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Parallel Programming using
OpenCL on Modern Architectures

Allan Svejstrup Nielsen

Allan P. Engsig-Karup & Bernd Dammann

Abstract

This report is intended as a quick introduction to the OpenCL framework and the aim is to
facilitate a smooth transfer into the use OpenCL C for developers with previous GPGPU
experience. The purpose of OpenCL is to allow for developers to use all compute resources
available on a heterogeneous hardware platform.
As well as being an introduction to OpenCL, the report also presents an overview of AMD
GPU hardware, covering both the VLIW5/4 architectures and the upcoming Graphics-Core-
Next architecture which is to form the basis of AMDs future generation GPUs that are to
be as capable at compute as they are at graphics.
To conclude the presentation of OpenCL as a language for compute, a matrix-matrix mul-
tiplication example is devised and optimized for the VLIW4, Tesla and Fermi architectures.
The performance is measured as a function of both matrix and work-group size and res-
ults are discussed. Where applicable, the equivalent CUDA implementation is tested for
comparison.
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Preface

The report at hand was written as part of a 5 ECTS special topic course at DTU Department
of Informatics and Mathematical Modeling (DTU Informatics) with Allan P. Engsig-Karup
and Bernd Dammann as advisers.
Part of the CUDA code tested and presented within the report was developed during another
5 ECTS course at DTU, 02614 High Performance Computing.
The report represents a brief condensation of much of the current movements within OpenCL
and heterogeneous computing.
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Nomenclature

ACE In the GCN architecture, the two Asynchronous Compute Engines handles
resource allocation, context switching, and task priority.

ALU An arithmetic logic unit is a digital circuit that performs arithmetic and
logical operations.

APU An Accelerated Processing Unit is a processing system that includes ad-
ditional processing capability designed to accelerate one or more types of
computations outside that of a CPU. Examples include AMD Fusion, IBM
CELL, Intel HD Graphics, and NVIDIA’s Project Denver.

CGMA Compute to Global Memory Access.

CUDA Compute Unified Device Architecture is a parallel computing architecture
developed by Nvidia.

DMA Direct Memory Access is a feature of modern computers that allows cer-
tain hardware subsystems within the computer to access system memory
independently of the central processing unit (CPU).

DSP A Digital Signal Processor is a specialized microprocessor with an architec-
ture optimized for the fast operational needs of digital signal processing.

ECC Error-Correcting Code memory is a type of computer data storage that can
detect and correct internal data corruption. ECC memory is used in most
computers where data corruption cannot be tolerated under any circum-
stances, such as for scientific or financial computing and as servers.

Fermi The Nvidia Fermi GPU Architecture is the GPU architecture on which
Nvidia GPU products are for the most part based on as of February 2012.

FPGA A field-programmable gate array is an integrated circuit designed to be
configured by the customer or designer after manufacturing?hence field-
programmable.

FPU A Floating-Point Unit is a part of a computer system specially designed to
carry out operations on floating point numbers.

GCN Graphics Core Next is a brand new architecture from AMD, the first product
based on this architecture was released January 2012. GCN is AMDs move
towards a GPU architecture that is as capable at compute as it is at graphics.

GDDR Graphic Double Data Rate memory refers to memory specifically designed
for use on graphics cards.

GPGPU General-Purpose computing on Graphics Processing Units (GPGPU or GPGP)
is the means of using a graphics processing unit, which typically handles
computation only for computer graphics, to perform computations typically
otherwise handled by CPUs.

IL The AMD Intermediate Language is a pseudo-assembly language. The IL
code is an intermediate representation compiled from OpenCL code for
graphics and compute on AMD cards. Upon execution, the GPU driver
on a platform translate the IL into binary code for the GPU to process.



ISA An Instruction Set Architecture is the part of the computer architecture
related to programming, including the native data types, instructions, re-
gisters, addressing modes, memory architecture, interrupt and exception
handling, and external I/O. An ISA includes a specification of the machine
language, and the native commands implemented by a particular processor.

Keppler Keppler is the codename for a new Nvidia GPU architecture that is to be
the successor of Nvidias current Fermi GPU architecture.

LDS Local Data Share is the name of the scratchpad memory within each compute
unit in the GCN architecture. In the LDS, data shared between work-items
within a work-group is residing.

MIC Intel Many Integrated Core Architecture or Intel MIC (pronounced Mike)
is a multiprocessor computer architecture developed by Intel.

OpenCL Open Compute Language. OpenCL is a framework for writing programs
that execute across heterogeneous hardware platforms.

PTX Parallel Thread Execution is a pseudo-assembly language. The PTX code
is an intermediate representation compiled from CUDA or OpenCL code for
graphics and compute on nvidia cards. Upon execution, the GPU driver on
a platform translate the PTX into binary code for the GPU to process.

SDK A Software Development Kit is typically a set of software development tools
that allows for the creation of applications for a certain software package,
software framework, hardware platform, computer system, video game con-
sole, operating system, or similar platform.

SIMD Single Instruction Multiple Data, is a class of parallel computers in Flynn’s
taxonomy. It describes computers with multiple processing elements that
perform the same operation on multiple data simultaneously. Thus, such
machines exploit data level parallelism.

SPU Streaming Processing Unit or just Streaming Processor is the name previ-
ously adopted by both AMD and Nvidia for the fundamental calculation
units that make up a SIMD.

Tesla The Nvidia Tesla GPU Architecture is a now discontinued architecture that
was used in the Geforce 2xx and Geforce 3xx series. The Tesla Architec-
ture is not to be confused with the Nvidia Tesla Brand which is a line of
GPU products designed and marketed specifically towards High Perform-
ance Computing.

VLIW Very Long Instruction Word refers to a processor architecture designed to
take advantage of instruction level parallelism. VLIW4 and VLIW5 are GPU
architecture namebrands adopted by AMD for the GPUs in the Evergreen
and Northern island GPU series.

WebCL The Khronos Group is working to define a JavaScript binding to the Khronos
OpenCL standard for heterogeneous parallel computing. WebCL will enable
web applications to harness GPU and multi-core CPU parallel processing
from within a Web browser.



Part I

Heterogeneous Computing and OpenCL
In this part of the report at hand, the reasoning behind the industry move towards hetero-
geneous hardware systems are explored, and the role of OpenCL within this development
explained. GPUs are the first compute accelerators, in many years, to find success within
general purpose scientific computing. The current hardware trends within this area are dis-
cussed with reference to the new programming frameworks, being introduced to program
these heterogeneous hardware system.

1 Scientific Computing Demands Throughput

As the usage of computer simulations within engineering and natural sciences increase, so
does the demand for computational throughput and speed, from engineers and scientists
alike. For the past decades, improvements within manufacturing and processor technologies
has been the main driver of performance, allowing new generations of microprocessors to
shrink dimensions and thereby reduce power consumption, add transistors and increase
operating frequency. All this to add to the throughput generated by general purpose CPUs.
This ride, however wonderful, is over. Since mid 2000s, chip manufactures had to seek out
new ways of improving the performance of their hardware. While the number of transistors
that could be fitted on a chip continued to increase, the ability to increase clock speed hit
a practical barrier often referred to as "the power wall". The exponential increase in power
required to increase the micro processors clock frequency hit practical cost and design limits.
The immediate response of the two biggest players in the market, was to add more cores
to a die, this however, was not an easy fix, and the added parallelism forces much software
to be changed and many algorithms to be revised. It is hard to understate the change that
has happened within high performance computing for last couple of years - in addition to
the challenges presented by not being able to scale the clock frequency, HPC vendors and
users have experienced other problems. The scale out strategy of increasing performance by
racking and stacking an ever increasing amount of compute nodes has hit physical limitations
of space("The wall wall"), structural support, cooling and electricity supply.
The industryz answer to these issues seem to converge towards what has become known as
heterogeneous computing. The idea is to add accelerators to the commodity based racks
used. These accelerators are, in contrast to a general purpose CPU, highly specialised units.
A general purpose processor will by default include a wide range of functional units, to be
able to respond to any computational demand. This is what makes it a general purpose
processor. Accelerators are specialised to handle only specific functions or task, i.e. fewer
transistors are wasted during compute because only those functional units required by the
compute purpose are included.
There is a lot to gain in terms of performance and power from specialised silicon. A recent
report released November 2011 from analyst firm IDC argues that heterogeneous comput-
ing is going mainstream and will be "indispensable for achieving exascale computing", and
already several of the fastest clusters on the TOP500 list use accelerators of some form.[5]
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1.1 A New Market for GPUs

High performance computing has for a long time been a scavengers field, and clustered x86
based servers have dominated the market for the last decade and a half. These more general-
purpose systems are typically not the best architectures for most problems within scientific
computing. However, commodity component based computers were inexpensive, could be
racked and stacked, and were continually getting faster, while product development costs
for specialized systems could not compete against products sold to retail volume markets.
With the high cost of developing new processor architectures, specialised or not, where does
this leave a point of entry for specialised compute accelerators within scientific computing?
Well, here come the GPUs. GPUs are the first compute accelerators to be successfully in-
corporated within scientific computing in a long time. Discrete GPUs are designed for the
graphics commodity market, but graphics and compute are becoming increasingly indistin-
guishable as modern PC games now also utilise the GPUs not only for graphics, but also
for in-game physics and other compute intensive tasks. This need applies pressure on the
GPU manufactures to deliver products that can deliver on these trends. And once again,
commodity hardware fulfill compute needs.
Traditional general purpose CPUs have a substantial part of the chip area dedicated to large
caches as well as branch prediction and control logics, to keep a few threads running very
fast and keep them from stalling. CPUs are build and designed for control intensive tasks,
and they are very good at this. Unfortunately most problems within scientific computing
are data or compute intensive rather than control intensive. Graphics is data intensive,
and on the GPU chip, the large caches and control logic are removed in place of more
ALUs/FPUs. In addition, the GPU memory have a high bandwidth and is close-to-chip.
This memory trades bandwidth for high latencies, and the high latency is hidden trough
massive multi threading and what is known as zero-overhead scheduling. GPUs are thus
designed to handle data intensive tasks, which are very similar to the compute needs within
scientific computing, and as they are available as low priced commodity hardware, it is a
perfect match in terms of the needs within scientific computing.

1.2 The Open Compute Language

In general, a heterogeneous computing platform consists of microprocessors with different
instruction set architectures(ISAs). A modern workstation today can be equipped with mul-
tiple CPUs, multiple GPUs from different vendors, and other more exotic accelerators such
as DSPs or FPGAs. This multitude of different devices increase the complexity of code
and decrease portability by requiring hardware specific code to be interleaved throughout
application code. Another challenge lies in balancing the application workload across dif-
ferent devices. This is especially problematic, since different devices typically have different
performance characteristics.
This is were the Open Compute Language(OpenCL) enters the scene: OpenCL is developed
specifically to ease the burden when writing applications for heterogeneous systems. OpenCL
is a new open framework for programming heterogeneous systems, and it is pushed by
industry and managed by the non profit technology consortium Khronos Group. As argued
above, heterogeneous systems are becoming an important class of platforms, and OpenCL
is the first industry standard to address the programming needs that come about with this
paradigm change within computing. The OpenCL Working Group within Khronos consists
of diverse industry participation, including processor vendors, system OEMs, middleware
vendors and application developers.
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OpenCL lets programmers write a single portable program that makes use of all resources
in a heterogeneous platform, and with OpenCL it is possible to write programs that can run
on a range of systems, from cell phones, using the OpenCL embedded profile, to nodes in
massive super computers. No other parallel programming standard has such a wide reach.
OpenCL 1.0 was first released as royalty-free specifications in December 2008, after Apple
proposed an OpenCL working group and contributed with draft specification to the Khro-
nos Group in June 2008. During 2009 multiple conformant implementations were shiped
across diverse operating systems and platforms, and in June 2010 OpenCL 1.1 specifications
were released and first implementations ship. With OpenCL 1.1 many new features were
added, with the most prominent ones being a general uplift in functionality for enhanced
programmability as well as new data types. The ability to handle commands from multiple
hosts, perform operations on regions of a buffers, enhanced use of events to drive and con-
trol command execution, additional OpenCL C built-in functions and improved OpenGL
interoperability.
November 15th 2011 at SC11, Seattle, the specifications of openCL 1.2 where released[24],
and new features include, but are not limited to

• Device partitioning - enabling applications to partition a device into sub-devices to
directly control work assignment to particular compute units, reserve a part of the
device for use for high priority/latency-sensitive tasks, or effectively use shared hard-
ware resources such as a cache.

• Separate compilation and linking of objects - providing the capabilities and flexibility
of traditional compilers enabling the creation of libraries of OpenCL programs for other
programs to link to.

• Built-in kernels represent the capabilities of specialized or non-programmable hard-
ware and associated firmware, such as video encoder/decoders and digital signal pro-
cessors, enabling these custom devices to be driven from and integrated closely with
the OpenCL framework.

