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Overview 

• Working principle and requirements for superconducting generators in 
wind turbines 

 

• Considerations for wind turbine solutions for large scale offshore wind 
power development 

 

• Benefits of the HTS technology in terms of efficiency and power density 

 

• Assessing the current cost situation 

 

• How can HTS technology become commercially viable 
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Level of experience with HTS machines 

• How many have constructed/tested a superconducting machine? 

 

 

• How many have read about it and done some calculations? 

 

 

• How many have had limited exposure? 
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WORKING PRINCIPLE AND 
REQUIREMENTS 
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HTS machine principle 

• Zero DC resistance is particularly attractive in the field winding of a 
synchronous machine 

• Very high currents in the field winding result in a very 
high airgap flux density 

• Hence very high torque densities can be achieved 

• HTS tape is used in the field winding (the cold region) 

• Copper is used in the stator winding (the warm region) 
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2G HTS tape 

• The tape thickness is around 100-200μm for 2G 

• The HTS layer is just a few μm 

• The remaining material is for mechanical and thermal stability 
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High Temperature Superconductors 

• The superconducting state is limited by 

– Critical flux density Bc 

– Critical current density Jc 

– Critical temperature Tc 

 

• HTS materials can be characterised 
by IV curves 

 

 

 

 

• E0 is the electric field at the  
critical current (1μV/cm) 
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The Superwind project 

• Aims at assessing HTS machines for wind turbines 

 

• Particularly for large scale direct drive wind turbines 

 

• Constructed a prototype demonstrator 

– Assessing HTS coils 

– 1G – BSCCO (Tc ~ 110K) 

– 2G – YBCO (Tc ~93K) 

– Not investigated MgB2 (Tc ~39K) 

 

• The prototype and some results are presented in what follows 
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Race Track Coils 

150 mm 

60 mm 

20 mm 

242 mm 

1
2
4
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Winding 
Glass fiber insulation 
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Vacuum impregnation 

Vacuum Chamber Epoxy degassing 
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HTS coil connections 

• Power connections and voltage monitoring connections 
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Characterising the tape: I-V curves 

• IC(B,θ) @ 77K 
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Testing AmSC CC348 tape (2G) 
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DC loss in the two sections of the HTS 

IC industrial definition: 

V/L = 1μV/cm 

 

Loss per length at I 85A: 

P/L = 8.5μ W/cm 

  (425W for 500km) 

 

Loss per length at IC = 95A: 

P/L = IC V/L = 95 μ W/cm 

  (4.8kW for 500km) 

 

Loss per length if non-
superconducting: 

P/L =IC
2 R/L = 10-4Ω/cm(95A)2 

  =0.9W/cm 

  (45MW for 500km) 
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Requirements for HTS machines in general 

• Reliability of the cooling system, including 

– Cryocoolers 

– Possible rotating gaskets 

– Redundancy 

 

• Designed to withstand possible faults 

– Mechanically rigid 

– Thermally stabile 

– Quenching must be avoided 

 

• The same requirements for the stator as found in other machines 

– Reliable cooling system 

– Short circuit protection 
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Point of discussion 

• Discuss with your neighbour (two and two): 

– The presentation on HTS generators for wind turbines from yesterday 

– What has been presented so far this afternoon 

 

• Comments, questions, suggestions? 
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CONSIDERATIONS FOR 
LARGE SCALE OFFSHORE 
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Generations of wind turbine generators 

 

lIBDP 2
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1G wind turbine generator 
REpower 5MW 

• Generator: Geared doubly fed induction generator 
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1G wind turbine generator 
Enercon E-126 6MW 

• Generator: Direct drive wound field synchronous generator 



22 DTU Electrical Engineering, Technical University of Denmark 

2G wind turbine generator 
Multibrid M5000 5MW 

• Generator: Hybrid geared permanent magnet generator 
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Active materials in the generators 
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1G – Iron and Copper 
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Ferromagnetic domains aligned in Fe 
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2G – NdFeB, Iron and Copper 
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RFeB permanent magnets (R = Rare earth) 
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3G – YBCO, Iron and Copper 

• Rotor requires leads for the very stable DC supply (brushless?) 

• Rotating cooling system or rotating gaskets 

• Extremely high current densities leading to very high airgap flux densities 

• Slotless designs are commonly proposed, such that B ~2.5T can be achieved 

• SeaTitan (design by AmSC): P = 10MW, D~5m, L~5m, m = 150-180 tons 
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Behaviour of the superconductor 

• Meissner effect 

 

 

 

 

 

 

 

 

 

 

• The superconductor must be 
operated within the critical surface 

 

• Critical engineering current densities: 

 

 

 

 

• 2-3A/mm2 is common in conventional 
large machines 

• 2-300A/mm2 can be achieved in HTS 
machines 
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Materials for coated conductors 
(2G HTS tape) 

 



31 DTU Electrical Engineering, Technical University of Denmark 

Drivetrain comparison – Rare earth usage 
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Fe 

PM HTS 
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0 25kgR/MW 
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proposed 

Hybrid 

0 45kgR/MW 20gR/MW 

Direct drive 
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Point of discussion 

• Discuss with your neighbour (two and two): 

– The difference between the drivetrains 

– Your opinion on the HTS alternative, based on your experience and 
background 

– What do you see as the biggest advantage? 

