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Early Detection of Parametric Roll Resonance on
Container Ships

Roberto Galeazzi, Member, IEEE, Mogens Blanke, Senior Member, IEEE,
and Niels K. Poulsen, Senior Member, IEEE

Abstract—Parametric roll resonance on ships is a nonlinear
phenomenon where waves encountered at twice the natural roll
frequency can bring the vessel dynamics into a bifurcation mode
and lead to extreme values of roll. Recent years have shown
several incidents with dramatic damage on container vessels. The
roll oscillation, sub-harmonic with respect to the wave excitation,
may be completely unexpected and a system for detection of
the onset of such resonance could warn the navigators before
roll angles reach serious levels. Timely warning could make
remedial actions possible, change of ship’s speed and course,
to escape from the bifurcation condition. This paper proposes
non-parametric methods to detect the onset of roll resonance
and demonstrates their performance. Theoretical conditions for
parametric resonance are re-visited and are used to develop
efficient methods to detect its onset. Spectral and temporal
correlation of the square of roll with pitch (or heave) are
demonstrated to be of particular interest as indicators. Properties
of the indicators are scrutinized and a change detector is designed
for the Weibull type of distributions that were observed from a
time-domain indicator for phase correlation. Hypothesis testing
for resonance is developed using a combination of detectors to
obtain robustness. Conditions of forced roll and disturbances
in real weather conditions are analyzed and robust detection
techniques are suggested. The efficacy of the methodology is
shown on experimental data from model tests and on data from
a container ship crossing the Atlantic during a storm.

Index Terms—Likelihood ratio test, non-Gaussian distribution,
parametric roll resonance, ship dynamic stability, spectral cor-
relation test, statistical change detection.

I. INTRODUCTION

PARAMETRIC roll is a nonlinear phenomenon that be-
longs to the category of autoparametric resonance, a type

of resonance that takes place in systems characterized by
periodic variations of some of their parameters. Parametric
resonance occurs in different kinds of systems, from beneficial
in micro-electro-mechanics where parametric excitation is in-
duced on purpose to decrease the parasitic signal in capacitive
sensing [1], to critical if occurring on motorcycles, where
unstable steering oscillations may develop due to a cyclic
varying road profile [2]. Observations of parametric resonance
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on ships were first done by Froude ([3], [4]) who reported that
a vessel, whose frequency of oscillation in heave/pitch is twice
its natural frequency in roll, shows undesirable seakeeping
characteristics, which can lead to the possibility of exciting
large roll oscillations. Parametrically induced roll has been on
the agenda of the marine research community since the early
1950’s when stability issues related with possible large roll
oscillations in longitudinal seas were addressed in [5] and [6].
However, it was only after the report by France et al. [7] about
the root causes of the very significant losses suffered by the
APL China container ship in October 1998, that parametric
roll resonance reached the top of the priority list among the
ships’ stability related phenomena. Døhlie [8] emphasized
parametric resonance as a very concrete phenomenon able to
threaten some of the giants of the sea in common passage
conditions, which were previously considered to be of no
danger. Parametric roll resonance can occur at other ratios than
1 : 2 between the natural frequency of roll and the excitation,
but this resonance is the one in focus in the marine industry
as being a major risk to ships during passage.

The last decade has shown a significant number of publica-
tions devoted to parametric roll. Particular focus on container
ships were given in [9]–[17]. Fishing vessels were in focus in
[18], [19]. An overview of parametric resonance in mechanical
systems appeared in [20] where several chapters are dedicated
to parametric resonance on ships including [21], [22] and [23].
The topic at the core of the research has been to analyze the
nonlinear interactions between roll and other of ship’s motions
in order to develop models, which could predict vessels’
susceptibility to parametric roll already at the design stage.
However, the large amount of ships already built, and new-
buildings that take parametric resonance as a calculated risk,
could not benefit from better models and new hull designs.
These vessels could enhance their safety against parametric
roll only through novel on-board decision support systems,
which should be capable of giving an early warning of the
onset of the phenomenon, such that navigators or automatic
systems could counteract that parametric roll resonance devel-
ops to its full devastating magnitude.

For detection of onset of the bifurcation condition, Holden et
al. [24] proposed an observer based predictor, which estimates
the eigenvalues of a linear second-order oscillatory system.
The algorithm issues a warning when those eigenvalues move
into the right-half plane. The method works convincingly but
it was designed to cope with excitation by narrow band regular
waves. Irregular sea conditions were studied by [25] who
used finite time Lyapunov exponents to detect the onset of
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parametric roll, but this method was not found to possess
sufficient robustness when validated against experimental data.
Some commercial products are also available, where a specific
feature for the prediction of the risk of parametric roll is
included in the decision support system. Those systems, named
first generation warning systems by Døhlie [8], rely on longer
horizon analysis of responses and provide polar diagrams with
risk zones in speed and heading.