With these new additions, OpenCL has become a powerful platform for heterogeneous com-
puting. At SC11, Timothy Mattson from Intel corporation, one of the authors of the OpenCL
Programming Guide, disclosed information regarding OpenCL 2.0. Apparently, the OpenCL
Working Group within Khronos is working aggressively towards OpenCL 2.0 which will
contain many new advancements. Currently, information regarding the specifications of
OpenCL 2.0 are very limited, it is however clear that in OpenCL 2.0 we will see a more
sophisticated memory model that allows virtual shared memory spanning across platforms!
A more flexible execution model is under development with regards to task level parallel-
ism within OpenCL and a work group has been designated to define a standard high level
interface to sit on top of OpenCL, this under the name HLL.
In addition to the push for OpenCL 2.0, a new initiative, webCL, was announced in March
2011. WebCL is supposed to provide JavaScript binding to the OpenCL standard for het-
erogeneous parallel computing. WebCL will enable web applications to harness resources
on a heterogeneous platform from within a Web browser, enabling significant acceleration
of applications such as image and video processing and advanced physics. More information
regarding OpenCL 2.0 should be out late 2012, expect something early 2013.
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2 Trends and Industry Movement

2.1 Programming Paradigms

So far, GPUs have received the most attention, and constitute the group of accelerators that
have first been widely adopted for compute purposes. OpenCL is not the only programming
framework that offers to harness the power of these units. The Microsoft DirectCompute
API introduced with DirectX 11 allows developers to use GPUs to accelerate windows ap-
plication, and Nvidia are aggressively promoting their own framework CUDA by building a
vast infrastructure to support developers. CUDA is not restricted to any particular operat-
ing system, but only works with Nvidias own products, though efforts are being made now
by Nvidia to add support for x86 instruction set architectures.
Microsoft DirectCompute and Nvidia CUDA are limited either to a given operating system
or certain GPUs, but OpenCL constitute an entire open source framework to harness parallel
compute power from any device spanning from regular CPUs to exotic compute devices such
as DSPs or FPGAs, not restricted to any particular operating system or vendor.

Figure 2.1: Google trends search volume index comparing searches on CUDA,
OpenCL and OpenMP. The search volume for DirectCompute is to low to depict.

Since Microsoft’s DirectCompute was introduced in 2009, it has received only limited atten-
tion from the community of developers, whereas CUDA and OpenCL are supposedly on the
rise. OpenCL is by many considered the outsider when it comes to GPU computing, given
Nvidias large commitment to promoting CUDA. A search on Google trends reveals that
OpenCL is less of an outsider than one might think. In figure 2.1, the amount of searches
on CUDA, OpenCL and OpenMP as a reference is depicted, with the search volume index
zero set at February 2007, when the first CUDA SDK was made public.
It is clear that CUDA has received the most attention, which in part must be due to the
massive marketing efforts by Nvidia. The amount of searches for CUDA seem to be on the
decline compared to OpenCL though. One thing is search volume, another is the actual
demand by industry for people with experience within these new languages. On Simply-
Hired.com, a vertical search engine company based in Silicon Valley, supposedly in the
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process of building the largest online database of jobs on the planet, it is possible to com-
pare trends of key words within job descriptions harvested throughout the web. In figure
2.2, Cuda, OpenCL and OpenMP are compared in terms of how often these words appeared
in job descriptions within an 18 month period. From the figure it is clear how OpenCL is
receiving almost as much attention as CUDA does by industry. Also, competences within
these languages are already more sought after than OpenMP, which is the defacto standard
for writing portable SMP application software.

Figure 2.2: SimplyHired.com trend lines comparing how often CUDA, OpenCL
and OpenMP appear as key words in job descriptions throughout the web.

There is more than one fundamental difference between CUDA and OpenCL, CUDA is
for GPU-CPU devices only, while OpenCL is to be a general language for compute on
heterogeneous systems composed of other types of accelerators and even embedded devices.
That said, currently the only accelerators for compute having gained wide adoption is the
GPUs. The advantage here with OpenCL is that one is not limited to GPUs from a single
vendor only.

2.2 Current Development in GPU Hardware

Currently, there are two major producers of GPUs, these being Nvidia and AMD. In table
2.1, the specifications of the current high end products from both companies are listed.
The AMD HD 7970 was released January 2012 and is the worlds first GPU to be fabricated
using 28nm technology, and more importantly, it is also the first GPU based on AMDs
new "Graphics Core Next", GCN, architecture. AMDs most recent shift was moving to the
VLIW4 architecture, essentially a revised VLIW5, in Q4 2010 and now they are making
their biggest leap yet with GCN.
GCN is to form the basis of a GPU that performs well at both graphical and computing
tasks. AMDs VLIW architecture was stretched as far as reasonable for computing purposes,
and as more developers are getting on board for GPU computing, a clean break was needed
in order to build a better performing GPU to meet their needs. Some observers regard
GCN as AMDs Fermi, as it is supposed to be an entirely new architecture making the GPUs
equally capable at computing as they are at graphics.
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Currently, Nvidia offers a range of devices all based on their Fermi architecture, products
based on the successor Keppler are not expected to be out until sometime mid/end 2012.
Nvidia constricts the double precision performance of their Geforce commodity line aimed at
personal computers to 1/4 the performance of the equivalent Tesla cards. For many problems
within scientific computing, double precision is essential, and as such, with Nvidia products,
one is often forced to buy the expensive Tesla cards marketed for compute purposes and
workstation use.
The Tesla line of compute and workstation products are essentially carrying the same chip
as the high-end consumer products under the Geforce brand. The Tesla line-up cards,
however, contains two DMA engines for bi-directional PCIe communication, which can boost
performance in compute operations with a tight feedback loop to the main memory. The
Tesla line-up cards are also equipped with ECC protected memory and ship with cluster
management and GPU monitoring software, and a 18-24 month availability is guaranteed.
Furthermore, all Tesla brand cards are stress tested for several days before being shipped.
AMD has yet to release any information regarding Firestream products for compute purposes
and workstation use, based on their new GCN architecture. However the HD 7970 card
itself carries some interesting features worth mentioning. First, the memory bandwidth of
264GB/s feeding the HD 7970 chip is among the highest yet to be seen. Many applications
within scientific computing are memory bound, so this should raise some attention within
the community of developers.
Another interesting difference to note is how Nvidia’s commodity lines are configured, to
deliver only one quarter of the double precision performance of the equivalent Tesla series
cards, whereas AMD’s new products are configured to deliver half the double precisions per-
formance of the equivalent Firestream cards, giving the AMD commodity cards a substantial
advantage in double precision pure compute throughput
However, the HD7970 is still a commodity product, so no ECC memory, and no added
engines for bi-directional PCI communication. But as the first GPU card, it does support
PCIe 3.0 which has twice the bandwidth of the PCIe 2.1 standard which is used on the
Geforce GTX580 and the Tesla C2050. The new AMD launch offers a very cost effective
alternative to Nvidias workstation cards with more than 80% higher bandwidth and 80%
higher peak theoretical performance at almost one quarter of the price. With the very
aggressive performance/price strategy of AMD, it makes it very attractive for developers to
build compute applications in OpenCL, to be able to harness the power from these devices.

GPU AMD HD 6970 AMD HD 7970 Nvidia GTX580 Nvidia Tesla C2050
Architecture VLIW4 GCN Fermi Fermi
Peak Single 2700 GFLOPs 3788 GFLOPs 1584 GFLOPs 1030 GFLOPs
Peak Double 675 GFLOPs 947 GFLOPs 198 GFLOPs 515 GFLOPs
Memory Size 2 GB 3 GB 3 GB 3 GB
Bus width 256 bit 384 bit 384 bit 384 bit
Bandwidth 176 GB/s 264 GB/s 192.4 GB/s 144 GB/s
Price Tag $324.99 $549.99 $549.99 $1,999.99

Table 2.1

6



2.3 OpenCL Gaining Ground

OpenCL and CUDA are the two major competing programming frameworks for GPU com-
puting and so far CUDA has received the most attention due to Nvidias concerted efforts to
establish CUDA as the dominant programming framework for GPU applications. However,
according to some prominent sources [21], OpenCL is now maturing to the extend that focus
of efforts by the GPU computing community may be shifting.
The lack of competitive products for high-end GPU computing has been a limitation for
the adoption of OpenCL within HPC and so fare OpenCL has received more attention
with regards to client-side computing, especially for mobile platforms which increasingly
incorporate GPU silicon into chip design. OpenCL for High-Performance computing has also
been inhibited by a lack of maturity, which has resulted in lower performance on OpenCL
compared to that of CUDA.
Despite the above, AMD has continued to promote OpenCL and recent compiler and library
releases have improved performance considerably. Kyle Spafford from the Future Technology
Group at Oak Ridge National Laboratory (ORNL) has been benchmarking OpenCL and
CUDA for some time and is now convinced that OpenCL performance is on par with that of
CUDA. He recently presented his findings at the Georgia Tech’s Keeneland Workshop.[22]
Spafford ran the ORNL Scalable Heterogeneous Computing Benchmark Suite (SHOC) that
has been optimized for both CUDA and OpenCL and found that OpenCL can match the
performance of CUDA on most of the basic math kernels. Only the Fast Fourier Transform
code achieves a significant performance advantage with CUDA, and this is attributed to the
use of fast intrinsics in the CUDA implementation whereas the OpenCL implementation is
employing a slower but more accurate version, see figure 2.3.

Figure 2.3: CUDA relative to OpenCL performance of basic math kernels on
Nvidia hardware. [21]
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2.4 Compute Accelerators

GPUs have gained an enormous amount of success within high performance computing in
only a few years, but GPUs are not the only accelerators out there hoping to get a piece of
the rapidly growing HPC hardware market.
Currently, a multitude of special purpose accelerators from various vendors are being released
to the market. Mitrionics, Nallatech and Pico Computing are building FPGA logic boards
and Texas Instruments and Altera are building DSPs style devices which can function as
accelerators to commodity hardware trough PCIx interfaces [7].
On the Fusion developer summit June 2011, AMD disclosed more details around their
APU(accelerated processing unit) work, announcing their first product commodity APU
products for consumers. At Fusion11, roadmaps were presented stressing how APUs are
not only to be a consumer product, but will also eventually form the basis of AMD’s efforts
within high performance computing[9]. APUs, as such, are not a new class of accelerators,
but rather a CPU device and a GPU device merged onto the same chip, sharing the same
memory space.
Intel is also in the process of building its own compute accelerator, this under the architecture
codename MIC (Many Integrated Core). Prototype devices of this compute accelerator,
called Knights Corner, are already being implemented in large HPC clusters. This new
architecture is based upon Intels abandoned Larrabee project, and something in between
GPU and CPU. The purpose of the device is compute acceleration, but it can be programmed
with standard approaches such as Fortran, C++ and so on. When promoting the MIC, Intel
is stressing the ease at which costumers can port their application to use accelerators[8].

3 Outlook

Scientist and engineers alike, who use computer simulations as part of their work have come
to rely on an ever increasing supply of computational throughput and speed. Within recent
years, this supply has come under pressure since the speed of single core general purpose
CPUs can no longer be scaled due to the constraints imposed by the very laws of physics.
The demand for more computational throughput is still there though, and so a new approach
of increasing throughput is needed. The industry has decided that this approach is to be
heterogeneous computing [6].
The move towards heterogeneous computing is supported by the entire industry, but the
language and manor in which these systems are programmed has yet to be defined. OpenCL
pose one way of going about it, and promises fully portable solutions. Within the next
couple of years, AMD will be pushing its efforts on APUs, Intel is launching the MIC build
for High Performance Computing and Nvidia will undoubtedly continue pushing CUDA
to the masses. As such, it is difficult to make predictions as to where things are heading
within high performance computing, the only thing that is fairly certain is that it is going
heterogeneous.
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Part II

The OpenCL Framework

4 An Introduction

OpenCL is a framework for writing programs that execute across heterogeneous platforms
consisting of CPUs, GPUs, and other processors. In OpenCL, parallel compute work is
performed in kernels, and these kernels are executed on OpenCL devices. The kernels
are written in a language called OpenCL C which is an extension of C99 with certain
limitations and additions. OpenCL provides parallel computing using task-based and data-
based parallelism and it has been adopted by Intel, IBM, AMD, Nvidia and ARM among
others.
Learning OpenCL can seem overwhelming. The API is designed so to be able to handle
parallel compute operations in diverse domains, from super computing to embedded devices.
Thus, OpenCL is a lot more than just the kernel programming language OpenCL C. However
as we shall see, there is a classic approach that any OpenCL program follows.