– What do you see as the biggest challenge? 

– How is this relevant for your company? 

 

• Comments, questions, suggestions? 
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Advantages 

• High torque density 

• Less rare earth usage 

• Less top mass => lighter structure 

• Ease of transportation 

• Efficiency 

• Less lubricant 
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Challenges/Disadvantages 

• Cooling 

• Insulation 

• Reliability of the cooling system 

• Supply of components 

• Immaturity of the technology/supply chain 

• Cost! 

• Cool down time 

• Maintenance 

• Short circuit 

• Materials 

• Failure modes 

• Torque transmission 

• Slip rings 
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Relevance for your company 

• Size, logistics, material usage 

• Makes for interesting research 
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Importance of cost of energy (CoE) 

• CoE is reduced as the total installed capacity is increased 

• 121GW (2008) – 215GW (June 2011) 

Source: www.pwc.com/sustainability 
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CoE from renewable energy sources will 
become lower than from fossil fuel sources 

 

Source: European Climate Foundation – Roadmap 2050 
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Danish Wind Industry Association 
MegaVind – 2020 Strategy 

• Vestas Wind Systems 

• Siemens Wind Power 

• DONG Energy 

• Grontmij 

• Technical University of Denmark (DTU) 

• Aalborg University 

 

• Half CoE from offshore wind farms 

• Achieved by: 

– 25% increase in capacity factor 

– 40% reduction in CAPEX 

– 50% reduction in OPEX 
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MegaVind – 2020 Strategy 
50% reduction in CoE from offshore wind 

 

Source: Danish Wind Industry Association – MegaVind Strategy 
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MegaVind – 2020 Strategy 
Focus areas 

 

Source: Danish Wind Industry Association – MegaVind Strategy 
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Point of discussion 

• Discuss with your neighbour (two and two): 

– Most important requirements for future offshore wind turbines 

– or even wind farms 

• List suggestions? 

• Any that are not compatible with HTS machines? 
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EFFICIENCY AND POWER 
DENSITY 



43 DTU Electrical Engineering, Technical University of Denmark 

Generator Power 

    limited by stator cooling 

 limited by the power rating of the WT 
(around 10rpm at 10MW) 

A/m000,70A

3m115MW10  PMVP

rad/s05.1

  pVBATP gmm cosˆ2

3m42MW10  HTSVP

PM Generator Bg = 0.9T HTS Generator Bg = 2.5T 

With an axial stack length of 2.0m, this would 
result in a airgap diameter of: 

Dg = 8.6m Dg = 5.2m 
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Amount of copper in a PM and HTS 

• If the electric loading (A/m circumference) and the armature current 
density is the same in both machines: 

– Amount of copper will be 
proportional to the diameter 

 

• Hence if a 10MW PM machine has 

– 20 tons of copper and 

– 8.6m airgap diameter 

 

• A 10MW HTS machine will have 

–  12 tons of copper at 

– 5.2m airgap diameter 

 

 

Diameter 
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Copper loss comparison 

• The copper losses are the dominating losses in a large direct drive wind 
turbine generator 

• The copper losses are: 

 

 

 

 

• Using ρCu = 8950kg/m3, σCu =45MS/m, JCu = 2.7A/mm2 gives 

 

• 360kW Cu losses in the PM (3.6% of rated output power) 

• 220kW Cu losses in the HTS (2.2% of rated output power) 
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Cooling losses in an HTS machine 

Previously we had: 

 425W for 500km 

 

If additional 375W come from: 

 Conduction through connections 

 Radiation through the insulation 

 

The total power to be removed needs to be 800W 

 

In order to remove this at 30K, 50 times more power is needed: 

 40kW (0.40% of rated output power) 

 

The total losses (excluding iron and mechanical) are therefore: 

 2.6% for HTS (efficiency excluding Fe and Mech: 97.4%) 

 3.6% for PM (efficiency excluding Fe and Mech: 96.4%) 

  



47 DTU Electrical Engineering, Technical University of Denmark 

Point of discussion 

• Discuss with your neighbour (two and two): 

– The simplistic approach to efficiency estimation 

• Comments, questions, suggestions? 

 

• Partial load 

• Stray losses 

• Mechanical retention 
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Why use Multi-Pole Generators? 

