outline a proof that teleportation with a single particle is, in principle, just as reliable as with two particles.
‘We thereby hope to dispel the skepticism surrounding single-photon entanglement as a valid resource in quantum
information. A deterministic Bell-state analyzer is proposed which uses only classical resources, namely, coherent

states, a Kerr nonlinearity, and a two-level atom.
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I. INTRODUCTION

Ever since Tan et al. [1] articulated the notion of single-
particle nonlocality [2,3], controversy has surrounded the
ability of a single particle to exhibit entanglement [4-8].
Proposals [9-20] and experiments [21-23] demonstrating
single-photon entanglement, nonlocality, and entanglement
purification have been performed, but the prospect of tele-
portation using single-photon entanglement as the quantum
resource has still not been regarded on equal footing with
teleportation schemes involving “carrier” particles in each of
the entangled modes.

Most of the confusion over this issue can be blamed on
semantics: By “single-particle” entanglement, what is really
meant is the quantum correlation of two or more modes over
which a single excitation (i.e., the particle) is distributed.
Regardless of the degree of freedom under consideration, one
should therefore think of entanglement as occurring between
modes rather than between any particular excitations of those
modes [24]. In fact, all that is needed to enable entanglement
is a system with an associated Hilbert space whose dimension
can be factored [25]. In light of the above, any reference
to single-photon nonlocality in the present paper should be
pictured with field-mode entanglement in mind.

Although single-photon teleportation has been discussed
quite extensively, and demonstrated experimentally [26], its
success rate has been limited to at most 50%. This could be
taken by the detractors of entanglement with a single particle
as an indication that the involvement of the vacuum state as
an agent of correlations bears with it a fundamental limitation.
We argue that this lack of determinism, however, is not due
to an intrinsic shortcoming of single-particle teleportation,
but rather to the difficulty of implementing a deterministic
analyzer for the following Bell states:

1
ﬁ(|01> + [10)), (D
1
+
lo™) 7
where, e.g., |01) = |0)4, ® |1)p is the shorthand notation for
vacuum in Alice’s mode and a single photon in Bob’s mode.

ly*) =

(100) £ [11)), 2)
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If one is restricted to linear optics, it has been shown that this
difficulty is fundamental [27], and that the success rate appears
to be limited to the above-mentioned 50%. Recently, Pavici¢
demonstrated that this threshold can be raised asymptotically
to 100% if one uses conditional dynamics on the polarization
degree of freedom of a two-photon Bell state [28]. However, his
scheme does not lend itself to single-photon Bell states because
the delocalization behavior of polarization at beam splitters
is different for the vacuum state than for a single-photon
state. For example, the splitting of, say, a vertically polarized
photon | V') on a beam splitter leads to a nonlocal superposition
\/Li(lV,O) +10,V)), whereas the vacuum remains separable
|0) ® |0), suggesting once again the alleged shortcoming of
the vacuum.

However, what we wish to demonstrate in this paper is
that fundamentally, nature does not differentiate between
whether the entanglement needed to perform teleportation
is carried by one, or more than one, particle. Hence, we
will allow any classical resource, linear or nonlinear, but no
additional quantum resources. The reader should be warned
that although the scheme we outline below is certainly
experimentally implementable, it will not be the most practical
scheme to teleport a state. Our aim is simply to argue that at
the fundamental level, any task that can be done by a
multiparticle entangled state can also be achieved by the
isomorphic state with the vacuum state and single-particle
state as the basis. Specifically, we show that deterministic
teleportation can be achieved with such a state as the only
quantum resource.

In the context of single-particle entanglement, nonlocality,
and teleportation, there has been a debate as to whether particle
superselection rules preclude such effects for single particles
[29,31-33]. After all, in order to detect some event, one needs
a detector “click,” and such a click is inevitably associated
with a particle. We shall see that superselection rules can be
circumvented by the use of auxiliary, but classical, systems
with an indeterminate particle number. Essentially, the same
technique was suggested in Ref. [33], using a Bose-Einstein
condensate as the auxiliary system. Below we shall instead
use coherent states, which by contrast are classical resources.
These states have the property that even if a particle is
removed from a highly excited coherent state, the state remains
essentially the same. That is, the state, and the same state with
a particle removed, are essentially (and to an arbitrary degree)

©2012 American Physical Society
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indistinguishable. This will allow us to let the auxiliary system
“lend” a particle to the entangled system, and hence ‘“hide”
the particle-number information that otherwise may ruin the
intended task.