1. Discover the components that make up the heterogeneous system

2. Probe the characteristics of these components so that the software can adapt to the
specific features of different hardware elements

3. Create the blocks of instructions (kernel) that will run on the platform

4. Set up and manipulate memory objects involved in the computation

5. Execute the kernels in the right order and on the right components of the system

6. Collect the final results

Setting up the code to go trough the above listed steps can be tedious, but once written
and once learned, the full span of generality of OpenCL opens up and this code can often
be reused for other projects.

4.1 Host and Devices

Within the OpenCL paradigm, a "host program" is the outer control logic that handles the
execution of an application. This host program would normally run on a general purpose
CPU such as the x86 processor in most computers. Compute work is offloaded to OpenCL
devices trough the use of kernels. The hardware on which the host program runs can still
be used for compute and execute these kernels.
OpenCL devices are grouped into three categories, these being CPUs, GPUs and Accel-
erators, and the actual compute work takes place on these. As of OpenCL 1.2, device
partitioning is possible. In OpenCL 1.2, a device can be partitioned into sub-devices so to
directly control work assignments to particular compute units and thereby reserve parts of
a given device for high priority or latency sensitive tasks if needed.
As mentioned previously, in OpenCL, one distinguish between three types of devices; CPUs,
GPUs and accelerators. The CPU device is a single homogeneous device that maps across a
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set of available cores. The GPU devices correspond to the throughput optimized devices mar-
keted toward graphics and general-purpose computing. The final class of OpenCL devices is
the accelerator device, this class is intended to cover a broad range of devices ranging from
IBMs Celll Broadband architecture to DSP style devices.

4.2 Conceptual Foundations

To ease the transition to, and the understanding of the OpenCL framework, the conceptual
foundations and models are discussed on a high level in this section. For a detailed list and
walk trough of API calls, the OpenCL Programming Guide [1] provides a good reference.
Also, numerous sources online exist[25]. Particular important API calls will appear within
this section, along with the equivalent CUDA terminology when applicable.

4.2.1 The Platform Model

The OpenCL platform model defines, that within an OpenCL application there is always
a single host and it is this host which handles input and output as well, as the control
flow within the application. The host is connected to one or more devices, and it is on the
devices where work is done. The devices are also at times referred to as compute devices.
An OpenCL device contains one or more compute units, and each compute unit contains one
or more processing elements (PEs); this is schematically shown in figure 4.1. The OpenCL
mapping to the actual hardware is implementation specific, and platform SDKs from various
hardware vendors are available. A complete list of conformant products can be found on the
Khronos Group webpage[15].

Figure 4.1: [24] A host will include one or more OpenCL devices defined in the
SDK. Each OpenCL device contain one or more Compute units which again
contain processing elements.
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4.2.2 The Execution Model

The compute work within an OpenCL application is carried out in a collection of one or more
kernels. These kernels execute on OpenCL devices. Within the OpenCL execution model,
it is defined how these kernels execute. Kernels are defined on a host and the host program
issues a command that submits the kernel for execution on a specified OpenCL device. The
kernels are executed on an integer index space created within the OpenCL runtime. An
instance of the kernel code is executed for each point within the index space. Each instance
of an executing kernel is called a work item, and is identified by its coordinates, the global
ID, in the index space.
The collection of work items all issue the same sequence of instructions defined within the
kernel code, programmed in OpenCL C, but the behaviour of each work item can differ due
to branch statements within the code. Work items are organized into work-groups, and the
work-groups provide a more coarse grained decomposition of the index space and always
exactly span the global index space.
The way kernels are executed in OpenCL is very similar to how they are executed within the
CUDA framework. In table 4.1, a translation of terminology used within the device memory
model and the execution model in CUDA and in OpenCL is given. In OpenCL, threads are
called work items and a thread-block is a work group. In section 6, the work item build in
functions to be used within kernel code are covered.

CUDA Terminology OpenCL Terminology
Global Memory Global Memory

Constant Memory Constant Memory
Shared Memory Local Memory
Local Memory Private Memory

Thread Work-item
Thread-block Work-group

Table 4.1: Table illustrating terminology difference within the CUDA and the
OpenCL compute execution model.

4.2.3 The Memory Model

One of the challenges and issues when programming a heterogeneous compute system, is
managing multiple address spaces. The host has the familiar address space expected on
a CPU platform, but the devices can have a range of different memory architectures. In
OpenCL, this is handled with the introduction of memory objects. The objects are explicitly
defined on the host and explicitly moved between the host memory space and that of a given
OpenCL device. This adds a layer of complexity when programming, but lets OpenCL
support much wider range of platforms. On the SC11 conference, November 2011, Seattle,
directions for OpenCL 2.0 was briefly introduced during a presentation by Intel employee
Tim Mattson. Tim Mattson is working within the Khronos OpenCL group, and disclosed
that one of the things they are working on with OpenCL 2.0 is to have a unified memory
space that simplifies handling of memory objects. Data is still to be moved so to ensure that
is is always close to compute, but the goal is to abstract this away from developers as much
as possible.
There are two different types of memory objects defined within OpenCL. Buffers and image
objects. A buffer object is a continuous block of memory onto which a programmer can map
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data structures and access them trough pointers. Buffer objects provide flexibility to define
just about any data structure that the programmer wishes, subject to the limitations of
OpenCL C naturally. Image objects are restricted to holding image data structures. Image
storage formats may be optimized to the needs of a specific OpenCL device. OpenCL give a
vendor implementation the freedom to customize the image format, and the image memory
objects are therefore opaque in the sense that the content can only be manipulated trough
functions provided in the OpenCL framework. Image objects are not covered in detail in
this report, refer to chapter 8 in the OpenCL programming Guide [1] for more information.
The OpenCL memory model defines five distinct memory regions.

Host Memory: This memory region is visible only to the host. As with most details
concerning the host, OpenCL defines only how the host memory interacts with OpenCL
objects and constructs.

Global memory: This memory region permits read/write access to all work-items in all
work-groups. Work-items can read from or written to any element a memory object
in global memory. Reads and writes to global memory may be cached depending on
the capabilities of the device.

Constant memory: This memory region of global memory remains constant during the
execution of a kernel. The host allocates and initializes memory objects placed into
constant memory. Work items have read only access to these objects.

Local memory: This memory region is local to a work-group, and the memory can be used
to allocate variables that are shared by all work-items in that work-group. It may be
implemented as dedicated regions of memory on the OpenCL device. For OpenCL
mapping to AMD hardware, see part III.

Private memory: This region of memory is private to a work-item. Variables defined in
one work items private memory are not visible to other work items.

In figure 4.2, the relation between memory regions and the execution model is shown. When
the host needs to interact with the OpenCL memories, it does so in one of two ways.
By explicitly copying data or by mapping and unmapping regions of a memory object.
Manipulating these memory objects is done trough their associated contexts.

Figure 4.2: The schematics show how the OpenCL execution model map to the
OpenCL memory model.

12



4.3 Contexts

Contexts within OpenCL are used as a sort of container. As the name implies, the context
defines the environment, in which the kernels are defined and execute. A context coordinates
the mechanisms for host-device interaction, manages the memory objects, and keeps track
of the programs and kernels created for a each device within the context. Contexts are thus
essential to the use of OpenCL. Contexts are created and can be manipulated by the host
using functions from the OpenCL API. More specifically, a context is defined in terms of
the following resources

Devices: A Collection of OpenCL devices.

Kernels: The OpenCL functions that execute on OpenCL devices.

Program objects: The program source code and executables that implement the kernels

Memory objects: A set of objects in memory that are visible to OpenCL devices and
contain values that can be operated on by instances of a kernel

Here the program objects contain the code for the kernels, and the program object is built
at runtime within the host program, kernel and program objects are covered in section 4.5.

4.4 Command-Queues

Interaction with devices is done only by submitting commands to a command queue. Once
the host decides which devices to work with and a context is created containing these device,
one command queue needs to be created per device. That is, each command queue is
associated with one device only. Whenever the host needs an action to be performed by
a device, it has to submit a command to the command queue associated with the device.
OpenCL supports three types of commands that can be submitted to a command queue.

• Kernel execution commands execute a kernel on the processing elements of an
OpenCL device.

• Memory commands transfer data between the host and different memory objects,
move data between memory objects.

• Synchronization commands put constraints on the order in which commands ex-
ecute.

In a typical application, after the tedious work of defining contexts, associating devices as well
as initialising memory objects, kernels and programs, attention shifts to the command queue.
First a command for moving memory objects to a device is submitted to the command queue
of the device to be used. Secondly, a kernel is submitted to the same queue for execution and
finally a command for moving data from device to host is submitted. In this example, one
needs to add synchronization commands to ensure that previous commands have finished
before moving on to the next.
Multiple kernels can be submitted to the same queue, and these kernels may even need
to interact in some form. If so, they have to use synchronization commands. To support
more complicated interactions, commands submitted to the command queue generate event
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objects. A command queue can be told to wait until certain conditions on the event object
exist, and these events can also be used to coordinate execution between the host and the
OpenCL device.
Commands submitted to a commands queue always execute asynchronously to the host
program, that is, the host program submit commands to the command queue and then
continues without waiting for the commands to finish. If this is necessary, synchronization
commands that act as a barrier until a given command has finished exists, more on this in
section 6.3. Commands within a single queue execute relative to each other in on of two
modes

• In-order execution: Commands are launched in the order in which they appear in the
command-queue and complete in order. In other words, a prior command o the queue
completes before he following command begins. This serializes the execution order of
commands in a queue.

• Out-of-order execution: Commands are issued in order but do not wait to complete
before the following commands execute. Any order constraints are enforced by the
programmer through explicit synchronization mechanisms.

In-order execution is supported by all platforms, but out-of-order execution is optional. Out-
of-order execution is convenient for load balancing many work loads so to keep all compute
units on a device fully engaged.

4.5 Programs and Kernels

Program and kernel objects are two of the most important objects within OpenCL. In
OpenCL, the functions that execute on a device are known as kernels and these functions
are written in the OpenCL C kernel programming language covered in section 6.1. In
order to pass arguments and enqueue the kernel function for execution on a device, an
application must create a kernel object from the kernel function. Kernel objects are created
from program objects, and the kernel objects may be seen as a handle to kernel functions.
A program object contains a collection of kernel functions. The program object is created
from kernel function source code or compiled program binary as well as build information
for any of the devices to which the program object is attached. The kernel object, created
from a program object, is then used to access properties of the compiled kernel function,
enqueues it for execution on a device, and sets argument calls.
There is a number of API calls available to create and build program objects and to query
the program objects for information. The API call to create program object takes a context
as well as the OpenCL C kernel function source code of one or multiple kernel functions.
When the program is created, it is thus associated with a context and contain a number of
kernel functions. The program needs to be built for a set of devices. When building the
program, one needs to pass the program object to be built, a list of devices to build the
program to, and various compile options, a comprehensive list of these can be found in [1]
table 6.1-6.4.
With the program object, containing kernel function source code and build information, one
can create the kernel objects that acts as handles to the kernel functions. To generate a
kernel object, one has to pass a program object along with the name of the kernel function
for which to create the kernel object as arguments to the relevant API call.
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The kernel object created is thus associated to a context and a set of devices trough a
program object, and one now sets arguments to the kernel object as well as enqueue it for
execution on any device included in the associated program object.