Starting from the early results outlined in [26] and [27] this
paper re-visits the core of the theory of parametric resonance
and proposes signal-based methods for detection of parametric
roll. Then, it discusses how robustified detection could be
obtained, since the promising detectors proposed in [26] and
[27] could not achieve sufficiently reliable performance in real
sea scenarios. Indicators for the onset of parametric roll are
discussed, and through the use of statistical change detection
tools, it is shown possible to obtain robust detection based
solely on signals. Its core is shown to be two detection
schemes: one in the frequency domain, a second in the time
domain. The frequency-domain detector uses spectral corre-
lation between pitch, directly excited by the waves, and the
sub-harmonic roll motion. The time-domain detector exploits
phase synchronization that occurs in parametric resonating
systems, using correlation between the square of the roll
and pitch. A driving signal carrying the phase information is
designed, and it is shown to exhibit an amplitude distribution
following a double Weibull distributed process. A generalized
likelihood ratio test (GLRT) is then set up. Sensitivity to usual
forced roll from waves is analyzed and the detection system’s
performance is evaluated. Two data sets are used: experimental
data from towing tank tests and motion data from a container
ship passage in heavy seas over the Atlantic.

The paper is structured as follows: Section II introduces
parametric roll in a descriptive manner to provide physical
insight and the phenomenon is then formalized revisiting the
framework of autoparametric systems. Section III suggests
two detection methods, and offers analytical derivation of
the detection indexes. Section IV presents the engineering of
the monitoring system with focus on robustification of the
detection methods. Section V offers a thorough analysis of
the performance of the warning system tested on model scale
and full scale data sets. Section VI draws some conclusions.

II. PARAMETRIC ROLL - CONDITIONS AND
UNDERLYING PHYSICS

This section presents empirical experience and introduces a
mathematical treatment of parametric roll resonance.

A. Empirical Experience

Empirical conditions have been identified that may trigger
parametric roll resonance when the roll dynamics is in the
principal parametric resonance region:

1) the period of the encounter wave is approximately equal
to half the roll natural period (Te ≈ 1

2Tφ)
2) the wave length and ship length are approximately equal

(λw ≈ LPP)

Fig. 1. Devastation of on-deck containers after the APL China underwent
parametric roll resonance. (http://www.cargolaw.com/)

3) the wave height is greater than a ship-dependent thresh-
old (hw > h̄s)

4) the ship’s roll damping is low.
When those conditions are met, and the ship sails in moderate
to heavy longitudinal or oblique seas, then the wave passage
along the hull and the wave excited vertical motions result
in variations of the underwater hull geometry, which in turn
change the roll restoring characteristics. The onset of paramet-
ric resonance causes a sudden and quick rise of roll oscillation,
which can reach amplitudes larger than ±40◦ ([7], [28]), and it
may bring the vessel into conditions dangerous for the cargo,
the crew and the hull integrity. An impression of the damages
produced by parametric roll is provided in Fig. 1, which shows
the devastation suffered by APL China – the damage exceeded
the value of the vessel itself [29].

B. Mathematical Formulation

To capture the sparkle that induces the development of
parametric roll, consider a vessel sailing at constant forward
speed in moderate head regular seas. The incident wave
gives rise to forces and moments acting on the hull. In
head regular seas, conventional forced roll cannot occur since
forces and moments from wave pressure on the hull have no
lateral components; only motions in the vertical plane can
be excited. Heaving and pitching cause periodic variations
of the submerged hull geometry. During a wave passage, the
underwater volume of the vessel changes from the still water
case, resolving in a variation of the position of the center of
buoyancy, but, most important, in a variation of the metacentric
radius [30]. This in turn gives rise to a modification of the
transverse metacentric height GM and also to a new position
of the metacentre M. Consequently the periodic fluctuation of
GM, which can be considered sinusoidal,

GM(t) = GM + GMa cosωet

influences the stability properties of the vessel through the roll
restoring moment that is approximated by

τ(t) ≈ ρg∇GM(t) sinφ
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where GM is the mean value of the metacentric height, GMa

is the amplitude of the variations of the metacentric height in
waves, ρ is the water density, g is the acceleration of gravity,
and ∇ is the displaced volume. In still water GM(t) = GM,
hence τ(t) = τ0. In waves, these two situations alternate:

• wave trough amidships: GM(t) > GM causing a larger
restoring moment (τ > τ0) and increased stability

• wave crest amidships: GM(t) < GM hence a smaller
restoring moment (τ < τ0) and reduced stability.

