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A method to reduce truncation errors in near-field antenna measurements is presented. The method is based on the Gerchberg-
Papoulis iterative algorithm used to extrapolate band-limited functions and it is able to extend the valid region of the calculated
far-field pattern up to the whole forward hemisphere. The extension of the valid region is achieved by the iterative application of a
transformation between two different domains. After each transformation, a filtering process that is based on known information
at each domain is applied. The first domain is the spectral domain in which the plane wave spectrum (PWS) is reliable only within
a known region. The second domain is the field distribution over the antenna under test (AUT) plane in which the desired field
is assumed to be concentrated on the antenna aperture. The method can be applied to any scanning geometry, but in this paper,
only the planar, cylindrical, and partial spherical near-field measurements are considered. Several simulation and measurement

examples are presented to verify the effectiveness of the method.

1. Introduction

In many cases, antenna parameters, such as gain, directivity,
radiation pattern, side-lobe level, and beamwidth, cannot be
determined directly from measurements that are obtained in
a far-field range because the distance to the far-field region
may be too large. However, it is well known that those
parameters can be obtained using analytical transformations
from near-field measurements [1-4]. Moreover, these types
of measurement can be performed in indoor ranges, reduc-
ing unwanted contributions from the environment, such as
reflections or diffractions, as much as possible.

One important requirement to determine exact far-field
patterns from near-field acquisitions is the ability to measure
the electric or magnetic field that is tangential to an arbitrary
surface that encloses the antenna under test (AUT). If that
condition is satisfied, the field can be obtained anywhere
outside the measurement surface and specifically in the far-
field region by solving an integral over the surface on which

the fields are known [1]. However, the solution of this inte-
gral is impractical to determine unless the scan surface sup-
ports orthogonal vector wave functions. There are only six
coordinate systems that support vector wave functions that
satisfy the orthogonality condition, but only three of them
(planar, cylindrical, and spherical) are employed because of
the simplicity of the required mechanical equipment. These
three coordinate systems constitute the classical near-field
antenna measurement systems and, although the three near-
field techniques are based on the same principle (measure-
ment over a surface in the near-field and transformation to
far-field), there are important differences among them. The
planar and cylindrical scanning geometries are mechanically
simpler than in the case of the spherical near-field (SNF).
Moreover, the spherical near-field to far-field transformation
is more complex, requiring more calculations to obtain the
far-field pattern from the acquired data. However, the most
accurate antenna patterns are obtained using this last type of
acquisition because it is the only measurement setup where



the AUT is fully enclosed by the acquisition surface. There-
fore, there are no truncation errors in the calculated far-field
pattern. In the planar near-field (PNF) and cylindrical near-
field (CNF) measurements, because of the finite size of the
scan surface, the closed surface condition is never fulfilled,
and, consequently, the true far-field pattern is never known
in the whole sphere, that is, the pattern is only valid within
the called reliable region. A second effect, which is caused by
the discontinuity of the measured field at the edge of the scan
surface, is the presence of a ripple within this region.

Because the truncation error is an unavoidable error in
PNF and CNF measurements, and it is not present in SNF
measurements, most of the approaches to reduce this kind
of error have been specifically proposed for the two first
configurations. These approaches can be divided into two
groups. The first group attempts to reduce the second effect
that was mentioned previously, that is, the ripple within
the reliable region by the application of proper window
functions to the near-field data. In [5, 6], a directive synthetic
array of probes is created by combining near-field data
points to reduce the level at the edges of the measurement
plane. This approach provides noticeable ripple reduction,
especially for the measurement of low-directive antennas.
Another ripple reduction approach is proposed in [7, 8] in
which raised cosine amplitude and quadratic phase windows
are shown to provide high accuracy. Although windowing
techniques can greatly reduce erroneous ripples, an extra
scan area is needed to obtain the same reliable region. If
the scan area is not extended with the use of one of these
techniques, the extent of the reliable region is reduced.