5 Computing with OpenCL

5.1 A General Approach

As mentioned, programming with OpenCL can seem overwhelming initially since the pro-
grammer is not only left with the burden of writing and optimizing low level code within
kernels in OpenCL C, but also has to apply many API calls to even initiate an application.
However, all application, no matter how small or big, follow approximately the same pattern
stated below

1. Query system for available platforms, choose a platform.

2. Query system for available devices on the chosen platform, choose one or more devices.

3. Create a context, and associate one or multiple devices to the context.

4. Create command queue within a context for each device that is to be used.

5. Create a program object on the context with OpenCL C kernel function source code.

6. Build program object for a range of devices.

7. Generate kernel object from program object for a kernel function.

8. Set arguments to kernel object.

9. Enqueue transfer of data from host to device.

10. Enqueue kernel object for execution on device.

11. Enqueue transfer of data from device to host.
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5.2 Code Samples

In this section, four functions that may be useful in writing a simple OpenCL program
and in getting to know OpenCL are presented. These functions are used in the OpenCL
application in IV, were the performance of various OpenCL matrix matrix multiplication
kernels are investigated. There are numerous OpenCL examples available online, particularly
on the webpages of Nvidia and AMD[12].
The first function presented prints an enumerated list of the platforms available on the
system to the command line and asks the user to choose which platform to use. The syntax
to call the function getUserDefPlatform is stated below and the function code can be
found in appendix 14. The integer p is the number in the list of platforms returned that the
command line user had chosen.

cl_platform_id ∗ p la t fo rmIds ;
char∗ platformName ;
int p ;
getUserDefPlat form(&plat formIds , &platformName , &p) ;

After retrieving a platform, one can query the system for devices available on the platform.
A function getUserDefDevice for doing so is given in appendix 14. The function again
prints an enumerated list of devices available on a given platform to the command line and
then asks the user to choose which device to use. Here the integer d is the number in the
list of devices returned that the command line user had chosen.

c l_device_id ∗ d e v i c e I d s ;
char∗ deviceName ;
int d ;
c l_uint deviceCount ;
getUserDefDevice ( p lat formIds , p , &dev i ce Ids , &deviceName , &d , &deviceCount ) ;

With a device, one might be interested in retrieving device information such as global
memory, number of compute units and so on. A function getDeviceInfo for doing so
is given in appendix 14, and the function call is stated below

ge tDev i c e In fo ( c l_device_id ∗ ID , c l_uint deviceCount ) ;

The function takes a pointer to the first element in an array of cl_device_ids, and cl_uint
number of elements in the array. With a platform and devices retrieved, one also need to
create and build a program. The function that was used to do so in part IV is given in
appendix 14 and the function call is stated below. The function takes a context, an array
of devices as well as the number of devices and the filename to the kernel source code.

cl_program program ;
buildProgramFromSources ( context , deviceCount , dev i ce Ids , " kernelFi leName . c l "

, &program ) ;
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6 The Kernel Programming Language

6.1 OpenCL C

The kernels in OpenCL are programmed in a language called OpenCL C which is an exten-
sion to the C99 standard. The kernel programming language shares many similarities with
"C for CUDA" which is used to program kernels in the CUDA framework, and so developers
who are experiences within CUDA will find the transaction to OpenCL very smooth. Due
to the many similarities, where different naming conventions are the only thing separating C
for CUDA with OpenCL C, references to equivalent CUDA terminology is given throughout
this section.
OpenCL C imposes a number of restrictions compared to regular C99, key restrictions are

• No function pointers

• No bit-fields

• No variable length arrays

• No recursion

• No standard headers

The full list of restrictions can be found in the OpenCL specification, or at the end of chapter
4 in the OpenCL programming guide. OpenCL C adds the following features to C99:

• Vector data types. Many OpenCL devices, both CPUs, GPUs and accelerators
support vector instructions. The vector instruction set is accessed in C/C++ code
through build-in functions or device specific assembly instructions. In OpenCL C,
vector data types can be used in the same way scalar types are used in C. This makes
it much easier fore developers to write vector code because similar operators can be
used for both vector and scalar data types. It also makes it easy to write portable
vector code because the OpenCL compiler is now responsible for mapping the vector
operations in OpenCL C to the appropriate vector ISA for a device.

• Address space qualifiers. OpenCL devices, such as GPUs, implement a memory
hierarchy. The address spaces qualifiers are used to identify a specific memory region
in the hierarchy

• Additions to the language for parallelism. These include support for work items,
work groups, and synchronization between work items in a work group

• Images. OpenCL C adds images and sampler data types and built-in functions to
read and write images.

• Built-in functions. OpenCL C adds an extensive set of built-in functions such as
math, integer, geometric and relation functions
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6.2 Types and Qualifiers

In OpenCL C, most scalar data types of C99 are supported. The 64 bit floating point data
type called double are optional, and only available if cl_khr_fp64 is supported by the
device. OpenCL C also comes with optional support of the half data type, which is a 16 bit
floating-point type conformal to the IEE 754 half precision storage format. The data type
half can be used only to declare a pointer to a buffer that contains half values.
In addition to supporting most scalar data types, OpenCL C adds support for vector data
types and the extensive set of build in functions are for the most part also supported on
these. The vector data types are essential to use within some device architectures, how so
is covered in detail in part III where OpenCL mapping to various devices are presented.
The vector data type is defined with the type name, that is short, int, float, long,
double, half followed by a literal value n that defines the number of elements in the vector.
Supported values of n are 2, 3, 4, 8 and 16. The specific API calls to use vector data types in
OpenCL can be found in the OpenCL specification or the OpenCL programming guide.[1]
OpenCL C supports a range of qualifiers, the most important ones to know is the function
qualifiers and the address space qualifiers. In table 6.1, these qualifiers are listed along with
the equivalent C for CUDA terminology.

CUDA Terminology OpenCL Terminology
__global__ function __kernel function
__device__ function no annotation needed

__constant__ variable declaration __constant variable declaration
__device__ variable deceleration __global variable deceleration
__shared__ variable declaration __local variable deceleration

Table 6.1: The table show qualifiers that are added to functions and data when
writing kernels in both CUDA and OpenCL. The biggest difference between
the two is that in CUDA, __global__ functions are GPU entry points, and
__device__ functions are to be executed on the GPU, but are not callable from
the host. In OpenCL, entry point functions are annotated with the __kernel
qualifier, but non-entry point functions do not need to be annotated.

6.3 Built-In Functions

Within the OpenCL C programming language, a rich set of build-in, math, integer, geo-
metrical and relational functions for scalar and vector data types are included. Many of
these build-in functions are similar to the functions available in common C libraries such as
the functions defined in math.h. A comprehensive list of supported functions can be found
in the OpenCL specification or the OpenCL Programming Guide [1] which also includes
descriptions of how to use Atomic functions and functions that operate on the special Image
memories.
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Work-item Functions

When programming a kernel for compute purposes, one will almost surely encounter the
use of work item functions. The work-item functions are functions called in a kernel that
identifies the position, of a given work-item executing, within the integer index space on
which the kernel is executed.

Figure 6.1: Example of work-item functions

Figure 6.1 shows an example on how the global and local work sizes can be accessed by a
kernel executing. In this example, a kernel is executed over a global work size of 26 items
and a work-group size of 13 items per group. C for CUDA and OpenCL share a similar
kernel execution model, so developers familiar with C for CUDA will find the terminology
comparison in table 6.2 useful, as well as the associated descriptions.
An important thing to take notice of is how the OpenCL specification do not describe how
the global and local IDs map to work-items and work-groups. Within an application, one
cannot assume that a work-group whose group ID is 0 will contain work-items with global
IDs 0 ... get_local_size(0) - 1. The actual mapping is determined by the OpenCL
implementation and the device on which the kernel is executing.

CUDA Terminology OpenCL Terminology Description
gridDim get_num_groups() Returns the number of work-groups that

will execute a kernel.
blockDim get_local_size() Returns the number of local work-items.
blockIdx get_group_id() Returns the work-group ID.
threadIdx get_local_id() Returns the unique local work-item ID,

i.e. work-item within a work-group.
No direct equivalent get_global_id() Returns the unique global work-item ID.
No direct equivalent get_global_size() Returns the number of global work-items.

Table 6.2: Indexing functions for use in Kernels. The table shows the various
indexing mechanisms provided by CUDA and OpenCL. CUDA provides kernel
indexing via special pre-defined variables, while OpenCL provides the equival-
ent information through function calls. OpenCL also provides global indexing
information, while CUDA requires manual computation of global indices.
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Synchronization Functions

As in C for CUDA, OpenCL C implements a synchronization function. In OpenCL this func-
tion is called barrier. The barrier synchronization function void barrier(cl_mem_fence_flags
flags) is used to enforce memory consistency between work-items within a work-group,
there is no way to synchronize different work-groups in a kernel. Within a work-group, all
work items must execute this function before any are allowed to continue execution beyond
the barrier. The flags argument specifies the memory address space and can be set to a
combination of the following lateral values

• CLK_LOCAL_MEM_FENCE: The barrier function will either flush any variables stored in
local memory or queue a memory fence to ensure correct ordering of memory operations
to local memory.

• CLK_GLOBAL_MEM_FENCE: The barrier function will queue a memory fence to ensure
correct ordering of memory operations to global memory. This can be useful when
work-items, for example, write to buffer or image memory objects and then want to
read the updated data.

6.4 Kernel Compilation

When compiling OpenCL C kernels using the nvcc compiler, the code is translated into
PTX(Parallel Thread Execution) code. PTX is a pseudo-assembly like language described
in [13]. The nvidia graphics driver contains a compiler which translates the PTX code
into a binary code which can be run on the Nvidia GPUs. Currently, the PTX intermediate
representation can be obtained by calling clGetProgramInfo() with CL_PROGRAM_BINARIES.
Whit the AMD stream SDK platform, the kernel code is compiled into the assembly like
Intermediate Language(IL), described in [14] which again is compiled by the AMD graphics
driver into a binary that can run on the AMD GPUs.

7 Summary

OpenCL provides many benefits, the most important one being portability. OpenCL kernels
can execute on GPUs and CPUs from both Intel, AMD, Nvidia and IBM and new OpenCL
capable devices appear regularly. OpenCL constitutes a full framework for heterogeneous
computing. Despite the advantages, OpenCL has some significant drawbacks. As many
sources on-line will tell you, it is not easy to learn, and even introductory applications
are difficult for newcomers to grasp. Another drawback for more experienced developers is
that the infrastructure in terms of libraries to support OpenCL is still quite limited. Also,
whereas say CUDA is an all in one packet for developers, OpenCL is mostly only a language
description i.e. with OpenCL, the SDK, IDE, debugger etc, come from different vendors,
and one has to go to different places to obtain them.
The OpenCL group within Khronos is working on a higher level interface, to be specified
with OpenCL 2.0, so to make it simpler to program applications with OpenCL. With time
the infrastructure will get better, the amounts of libraries available is increasing already,
see reference [18]. OpenCL, despite being hard, is the only language dedicated to compute
purposes on heterogeneous platforms, and provides an extensive set of features for doing
so. In the next part of this report, the compute architecture of AMD OpenCL devices is
discussed, including how the OpenCL memory and execution model map to the devices.
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Part III

OpenCL Devices and Architecture
OpenCL is designed so that the execution model and memory model can be mapped to a
wide range of architectures, allowing for tuning and acceleration of kernel code. How the
OpenCL execution and memory model map to a given device is implementation specific.
As previously mentioned, devices are split into three classes within OpenCL. CPUs, GPUs
and accelerators. In this report the emphasis is on GPU devices for compute purposes.
There are two main vendors of GPUs, these being Nvidia and AMD. Nvidia is aggress-
ively promoting its own framework for programming GPUs, CUDA, and in the process the
architecture of both Tesla and Fermi have become well documented in numerous sources.
AMD hardware is of interest within the context of this report since OpenCL is the only
viable framework to program these in. Also, an attractive property of AMD hardware is that
it, specification wise, promises more performance at a smaller cost than Nvidia hardware.
Currently the AMD GPU products within the Nothern Island series are all based on the
VLIW4 architecture, a revision of the VLIW5 architecture used in the Evergreen series, but
the next generations of AMD GPUs will be based on the Graphics Core Next architecture.
The first card in the new Southern Island series, which is to be based on GCN architecture,
was announced December 2011 and launched January 2012. The AMD HD 7970 is a single
chip high-end card with a 264GB/s memory bandwidth, 947GFLOPS peak double precision
floating point performance and PCIe 3.0 interface. The HD 7970 is available in stores at a
USD 549 price tag. With these numbers AMD are sure to raise some attention within the
GPGPU community.
In the following sections, the VLIW4/VLIW5 architectures are presented, followed by a
discussion about the pros and cons of the VLIW4/5 and what lead AMD to move towards
an entirely new architecture, the GCN. Information about the compute capabilities of the
GCN architecture is still somewhat scars, the compute capabilities are presented based on
the information that could be found from mainly slides on the GCN architecture from on
AMD Fusion Developer Summit June 2011 [9] as well as GCN reviews on Anandtech and
Tomshardware [27].
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8 Tuning GPU Kernel Code

With different GPU vendors and different architectures, one might fear that optimizations
to kernel code on one architecture would yield no benefits on other architectures. This is,
fortunately, not entirely true. Whereas the difference between CPU and GPUs is vast in
many ways, GPU architectures are sufficiently similar that kernel code which performs well
on one architecture is likely to also perform reasonable well on another GPU architecture.
This claim is justified with actual performance measurements in part IV.
GPU cores, which are mapped to OpenCL as compute units, are typically wide vector based
cores and have high-bandwidth, high-latency global memories in which the latency is hidden
through massively multi-threading and zero overhead scheduling. They incorporate local
scratch-pad memories, that can be exploited to increase memory throughput to ALUs, and
are all in all throughput optimized.
As such, the different GPU architectures currently on the market will benefit from many
of the same performance/tuning considerations. This is good news for people familiar with
kernel optimization in C for CUDA on the Tesla and Fermi architectures, since their know-
ledge of optimizing applications from these architectures is equally valuable when optimizing
applications to AMD GPU architectures. Below is a list of considerations one should keep
in mind when optimizing kernels for any GPU architecture.