This alternate sequence of instantaneous increased and reduced
restoring moment causes the roll angle to keep increasing
unless some other factors start counteracting it.

Formally, this can be described as the interaction between
coupled modes of an autoparametric system, where the pri-
mary system is externally forced by a sinusoidal excitation.
Starting from the three degrees-of-freedom 3rd order nonlinear
heave-pitch-roll model presented in [31], a simplified two
degrees-of-freedom pitch-roll model is exploited to analyse
the onset of parametric roll resonance. This model is obtained
by neglecting the heave interaction with roll, and by limiting
the analysis to first order wave/hull interaction.

Let θ be the pitch angle, and φ the roll angle, then the two
degrees-of-freedom pitch-roll model is,

(
Iy +Mθ̈

)
θ̈ +Mθ̇ θ̇ +Mθθ +

1

2

(
Mφφφ

2 +Mθθθ
2
)

+
1

6

(
Mθθθθ

3 + 3Mφφθφ
2θ
)

+Mζθ (t) θ

= Mext cos (ωet+ ψ) (1)(
Ix +Kφ̈

)
φ̈+Kφ̇φ̇+Kφ̇|φ̇|φ̇

∣∣∣φ̇∣∣∣+Kφφ+Kφθφθ

+
1

6

(
Kφφφφ

3 + 3Kθθφθ
2φ
)

+Kζφ (t)φ = 0 (2)

where the pitch dynamics (1) is the primary system externally
forced, and the roll dynamics (2) is the secondary system,
nonlinearly coupled with the primary, and which is initially at
rest. The model coefficients are:

• Rigid body inertias: Ix in roll, Iy in pitch
• Added inertias: Kφ̈, Mθ̈ in roll and pitch (a positive

sign convention is used here for added inertia following
the notation by Newman [30], several other authors in
hydrodynamic literature use a negative sign convention)

• Damping: Kφ̇, Mθ̇ are coefficients for linear part; Kφ̇|φ̇|
is for quadratic damping

• Restoring moments due to body motion: Kφ, Kφθ, Kφφφ,
Kθθφ are the coefficients of the roll restoring moment;
Mθ, Mφφ, Mθθ, Mθθθ, Mφφθ are the coefficients of the
pitch restoring moment

• Restoring moments due to wave/hull interaction: Kζφ (t),
Mζθ (t) and are functions of wave amplitude ζ(t)

• External moments due to direct wave action: Mext is the
amplitude of the wave-induced pitch moment, and ωe is
the wave encounter frequency.

System (1)-(2) can be rewritten as

θ̈ + ν1θ̇ +
(
ω2
θ + µ5 (t) + µ4φ

2
)
θ

+ µ1φ
2 + µ2θ

2 + µ3θ
3 = f cos (ωet+ ψ) (3)

φ̈+ ν2φ̇+ ν22φ̇
∣∣∣φ̇∣∣∣

+
(
ω2
φ + κ4 (t) + κ1θ + κ2θ

2
)
φ+ κ3φ

3 = 0 (4)

with coefficients

ν1 =
Mθ̇

Iy+Mθ̈
ν2 =

Kφ̇
Ix+Kφ̈

ν22 =
Kφ̇|φ̇|
Ix+Kφ̈

ωθ =
√

Mθ

Iy+Mθ̈
ωφ =

√
Kφ

Ix+Kφ̈
f = Mext

Iy+Mθ̈

µ1 = 1
2

Mφφ

Iy+Mθ̈
µ2 = 1

2
Mθθ

Iy+Mθ̈
µ3 = 1

6
Mθθθ

Iy+Mθ̈

µ4 = 1
2
Mφφθ

Iy+Mθ̈
µ5(t) =

Mζθ(t)
Iy+Mθ̈

κ1 =
Kφθ
Ix+Kφ̈

κ2 = 1
2
Kθθφ
Ix+Kφ̈

κ3 = 1
6
Kφφφ
Ix+Kφ̈

κ4(t) =
Kζφ(t)
Ix+Kφ̈

.

The semi-trivial solution of the system (3)-(4) is found by
applying the multiple scales method [32] under the assump-
tions
• f = O(1), that is large pitch responses can be generated

also away from the pitch resonance condition ωe ≈ ωθ
• ν1 = O(1), that is the pitch response is bounded even at

pitch resonance
• µi = O(ε), i = 1, . . . , 5, that is the static and dynamic

restoring terms have a small effect on the pitch response.
To first order approximation the semi-trivial solution at

steady state is

θ0 (t; ε) = F cos(ωet+ ξ) +O (ε) (5)
φ0(t) = 0 (6)

where

F =
f√

(ω2
θ − ω2

e)2 + ω2
eν

2
1

, ξ = arctan

(
− ωeν1
ω2
θ − ω2

e

)
.