The approaches of the second group do not attempt
to reduce the ripple within the region in which the far-
field pattern is reliable, but they attempt to obtain a good
estimation of the true pattern outside of that region. One
of these approaches, called the equivalent magnetic current
approach [9], presents a method of computing far-fields in
the whole forward hemisphere from planar near-field mea-
surements. The idea is to compute the equivalent magnetic
currents in the AUT plane by solving the system of integral
equations that relate these currents and the measured field.
Once these currents are known, it is possible to produce the
correct far-fields in front of the AUT. The main drawback of
this approach is the great computational complexity that is
required to solve the system of integral equations. However,
that complexity may be drastically reduced by using a mag-
netic dipole array approximation instead of the equivalent
magnetic current approach, eliminating the numerical inte-
gration in the process. Another strategy to reduce truncation
errors is to rotate the AUT about one or more axes [10], mea-
suring in different planes and combining them to increase the
maximum validity angle. Logically, this technique requires
a particular near-field to far-field transformation for each
combination of plane acquisitions. In [11], the problem of
truncation is addressed using a priori information about the
AUT. The main idea of this approach is to estimate the near-
field data outside of the scanning area by extrapolating the
measured data before calculating the far-field pattern. The
a priori information is employed to obtain a nonredundant
and nonuniform representation [12] of the samples that are
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taken over the measurement surface. Thanks to this distri-
bution of the samples, a large amount of samples outside
of the scan plane can be recovered with good accuracy. This
strategy was experimentally validated in [13], obtaining good
far-field results for the case of cylindrical scanning. The same
idea of nonredundant and nonuniform representation of
electromagnetic fields was also used in [14] for extrapolating
the data outside of a plane-polar scanning. In this last work,
however, optimal sampling interpolation expansions instead
of the cardinal series expansions employed in [11, 12] are
applied. In [14], it is numerically demonstrated that these
new expansions guarantee a better reconstruction of the sam-
ples outside the measurement surface for a given number of
measurement points. However, these extrapolation methods
are not able to remove the truncation error in all the far-field
pattern. A new method that is based on the same principle,
that is, the use of a nonredundant sampling in the acquisi-
tion, was proposed in [15]. In this method, the truncation
error is practically eliminated by also addressing points in
surfaces external to the actual scanning area. Therefore, this
method can be applied whenever the set-up allows the varia-
tion of the distance between the AUT and the probe. Another
alternative to increase the reliable region by extrapolating the
planar near-field data is described in [16]. The extrapolation
is achieved by first back-propagating the measured field
to the AUT plane. After that, only the samples within the
AUT aperture are retained, and they are used to restore the
external samples in terms of a diffraction integral along the
aperture rim. Finally, the field is transformed back to the
measurement plane to obtain new field samples outside of
the measurement region. The main drawback of this last
approach is, as in [11, 12, 14], the impossibility of recovering
samples over an infinite surface with good accuracy, and,
therefore, the truncation error is not completely removed for
large elevation angles. A recent publication [17] also uses a
priori information about the AUT in an iterative algorithm
to extrapolate the reliable portion of the calculated far-field
pattern. This method was proposed for the planar near-field
case, and the theoretical basis of the iterative algorithm was
presented in [18, 19] by Gerchberg and Papoulis, respectively.

As commented before, truncation errors are always
present in PNF and CNF measurements but not in SNF
measurements. However, there are special cases, for example,
when measuring electrically large antennas, in which the
measurement time may be prohibitively long and an
acquisition over the whole sphere is not practical. A solution
to reduce the data acquisition time is to measure over a
partial sphere. Nevertheless, the new acquisition surface does
not fully enclose the AUT, and, as in the PNF and CNF cases,
a truncation error appears in the far-field pattern. Although
this is a typical error in PNF and CNF measurements, there
are also some studies that have dealt with this problem in
partial SNF measurements. In [20], the truncated spherical
near-field data are used to calculate an equivalent currents
distribution of a set of dipoles that reproduce the radiation of
the AUT. As in [9], once that distribution is known, the far-
field pattern is easily computed in the entire sphere. When
measuring over a partial sphere, the error that appears in
the computed far-field arises from the nonorthogonality of
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the classical spherical modal functions in the uncompleted
surface. Therefore, the calculated modal coefficients are
incorrect. This problem can be solved by employing a
new basis function set that is orthogonal over the truncated
angular domain. It is subsequently necessary to derive a near-
field to far-field transformation for the resulting coefficients.
This solution was presented for two-dimensional cylin-
drical/spherical near-field scanning in [21] and for three-
dimensional acoustic spherical near-field scanning in [22].
The alternative expansion considered in these works is based
on Slepian functions [23]. In some cases, it is not the mea-
surement time that is the limitation of SNF measurements,
but the impossibility to get reliable data over the whole
sphere, for example, due to support-structure blockage when
measuring electrically small antennas. In [24], a method that
is based on a least-squares technique is employed to calculate
the spherical wave coefficients using forward hemisphere
data only. This method can significantly reduce truncation
errors, but it is not efficient for large antennas. This problem
is also addressed in [25] where the band-limited property
of the spherical wave coefficients is exploited in an iterative
algorithm that substitutes the unreliable portion of the meas-
urement sphere with new samples at each iteration.

In the present work, a method to reduce truncation
errors when measuring the field overtruncated surfaces is de-
veloped. The method is based on the iterative algorithm that
was proposed in [18, 19], and it has already been applied to
the PNF case in [17]. However, this method can be applied
to any scanning geometry by taking certain considera-
tions into account. Therefore, this work can be viewed as a
generalization of the method presented in [17]. Moreover,
compared to some aforementioned approaches, it is not nec-
essary to take samples in surfaces external to the actual scan-
ning area. Therefore the reduction of truncation errors is
achieved without increasing the measurement time. In addi-
tion, the computational cost is not large because the method
is based on the iterative application of Fourier transforms
between the plane wave spectrum (PWS) and the extreme
near-field, and those transforms can be made quite rapid by
using fast fourier transform techniques, not as in [9] where
the equivalent magnetic currents are obtained by solving a
complex system of integral equations.

A bottleneck of the method presented in [17] may be the
time required to find the optimum termination point in the
iterative procedure. In this work, a faster procedure based
on the Gradient Descent algorithm, with which is possible
to obtain the iteration number where the error is minimum,
is proposed.

The method provides an exact reconstruction when
starting from error free data. In practice, the measured data
are always affected by errors, and therefore, the method does
not converge to the exact solution. However, the method is
very insensitive to errors and is able to provide a very good
radiation pattern reconstruction using initial data corrupted
by noise or other measurement errors.