• Facilitate high occupancy of work-groups on compute units

• Always read/write to global memory in coalesced fashion

• Exploit local memory to reduce load and stores in global memory

• Avoid bank conflicts when utilizing local memories

• Minimize redundant communication, global-local-private memory

That said, OpenCL code is portable, but there are no guarantees that it is also performance
portable. It is possible that code which performed very well on one architecture is slow on
another, and for this reason efforts within auto-tuning of applications are now being made.
Performance portability issues can have many reasons, bust it is likely to occur due to
different register and scratch pad memory space per compute unit on the new architecture.
Work items(in work-groups) are assigned to compute units under the limitations of available
registers and local memory, as required by the kernel code. The number of work items
assigned to a compute unit is reduced on a per work-group basis, and if moving to a new
architecture results in a mismatch yielding low occupancy on the compute units, performance
drops drastically.
GPU architectures as a whole, from a birds eye view, seem very similar, but there are some
notable differences in between VLIW4/5, GCN, Tesla and Fermi. These difference should be
considered when optimizing kernel code for a given architecture. In the following sections,
these architecture specifics are discussed with reference to the VLIW4 architecture of the
AMD HD 6970 along with the presentation of VLIW4 itself.
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9 VLIW5/VLIW4

The Radeon HD6970, which is of interest here, is based on the VLIW4 architecture. The
schematics of the chip is shown in figure 9.1 The device is divided into two halves where
scheduling and dispatch is performed by the level wave scheduler for each half. There are
24, 16 lane wide SIMD cores, each lane (SPU) executes four way VLIW instructions and
contains private level 1 cache as well as local data share. The OpenCL mapping is such, that
a SIMD correspond to a compute unit and each SPU corresponds to a processing element.

Figure 9.1: [26] The AMD Radeon HD6970 GPU chip schematics.

The fundamental execution unit of AMDs previous designs, used in the Evergreen and
Northern Island series of GPU products has been the Streaming Processing Unit, previously
known as the SPU. In every modern AMD design other than the Cayman (69xx) this is a
Very Long Instruction Word 5 (VLIW5) design. With Cayman this was reduced to VLIW4.
Each of these fundamental execution units contains 5 or 4 fundamental math units, which
can execute individual instructions in parallel. In terms of OpenCL lingo, each of these SPs
constitute a processing element.
The compute unit, that is, the SIMD core contains 16 VLIW4 SPs, and each SP has access
to a 32Kb local data share. The local data share is in OpenCL terms the local memory
which can be accessed by work items within the same work-group, each work-group being
dispatched to a compute unit. During execution, the work-group is divided into "wavefronts".
A wavefront consists of 64 work items, and is thus processed on the 16-wide SIMD over four
cycles.
Returning to the concept of VLIW4, each SP (OpenCL processing element) has the ability to
conduct four independent instructions in parallel. For high performing code, it is thus vital
to ensure some form of explicit vectorization within the kernel code. This helps the compiler
extract independent instructions to the pipeline. In figure 9.2, an example of an instruction
stream executing on a VLIW4 processing element and the same instruction stream executing
on a Tesla architecture processing element is given. Under ideal circumstances, where all
ALUs are being fed with independent instructions, the VLIW is very efficient, but if there
is little or no instructions independence for the compiler to extract, then a lot of ALUs will
lie idle and one cannot expect to get close to peak performance.
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Figure 9.2: [26] Instruction stream executing on VLIW4 and Tesla architecture
processing elements

As figure 9.2 illustrates, the HD6970 can benefit hugely by having multiple independent
instructions being performed within each work item. With high occupancy of the ALUs
within each VLIW, the architecture excels, since control work is moved to the compiler
which saves chip space that can be used for even more ALUs. On the other hand, when
little instruction independency is present, chip area is wasted on ALUs lying idle. The VLIW
approach of the processing elements is in contrast to Nvidias Tesla and Fermi architectures
which rely entirely on scalar streaming processors.
Another concern, which the developer should be aware of when programming kernel code for
the HD6970, is how control flow executions is handled. All branching and mask management
is handled on the scheduler, see figure 9.1, and the latency for doing so is on the order of 40
or more cycles between executing one clause from a given wavefront until executing the next.
Different wavefronts execute at different point in their instructions streams. All branching is
performed at wavefront granularity and any sub-wavefront branching will require replaying
of the clauses within the wave scheduler until all combinations have executed and hence
this divergence creates inefficiency. Combining this with the massive 40 cycle latency to the
scheduler for each clause, the HD6970 is not just bad at branch divergence, it is very bad
at it, and can only be covered if the code contains a lot of ALU work and that enough wave
fronts can reside within each SIMD.
In the next section we will take a look at how register and local memory resources are
allocated. If the reader is familiar with C for CUDA kernel programming and optimization
on Tesla and Fermi GPUs, then he will recognise the importance of controlling resources to
obtain sufficiently high occupancy on the compute units, in order to hide latency on global
memory interaction. This is also of importance when optimizing kernel code for the HD
6970 VLIW4 architecture.
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9.1 Resource Allocation

The GDDR5 memory connected to the GPU chip has a very high bandwidth, but this high
bandwidth is traded in for long latency access time. The GPU works around this trough
massively multi threading. With many wavefronts residing on a SIMD, chances are that there
is always at least one wavefront which is ready for execution. For this to work properly, a
lot of wavefronts need to be residing within the SIMD simultaneously.
On the HD6970, a maximum of 32 wavefronts can reside simultaneously on the SIMD,
with 64 work items per wavefront this equals 2048 work items. Also, a work-group can
contain no more than 256 work-items. One can compare this number to that of the Fermi
architecture, on the Fermi, a maximum of 1024 work-items per work-group is allowed. Say
that a developer had hard coded a kernel to be executed with a 32x32 work-group, then the
OpenCL application tuned for Fermi would not even run on the HD6970!
In actual applications, obtaining 32 simultaneously residing wavefronts is not likely, the
reason is that each work item needs a certain amount of registers and possible local memory,
and this is a limited resource. On the HD6970 there is 256KB of registers on each SIMD
unit, these are available as 256 128bit vector registers for each work item across a 64 element
wavefront. In addition to the registers, 32KB of local memory is available on each SIMD unit
accessible as a random access 32 bank SRAM, with two ports per work item for read and
write. Both the registers and the local memory is divided among the work groups executing
on the SIMD unit, and occupancy of the compute unit will be reduced on per work-group
basis. Whether it is the registers or local memory that show to be a resource bottleneck is
naturally algorithm specific.

9.2 Compute Issues with VLIW

The use of VLIW architecture has been with AMD since the HD2000 launched in 2007. The
reason for using these designs is, that the by far most common graphics operation is a 4
component dot product + a scalar operation, which fits perfectly intro a VLIW5 SPU, so
when performing these common graphics operations, the VLIW5 based GPU is extremely
fast. However, with the introduction of DirectX 10, the arithmetic workload handled by
GPUs began to change. GPUs where now also utilised for other tasks such as in-game
physics. The distinction between what is graphics and what is compute, was and still is,
slowly disappearing and the number of compute tasks for the GPU to perform is on the rise.
This development gradually reduced the efficiency of the VLIW5 architecture and the first
step from AMD to handle this challenge was with Cayman (HD6970) moving to VLIW4
from VLIW5.
In terms of doing compute work, the VLIW4 architecture has its fair share of issues. With
the VLIW there is no dynamic scheduling during execution. With graphics, it is rather easy
to efficiently compile and schedule shaders under those circumstances, but with compute,
this is not always the case. There is a wider range of things going on, and it is difficult
to figure out what instructions will play out nicely with each other. Another issue is the
complexity of a VLIW instruction set, which is a real pain when optimizing and hand tuning
a program. Again, this is not normally a problem for graphics, but is often is for compute.
The very complex nature of VLIW makes it hard to disassemble and to debug, and this
makes it difficult to predict performance and fix performance critical sections of the code.
Ideally a coder should never have to work in assembly, but for HPC and other uses there
is a good deal of performance to be gained by doing so and optimizing down to the single
instruction.
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The fundamental issue with the VLIW design is that it is great for graphics, but not so
great for computing. As compute work is becoming an essential task for GPUs even within
computer games, the VLIW4 architecture simply will not do for future generations of GPUs.
AMD was in need of a new architecture to base it future products on, and this new archi-
tecture is what the next section is about.

10 Graphics Core Next

Graphics Core Next is the name of the brand new AMD GPU architecture, that is to form
the basis of a GPU which is as capable at compute as it is at graphics. AMD is moving away
from the VLIW architecture, and towards something that is more familiar to what Nvidia
is offering with its line of GPUs.
Whereas on the AMD developers webpage on can find a full reference guide to the HD 6900
series Instruction Set Architecture, information regarding the compute capabilities of the
GCN architecture is still somewhat limited, as the first product based on GCN architecture,
the HD7970, was only just released 2 weeks prior to finishing this report.
The architecture and compute capabilities presented within this section are based mostly on
information condensed from AMD slide shows, as well as information presented in articles
on anandtech.com and tomshardware.com[27]. A nice feature about this new architecture
is how AMD has adopted some name conventions of the OpenCL execution model so that
mapping from OpenCL terminology to hardware comes naturally.

10.1 A Non-VLIW SIMD Design

AMD is replacing the VLIW architecture with a traditional SIMD vector processor. Whereas
the SIMD with VLIW lanes before constituted a core in itself, this is no longer the case,
and so elements of Cayman does not directly map to elements of GCN. The SIMD on the
GCN is a true 16-wide vector SIMD, not to be confused with the SIMD on Cayman which
is a collection of VLIW SPs. On the GCN SIMD, a single instruction and up to 16 data
elements are fed to a vector SIMD to be processed over a single clock cycle. Wavefronts still
consists of 64 work items, meaning that it takes 4 cycle to complete a single instruction for
an entire wavefront. A SIMD has access to a 64KB register file.
As with the VLIW SPs in Cayman, the SIMD is capable of performing a number of different
integer and floating point operations, details about this is still to be released. One thing that
is certain though, is that double precision floating point performance of the ALUs improved
radically and the GCN architecture is to support double precissions performance at up to
1/2 the performance of single precission. The VLIW4 suported only 1/4.

10.2 Dissecting a Compute Unit

A compute unit in the GCN architecture consists of four of the SIMDs as described in the
previous section. With four SIMDs in a Compute Unit, the GCN compute unit can work on
four instructions at once just as the Cayman SIMD could. In the GCN, control hardware
responsible for fetching, decoding and scheduling wavefronts is now moved down to the
Compute Unit itself. In addition to the four SIMDs, a scalar unit is also added, the purpose
of which is to be explained later. The schematics of the compute unit are shown in figure
10.1. In addition to the 64KB registers per SIMD, a 64KB local data scratch pad memory
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for the SIMDs to share is added. Within each GCN SIMD a maximum of 10 wavefronts can
reside, with 4 SIMDs per compute unit this adds up to a maximum of 40 wavefronts residing
within one compute unit at any given time.
As apparent from the schematics, the compute unit of the GCN architecture is entirely
different than the compute unit of the VLIW4 architecture. Let us stop for a moment and
consider the differences.
One of the weakness of the old VLIW architecture, is that instructions are statically sched-
uled ahead of time by the compiler and as a result any non-interdependencies that appear
as code is being executed, cannot be exploited since there is no deviation from scheduled in-
structions so VLIW slots may can go unused. In the CGN architecture, scheduling is moved
from compiler to hardware, and the compute unit is now in charge of scheduling execution
within its domain. Moving the scheduler to the chip is a trade-of, since this chip space can
no longer be filled with additional functional units, but moving scheduling into hardware
allows for a more dynamic scheduling which is an advantage for compute work.
Another difference is the addition of a scalar unit per CU to support the four SIMDs, it
serves to further keep inefficient operations out of the SIMDs, leaving the vector ALUs on
the SIMDs to execute instructions. The scalar unit is composed of a single scalar ALU
along with 8KB registers. The scalar unit handles everything from single integer operations
to control flow operations, like conditional branches and jumps. Besides avoiding feeding
SIMDs non-vectorized datasets, this will also, along with the closer scheduler, improve the
latency for control flow operations, where the VLIW4 architecture on Cayman had a nasty
40+ cycle latency that requires many wavefronts residing in the SIMDs to efficiently hide.

Figure 10.1: [27] The Compute Unit of the AMD GCN achitecture. The compute
unit is the fundamental unit of computation in the GCN architecture, and it is
the basic building block for making GPUs in the sense that any GPU in the
series will implement a number of these compute units in multiples of 4.