The stability of the semi-trivial solution is investigated by
looking at its behavior in a neighborhood defined as

θ(t) = θ0(t) + δθ(t) (7)
φ(t) = φ0(t) + δφ(t) , (8)

where δθ and δφ are small perturbations. By linearizing the
system (3)-(4) around the semi-trivial solution, the following
system is obtained in the perturbation variables δθ and δφ

δ̈θ + ν1δ̇θ +
(
ω2
θ + µ5 (t)

)
δθ = 0 (9)

δ̈φ + ν2δ̇φ

+
(
ω2
φ + κ4 (t) + κ1θ0(t) + κ2θ

2
0(t)

)
δφ = 0. (10)

The system (9)-(10) consists of two decoupled parametri-
cally excited equations, where the parametric excitations µ5(t)
and κ4(t) drive the respective system at ωe

µ5(t) = µ̃5 cos(ωet) (11)
κ4(t) = κ̃4 cos(ωet). (12)

Due to the physical and geometrical properties of surface ves-
sels the pitch and roll natural frequencies are not equal; hence
(9) and (10) cannot be in the principal parametric resonance
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condition at the same time. Conversely, it is plausible that the
two subsystems are simultaneously into one of the instability
regions characterizing parametrically excited systems.

According to stability theory [33], to trigger parametric
resonance the parametric excitation must be larger than twice
the linear damping. However, differently from the roll mode,
the pitch mode is very well damped; hence this possibility
can be discarded. For the considered model ν1/ν2 ≈ 20, and
µ̃5/ν1 ≈ 0.1.

However, for marine craft, the condition ωe ≈ ωθ ≈ 2ωφ
could also be relevant, which addresses a case where the pitch
motion is in the fundamental parametric resonance region,
while being also in the 1 : 1 resonance with the wave moment,
and the roll motion is in the principal parametric resonance
region. This case was not included in common analysis where
the pitch dynamics was described linearly [34], or the time-
varying component Mζθ(t) due to wave/hull interaction had
been neglected [35].

Under the assumption ν1 � µ̃5 then (9) has solution δθ = 0,
which is asymptotically stable. Therefore the stability of the
semi-trivial solution is fully determined by (10), which is the
damped Hill equation, where the periodic coefficient (period
T = 2π/ωe) up to first order approximation is

p(t) = ω2
φ + κ1 (F cos(ωet)) + κ2 (F cos(ωet))

2

+ κ̃4 cos(ωet+ χ) (13)

where the phase shift ξ has been neglected. Rewriting the
periodic function as sum of complex exponentials it is possible
to highlight the terms responsible for the onset of parametric
resonance, i.e.

p (t) = ω2
φ +

1

2
κ2F

2 +
1

2
(κ1F + κ̃4) ejωet

+
1

2
(κ1F + κ̃4) e−jωet + h.f.t. (14)

where h.f.t. are higher frequency terms, whose frequencies
are not in the ratio 1 : 2 with the roll natural frequency.

The solution of (10) if found applying the method of
multiple scales [32] under the assumptions
• ν2 = O(ε), κ1 = O(ε), κ̃4 = O(ε), that is the linear

roll damping is of the same order of magnitude of the
parametric excitation κ1F + κ̃4

• κ2 = O(ε2), κ3 = O(ε2), that is the higher order roll
restoring components have a small influence on the roll
response.

To first order approximation the roll response is

φ(t; ε) = α(εt) cos

(
1

2
ωet− χ(εt)

)
+O(ε), (15)

where α(εt) is an exponential envelope which grows or decays
with time depending on the magnitude of the parametric exci-
tation and the linear damping coefficient of the roll subsystem.
Application of Floquet theory [33] allows to determine the
boundaries of the principal instability region of (10), which
are

1

4

ν22
ω2
e

+

(
ω2
φ

ω2
e

− 1

4

)2

=
1

4

η2

ω4
e

, (16)
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Fig. 2. Parametric resonance in the pitch-roll autoparametric system: (left)
stability diagram of the secondary system for different levels of damping,
and different amplitude of the excitation; (right) pitch and roll time series
evolution for increasing level of the external excitation.

where

η =
κ1f + κ̃4

√
(ω2
θ − ω2

e)
2

+ ω2
eν

2
1√

(ω2
θ − ω2

e)
2

+ ω2
eν

2
1

is the amplitude of the parametric excitation. The boundary
condition (16) can be used to determine the critical value
fc of the external excitation, which triggers the parametric
resonance in the secondary system, that is

fc =

√
(ω2
θ − ω2

e)
2

+ ω2
eν

2
1

κ1
×2ω2

e

√√√√1

4

ν22
ω2
e

+

(
ω2
φ

ω2
e

− 1

4

)2

− κ̃4

 . (17)

For 0 < f < fc the semi-trivial solution is stable and the
pitch amplitude grows linearly with f . When f > fc then the
semi-trivial solution loses stability and a non trivial solution
in roll (15) appears.