The main limitation of the method is that the truncation
error can only be removed in the forward hemisphere. More-
over, it is within the methods that require a priori informa-
tion about the AUT, like all the methods based on a non-

redundant and nonuniform representation of the samples
[11-15]. In our case, it is necessary to know exactly the AUT
dimensions. Due to this fact, the best results are obtained
when the AUT is an aperture antenna because its dimensions
are well defined.

Although our method is a generic approach that can be
applied to any scanning geometry, only the most common
truncated cases (plane, cylinder, and partial sphere) are con-
sidered here.

The paper is organized as follows. Section 2 gives an over-
view of the concept of the spectral reliable region. The
method to reduce truncation errors is described in Section 3
where its convergence is also studied. Section 4 presents a
simulated model that is used in Section 5 to analyze the crit-
ical aspects of the method. The effectiveness of the method
is validated in Section 6 using both the simulated data from
Section 4 and measured near-field data. Conclusions are
drawn in Section 7.

2. Spectral Reliable Region

The classical way for obtaining the far-field pattern from
near-field measurements is to employ the modal expansion
method, which is based on the fact that the field over an
appropriate surface can be expressed as a linear combination
of a set of orthogonal functions. In this method, after the
measurement of the tangential components of the electric
or magnetic field over a truncated surface, the modal coeffi-
cients are obtained by making use of the orthogonalities of
the modal functions. However, these functions are orthog-
onal over the original surface but not over the truncated
surface, so these coefficients are calculated erroneously. This
error is translated into two different effects in the calculated
far-field pattern. On one hand, the results are completely
unreliable outside of a certain spectral region. On the other
hand, erroneous ripples appear within that region due to
the discontinuity of the measured field at the edge of the
truncated surface. Therefore, the entire calculated pattern is
always affected by errors, and it is not possible to define a
region where the error is completely zero. However, the con-
cept of the spectral reliable region is usually applied to refer
to the region in which the error is not negligible but is low. A
classical definition of this region is given in [3, 26], where
geometrical optics is employed to calculate the maximum
validity angles that are used to define the reliable region.
According to this definition, one particular direction will be
within the reliable region when the scan surface includes all
of the rays that are parallel to the direction coming from
any part of the AUT as shown in Figure 1(a). The opposite
situation is depicted in Figure 1(b) in which there are rays
that do not lie on the scan surface.

The reliable region defined in this way depends on the
AUT size, the distance from the scan surface to the AUT and
the shape and size of the acquisition surface. Therefore, even
with the use of the same AUT and the same measurement dis-
tance, the reliable region will be different for each type of
measurement setup and require an independent analysis for
each of them. As mentioned before, not only the classical
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FIGURE 1: Geometrical optics employed to define the spectral reliable region: (a) direction included in the reliable region; (b) direction not

included in the reliable region.

()

FIGURE 2: Truncation in near-field measurement setups: (a) Planar truncation; (b) Cylindrical truncation; (c) Polar truncation; (d) Spherical

ring truncation; (e) Azimuthal truncation; (f) Sectorial truncation.

cases of truncation, that is, the PNF and CNF cases, but also
the partial SNF measurements are analyzed here. Logically,
because it is possible to sample over different parts of the
sphere, there are different types of reliable region, not as in
the two first cases, where the shape of the reliable region
is always the same. The choice of the sampling region will
depend on the expected radiation pattern because if most of
the radiated energy is concentrated in that region, the pro-
posed method will provide a better reconstruction. In part-
icular, besides the planar and cylindrical truncation, four dif-
ferent truncations in SNF measurements are studied in
this work. The six truncation surfaces for different meas-
urement setups are depicted in Figure 2, and their cor-

responding reliable regions are shown in Figure 3. These reli-
able regions were determined using geometrical optics, and
their mathematical formulations are indicated in Table 1.

3. Extrapolation Method

As shown in the previous section, when measuring over
a truncated surface, the calculated far-field pattern can
only be considered reliable within a limited known region.
Therefore, the truncation problem can be viewed as an extra-
polation problem. Various methods have been presented to
achieve satisfactory estimates when extrapolating a known
portion of a signal. Most of these methods are general
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FIGURE 3: Spectral reliable regions: (a) PNF measurement; (b) CNF measurement; (¢) SNF measurement with polar truncation; (d)
SNF measurement with spherical ring truncation; (¢) SNF measurement with azimuthal truncation; (f) SNF measurement with sectorial

truncation.

TasLE 1: Determination of the spectral reliable regions based on geometrical optics for each type of measurement setup.

Measurement set-up Maximum validity angles

Spectral reliable region

0, = arctan((L, — A,)/2D);

PNF measurement Gy arctan(( L, - Ay) /2D)

{k2/(ksin 6,) + k2/k* < 1} 0 {k2/k* + k2/(ksin 6,)” < 1}

CNF measurement 0, = arctan((L, — A,)/2D)

{lky| < ksin0,}

SNF measurement with

polar truncation 6, = 6; — arcsin (ro/D)"

{k2+ k2 < (ksin6,)’}

SNF measurement with
spherical ring truncation

0,1 = 04 — arcsin(ry/D); 0,, = 6,, + arcsin (/D)™

{k2 + k2 < (ksin6,1)*} 0 {k2 + k2 > (ksin6,,)*}

SNF measurement with
azimuthal truncation

$u1 = ¢y + arcsin(ro/D); ¢, = ¢ra — arcsin (re/D)*

{ky > ke - tan¢,i} N {k, <k, -tang,}

SNF measurement with
sectorial truncation

0,1 = 04 — arcsin(ry/D); 0,, = 6,, + arcsin (/D) *
$u1 = ¢y + arcsin(ro/D); ¢, = ¢r2 — arcsin (ro/D)*