In this paper, we aim to assert the soundness of single-
particle teleportation by outlining an experiment which, in
principle, can identify any of the four Bell states deterministi-
cally and with arbitrary accuracy. The main challenge to this
end is that the Bell states |@*) are not energy (or more gen-
erally, particle-number) eigenstates. In particular, no linear-
optical scheme can deterministically resolve their phases [34].
We propose a way around this by storing the photonic qubits in
two-level atoms. Owing to the two-dimensional Hilbert space
of a two-level system, its stored qubits can conveniently be
rotated on the Bloch sphere via coherent excitations. Once
aligned with the energy eigenbasis of the atom, the orientation
of the initial qubit can easily be deduced due to the unitarity
of the rotation. Before treating the two-mode case of |p¥),
we first consider, in Sec. II, the Hadamard rotation of the
single-mode qubit %(|O) + 1) — {]0),]1)}. We then follow
up, in Sec. III, with a description of the actual teleportation
setup and its two-stage Bell analyzer.

II. HADAMARD ROTATION OF A VACUUM-PHOTON
SUPERPOSITION

Consider a qubit made up of an equal superposition of the
vacuum and a single photon:

<
/2

where 6 is the equatorial angle on the Bloch sphere. Our first
goal is to devise a projector 1y = |Xy)(Xy| which can resolve
the phase 6. Note that any projector [T, can be implemented
from any other f[,; by interposing a phase shift AG =60 —
B. We will show in Sec. IIl A that such a projector, when
applied in parallel to the two modes of |p*), will allow us to
resolve the sign of the superposition. We shall for now restrict
ourselves to the single-mode case and describe how | X() can
be distinguished from | X ).

Let us define two initially separated Hilbert spaces per-
taining to an atomic and a photonic mode, respectively. For-
mally, the space under consideration is H = Haom ® Hphotons
where Hphoton = {|n) : 11 € N} and Hphoton = {18).le)}. Here,
n denotes the number of photons, and |g) and |e) denote the
ground and excited atomic states, respectively. The interaction
between the two modes is dictated by the Jaynes-Cummings
(JC) Hamiltonian, expressed below in the rotating wave
approximation:

1Xo) = —(10) + €"“[1)), 3)

H=ny6 a +6%a), “4)

where a (@") is the photon annihilation (creation) operator,
and 61 (67) is the atomic raising (lowering) operator. Here,
y quantifies the strength of the photon-atom coupling. The
transformations undergone by any preparation in H under the
action of A are summarized in the Appendix and shall be used
in what follows.

The candidate qubits |Xp) and |X,) to be measured are
initially stored in the photonic mode, whereas the atom is

PHYSICAL REVIEW A 85, 022316 (2012)

__Photon-to-atom storage of the qubit

[0y+]1) le) lg) ............ I=1;> ..... |.9_}_._>|e) o) File)

Hadamard rotation

le) —— 1t l9)
Ia>. , MMNN lo)tile) S ¢
lg)——

19)

FIG. 1. (Color online) Sketch of the two-stage implementation
of the [T, projector for 6 € {0,7}. The photonic and atomic modes
are colored in red and blue, respectively. First, the photonic qubit is
transferred to an atom initially in the ground state (top). Second, a
coherent 7 pulse is applied on the atom so as to rotate the qubit into
one of the energy basis vectors |g) or |e) (bottom). The subsequent
deexcitation of the atom (or lack thereof) will reveal that the initial
photonic qubit was | X,) (or | X, )).

b4

prepared in the ground state. Upon an interaction time 7 = 3
we obtain the transformation

1 1
Elg) ® (10) £ (1)) — E(Ig) File)®10), ()
whereby the photonic qubit has been transferred to the atomic
mode and the state is once again separable. The atomic qubit at
this stage is not yet measurable in the energy eigenbasis. It can,
however, be rotated so as to align itself with the eigenstates of
the atom by shining a strong coherent beam |¢) with || > 1.
(This coherent state will incidentally serve as a reference
phase.) If one chooses an interaction time f; = m, then the
state transforms to a very good approximation (see below) as

1
V2
1
Eﬂg

If one now determines via, say, a fluorescence measurement
that the final state of the atom was the ground (excited) state,
then one can conclude that the initial qubit was | X, ) (] Xp)). A
sketch of the physics underlying the transformations (5) and
(6) is shown in Fig. 1.