The system (3)-(4) shows a saturation phenomenon both in
pitch and in roll. In particular, when the excitation amplitude
crosses the critical value, the amount of energy stored in
the primary system stays constant and the entire energy rise
flows into the secondary system. The rate at which energy
is pumped into the secondary system varies according to the
change of the phase χ. When the rate at which energy being
dissipated by viscous effects has matched the rate at which
energy is transferred to the roll subsystem, the system reaches
a steady state motion characterized by a constant amplitude
and a phase shift χ = π (see Appendix A). Fig. 2 shows the
development of parametric roll resonance while the amplitude
of the excitation f̄ = f/fc increases: the stability chart clearly
illustrates, in the parameter space, how the stability properties
of the secondary system changes in response to a variation of
the amplitude of the external excitation.
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Concluding, parametric roll is a resonance phenomenon trig-
gered by the existence of the frequency coupling ωe ≈ 2ωφ,
and whose response shows a phase synchronization of 180◦

with the parametric excitation.

III. DETECTION METHODS

The mathematical analysis of the development of parametric
resonance in roll pointed out that the existence of this insta-
bility phenomenon is related to the simultaneous happening
of two events: the wave encounter frequency is approximately
twice the roll natural frequency, i.e. the roll motion is sub-
harmonic with respect to the wave excitation; the pitch and
roll motion show synchronization, i.e. every second peak of
pitch is in-phase with a peak of roll.

Through the analysis of an experimental data set it is
shown that these two conditions are also met in practice.
Once these signals have been introduced, two complementary
detection schemes are derived. One detection method works
in the frequency domain and it is responsible of detecting
the occurrence of the frequency coupling ωe ≈ 2ωφ; the
other works in the time domain and it searches for minimum
synchronization level between pitch and roll.

A. Indicators of Parametric Roll Resonance

1) Frequency Coupling: In Section II it was shown that the
onset and development of parametric roll is characterized by
a sub-harmonic regime of the roll motion, which is featured
by oscillations at half the wave frequency. In particular, the
pitch mode, directly excited by the wave motion, pumps
energy into the roll mode at a frequency about twice the roll
natural frequency. Therefore when roll enters into parametric
resonance an indication of the sub-harmonic regime could be
obtained by looking at the evolution of the power spectrum
of the square of the roll motion, since φ2(t) should reveal
an increasing amount of energy nearby the frequencies where
pitch is transferring energy into roll. This is confirmed by the
power spectra of φ(t), φ2(t), and θ(t) plotted in Fig. 3.

Given two discrete time signals x[n] and y[n], the simi-
larity of the two waveforms is expressed through their cross-
correlation and cross-spectrum,

Rxy[m] ,
∞∑

m=−∞
x̄[m]y[n+m] (18)

Pxy(ω) ,
∞∑

m=−∞
Rxy[m]e−jωm (19)

where m is the time lag, and x̄ is the complex conjugate
of x. The magnitude of the cross-spectrum describes which
frequency components of x[n] are associated with large or
small amplitudes at the same frequency of y[n]. Since the
frequency components carrying useful information about the
onset of parametric roll resonance are those about twice the
roll natural frequency, the detection problem can be set up as
monitoring the cross-spectrum of φ2[n] and θ[n].
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Fig. 3. Power spectra of φ(t), φ2(t), and θ(t) for the experiment 1194
where parametric roll did not occur and for the experiment 1195 where it
occurred.
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Fig. 4. Experiment 1195: alignment of peaks between pitch θ and roll φ
during the onset and development of parametric roll.

2) Phase Synchronization: After onset, parametric roll res-
onance is characterized by non-linear synchronization between
motions. Døhlie [8] pointed out that when parametric roll de-
velops, there is a lining up of peaks between the pitch motion
and the roll motion, such that every second peak of pitch is
in-phase with the peak in roll. This is illustrated in Fig. 4
on model tank data where parametric roll resonance occurred.
Fig. 4 also shows that when this alignment is partially lost,
the roll oscillations starts decaying, seen between 150 and 250
seconds, or after 300 seconds in the plot. Therefore, a signal
that carries the phase information of pitch and roll could be
exploited for detection.