{k2+k2 < (ksin6,1)°} 0 {k2 + k2 > (ksin6,,)*}
Niky >k, - tan¢,} N {k, <k, - tan¢,,}

“ro = (1/2),/A2 + A3,

approaches for the extrapolation of the finite-time segment
of a signal, and they are based on deconvolution or predictive
filtering. However, there are special solutions that provide
better results when the signal satisfies certain properties.
This is the case in the alternating orthogonal projection
method [17, 18], which consists of the sequential application
of two signal operators in two different domains to obtain
an approximation sequence with convergence to the desired
extrapolation that is guaranteed in theory. This method

is optimally designed for the extrapolation of the time-
truncated version of a band-limited signal, that is, its Fourier
transform is identically zero outside of some frequency set.
Therefore, this last type of method can be employed in our
truncation problem because it is necessary to extrapolate a
truncated portion of the PWS with a Fourier transform (field
distribution on the AUT plane) that is spatially band-limited
because the field distribution is theoretically concentrated on
the antenna aperture.
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FIGURE 4: Schematic diagram of the method to reduce truncation errors.

Before describing all of the steps of the method, we
present the two orthogonal projection operators that play an
important role in the method. The first operator is applied
in the spectral domain and defines the reliable portion of the
PWS. This first operator is given by

Akeky) =

where A is the spectral-truncation operator and Qg is one
of the reliable regions that is defined in Table 1. The second
operator is called band-limited operator and is applied to the
field distribution on the AUT plane:

1,V (keky) € Qp,

(1)
0, V(koky) & Qs

1, V(xy) € waur,
h(x>)’) =
0, V(x,y) ¢ waur

(2

where h stands for the band-limited operator and wayr is the
region where the AUT is located. In the spectral domain, this
last operator can be expressed as follows:

BP (ke ky) = Pk ky) # H (koo ky ), (3)
being B the band-limited operator defined in the spectral
domain, P(ky, k,) represents the PWS, and H is the inverse
Fourier transform of the operator h.

The schematic diagram of the method is shown in
Figure 4 and the steps are described as follows.

Step 1. Near-field data are used to calculate the PWS. Because
the fast fourier transform algorithm is employed in the
iterative part of the method, the samples of the PWS must
be known on a regular ky-k, grid.

Step 2. The unreliable portion of the initial PWS is filtered
out by the application of the operator that was defined in (1).

Step 3. The field distribution over the AUT plane is obtained
by taking the Fourier transform of the filtered PWS.

| the iteration n,
: Py (x’ )

plane at the iteration n, !

h(x, y) + fu(x, y) ,'

l
(5) IFFT :dlstrlbutlon on the AUT)
1
1
|

|
1
I
I
*I(ky,ky) denotes the identity operator in the spectral domain.

Step 4. The previous field distribution is spatially filtered
using the band-limited operator that was presented in (2).

Step 5. The filtered field distribution is Fourier-transformed
back to the spectral domain to obtain an auxiliary PWS.

Step 6. A new reconstructed PWS is calculated by substitut-
ing the unreliable portion of the initial PWS for the same
portion of the PWS that was obtained in the previous step.

Step 7. If the new PWS fulfills the termination condition,
the algorithm stops. If not, a new iteration starting from the
Step 4 is performed.

3.1. Convergence. Once the method has been presented, its
convergence is analyzed, that is, it is necessary to determine
whether the method completely removes the truncation
error and provides the exact solution outside of the reliable
region. As deduced from Figure 4, if the auxiliary PWS
converges to the ideal PWS, we are ensuring the convergence
of the method because the information of this PWS is
employed to complete the unreliable region. The auxiliary
PWS can be written at each iteration as follows

= BAP;

P, = B[I — A]P, + BAP; = [I — BA]P, + BAP;
(4)

P, = B[I — A]P,_, + BAP; = [ — BA]P,_, + BAP;

as a consequence, at the nth iteration, the error is given by

P,— P = [I — BA|P,_1 + BAP; — P, (5)

where P is the ideal PWS.
If the initial PWS calculated from near-field data does not

contain errors within the reliable region, that is, AP; = AP,
expression (5) can be rewritten as
P, —P=[I-BA](P,-1 - P) (6)
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because P,_; and P are band-limited functions, that is,
BP,_, = P,_; and BP = P, (6) may be equivalently expressed
as

P, — P =B[I - A](P,_1 — P). (7)

As observed from (7), the energy in the nth error PWS, as
measured by the standard inner producte, = (P,—P, P,—P),
is always less than or equal to the energy in the (n — 1)st error
PWS. This reduction occurs because the operators I — A and
B decrease the energy of the signal upon which they operate.
Therefore, at each iteration, the error energy is reduced twice,
as demonstrated as follows.