As derived in the Appendix, however, an error in the
correspondence between the initial and final states in (6)
will arise for weaker coherent fields. This is where the
superselection rule kicks in because it is clear that the left-
and right-hand sides of (6) do not contain the same number of
particles on average. An exact analysis of the transformation,
made in the Appendix, shows that the probability for such
an error decreases with the strength |«| of the coherent state.
For example, the probability of erroneously identifying |Xo)
instead of | X, ) is given by

o () ()

— —sin
4| || 4o

(Ig) +ile) ® la) = |g) ® |a)
, 6)
) —ile) ® la) —> le) ® |a).

e*lalz > |Ot|2” 2

2 n!
n=0

Perr:

)
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FIG. 2. (Color online) The probability P., of an erroneous
projection as a function of the coherent-state average photon number.

The fidelity of the Hadamard rotation is therefore contingent
on the strength of the coherent 7 pulses. The error probability
is plotted in Fig. 2, and it can be seen that already for || = 50,
the error probability is at the 1% level. This means that already
for rather modest coherent-state excitations, the unitarity of the
Hadamard operation in (6) is effectively achieved.

III. THE BELL-STATE ANALYZER

The teleportation protocol is sketched in Fig. 3. It consists of
an entangled resource |) = %ﬁ(|01) + |10)) linking Alice
and Bob, and an unknown state |£) = a|0) + b|1) (where
la|> + |b|> = 1)tobe teleported from Alice to Bob. The overall
tripartite state, with the first two modes belonging to Alice and
the last to Bob, reads

1
ﬁ(a |001) 4+ a|010) + b|101) + b|110))

1 1
§|§0+) ® (all) +b10) + Sl¢7) ® (all) — b|0))

W) =15 ®ly")=

1 1
+ EIIV) ® (al0) +b1) + 1Y) ® (@|0) — bIL)).

Upon the detection of | *) or |¢*), Alice can inform Bob via
a classical channel that he has in his possession a|0) & b|1) or
al|l) &£ b|0), respectively. Bob can then perform a local unitary
operation of his qubit to recover |€) (see Table I).

Let us now focus on the Bell analyzer. We propose that it
consist of two steps: Alice first distinguishes |/*) from |¢p¥),

Alice . Bob
~... Classical -
~_channel

&)

" Bell analyzer

>@®|®|VHVﬂ
O o O O

Unknown
input |E_,)

EPR
source

FIG. 3. (Color online) Teleportation protocol. (Here, the instance
where Alice detects |¢~) is highlighted.)
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TABLE I. Table of the local operations to be performed by Bob
based on the four possible Bell states measured by Alice. In the case
where Alice measures |¢1), no action needs to be taken by Bob.
In the other three cases, he will have to apply a photonic 7 phase
shift (abridged “shift” below) and/or transfer the photonic qubit to a
two-level atom and then apply a coherent 7 pulse (abridged “transfer,
flip”).

Bell state Local operation

l™) all) + b|0) — transfer,flip — |§)

lo™) a|l) — b|0) — shift, transfer,flip — |&)
) al0) + b|1) = &)

[v™) a|0) — b|1) — shift — |&)

and then she determines the signs of each superposition with
separate setups. We discuss each step in Secs. IIl A and III B
below. A sketch of the Bell analyzer is shown in Fig. 4.

A. Discrimination between | *) and |¢*)

The main difference between |¥*) and |¢¥) is that the
former are energy eigenstates, which are easily separable by a
rotation in the energy basis (e.g., with a 50/50 beam splitter).
The latter, however, are not energy or particle eigenstates and
thus require a more elaborate treatment to reveal the sign of
their superposition by an energy (particle) counting detector.
Our first task is therefore to branch off [*) and |¢*) so that
each is forwarded to the appropriate analyzer. We propose to
achieve this sorting with a dual-rail quantum nondemolition
(QND) measurement, first proposed for quantum error cor-
rection [35]. The idea behind this QND measurement is to
induce a phase shift in an auxiliary coherent beam depending
on whether the total number of photons in the Bell state is
odd (as in |*)) or even (as in |¢*)). The coherent probe
remains separable all along so that no collapse is incurred on
the individual Bell states. The interaction Hamiltonian, which
could be implemented physically as a cross-Kerr effect [36],
is written in the rotating wave approximation as

Hi = hi(@'a + bibyéte, (8)

where « is the strength of the interaction.