• The converter is indifferent 
(to a certain extent) 

 

• Power is independent of 
pole numbers 

 

• Voltage is independent 
of pole numbers 

 

• Traditionally: weight  
(and cost) savings! 
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Core Back Thickness 

• The flux path is from one pole to the next. 
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PM Direct Drive Generator 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• The mass of the nacelle can be significantly reduced 

 

2 Poles 10 Poles 
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End windings 

• Copper and HTS end winding length is reduced 

 
2 Pole Multi-Pole 
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Simplified calculations of HTS usage 

 

Source: H. Ohsaki et al. “Electromagnetic Characteristics of 10 MW Class 
Superconducting Wind Turbine Generators”, ICEMS, 2010. 
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Estimating the effective airgap 

• 12 pole, Dg = 5.2m, JCu = 2.7A/mm2, A = 70kA/m, FFCu = 50% 

• Radial copper depth: 

 

 

 

• Airgap: g = 10mm 

• Cryostat thickness: 30mm each 

• HTS radial thickness: 30mm 

– iterative 

• Each pole has 2.7m of heavily 
saturated iron. This can be simply 
represented by 50mm of air 
(corresponding to μr~50 

 

• Total effective airgap: 200mm 
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Estimating the required number of turns 

• 12 pole, Dg = 5.2m, JCu = 2.7A/mm2, A = 70kA/m, FFCu = 50% 

• Effective airgap: 200mm 

• If Bg = 2.5T → Hg = 2MA/m 

• Required mmf per pole: 

 

 

 

 

 

• If each HTS conductor can carry 100A 
then 4000 turns are needed 
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Estimating the required length of HTS tape 

• 12 pole, Dg = 5.2m, JCu = 2.7A/mm2, A = 70kA/m, FFCu = 50% 

 

• HTS turns per pole: NHTS = 4,000 

 

• Pole arc length 

 

 

 

• As the HTS has circular ends the average 
turn length is: 

 

 

• The total length of HTS tape in a 12 pole machine would therefore be: 

•  
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Mass, HTS length and price as a function of 
pole number 
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Power density 

• The power density of an HTS generator can therefore be expected to be 
higher than for a PM generator 

 

• The power density will depend on the specific design and varies in the 
literature 

 

• Most scientific papers do not account for the entire mass of the generator 

 

• AmSC promise 15-18kg/kW (10MW) 

 

• A 10MW PM generator might have 30kg/kW (Bang 2008) 

 

 

 

 
(D. Bang et al. “Review of generator systems for direct-drive wind turbines”, EWEC 2008) 
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Point of discussion 

• Discuss with your neighbour (two and two): 

– The simplistic assessment of the HTS tape usage 

 

• Comments, questions, suggestions? 
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ASSESSING THE CURRENT 
COST SITUATION 
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Cost of HTS tape 

• If 500km of HTS tape is assumed for a 10MW wind turbine generator 

 

• The current carrying capacity is 100A and the cheapest price on the 
market is €100/kAm, which gives €10/m 

 

• The cost of the HTS tape for a 10MW would therefore be €5 million 

 

• In addition the cryostat, cryocooler etc. will have to be added 

 

• PM price today? €100-200/kg 

 

• If 10 tons of PM is required for a 10MW wind turbine 

 

• The cost of the PM for a 10MW would be €1-2 million 
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Future cost of HTS must/will come down 

• It is not unlikely that the price of HTS tape will come down to €15/kAm 

 

• This would result in €750,000, if 500km of HTS tape was required for a 
10MW wind turbine 

 

• This would be competitive with PM technology 
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BECOMING 
COMMERCIALLY VIABLE 
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Continue research in universities 

• Building small scale prototypes 

• Learning from these and extrapolating to large scale 
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Results for a simple prototype 
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Design and construct large scale 
demonstrators 

• AmSC and Northrop-Grumman (NGC) built a 36.5MW for the US Navy in 
2007 

• AmSC and Converteam built a 5MW for the US Office of Naval Research 
in 2005 

• AmSC would like to build the SeaTitan – a 10MW direct drive wind 
turbine generator 

• Converteam and Zenergy built a small HTS hydrogenerator 

• Converteam are building an 8MW direct drive wind turbine generator 

• Siemens has had much HTS machine activity 

• GE just announced that they would construct a 10MW direct drive wind 
turbine generator based on LTS 
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Collaboration and commitment is needed 

• Collaboration and commitment is needed from the 

– Wind turbine manufacturers 

– HTS tape manufacturers 

– Wind turbine operators 

 

• Commitment is needed from the funding bodies 

– This seems to be in place – HTS generators for wind turbines have 
been mentioned specifically in an FP7 call 

 

• Mass production of the HTS tape is required 

– Avoid the chicken and egg scenario 
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THANK YOU! 
QUESTIONS? 
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This presentation is part of an EU Interreg project, which is informing about 
projects connected to Wind in the Øresund-region of Eastern Denmark and 
Southern Sweden. 
 
A collaboration between the Technical University of Denmark (DTU) and The 
Faculty of Engineering at Lund University (LTH). 

VIND I ØRESUND 