Consider two sinusoidal signals s1 and s2 given by

s1 = A1 cos (ωt+ ψ1) (20)
s2 = A2 cos (2ωt+ ψ2) . (21)

The square of s1 is also a sinusoidal signal centered about 2ω

s21 =
1

2
A2

1 +
1

2
A2

1 cos (2ωt+ 2ψ1) . (22)
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Multiplying s21 by s2 the following signal is obtained

s21s2 =
1

2
A2

1A2 cos (2ωt+ ψ2)

+
1

2
A2

1A2 cos (2ωt+ 2ψ1) cos (2ωt+ ψ2) , (23)

which, by change of variable ε = 2ωt+ ψ2, is rewritten as

s21s2 =
1

2
A2

1A2 (cos ε+ cos(ε+ 2ψ1 − ψ2) cos ε) . (24)

Equation (24) shows that if s21 and s2 are in-phase (2ψ1 −
ψ2 = 0) then

s21s2 =
1

2
A2

1A2

(
cos ε+ cos2 ε

)
, (25)

whereas if s21 and s2 are out-of-phase (2ψ1 − ψ2 = π) then

s21s2 =
1

2
A2

1A2

(
cos ε− cos2 ε

)
, (26)

that is, the signal s21s2 shows positive or negative peaks of
maximum amplitude A2

1A2.
Given the roll angle φ and the pitch angle θ, we define

the driving signal indicating the occurrence of parametric
resonance in roll as

d (t) , φ2 (t) θ (t) . (27)

The sign convention for roll and pitch is in agreement with
[36], that is roll is positive for starboard side down and pitch
is positive for bow up.

Consider Fig. 5, where φ (t) and d (t) are plotted for one
experiment without parametric roll (Exp. 1194) and another
with parametric roll (Exp. 1195). The driving signal d(t)
appears to characterize quite well the amplitude variations of
φ: when the amplitude of φ abruptly grows, a sequence of
negative spikes shows up in the driving signal. In contrast,
when the amplitude of φ decreases, positive spikes reflect this
in d(t). Moreover, when roll is in parametric resonance, the
magnitudes of the negative spikes in the driving signal are
much larger than those seen when the roll mode is not in
a resonant condition. Therefore, a significant change in the
variance of the driving signal d(t) can be expected when
parametric roll is developing. This jump in variance can be
exploited by detection of change of signal power in the driving
signal. To select the most appropriate detection scheme it is
important to know the statistics of the signal.

The cumulative distribution functions (CDFs) plots for the
non-resonant and the resonant cases (Fig. 6) indicate that
the double Weibull PDF follows the behavior of the data
much closer than either of Gaussian (N ) and Laplacian (L)
PDF. The two latter cut off the tails, and in particular the
negative one, which is the most essential as it is an indicator
of the presence of motion synchronization, hence denoting
parametric roll resonance. The double Weibull distribution
very well approximates the behavior of the negative tail, but
shows some difficulty in trailing the positive tail. This could
suggest that a non symmetric double Weibull distribution could
be used, if return from resonance to non-resonance should be
more accurately detected. Here, onset detection has the priority
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Fig. 5. Negative and positive peaks in d address how the amplitude of the
roll oscillations increases and decreases. Data from model basin test. Note the
different y-axis range in the plots of the driving signal d.
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case (right). Model basin test results. Three CDFs are fitted against the data:
Gaussian (N ), Laplacian (L), and double Weibull (W2).

and the double Weibull PDF was chosen to describe the driving
signal,

p(d) ,W2(d) =
β

2υβ
|d|β−1 exp

(
−
(
|d|
υ

)β)
(28)

where υ, and β are the scale and shape parameters.
A good discriminant between resonant and non resonant

cases is the variation in signal power. Ideally, in the non
resonant case the variance of d(t) would be zero because no
roll motion is expected when a ship sails in head seas. In real
sailing conditions, instead, the wave train approaches the ship
with a certain spreading factor, resulting in an excitation also
along the transversal plane of the ship. This excitation induces
roll oscillations, which in turn give a driving signal with power
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different from zero. Therefore, a detector that looks for abrupt
changes in signal variance (power) is aimed at. The variance
of a double Weibull distributed signal is given by

σ2 = υ2
[
Γ

(
1 +

2

β

)
− Γ2

(
1 +

1

β

)]
(29)

hence the detection scheme must trail variations in scale and
shape parameters.