If we set the interaction time to Ty = 7, then the propagator
becomes e”'”@“wb)m, and we are then faced with two
possible scenarios. If the Bell state is | *), then the overall

state [¥*) ® |a) transforms as follows:

et

" e L
= 01) £ 110
V) ® ) ﬁu )£ | >>®;m|n>

lof? 0 n

w € 2 s o
—(|01) £ |10 L p—

—>ﬁ<| )£ | >>®ge =
1

= —(|01) &£ |10 —
ﬁa )£ 110) ® | — )

= Y5 ®|—a). ©)

On the other hand, if we start with |@*), then a similar
derivation leaves the state unchanged,

19%) ® o) =5 |pF) ® |a). (10)
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Dual T1, projector
( Photon ) ;
l -to-atom ’
( Photon )

Switch

4

|97

/ |(p )  -to-atom ) |(p_)

Trae{l¥"}  Unknown
AN Bell state ( )
e [v7),[97) { X(3)
Input [§)  Reference L,
oscillator

) SO

1:2\ Balanced beam splitter

-] Beam dump

A
T Lv)

W) 12 men

Feed-forward

—>D Photon detector @ Hadamard rotation

FIG. 4. (Color online) Conceptual sketch of the Bell analyzer. The first part consists of a quantum nondemolition measurement, which
separates |*) from |¢*) by inducing a phase shift in an auxiliary coherent field if |*) was input. Depending on the outcome of this first
measurement, a double pole, double throw (DPDT) switch forwards the state to either a balanced beam splitter (for [/*)) or a “dual-rail”

extension of the projector discussed in Sec. II (for |p)).

It can now be seen that the differentiation of [*) and |¢*) can
be achieved be comparing the phases of the auxiliary coherent
fields: Only those coherent fields that have interacted with
[*) acquire a 7 phase shift, and those that interacted with
|¢*) remain unchanged. The acquisition of the 7 phase shift
can be observed by a simple classical interference between the
probe beam and a reference coherent state on a balanced beam
splitter.

B. Discrimination between |¢*) and |¢~)

Now that [*) and |@*) are branched off, there remain to
be determined the signs at the superscript in either case. As
already mentioned, the differentiation between the triplet (1)
and singlet states (1 ~) can be done easily by joining the two
constituent modes on a balanced beam splitter. The outgoing
modes become disentangled and the detection of the photon
at either of the output ports has a direct correspondence to the
sign of the superposition.

A more complicated situation occurs when the QND
measurement announces the states |¢*). The discrimination
between the signs requires a two-mode extension to the single-
mode projector described in Sec. II. This is done by placing a
ground-state atom in the path of each of the incoming photonic
qubits. After an interaction time of T = %, the evolution of
the photon-atom system will be the straightforward extension
of (5), namely,

1
= — 00) + |11
lgg) ® lo™) ﬁlgg)®(| ) £111))
N %(Igg) Flee) ®100). (1)

Now that the qubits have been completely transferred from the
photonic to the atomic modes, we can call upon the Hadamard
transformation worked out in (6). This rotation gives
1
V2
1
V2

where once again f, =
T
7-coherent pulse.

(Ig8) — lee)) ® laar) = %(|gg> 1 [ee)) ® [aa)
W1 (12)
(186) + le€)) @ laa) > —(1ge) +leg) ® aa),

%

is the time it takes to apply a

T
4y ||

The difference between the two final states lies in the
parity of the energy quanta stored in the atoms. An initial
photonic state |¢ ) corresponds to a total energy of exactly one
quantum: %(|ge) + leg)). Conversely, |¢*) leads to either

Zero or two quanta: %2(| gg) + |ee)). The efficiency of this
Hadamard rotation, as argued in Sec. II, increases with the
mean photon number of the 7 pulses and can thus be made
asymptotically ideal for strong coherent fields.

IV. DETERMINISTIC QUANTUM COMPUTING

Finally, we show that by using the experimental tech-
niques presented in this paper, it is also possible to achieve
deterministic quantum computing based on single-photon
entanglement. It has been shown by Lund and Ralph [30] that
nondeterministic quantum computing using the superposition
of vacuum and a single photon as a qubit can be obtained with
linear optics and photon counters. However, by allowing for
nonlinear operations, it is possible to bring this idea into a
deterministic setting.