The energy in the (n — 1)st error PWS is

En—1 = (Pn—l_P)Pn—l_P> :JJ |Pn—1_P|2dkxdky
(8)

after applying the operator I — A, the new error energy is
equal to

En—1/2

= (I = Al(Py—r = P), [I = Al(Pp—1 — P))

- H \Pyy — PPdkedk, - H \Poy — PPdky dk,
—0o0 Qr

= &n-1,

)

using Parseval’s identity, one can write

1 (o]
En-12 = Eﬂ_w |f|2dXd}’, (10)

where f is the Fourier transform of [I — A](P,—; — P). Finally,
the error energy at the nth iteration is given by

en = (hf hf) = %ﬂw | f2dxdy < enrp. (11)

Therefore, we have demonstrated that ¢, < &, 12 < €,_1
for all n, ensuring that when starting from error free data in
the reliable region, the method converges monotonically to
the correct solution.

In the opposite case, that is, when the reliable portion of
the PWS is affected by errors, we cannot write the expression
(6) because AP; # AP. However, the following relationship
can be employed:

8 = AP — APy, (12)

where ¢ is the difference between the calculated PWS and the
ideal PWS within the reliable region. Therefore, expression
(5) takes the form

P, —P =[I-BA|(P,- - P) - B§
(13)
= B([I - Al(Py-1 = P) = 0),

in this case, the band-limited operator, B, also introduces an
error reduction. Nevertheless, the error after the application
of the first operator is

En—1/2 = ([I_A](Pnfl _P) _8a [I_A](Pn—l _P) _‘”

[| o= pRakcar, — || 1o~ PRakca,
—o0 Qr

\S

I1

+H 16| dk, dk,,
Qr
R e —

2
(14)

now, we can only ensure that ¢,_1, < ¢e,-1 if } < L,
that is, when the difference between the auxiliary PWS in
the (n — 1)st iteration and the ideal PWS is larger than the
difference between the initial PWS and the ideal PWS within
the reliable region. As will be shown later, this condition is
satisfied in the initial iterations but not for large values of # in
which the difference between the auxiliary PWS and the ideal
PWS is small and the initial error, §, is already dominant.
Therefore, due to that initial error in the reliable portion of
the PWS, the error in the estimated pattern initially decreases
with the iteration number, but, after a certain number of
iterations, the error starts to increase. The goal is to find the
proper termination point in the iterative method.

4. Simulated Models

In the following sections, several results will be presented
in order to analyze and validate the proposed method. The
input data used to obtain these results are simulated near-
field data. The AUT that is employed in the simulations is an
aperture with a Gaussian-tapered field distribution, as (15)
shows:

o . - 1. =
Eg = Eoe—(xz/zafwz/za;)y, Hg = ﬁz x Eg. (15)

The frequency is 12 GHz, and the simulations are carried
out in the three measurement setups under study. The mea-
surement distance is 100 A for the three cases, and the sampl-
ing spacing and the size of the acquisition surfaces are
indicated in Table 2 in which the type of phase excitation and
the aperture size are also presented. The objective is to gene-
rate radiation patterns that steer in different directions with
different beamwidths, especially to validate all of the trunca-
tion cases that are considered in partial SNF measurements.
As observed from Table 2, Models 1, II, and III are the same
AUT but are measured in different scan surfaces. Models IV
and V also have the same radiation pattern, but different
acquisitions are employed in each of them. Finally, Model VI
is measured using only one acquisition surface.

5. Critical Aspects of the Method

All steps of the proposed method are indicated in Section 3,
however, some of these steps need to be described in more
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TABLE 2: Parameters of the simulated models.
Model Measurement SamPhng Measurement interval Aperture size ~ Phase excitation Mam .beam Radiation
setup spacing direction pattern
I PNF Ax = 0.54 x=-09---09m
measurement Ay = (.51 y=-09---09m
I CNF Az =051 z=-125---125m Uniform =0
measurement A¢ =2° ¢ =0°---359° 81 X 8\
SNEF é
I measurement A6 = 2° 0=0°---30°
with polar AP =2° ¢=0°---359°
truncation
SNF
v measurement AG = 2° 6=20°---50° 6 — 35°
with spherical ~ A¢ = 2° ¢ =0°---359° Progressive p B 180° \
ring truncation 81 % 81 -
SNF i S
v measurement A6 = 2° 0=20"---50°
with sectorial ~ A¢ = 2° ¢ =150°---210°
truncation
SNF Q
measurement A6 = 2° 0=0°---90° . 0 =30°
VI it azimuthal A = 2° 6= 130°...2300 X104 Progressive ¢ = 180° <
truncation $

detail. First, it is necessary to explain how to obtain the
PWS on a regular grid in the spectral domain from near-
field data that are obtained in the three measurement setups.
Second, a modified definition of the spectral reliable region is
presented. Finally, an efficient algorithm to find the optimum
termination point in the iterative method is proposed.

5.1. PWS on a Regular k.-k, Grid. As observed in the des-
cription of the method, the fast fourier transform algorithm
is used to calculate the field distribution over the AUT plane
from the PWS and vice versa. This algorithm is computa-
tionally very efficient, but it only works with samples that are
distributed on a regular grid in both domains, that is, the
samples of the extreme near-field are obtained on a regular
x-y grid, and the PWS must be known on a regular k,-k,
grid.

In the PNF case, the PWS is directly obtained in the
required grid because it is calculated as an inverse fast fourier
transform of the measured samples taken over a regular x-y
grid.

In CNF and SNF cases, additional steps are required
because the classical near-field to far-field transformations
produce the final results on a regular 0-¢ grid. Different
calculation approaches can be used, but the easiest one is to
employ an interpolation algorithm to obtain the samples on
the desired grid. This solution introduces an interpolation
error, but it does not require a great computational cost.