B. Frequency Condition - Spectral Correlation Test

The frequency condition to make a resonance possible with
a 1 : 2 ratio between roll and pitch motions requires that
spectral contents are present in roll at around the natural
roll frequency and simultaneous, pitch spectral contents are
present at twice this frequency. This condition is defined as
a hypothesis testing problem using the following formulation
where H0 means the resonance condition is not met and H1

means the resonance condition is met,

H0 : Pφ2θ(ω) ≤ P̄, ∀ω ∈ R (30)
H1 : Pφ2θ(ω) > P̄, ∀ω ∈ R

where P̄ is a power threshold. Instead of using directly the
cross-spectrum, a spectral correlation coefficient is exploited,

Sφ2θ ,
σ2
φ2θ√
σ2
φ2σ2

θ

, (31)

where σ2
φ2θ is the average power of the cross-correlation of φ2

and θ, σ2
φ2 is the average power of φ2, and σ2

θ is the average
power of θ. The detection problem can then be rewritten as

H0 : Sφ2θ ≤ S̄ (32)
H1 : Sφ2θ > S̄

where S̄ is a measure of the level of spectral correlation.
Variance will later be needed in a region of the spectral

range for purposes of robustification and is readily available
from the already calculated spectra as

σ2
xy(ω1, ω2) =

1

2π

∫ ω2

ω1

Pxy(ω) dω (33)

C. Phase Condition - Generalized Likelihood Ratio Test

The phase correlation condition that shows the presence
of resonance is expressed through the correlation between φ2

and θ. A statistical test to show whether there is significant
correlation between roll squared and pitch is therefore to test
whether the product φ2(t)θ(t) belongs to the distribution H0

where no resonance is present, or the distribution deviates from
normal and belongs to a H1 distribution where parametric
resonance is present. To perform such test and ensure the
false alarm probability is kept very low, a test statistics to
be used for change detection is first derived. One challenge
is that the parameters for the H1 distribution are not known.
All that is known is that the distribution must deviate from
that observed under H0 and the change must be significant
enough to trigger false alarms with a very low probability.
The properties, in particular the distribution and the parameters

of the test statistics, were therefore first investigated in the
H0 and H1 cases. This was done above where a Weibull
distribution was found to give a good fit to observations.
A dedicated detector is then derived for this distribution,
and since the change is unknown, a generalized likelihood
ratio test (GLRT) approach is taken. This leads to a test
statistics for the double Weibull GLRT test. In order to find
a threshold for change detection that gives a desired false
alarm probability, it is then investigated whether the GLRT
test statistics fulfills theoretical requirements of independent
and identically distributed (IID) samples and when this is
found not to be fulfilled in practice, the actual distribution
of the test statistics under H0 is investigated to determine a
threshold from observations that gives a desired (low) false
alarm probability.

Assume that the driving signal d(t) (27) is a realization of
a double Weibull random process. Then the distribution of N
independent and identically distributed (IID) samples of d(t)
is characterized by the probability density function

p(d) =

(
β

2υβ

)N N−1∏
i=0

[
|di|β−1 exp

(
−
(
|di|
υ

)β)]
(34)

where the parameters are referred to as the vector θ = [υ, β]
T

in the sequel and d = [d0, d1, . . . , dN−1]
T .

The detection of parametric roll can be formulated as a
parameter test of the probability density function

H0 : θ = θ0 (35)
H1 : θ = θ1

where θ0 is known and it represents W2 in the non-resonant
case, whereas θ1 is unknown and it describes the parametric
resonant case. By applying the generalized likelihood ratio
test, the detector decides H1 if

LG (d) =
p
(
d; θ̂1,H1

)
p (d;θ0,H0)

> γ (36)

where the unknown parameter vector θ1 is replaced with
its maximum likelihood estimate (MLE) θ̂1, and γ is the
threshold given by the desired probability of false alarms.

The first step in computing LG is to determine θ̂1 =[
υ̂1, β̂1

]T
, therefore we need to maximize p

(
d; θ̂1,H1

)
.

Given p
(
d; θ̂1,H1

)
the estimates of the parameters υ1 and

β1 are computed as

∂ ln p
(
d; θ̂1,H1

)
∂θj

= 0

which results in

υ̂1 =

(
1

N

N−1∑
i=0

|di|β̂1

) 1
β̂1

(37)

1

β̂1
=

∑N−1
i=0 |di|

β̂1 ln |di|∑N−1
i=0 |di|

β̂1

− 1

N

N−1∑
i=0

ln |di| . (38)
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Balakrishnan and Kateri [37] have shown that β̂1 exists, it is
unique, and its value is given by the intersection of the curve
1/β̂1 with the right-hand side of (38).