10.3 New Features with GCN

On GCN based devices, the global memory will be cached, and the architecture will support
64KB or 128KB of L2 cache per memory controller. The L2 cache is write-back and will
be fully coherent, so that all compute units see the same data. The CGN architecture also
adds proper ECC suport, though this will not be implemented on the HD7970.
To add to the compute capabilities of the architecture, AMD employ a new Asynchronous
Compute Engines to serve as the command processor for compute operations on GCN. The
purpose of the ACE will be to accept work and to dispatch it off to the compute units for
processing. The GCN can this way work on several different task, with the ACE handling
resource allocation, context switching and task priority. In addition, GCN allows for dual
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DMA engine so to fully take advantage of the large amount of bandwidth PCIe 3.0 offers
between the GPU and the CPU.
A major move towards GPGPU is how GCN implements the underlying features necessary
to support C++ and other advanced languages. GCN adds support for pointers, virtual
functions, exception support and even recursion all so to eventually move towards being
able to write GPU code from a higher level then C, and thus to make it easier to program
code that employ GPUs as compute accelerators. These additions to GCN fit very well with
the announcement about the directions and content of OpenCL 2.0 described in [11]. Also,
the hardware is being adapted towards support of an ISA that uses unified memory so that
programs can reference memory anywhere, without the need to explicitly copy memory from
one device to another before working on it. This is to be abstracted away from developers
and handled by the compiler. The GCN architecture also comes with hardware changes
that are made so to improve debug support by allowing debugging tools to tap the GPU for
information at more stages than was possible with the old VLIW5/4 architectures.

10.4 The AMD HD 7970

The AMD HD7970 GPU contains 32 of the compute units described in the previous section.
The schematics of the GPU is shown in figure 10.2. The HD7970 features 6, 64-bit GDDR5
memory controllers each coupled with 128KB L2 cache for a combined bus-width of 384 bit
and 768KB global memory cache. Work-groups are still executed in batches of wavefronts
of 64 work-items. 10 wavefronts can reside within each of the four SIMD units in a compute
unit. With 32 compute units and up to 40 residing wavefronts per compute unit, 2560
work-items can simultaneously reside on the HD7970.

Figure 10.2: [27] Schematics of the GCN based AMD HD7970 GPU.
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Part IV

Performance Tuning with OpenCL
Within this part of the report, the performance of various matrix matrix multiplication
kernels implemented in OpenCL on Tesla, Fermi, VLIW4 architectures are investigated. No
GCN architecture based cards were available in the GPUlab at the time of writing this
report. The specifications and compute capabilities of the GPUs mentioned are listed in
table 10.1. GTX280 is a single chip GPU while both GTX590 and HD6990 are dual chip.
All performance testing was done on one chip only, so specifications are listed on a per chip
basis.
Initially, a range of different matrix matrix multiplication kernels are presented and ex-
plained, from naive implementations to more complex implementations utilizing scratch pad
memory, register space, granularity considerations, minimized communication patterns and
optimized reads and writes to local and global memory spaces. All performance optimization
considerations during the development of the kernels are made with respect to the VLIW4
architecture. The performance of the kernel code is measured as a function of work-group
size on both Tesla, Fermi and VLIW4 architectures so to identify optimal work-group size
conditions. Following these initial tests, kernel performance is measured as a functions of
matrix size. When applicable, the equivalent CUDA code is also tested for comparison
between compiler behaviour. Following these measurements on hardware in the GPUlab the
performance portability across architectures of the code written is discussed.

Name GTX280 GTX590 HD6990 HD7970
Chip GT200 2 x GF110 2 x Cayman Tahiti

Architecture Tesla Fermi VLIW4 GCN
TDP 236Watts 365Watts 375Watts 230Watts

Processor clock 602Mhz 607Mhz 830Mhz 925Mz
Compute Units 30 16 24 32

FP Performance, SP 938GF 1244GF 2548GF 3789GF
FP Performance, DP 78GF 311GF 637GF 947GF

Memory Clock Frequency 1107Mhz 1707Mhz 2500Mhz 2750Mhz
Std. Memory Configuration 1024MB 1536MB 1536MB 3GB
Memory Interface Width 512-bit 384-bit 256-bit 384-bit

Global Memory Bandwidth 141.7GB/s 163.9GB/s 160GB/s 264GB/s
Global Memory Cache NA 768KB L2 NA 768KB L2
Local Memory Banks 16 32 32 32
Local Memory pr CU 16KB 48KB 32KB 64KB

Register Space (Private) pr CU 64KB 128KB 256KB 256KB
Max Work-Groups pr CU 8 8 8 ?*

Max Work-Items pr Work-Group 512 1024 256 ?*
Max Work-Items pr CU 1024 1536 2048 2560

Max Warps/Wavefronts pr CU 32 48 32 40
Work-items in Warp/Wavefront 32 32 64 64

Table 10.1: GPU specifications and compute capabilities with regards to the
OpenCL memory and execution model. All numbers are specified on a per chip
basis, except the TDP. (*) numbers could not be confirmed at time of writing.
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11 Matrix Matrix Multiplication

11.1 A Naive Kernel

Matrix matrix multiplication is commonly used to demonstrate optimization techniques due
to the fact that, given enough tuning effort, matrix-matrix multiplication can run near the
peak performance of most modern processors. Below is the OpenCL C kernel code that was
used when measuring performance stated
__kernel void MatMulNaive (__global f loat ∗A, __global f loat ∗B, __global f loat

∗C, int dim ) {
// Ret r i eve work item g l o b a l index

int i = get_global_id (0 ) ; int j = get_global_id (1 ) ;
// I f work item wi th in matrix dimension , do do product
i f ( ( i<dim ) && ( j<dim ) ) {

f loat tmp = 0 . 0 ; int k ;
for ( k=0;k<dim ; k++){

tmp = tmp + A[ j ∗dim+k ] ∗B[ k∗dim+i ] ;
}

C[ j ∗dim+i ] = tmp ;
}

}

Comparing to a normal CPU sequential implementation, the two outer loops that iterate over
all elements in the output matrix are replaced with work-item function calls that identify
the global work item ID in each of the two dimensions. Each work item calculate the dot
product that constitutes a single element in the output matrix.

11.2 Exploiting Local Memory

Getting good performance from a GPU involves optimizing memory access and transfer.
With the current construction of the OpenCL-C matrix matrix multiplication kernel, each
work-item need to do roughly one load from global memory per floating point operation,
thus, we have a compute to global memory access (CGMA) ratio of 1. The CGMA ratio is
highly relevant. Consider for a moment the HD6990. It boasts a massive 2548Gflops single
precision performance, which in itself is very impressive. But how many floats can actually
be transferred to the chip from global memory? Under ideal circumstances(160GB/s), the
chip can be fed 40 Giga floats per second. From this information it can be deduced that
when running the OpenCL C kernel presented in the previous section, the hundreds of
ALUs present on the chip will be sitting idle most of the time throughout the computation.
It is thus clear that the code is heavily constricted by the speed at which memory can be
transferred to and from chip to global memory, so by the afore mentioned reasons, increasing
the CGMA ratio should be a priority, and this leads us to the use of local memory.
For the purpose of decreasing the amount of loads and stores to global memory throughout
a program, GPUs incorporate a highly efficient, high speed, low latency, close to compute,
scratch pad memory that is fully under the programmers control. This scratch pad memory
is accessed in OpenCL C trough the __local qualifier. This form of programmable local data
share is more efficient area/power wise than the classic hardware controlled cache employed
in CPUs and it is also less wasteful since hardware controlled cache often load data that
is never used so less dedicated memory is needed. However, the use of such programmable
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close to compute memory space add to complexity of programming, since memory transfer
from one level to another now needs to be handled explicitly.

Figure 11.1: Matrix matrix multiplication, highlighting the calculation of a 2x2
tile.

The above considerations leads us to the conclusion that we need a way of reducing the
number of loads to the global memory, and to do so we will exploit these local memory
structures. Consider a matrix matrix multiplication as the one shown in figure 11.1, one
readily notice how the work-items within the highlighted 2x2 tile share common loads. As
explained in section 4.2.2, OpenCL-C, work-items are executed concurrently in work-groups,
and a work-group is executed on a compute unit with which the local memory is associated.
If one apply the pattern as shown in figure 11.1 to to the work-group so that the work items
corporately load a 2x2 tiles, one could potentially reduce the traffic to global memory from
16 reads and 4 writes to 8 reads and 4 writes. Using a 16x16 work-group to calculate a 16x16
tile, one can reduce the traffic from 2 · 16 · 16 · 16 reads and 16 · 16 writes to 2 · 16 · 16 reads
and 16 ·16 writes. This would reduce global memory loads and stores needed to 1/11. In the
kernel code exploiting local memory we take care to read memory in a coalesced fashion from
global memory as well as avoid bank conflicts when reading and writing to local memory.
These issues are discussed further in the sections below.

11.2.1 Coalesced Global Memory Access

As previously mentioned, the matrix matrix operation being performed on the kernel is
heavily memory bound, and it is thus of priority to optimize how fast memory is transferred
to the GPU. It is therefore of importance to consider memory coalescing techniques that can
more effectively move data from the global memory into local memory and registers. Many
sensors are provided in each DRAM chip, and they work in parallel, each sensing the content
of a byte within these consecutive locations. Whenever data is accessed in global memory,
many consecutive locations that include the requested location are accessed and transferred,
so if one can make use of data from multiple consecutive locations, less data needs to be
transferred to deliver the loads requested. On the contrary, if multiple data elements from
non-consecutive locations are requested, more data needs to be transferred, much of which
is not needed, which results in waste of the precious bandwidth.
On AMD GPUs, work groups are executed on compute units concurrently in chunks of 64
work items, such a collection of work items is referred to as a wavefront. The instructions in
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the wavefront are executed on 16-wide SIMD over four cycles. When the work items within
a wavefront executes a load instruction, the hardware detects whether the work-items access
consecutive global memory locations. If so, less memory needs to be transferred, and the
available bandwidth is thus used more effective, these considerations are the same as when
programming kernels to the Fermi or Tesla architectures whether in CUDA or OpenCL.

11.2.2 Avoiding Bank Conflicts in Local Memory

So far we have assumed that there is no need to worry about how to read and write to local
memory. Even though local memory is very fast, this is not entirely true. The data stored
within local memory is located in what is known as banks. When writing data to a one
dimensional array in the local memory, the first data element will receive the first address
in the first bank, the second data element receives the first address in the second bank and
so on. This continues until sixteen data elements are stored in the sixteen available banks.
Now, when data element seventeen is stored, it is stored in the second address in the first
bank and data element eighteen is stored in the second address in the second bank and so
the pattern continues.
Why does one need to be aware of this? Well, each bank can read and write to its own data
in parallel with all other banks, so technically it is possible to read sixteen data elements at
once given that these sixteen elements are distributed among different banks. To understand
how this can have an impact on performance, we again need the concept of wavefronts. In
a SIMD core on the VLIW4 architecture, all 16 work-items in a sub-wavefront are executed
simultaneously. If all these work items simultaneously try to read from the local memory in
different addresses all associated with a single bank, this bank can only serve one work-item
at a time, and the work items will have to take turn receiving data from the local memory,
which serializes the execution and this is bad for performance. Such a situation is referred to
as a bank conflict. However, if all work-items are to access the same address in a given bank,
the bank will "broadcast" and serve all at once. Ideally, one would like that each work-item
in the sub-wavefront access data elements from different banks so that all work-items can be
served in parallel. In the local memory matrix matrix multiplication code previously stated,
care was taken so that bank conflicts would not arise.

11.2.3 Performance Impact of Work-Group size

The performance of the two OpenCL-C kernels presented in the previous section where
measured as a function of work-group size, this for multiplication of two different sizes of
square matrices 300x300 and 1200x1200. Results are presented and discussed within this
section. All timings for performance measurements include time of transfer to and from host
and device. Throughout the section, the notation LOCAL and NAIVE is used for the two
kernels respectively.
In figure 11.2, measurements of the kernels running on one of the cores of the HD6990 GPU
are presented. As expected, the performance of the Naive kernel is a long way from what
one might hope specification wise. Despite not tilling the matrix, the performance increase
with work-group size, but how can this be? As previously mentioned, the application is
heavily memory bound. Work-items are executed in subwavefronts within a SIMD core,
and if work-items within a sub-wavefront issue reads to consecutive memory locations, the
hardware detects this, and memory is transferred coalesced. The HD6990 has a 256bit wide
global memory bus, so it can transfer 8 floats at a time, the performance peaks at 8x8 and
16x16 work-group sizes as apparent.
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Another issue with small work-groups less that 8x8 items is how work is divided. A maximum
of 8 work-groups can be residing at any one time in the SIMD core and each work-group is
divided into wavefronts, a collections of 64 work-items which is executed concurrently over 4
cycles on the SIMD core. When the work-groups contain less than 8x8 (64) work-items, the
wavefront scheduled for the work-group is only partially filled with actual compute work,
and so one wavefront will be issued per work-group regardless that it is not full. With
a work-group containing, say, 4x4 work item, only 16 work items would be computed per
wavefront, substantially less than the 64 possible and performance surfers as an effect. For
these reasons, the AMD HD69xx series OpenCL reference guide [20] recommends to always
use work-groups containing a multiple of 64 work-items. On Fermi and Tesla architectures,
work-groups are scheduled in chunks of 32 items, and as such, it is recommended to only
use work-groups containing a multiple of 32 work-items on these architectures.
The performance of the kernel utilizing local memory is as expected substantially better. As
work-group and tile size are kept equal, the amount of global memory reads needed decrease
as work-group size increase. As memory becomes less of a wall, other effects such as the
scheduling mentioned previously become more apparent, such as the peaks at 8x8 and 16x16
where wavefronts are fully utilised and full bus width memory lines are read coalesced.
Matrix multiplication between matrices of size 1200x1200 elements also achieve substantially
higher performance than do the matrix multiplication between 300x300 element matrices.
This is due to the fact that the overheads of setting up the computation remain fairly con-
stant, and the data which needs to be transferred increase with size2, while the computations
needed increase with size3, so for when multiplying larger matrices, more time is spend on
computing and less on transferring data, which lead to larger performance.