Two other approaches provide the exact values on the
desired grid, but they are more complex. Both of them
use the information that is contained in the spherical wave
coefficients (SWC), which are known in the SNF case, but

not in the CNF case. However, they can be easily obtained
from the far-field pattern [3].

One of these two approaches employs the spherical-
wave-expansion-to-plane-wave-expansion (SWE-to-PWE)
transformation that is presented in [27] in which it is demon-
strated that it is possible to define a rigorous transformation
to derive the PWS from the SWC,

Pk ky»z) = i

\‘| M:

§2nT1mn (kerky»2)
(16)

Spin T2mn (kX) ky) Z) 5

where Qgi&n and Qgr)m are the outgoing SWC, and T}, and
Tymn are functions whose details can be found in [27].

The other approach evaluates the far-field pattern func-
tions [3] on the desired directions that are defined by the
regular k.-k, grid and calculates the far-field pattern as
follows:

Ere(6,¢) = L> QL) Konn (6,9), (17)

smn

where Egp is the far-field pattern, L is a constant, and K are
the far-field pattern functions. Logically, when the far-field
pattern is known, the PWS can be easily obtained by solving
a system of two linear equations.

5.2. Spectral Reliable Region Employed in the Method. As de-
duced from the convergence analysis of Section 3, when
starting from exact data within the spectral reliable region,
the proposed method converges to the correct solution.
Otherwise, the error decreases with the iteration number,
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10? ¢ TaBLE 3: Redefinition of the maximum validity angles.
L
= Measurement setup New maximum validity angles
©_ 10! P T
2% PNF measurement 0;=C-0s0,=C-0,
g 5 CNF measurement 0,=C-0,
% o100 SNF measurement with ,
o= . 0,=C-0,
5 polar truncation
£ o SNF measurement with 01 =0, —(1-C) - (6,1 — 0,2)/2
. . . . . . spherical ring truncation

0 10 20 30 40 50 60 70 80

Iteration number

—— Using exact initial data

- - - Using the calculated PWS with C = 1

—— Using the calculated PWS with C = 0.8
Using the calculated PWS with C = 0.6

—— Using the calculated PWS with C = 0.4

FIGURE 5: Error as a function of the iteration number using different
reliable regions.
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FiGURE 6: Error as a function of the iteration number and the
parameter A.

but, after several iterations, it starts to increase. In Section 2,
the classical definition of the spectral reliable region based
on geometrical optics was presented. However, as noted in
Section 1, it is impossible to define a spectral region in which
the error in the calculated far-field pattern is completely zero
because of the unavoidable presence of ripple errors. There-
fore, the error does not decrease monotonically in the
iterative method. This effect can be observed in Figure 5,
where the error variation with the iteration number is repre-
sented for the Model I using different spectral reliable re-
gions. The error in this figure is calculated as

Sieon | En(6i,¢:) — Er(6:, 1) |2
Sieo | Er (6160 |7

where E,(0;,¢;) and Egr(0;,¢;) are the electric field in the
nth iteration and the reference electric field, respectively. As
deduced from (18), only samples that are located outside of
the reliable region are considered in the determination of the
error.

Several conclusions can be extracted from Figure 5. As
expected, the error decreases monotonically when using the

Sn(%) =

- 100, (18)

91’/2 = 9v2 + (1 - C) ) (le - 9\/2)/2

SNF measurement with =+ (1 —C)- (¢1 — ¢12)/2
azimuthal truncation Gl = — (1= C) - (1 — $2)/2
91’/1 = 91/1 - (1 - C) . (91/1 - sz)/z
SNF measurement with 0, =0,+(1—-C)- (6,1 —6,,)/2
sectorial truncation B =G+ (1= C) - (b1 — $2)/2
P2 = — (1 =C) - (¢n1 — $n2)/2

Comparison between iterative results using different initial data

Number of iterations subset 2

5 10 15 20 25 30 35 40

Number of iterations subset 1

Ficure 7: Gradient descent algorithm to find the optimum
termination point.

exact initial data within the reliable region (see solid blue
line). However, it is impossible to obtain those exact values
because of the mentioned ripple errors. Then, in order to
simulate the real behavior of the error, the PWS obtained
from the truncated near-field acquisition is employed. Using
this PWS and the spectral reliable region defined by geomet-
rical optics and specified in Table 1, the error curve is as the
red dashed line shows. In order to obtain a better conver-
gence, the use of reliable regions smaller than that one
defined by geometrical optics is considered. These new re-
gions are determined by redefining the maximum validity
angles, as indicated in Table 3 in which a weighting factor
(C < 1) is introduced. The error variation for C = 0, 8,
C =0,6,and C = 0, 4 is presented in Figure 5, such that
when the value of C is reduced, the minimum error that
is achieved with this method is smaller, and the number of
iterations that are required to obtain that minimum is larger.
However, when that region is smaller than a certain size,
the minimum error starts to increase because in addition to
removing ripple errors, also useful information is removed.
From practical results, we deduce that, in a general case, a
value of C between 0.35 and 0.85 will usually give a low mini-
mum error. In Figure 6, the error as a function of the number
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Figure 9: Comparison between the truncated, reconstructed and
reference far-field patterns for the Model I in the ¢ = 0° cut.

of iterations and the parameter C is depicted for the Model 1.
As observed, very good results are obtained in the mentioned
range of C, with an error outside of the reliable region lower
than 5%.