A universal set of quantum gates could consist of the phase
rotation gate, the Hadamard gate, and the control sign shift
(CS) gate. The phase rotation gate is easily implementable
using a simple phase delay. A deterministic Hadamard gate
can be constructed using the JC interaction as outlined in
Sec. II. The CS gate can be implemented by storing the input
modes (a|0) + b|1)) ® (c|0) + d|1)) in a pair of atoms (via the
JC interaction), applying a 7 pulse, and letting it decay:

(ac|00) + ad|01) + bc|10) + bd|11)) ® |gg)
BRI (aclgg) + ad|ge) + bcleg) + bd|ee)) ® |00)
2 (aclgg) + ad|ge) + beleg) — bd|ee)) ® |00)
LY (acl00) + ad|01) + be|10) — bd|11) @ |gg).

By combining this CS gate with the above-mentioned phase
and Hadamard gate, a universal quantum computation based
on qubits of the form (3) can, in principle, be executed.

V. CONCLUSION

Our proposal is difficult to implement experimentally in
that it requires expertise in two separate and highly specialized

022316-4
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areas, namely, the generation of single photons and the manip-
ulation of light-matter interactions. We believe, however, that
our theoretical sketch will help bring some closure to the debate
that still surrounds the notion of single-particle nonlocality.
The root of this debate can be traced to the perception of the
vacuum |0) as a singular—if not pathological [6]—state whose
similarity to the other Fock states has little physical meaning
beyond mathematical isomorphism. By building on earlier
discussions about mode entanglement and the nonlocality
of this state [2,9,31,33], and by showing the full power
of single-photon teleportation with no additional quantum
resources, we hope to have proven the contrary.
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APPENDIX: JAYNES-CUMMINGS MODEL

We shall summarize here the mathematics behind the
Hadamard rotation treated in Sec. II. This is based on an
application of the Jaynes-Cummings model, whose Hamil-
tonian has already been presented in Eq. (4). The Schrodinger
equation corresponding to this system is solved by

oo

W () =Y {lceen cos(ytn/n + 1) — icgcuiy
n=0

x sin(ytv/n + D]le) + [cqc, cos(yt/n)

—iceCp sin(yta/n)]|g)}In), (AL)

V2 «/_

2
—l? o on

,L ] o

=0

4o

Jn—+1 4o

L(Ig) Tile)) ® la) = —=(Ig) £ile) ® e Z \/_

{[cos(ytﬁ) + %ﬁ sin(ytﬁ)] |gn) + |:j: cos(ytvn+ 1) —

{tzts 4y|a|} Tli n{[““(m
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where the initial state is given by
1¥(0)) = [Yaiom(0)) ® [¥photon(0))

= (cglg) +cele) ® ) culn),

n=0

(A2)

and ¢, ¢, and ¢, are complex. An in-depth derivation of (A1)
is given in Ref. [37].

Three key transformations of the atom-photon eigenstates
are of interest to us, namely,

lg,0) — 1g,0),
lg.n) — cos(yt/n)lg,n) — isin(yt/n)le,n — 1),

le,n) — cos(ytv/n + 1)|e,n) —isin(ytv/n + 1)|g,n + 1)
(A5)

(A3)
(A4)

The transfer of the qubit from the photon to the atomic modes
is thus given by

1
—=(1g0) £ |g1)

1
—(|0) £ 1)) =
(10) £ 1)) 7

Ig)@\/§

1
- —2[|80> Fi Sin(Vt)Ie()) F cos(yn)lgl)]

=[rf=r Z”V} f<|g>¢z|e>)®|0>

Now that the qubit is stored in the atomic mode, let us
derive how a coherent excitation |«) performs the Hadamard
rotation:

(A6)

WF

f%«/_

(Ign) L ilen))

[cos(yt\/—)|gn —isin(yt/n)le,n — 1) £ i cos(yt~/n + 1)|en) £ sin(ytv/n + D)|g.n + 1)]

\/_ sm(ytx/_)] len) }

(5

+i[icos<nm>— “ sin<nm>:||en)}.

(AT)

If we now assume that o &~ n'/2, then the cosine and sine functions become approximately equal, thereby finalizing the
Hadamard transformations (6). One needs, however, to keep track of the error arising from the approximation. For example,
the probability of erroneously obtaining a final state |gn) instead of |en) will be given by any nonzero remnant in the factor

of |gn):

e—lal? 2 |oz|2"
[%n::

(A8)

2 n!
n=0

) ()]

4o

o

|or| 4a|
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