(a) (b)

Figure 11.2: Performance as a function of work-group size on the AMD HD
6990.

Both OpenCL C kernels were also tested on the available Tesla and Fermi architectures,
the results where compared to the performance binaries compiled from the equivalent C for
CUDA code and the figures 11.3 and 11.4 present the measured performance. Similar effects
are observed, and performance peaks at 8x8 and 16x16 work-group sizes. These contain 64
and 256 work item elements, which are both multiples of 32 and 64, so using such work-group
sizes fits both architectures well.
It seems that there are differences between the performance of the OpenCL C code and the
equivalent CUDA code, but it looks as if the effects disappear for larger matrices. Multiplying
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two 1200x1200 large matrices on the GTX590, the performance obtained for a given work-
group size is the same whether using OpenCL or CUDA. It would be interesting to see what
the difference is, but this would require looking into the intermediate PTX code, and this is
beyond the scope of this report.

(a) (b)

Figure 11.3: Performance as a function of work-group size on the Nvidia
GTX590

(a) (b)

Figure 11.4: Performance as a function of work-group size on the Nvidia
GTX280

11.3 Increasing Performance

At this point, impressive matrix matrix multiplication performance was achieved on the
HD6990 without too much effort. However, there is still room for further improvements.
In the following sections, we seek to build an even faster kernel code, getting closer to the
theoretical peak performance of the card at hand.
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11.3.1 Minimizing Communication

In the local memory matrix matrix multiplication kernel described in section 3.3, data from
the matrices A and B is first moved into local memory, and then later moved from local
memory into registers so to be used in computations. There is a potential performance
increase waiting if one could somehow avoid some of this, while still keeping the reduction
of global memory access broad about by tilling.
The solution is to increase the work in each work-item. Now using (16,1) work-groups to
compute a 16x16 tile of the C matrix. A work-group copies a 16x16 tile of A into local
memory, and read a 1x16 tile of B into registers as needed when computing the dot product.
Doing so correctly, we still obtain coalesced reads when reading from global memory to the
registers, as the sixteen work-items in a sub-wavefront simultaneously read elements from
consecutive locations.

11.3.2 Increasing Occupancy

The trick implemented in the previous section is clever and reduce the amount of commu-
nication between global memory, local memory and registers. But at what cost did it do
so?
One of the powerful features of GPU cards is the super high bandwidth global memory. This
high bandwidth memory unfortunately does not come without a downside to it. The high
bandwidth memory is cursed with a very long latency. GPUs cope with this burden trough
massive multi threading. When an instruction executed by the work-item in a wavefront is
waiting for the results of a previously initiated long latency operation, the wavefront is not
selected for execution, another wavefront residing in the SIMD core that is no longer waiting
for data is selected for execution instead. Without latency hiding, it is not possible to get
anywhere near the peak specified bandwidth in practical applications, so filling each SIMD
core with many wavefronts is crucial for good performance. In the case of the kernel code
in the previous section, each work-group holds 16 work-items. The maximum number of
work-groups in the Cayman per SIMD core is 8, so only 8 · 16 = 128 work items are residing
in the SIMD core. Under ideal circumstances 2048 work items can simultaneously reside in
the SIMD core.
So how can we increase the number of work-items simultaneously residing in the SIMD
core, while still reduce redundant commutation between memory spaces? The solution is
to modify the kernel code from the previous section so to use a (64,1) work-group that
calculates a 16x64 tile of the C matrix. This is easier said than done since this kernel use
64 work-items in each work-group to load the 16x16 A tile. The problem is solved with a
little bit of index arithmetics though. Besides the change of how to load and store the tile
of the A matrix, compared to the previous kernel, only minor changes are needed. With
the kernel code as explained, eight work-groups, each containing 64 work items are residing
within the SIMD core for a total of 512 work-items. For all the work-groups to reside in the
SIMD core, enough scratch pad memory and register space must be available. 16 · 16 = 256
floats are loaded into local memory in each work-group, that is 1KB of local memory is
needed per work-group, with 8 work-groups, 8KB is needed. On the Cayman chip, each
SIMD core has 32KB of LDS memory available, so local memory space will not restrict
occupancy. 256KB register space is available on each SIMD core, this is more than enough
for the kernels written. In addition to the kernel code as presented, another version where
the inner loop has been unrolled is also tested in the sections to come.
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12 Device Performance Measurements

The OpenCL C kernels presented in the previous sections are tested in terms of performance
as a function of matrix size, using a work-group size of 16 by 16 work items for the NAIVE
and LOCAL kernels and as otherwise specified. The following conventions used

• NAIVE The naive kernel implementation, section 11.1

• LOCAL Using local memory facilities, section 11.2

• FAST1 Reducing communication, section 11.3.1

• FAST2 Increasing occupancy, section 11.3.2

• FAST3 Unrolling loops, section 11.3.2

12.1 AMD VLIW4 - HD 6990

Performance measurements are depicted in figure 12.1. The results are mostly as expected.
FAST1 takes a massive performance hit, and this will be further commented upon in the
portability section. Unrolling loops makes the code slightly slower, maybe it prevents the
compiler of doing something better. All in all the HD 6990 delivers an impressive throughput,
at a matrix multiplication between matrices of size 3200x3200, it reaches 450Gflops.

Figure 12.1: Performance as a function of matrix size measured on the AMD
HD 6990.
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12.2 Nvidia Fermi - GTX590

Performance measurements of the kernel code written in OpenCL is depicted in figure 12.2
and the CUDA equivalent code in 12.3. There are many interesting observations to be made.
First of, the OpenCL version delivers better performance! Another interesting difference
is how unrolling loops in CUDA has a large negative effect while it does not alter the
performance whatsoever in OpenCL. Again we notice that FAST1 is slower, but it seems
to take less of a performance hit in OpenCL than in CUDA.
All in all, the more complicated kernels, FAST1,FAST2,FAST3 perform somewhat differ-
ent in OpenCL than in the equivalent CUDA versions, but the simpler kernels NAIVE and
LOCAL yield almost identical performance numbers. It is hard to say why this is so. One
way of investigating the reason for the observed effects would be to look at the intermediate
PTX code of the kernels.

Figure 12.2: OpenCL implementation measured on GTX 590

Figure 12.3: CUDA implementation measured on GTX 590
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12.3 Nvidia Tesla - GTX280

Figures 12.4 and 12.5 contain the performance measurements on the Tesla architecture
based GTX280. In contrast to the HD6990 and GTX590, GTX280 show both in CUDA and
OpenCL clearly better performance from the kernel in which the inner loop was unrolled.
CUDA is slightly faster on all kernels except again FAST1 which as expected take a big
performance hit, but it is substantially slower on CUDA.

Figure 12.4: OpenCL implementation measured on GTX 280

Figure 12.5: CUDA implementation measured on GTX 280
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12.4 Device Comparison

Figure 12.6: Performance of OpenCL implementation as a function of matrix
size for the fastest kernel on each GPU card tested.

The performance of the fastest OpenCL C kernel for each architecture is plotted in figure
12.6. The HD 6990 delivers impressive throughput, close to half a teraflop single preci-
sion performance using only general optimization techniques and it clearly outperforms the
GTX590 GPU. It should be noted however that further optimization within IL or PTX code
might change the ratio of performance in between devices.
The kernel code performs very well on the VLIW4 architecture of the HD6990. This is
not surprising. It is easy for the compiler to extract explicit vectorization of the OpenCL
C kernel FAST3 so to keep all ALUs filled. In the LOCAL kernel, it is not possible to
extract independent instructions within each work-item, and so 3 out of 4 ALUs will lie idle
most of the time when the code is running on the VLIW4 architecture. The performance of
the LOCAL kernel on the HD6990 and the GTX590 is roughly the same.
If one where to add branch statements, that would result in branch divergence, to the kernel
code, one might see the GTX590 pass the HD6990 in terms of performance. The reason for
being that the VLIW4 architecture has a very high 40+ cycle latency in between executing
divergent branch clauses in subwavefronts.
It would be interesting to run the kernel performance measurements on the new GCN based
HD7970 to see if the performance increase is as massive as promised by the specifications.
This possibly with additions of code including branch divergence which should be handled
better in the HD7970 due to the closer scheduler.
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13 Code and Performance Portability

An important thing to consider when writing OpenCL C kernels that has to work across
different architectures is how optimizations on one architecture will effect performance on
other architectures.
In figure 13.1, speed relative to FAST3 on each architecture is depicted. For this problem
and the kernel implementations, the performance behaviour is very similar on the different
architectures. One of the implementations however, FAST1, takes a much larger perform-
ance hit on the HD6990 than it does on the the GTX280 and the GTX590.
This effect can, in part, be attributed to the variation in vector width. FAST1 uses work-
groups of only 16 work-items each, that is, only 16 work-items are scheduled in a full 64-wide
vector wave front, wasting a lot of ALUs. It should also be clear from a pure occupancy
point of view, with only 128 work-items residing out of 2048 possible slots, one is asking for
trouble. The GTX590 and GTX280 uses a 32-wide vector width, which is half as long as that
of the HD6990, so also only half as many cycles are wasted. In addition, the SMP compute
units on the Tesla and Fermi architectures can hold 1024 and 1536 work-items respectively,
so the relative work-item occupancy is higher on these.
It is important to do these kind of considerations when writing the code. The code written
in the previous sections scaled nicely from one architecture to another, but let’s say when
writing FAST2 we decided to use a 1x96 work-item work-group. This would likely work
out nicely on the Tesla or Fermi architectures, each work group having three full warps,
for a total of 24 warps residing on a SMP for a total of 768 work items. What would
happen on the VLIW4 or GCN architectures? Well, the 96 work items would be divided
into two wavefronts of 64 work items, one wave front only half filled, so 1/4 of all possible
ALU instructions are wasted, and the compute unit has to execute 1/3 as many work items
equivalent. This would almost surely lead to a big performance penalty, and this is the sort
of considerations one need to make when porting code from one architecture to another.

(a) (b) (c)

Figure 13.1: Performance relative to FAST3 implementation on each architec-
ture.
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Part V

Summary and Outlook

14 Conclusion

Within recent years, the otherwise ever increasing supply of computational throughput has
come under pressure due to the fact that the speed of single core general purpose CPUs
can no longer be scaled due to the constraints imposed by the very laws of physics. The
demand for more computational throughput is still there though, and so a new approach
of increasing throughput is needed. The industry has decided that this approach is to be
heterogeneous computing.
The move towards heterogeneous computing is widely supported, but the language and
manor in which these systems are to be programmed has yet to be defined. The move towards
heterogeneity on hardware level requires new programming models and paradigms. OpenCL,
as presented in this report, is the first industry wide language to cope with heterogeneity
and poses a solution to the challenges faced. OpenCL constitutes an entire framework for
task and data parallel heterogeneous computing. OpenCL has been criticized for being hard
to use with a complicated platform and memory model, but these issues are being handled.
The Khronos OpenCL Group is currently working on OpenCL 2.0, which among other things
aim to implement support for a unified memory space as well as other initiatives that are to
move abstractions to compile level.
AMDs new Graphics-Core-Next architecture has been presented in the report using the
information available at the time of writing. The GCN architecture is to form the basis of
AMDs new Southern Island series of GPUs that are to be as capable at compute as they are
at graphics. AMD offer very powerful and cost efficient hardware, and this along with the
portability are strong motivators for using OpenCL when building applications that are to
harness the compute power of GPU accelerators.
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Code Appendix

Choosing Platform

int getUserDefPlat form ( cl_platform_id ∗∗ ID , char∗∗ Name, int ∗ P) {
// Get number o f p l a t f o rms
c l_uint platformCount = 0 ;
c l_ int e r r = clGetPlat formIDs (0 , NULL, &platformCount ) ;
i f ( e r r != CL_SUCCESS) {

p r i n t f ( " Fa i l ed to get number o f p la t fo rms a v a i l a b l e \n " ) ;
return 1 ;