5.3. Algorithm to Determine the Proper Termination of the
Iterations. Because of the impossibility of determining the
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Reconstructed field amplitude
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- ’
=
-
0
u
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Reconstructed field error

FIGURE 10: Measurement of a rectangular-horn antenna in a planar
near-field range.

exact values of the PWS within the reliable region, the error
in the iterative method does not decrease monotonically with
the iteration number. Nevertheless, as observed in Figure 5,
there is always a minimum that can provide an accurate
result, and therefore, it can be used as termination point
in the iterative part of the method. An algorithm to find
that minimum was proposed in [17], and it is based on
the following principle: if we use different initial truncated
surfaces, the initial error within the reliable region will also
be different, and the error in the iterative procedure will vary
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FIGURE 11: Far-field pattern and truncation error in dB before and after applying the iterative method for the rectangular-horn measured in
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FiGure 12: Comparison between the truncated, reconstructed and
reference far-field patterns for the rectangular horn in the ¢ = 90°
cut.

in a different way for the same value of C. Therefore, when
comparing the iterative results that were obtained in both
cases, we will have a minimum when both results have the
minimum error. This algorithm does not require additional
measurements because two different subsets of the measured
near-field data can be used as inputs in the iterative method.

The iterative results obtained in both cases are stored and
pairwise-compared to determine the optimum termination
point for the two cases when the result of the comparison is
minimum. The comparisons are carried out as follows:
2
i = > |E(0,) — E2(0,9) |,
where E;'(6,¢) and Ejz(G, ¢) are the reconstructed field in
the ith iteration using the first data subset and the recon-
structed field in the jth iteration using the second data sub-
set, respectively.

The main drawback of this approach is that many
iterations and comparisons are required because we do not
know where the minimum is a priori. To solve this problem,
we propose the use of the Gradient Descent algorithm,
which is an optimization algorithm to find the minimum.
As observed in Figure 7, with this new algorithm, when we
move in one direction, we perform a new iteration with one
of the two data subsets and obtain a new far-field pattern
estimation that is used to perform a new comparison. If the
value of this new comparison is larger than the previous
one, we change the direction of movement (the iterations are
performed using the other data subset). If not, the algorithm
performs another iteration using the same data subset. Final-
ly, when the minimum is reached, the algorithm stops.Using

(19)
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FiGUrEe 13: Far-field pattern and truncation error in dB before and after applying the iterative method for the Model II.
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Figure 14: Comparison between the truncated, reconstructed and
reference far-field pattern for the Model I in the ¢ = 90° cut.

this algorithm, both the number of iterations and com-
parisons may be drastically reduced, thereby requiring less
computational time to obtain the minimum.

6. Numerical Results

To verify the accuracy of the proposed method, several exam-
ples are analyzed. The objective is to validate the method
in all of the cases that are described in Figure 1. This valid-

FIGURE 15: Measurement of a Ku-band reflector antenna in a
cylindrical near-field range.

ation is carried out independently for each of these cases by
employing both the simulated models defined in Section 4
and measured truncated near-field data.

6.1. Planar Near-Field Measurement. The method was al-
ready numerically validated for this type of measurement set-
up in [17]. In this paper, another two examples are presented.
The first example uses the information of simulated Model I
where the maximum validity angles are 0, = 0, = 17.75°.
The iterative method was applied using a value of C equal to
0.7 and the second subset that was employed in the algorithm
to find the optimum termination point was obtained from
the simulated data by taking only the samples within a square
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F1GURE 16: Far-field pattern and error in dB before and after applying the iterative method for the reflector measured in CNE.
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Figure 17: Comparison among the truncated, reconstructed, and
reference far-field patterns for the reflector in the ¢ = 90° cut.

of 1.5 m side. The results of the reconstruction are depicted in
Figure 8 in which both the far-field and the truncation error
before and after the application of the method are presented.
As it is apparent, the proposed procedure provides a great
reduction of the truncation error and retrieves the far-field
pattern in the forward hemisphere with good accuracy. In
this particular case, the error defined in (18) is reduced from
62.3% to 1.2%. The improvement achieved with the method
is observed better in Figure 9, where a comparison among the

truncated, reconstructed and reference far-field patterns for
the ¢ = 0° cut is shown.

In the second validation, measured data were employed
as input information to the proposed method. The measure-
ment was carried out at 11 GHz using the PNF range in
the anechoic chamber at the Technical University of Madrid
(UPM). The probe and the AUT were selected to be a corru-
gated conical-horn antenna and a rectangular-horn antenna,
respectively, and they were separated from each other by
1.3 m (see Figure 10). When both antennas were mounted on
their respective positioners, a measurement over a 2.7 m X
2.7 m acquisition plane was recorded. The same AUT was
previously measured in a SNF range in order to obtain a
reference pattern for comparison with the results obtained
with the presented method. Figure 11 shows a comparison
between the truncated and reconstructed far-field patterns
and the error before and after applying the method. As in
the previous example, a great improvement of the accuracy
outside of the reliable region is achieved, which reduces the
error from 79.3% to 7.1%. Another comparison is presented
in Figure 12.

6.2. Cylindrical Near-Field Measurement. As commented
before, when measuring an antenna over a cylindrical sur-
face, an unavoidable truncation error appears in the far-field
pattern because of the finite size of that surface. Therefore,



14

-1

Truncated field amplitude

Truncated field error

Truncated field amplitude

—_

0

=20
—40

-60

0

=20
—40
-60

(a)

0

=20
—40
—60
0

=20
—40
-60

Figure 18: Continued.

International Journal of Antennas and Propagation

Reconstructed field amplitude



International Journal of Antennas and Propagation

Truncated field amplitude Reconstructed field amplitude

1
| g |
-1 0 1

u

Truncated field error Reconstructed field error

>
Truncated field amplitude Reconstructed field amplitude
1
- J0CO00e0e
-1 — 1
-1
u u
Truncated field error Reconstructed field error
> >

i
i
=i
i

|
—_
o
—

15

FIGURE 18: Far-field pattern and error in dB before and after applying the iterative method for the Models III (a), IV (b), V (c), and VI (d).
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FIGURE 20: Measurement of an X-band array antenna in spherical
near-field.

in this second part of the numerical results, cylindrical near-
field data are employed as input to the iterative method in
order to demonstrate its effectiveness in this type of meas-
urement setup.

Logically, because the method uses information about
the PWS, only the truncation error in the forward hemi-
sphere may be suppressed. The validation is carried out, as in
the previous case, by employing both simulated and meas-
ured data. First, the simulated Model II that is described
in Table 2 is used. According to the geometrical optics, in
this first example, only the far-field pattern in the spectral
region defined by |v| < sin(24.7°) can be considered reliable.
However, after the application of the method, it is possible

to retrieve the pattern in the whole forward hemisphere
with good accuracy, as observed in Figure 13. As in the
previous examples, one far-field cut comparison is depicted
in Figure 14.

The method was also validated with measured near-
field data. The measurement was performed in the CNF
range at the UPM. For the experiment, the probe and the
AUT consisted of a corrugated conical-horn antenna and
a Ku-band reflector with a 40 cm diameter (see Figure 15),
respectively. The data were acquired over a cylinder with a
height of 2.7m and a radius of 2.3m and with a spatial
sampling equal to 0.51 in the vertical direction and 2.5° in
the azimuth. As in the PNF case, the AUT was also measured
in a whole sphere in order to obtain a reference pattern. From
inspection of Figure 16, it is evident that the truncation error
is greatly suppressed, reducing the error expressed in (18)
from 58.2% to 8.9%. A comparison depicted in Figure 17
shows the reconstructed far-field pattern in the vertical plane
versus the truncated and reference far-field pattern.

6.3. Spherical Near-Field Measurement. Finally, the capability
of the proposed method to reduce truncation errors in partial
SNF measurements is demonstrated. Unlike PNF and CNF
measurements, in which the shape of the reliable region is
always the same, data can be acquired over different trun-
cated spheres in the spherical case, defining different reliable
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FiGure 22: Comparison between the truncated, reconstructed and
reference far-field pattern for the array in the ¢ = 0° cut.

regions. In this work, four types of truncation in the SNF
measurements are considered (see Figure 2). The last four
simulated models presented in Section 4 are used to analyze
the effectiveness of the method in each of these truncations.
All of the results are shown in Figures 18 and 19, and they
contain the far-field pattern and the error before and aft-
er applying the method, as well as a comparison among

the reconstructed, truncated, and reference patterns in one
plane, as in the previous examples.

The proposed iterative method was also applied to meas-
ured spherical near-field data. The acquisition was per-
formed in the SNF range at the UPM. The AUT was formed
by a square array of 256 printed elements covering a large
bandwidth in the X-band, and its dimensions were 40 cm X
40 cm. The array was divided into 16 square subarrays of
4 elements X 4 elements (see Figure 20). Data were taken
in a whole sphere with a spatial sampling equal to 2°
both in azimuth and elevation. Because the AUT is steering
at broadside, the most appropriate truncation is a polar
truncation. Therefore, only measured data from 0 = 0°
to 6 = 20° were used as input for the method. After
the application of the iterative procedure and comparison
with the reference pattern from the whole measurement, the
results in Figures 21 and 22 were obtained, in which the
truncation error is greatly reduced, as in the previous exam-
ples. In this last case, the error of (18), which has been con-
sidered to be the quality factor, is reduced from 82.5% to
8.6%.

7. Conclusions

An efficient method to reduce truncation errors when mea-
suring an antenna in planar, cylindrical or partial spherical
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near-field setup has been proposed in this paper. The
method is based on the Gerchberg-Papoulis iterative algo-
rithm used to extrapolate band-limited functions, and it
is a generalization of the approach presented in [17] for
the planar case. Therefore, the proposed method can be
viewed as a continuation of the work developed in [17], not
only extending its applicability, but also introducing new
algorithms to reduce the computational time required to
remove the truncation errors. The convergence of this meth-
od has been mathematically demonstrated. Moreover, a de-
tailed study of the spectral reliable region for each type of
measurement setup and an analysis of critical aspects of the
method has been performed. Finally, the method has been
validated by using both simulated and measured near-field
data, showing that it is possible to reduce the truncation
errors effectively. It was noted that the proposed method
works well for planar aperture antennas because the antenna
aperture, in which the fields are assumed to be concentrated,
is well defined.
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