}

// A l l o c a t e and g e t p l a t f o rms
∗ID = ( cl_platform_id ∗) mal loc ( platformCount ∗ s izeof ( c l_platform_id ) ) ;
e r r = clGetPlatformIDs ( platformCount , ∗ID , NULL) ;
i f ( e r r != CL_SUCCESS) {

p r i n t f ( " Fa i l ed to get p lat form i d s a v a i l a b l e \n " ) ;
return 1 ;

}

// I t e r a t e through p la t f o rms and d i s p l a y the name o f each .
p r i n t f ( " Plat forms a v a i l a b l e : \n " ) ;
for ( int p = 0 ; p < platformCount ; p++) {

// Get i n f o l e n g t h
s i z e_t r equ i r ed ;
e r r = c lGetPlat fo rmIn fo (∗ ID [ p ] , CL_PLATFORM_NAME, 0 , NULL, &requ i r ed ) ;
i f ( e r r != CL_SUCCESS) {

p r i n t f ( " Fa i l ed to get l ength o f i n f o s t r i n g \n" ) ;
return 1 ;

}

// Get i n f o
∗Name = ( char ∗) mal loc ( r equ i r ed ∗ s izeof ( char ) ) ;
e r r = c lGetPlat fo rmIn fo (∗ ID [ p ] , CL_PLATFORM_NAME, requ i red , ∗Name, NULL) ;
i f ( e r r != CL_SUCCESS) {

p r i n t f ( " Fa i l ed to get i n f o s t r i n g \n" ) ;
return 1 ;

}

// Print name
p r i n t f ( " [%d ] \ t %s \n" ,p+1,∗Name) ;

// Free name
f r e e (∗Name) ;

}

// Ask user f o r which p la t form to use
p r i n t f ( " Choose a plat form : " ) ;
s can f ( "%d" ,P) ;
∗P = ∗P − 1 ;

// Get i n f o l e n g t h
s i z e_t r equ i r ed ;
e r r = c lGetPlat fo rmIn fo (∗ ID [ ∗P] , CL_PLATFORM_NAME, 0 , NULL, &requ i r ed ) ;
i f ( e r r != CL_SUCCESS) {

p r i n t f ( " Fa i l ed to get l ength o f i n f o s t r i n g \n" ) ;
return 1 ;

}
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// Get i n f o
∗Name = ( char ∗) mal loc ( r equ i r ed ∗ s izeof ( char ) ) ;
e r r = c lGetPlat fo rmIn fo (∗ ID [ ∗P] , CL_PLATFORM_NAME, requ i red , ∗Name, NULL) ;
i f ( e r r != CL_SUCCESS) {

p r i n t f ( " Fa i l ed to get i n f o s t r i n g \n" ) ;
return 1 ;

}

return 0 ;

}

Choosing Device

int getUserDefDevice ( c l_platform_id ∗ plat formIds , int p , c l_device_id ∗∗ ID ,
char∗∗ Name, int ∗ D, c l_uint ∗ deviceCount ) {

// Get number o f d e v i c e s
c l_ int e r r ;
// c l_uin t deviceCount = ∗Count ;
e r r = clGetDeviceIDs ( p la t fo rmIds [ p ] , CL_DEVICE_TYPE_ALL, 0 , NULL,

deviceCount ) ;
i f ( e r r != CL_SUCCESS) {

p r i n t f ( " Fa i l ed to get number o f d e v i c e s in plat form \n" ) ;
return 1 ;

}

// Get dev i c e i d s
∗ID = ( cl_device_id ∗) mal loc (∗ deviceCount ∗ s izeof ( c l_device_id ) ) ;
e r r = clGetDeviceIDs ( p la t fo rmIds [ p ] , CL_DEVICE_TYPE_ALL, ∗ deviceCount , ∗ID ,

NULL) ;
i f ( e r r != CL_SUCCESS) {

p r i n t f ( " Fa i l ed to get d e v i c e s i d s in plat form \n" ) ;
return 1 ;

}
c l_device_id ∗ id = ∗ID ;

// I t e r a t e through d e v i c e s and d i s p l a y the name o f each .
p r i n t f ( " \ nDevices a v a i l a b l e on plat form %d : \n" ,p+1) ;
for ( int d = 0 ; d < ∗ deviceCount ; d++) {

// Get i n f o l e n g t h
s i z e_t r equ i r ed ;
e r r = c lGetDev i ce In fo ( id [ d ] , CL_DEVICE_NAME, 0 , NULL, &requ i r ed ) ;
i f ( e r r != CL_SUCCESS) {

p r i n t f ( " Fa i l ed to get l ength o f i n f o s t r i n g \n" ) ;
return 1 ;

}

// Get i n f o
∗Name = ( char ∗) mal loc ( r equ i r ed ∗ s izeof ( char ) ) ;
e r r = c lGetDev i ce In fo ( id [ d ] , CL_DEVICE_NAME, requ i red , ∗Name, NULL) ;
i f ( e r r != CL_SUCCESS) {

p r i n t f ( " Fa i l ed to get i n f o s t r i n g \n" ) ;
return 1 ;

}

// Print name
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p r i n t f ( " [%d ] \ t %s \n" ,d+1,∗Name) ;

// Free name
f r e e (∗Name) ;

}

// Ask the user to choose a dev i c e
p r i n t f ( " Choose a dev i c e : " ) ;
s can f ( "%d" ,D) ;
∗D = ∗D − 1 ;

// Get i n f o l e n g t h
s i z e_t r equ i r ed ;

e r r = c lGetDev i ce In fo ( id [ ∗D] , CL_DEVICE_NAME, 0 , NULL, &requ i r ed ) ;
i f ( e r r != CL_SUCCESS) {

p r i n t f ( " Fa i l ed to get l ength o f i n f o s t r i n g \n" ) ;
return 1 ;

}

// Get i n f o
∗Name = ( char ∗) mal loc ( r equ i r ed ∗ s izeof ( char ) ) ;
e r r = c lGetDev i ce In fo ( id [ ∗D] , CL_DEVICE_NAME, requ i red , ∗Name, NULL) ;
i f ( e r r != CL_SUCCESS) {

p r i n t f ( " Fa i l ed to get i n f o s t r i n g \n" ) ;
return 1 ;

}

return 0 ;

}

Device information

int ge tDev i c e In fo ( c l_device_id ∗ ID , c l_uint deviceCount ) {

c l_ int e r r ; s i z e_t s i z e ;

for ( int d = 0 ; d<deviceCount ; d++){

// Get dev i c e name and p r i n t to screen

e r r = c lGetDev i ce In fo ( ID [ d ] ,CL_DEVICE_VENDOR, 0 ,NULL,& s i z e ) ;
char∗ vendor = ( char ∗) mal loc ( s izeof ( char ) ∗ s i z e ) ;
e r r = c lGetDev i ce In fo ( ID [ d ] ,CL_DEVICE_VENDOR, s i z e , vendor ,NULL) ;

e r r = c lGetDev i ce In fo ( ID [ d ] ,CL_DEVICE_NAME, 0 ,NULL,& s i z e ) ;
char∗ name = ( char ∗) mal loc ( s izeof ( char ) ∗ s i z e ) ;
e r r = c lGetDev i ce In fo ( ID [ d ] ,CL_DEVICE_NAME, s i z e , name ,NULL) ;

p r i n t f ( "Compute c a p a b i l i t i e s o f %s , %s \n\n" ,name , vendor ) ;

e r r = c lGetDev i ce In fo ( ID [ d ] ,CL_DEVICE_VERSION, 0 ,NULL,& s i z e ) ;
char∗ v e r s i o n = ( char ∗) mal loc ( s izeof ( char ) ∗ s i z e ) ;
e r r = c lGetDev i ce In fo ( ID [ d ] ,CL_DEVICE_VERSION, s i z e , ver s ion ,NULL) ;
p r i n t f ( " \ t OpenCL Device Support \ t \ t %s \n" , v e r s i o n ) ;

e r r = c lGetDev i ce In fo ( ID [ d ] ,CL_DRIVER_VERSION, 0 ,NULL,& s i z e ) ;
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char∗ d r i v e r = ( char ∗) mal loc ( s izeof ( char ) ∗ s i z e ) ;
e r r = c lGetDev i ce In fo ( ID [ d ] ,CL_DRIVER_VERSION, s i z e , dr ive r ,NULL) ;
p r i n t f ( " \ t OpenCL Software Driver \ t %s \n" , d r i v e r ) ;

e r r = c lGetDev i ce In fo ( ID [ d ] ,CL_DEVICE_PROFILE, 0 ,NULL,& s i z e ) ;
char∗ p r o f i l e = ( char ∗) mal loc ( s izeof ( char ) ∗ s i z e ) ;
e r r = c lGetDev i ce In fo ( ID [ d ] ,CL_DEVICE_PROFILE, s i z e , p r o f i l e ,NULL) ;
p r i n t f ( " \ t OpenCL P r o f i l e Supported \ t %s \n\n" , p r o f i l e ) ;

c l_uint maxComputeUnits ;
e r r = c lGetDev i ce In fo ( ID [ d ] ,CL_DEVICE_MAX_COMPUTE_UNITS, s izeof ( c l_uint ) ,&

maxComputeUnits ,NULL) ;
p r i n t f ( " \ t Compute Units Ava i l ab l e \ t %d\n" , maxComputeUnits ) ;

s i z e_t maxWorkGroupItems ;
e r r = c lGetDev i ce In fo ( ID [ d ] ,CL_DEVICE_MAX_WORK_GROUP_SIZE, s izeof ( s i z e_t )

,&maxWorkGroupItems ,NULL) ;
p r i n t f ( " \ t Max Work−i tems per Work−group \ t %d\n" , maxWorkGroupItems ) ;

c l_ulong localMem ;
e r r = c lGetDev i ce In fo ( ID [ d ] ,CL_DEVICE_LOCAL_MEM_SIZE, s izeof ( cl_ulong ) ,&

localMem ,NULL) ;
p r i n t f ( " \ t Compute Unit Local Memory \ t %dKb\n\n" , localMem /1024) ;

c l_ulong globalMem ;
e r r = c lGetDev i ce In fo ( ID [ d ] ,CL_DEVICE_GLOBAL_MEM_SIZE, s izeof ( cl_ulong ) ,&

globalMem ,NULL) ;
p r i n t f ( " \ t Global Memory S i z e \ t \ t %dMB\n" , globalMem /1048576) ;

c l_bool ECC;
e r r = c lGetDev i ce In fo ( ID [ d ] ,CL_DEVICE_ERROR_CORRECTION_SUPPORT, s izeof (

c l_bool ) ,&ECC,NULL) ;
switch (ECC)
{
case CL_TRUE:

p r i n t f ( " \ t Error Correc t ion Support \ t Yes\n " ) ;
break ;

case CL_FALSE:
p r i n t f ( " \ t Error Correc t ion Support \ t No\n" ) ;
break ;

}

cl_ulong globalCache ;
e r r = c lGetDev i ce In fo ( ID [ d ] ,CL_DEVICE_GLOBAL_MEM_CACHE_SIZE, s izeof (

cl_ulong ) ,& globalCache ,NULL) ;
p r i n t f ( " \ t Global Memory Cache \ t \ t %dKB\n" , g lobalCache /1025) ;

c l_uint g lobalCacheLine ;
e r r = c lGetDev i ce In fo ( ID [ d ] ,CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE, s izeof (

c l_uint ) ,& globalCacheLine ,NULL) ;
p r i n t f ( " \ t Global Memory Cache l ine \ t %dBytes\n\n" , g lobalCacheLine ) ;

}

return 0 ;

}
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Building program

int buildProgramFromSources ( c l_context context , c l_uint deviceCount ,
c l_device_id ∗ dev i ce Ids , const char∗ f i l ename , cl_program∗ program ) {

// Open f i l e
FILE∗ f i l e = fopen ( f i l ename , " r " ) ;

// Find s i z e and go back to s t a r t
f s e e k ( f i l e , 0 , SEEK_END) ;
s i z e_t l ength = f t e l l ( f i l e ) ;
f s e e k ( f i l e , 0 , SEEK_SET) ;

// A l l o c a t e and read content
char∗ source = ( char ∗) mal loc ( l ength ∗ s izeof ( char ) ) ;
f r ead ( source , length , 1 , f i l e ) ;

// Close f i l e
f c l o s e ( f i l e ) ;

// Create program
c l_ int e r r ;
∗program = clCreateProgramWithSource ( context , 1 , &source , &length , &e r r ) ;
i f ( e r r != CL_SUCCESS) {

p r i n t f ( " Fa i l ed to c r e a t e program in context . \ n " ) ;
return 1 ;

}

// Bui ld sources
e r r = clBuildProgram (∗ program , deviceCount , dev i ce Ids , NULL, NULL, NULL) ;
i f ( e r r != CL_SUCCESS) {

p r i n t f ( " Fa i l ed to bu i ld program f o r d e v i c e s in plat form . \ n" ) ;
return 1 ;

}

// Free content
f r e e ( source ) ;

return 0 ;
}
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