Having determined the MLEs υ̂1 and β̂1 it is then possible
to derive an explicit form for the detector. By taking the natural
logarithm of both sides of (36),

ln

(
β1

2υ
β1
1

)N N−1∏
i=0

[
|di|β1−1 exp

(
−
(
|di|
υ1

)β1
)]

(
β0

2υ
β0
0

)N N−1∏
i=0

[
|di|β0−1 exp

(
−
(
|di|
υ0

)β0
)] > ln γ ⇒

N ln

(
β1
β0

υβ0

0

υβ1

1

)
+ (β1 − β0)

N−1∑
i=0

ln |di| −
N−1∑
i=0

(
|di|
υ1

)β1

+

N−1∑
i=0

(
|di|
υ0

)β0

> γ′ (39)

where the parameters [β1, υ1] are replaced by their estimates,
and γ′ = ln γ.

If the shape parameter is the same under both hypothesis,
β1 = β0 = β, then from (39),

Nβ ln

(
υ0
υ1

)
+
υβ1 − υ

β
0

(υ0υ1)
β

N−1∑
i=0

|di|β > γ′ (40)

and inserting (37), the GLRT simplifies to,

Nβ ln

(
υ0
υ1

)
+N

υβ1 − υ
β
0

υβ0
> γ′. (41)

Hence for the time window k the test statistics g(k) is

g(k) = Nβ ln

(
υ0
υ1

)
+N

υβ1 − υ
β
0

υβ0
. (42)

1) Theoretical Threshold: According to the Neyman-
Pearson theorem [38] given the signal d(t), which behaves
according to the PDF p(d;H0) under the hypothesis H0, the
threshold γ that maximizes the probability of detection PD is
found from

PFA =

∫
{d:LG(d)>γ}

p (d;H0) dd, (43)

where PFA is the desired probability of false alarm.
For large data records (N →∞), an asymptotic result exists

for the modified GLRT statistic 2 lnLG (d), but in the present
case, records are short and asymptotic results fall short.

D. Insensitivity to Forced Roll

For a real ship sailing in oblique short-crested seaways some
forced roll with frequency equal to the encounter frequency
will always occur. This does not obscure the proposed detec-
tion schemes since both the spectral correlation coefficient and
the GLRT for non-Gaussian processes are insensitive to forced
roll. Mathematical proofs are provided in Appendix B.
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Fig. 7. Comparison of power spectra for experimental and sea trial time
series.

IV. MONITORING SYSTEM ENGINEERING
The proposed detection schemes rely on assumptions, which

in general may not be completely fulfilled during real navi-
gation operations. Issues as wide-band roll and pitch signals;
unavailability of prior information to generate the hypothesis
H0; high correlation of the driving signal must be carefully
addressed to obtain a robust and reliable monitoring system.

A. The Spectral Correlation Detector

The spectral correlation performs best when the signals at
hand have a narrow band power spectrum because in that
case the Fourier transform of the convolution between the
first harmonic of roll squared with the first harmonic of
pitch will be zero most of time except when parametric roll
is developing. However in real sailing conditions the wave
spectrum exciting the ship motions can be rather broad, and it
induces ship responses whose frequency content spans over
a wide range of frequencies as well. Fig. 7 compares the
power spectra of time series recorded during an experiment in
a towing tank, and during real navigation across the Atlantic.

It is evident that during real navigation the roll and pitch
motions have an energy content larger than 10−1 over a wide
range of frequencies, and this will contribute to determine
a significant spectral correlation also in these regions of
frequencies where parametric roll is not likely. Consequently
this may determine an increase in the number of false alarms
issued by the detector; hence the necessity of robustifying the
spectral correlation method.

The robustification relies on the use of bandpass filters in
order to reduce the roll and pitch motion to be narrow band
signals. The pass-bands of the filters are centered about ωφ and
ωe = 2ωφ, to select the frequency ranges where parametric
roll resonance can develop. Therefore the spectral correlation
coefficient takes the form

fSφ2θ =
fσ2
φ2θ√
σ2
φ2σ2

θ

(44)
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Fig. 8. Probability plot of the spectral correlation fSφ2θ computed on data
recorded in heavy weather with forced roll. An exponential distribution fits
the data very well. Data from the Atlantic passage of Clara Maersk.

where the superscript f addresses that in the computation of
the cross-spectrum the filtered signals are utilized. Note that
the normalization factor in (44) is still calculated by means
of the raw roll and pitch signals; this is because the spectral
correlation index provides a measure of the relative energy
contribution of parametric resonance to the total energy driving
the roll motion.

1) Threshold Selection: The properties of the statistical test
are illustrated in Fig. 8 where the spectral correlation Sφ2θ is
calculated every 22 s on overlapping windows that are four
times longer. Fig. 8 shows the probability plot of the spectral
correlation and an approximating exponential distribution,

p(fSφ2θ;H0) =
1

µS
exp

(
−
fSφ2θ

µS

)
(45)

that was found to provide a good fit to data.
The data used are recordings from the 33000 m3 dis-

placement container vessel Clara Maersk during 9 hours of
navigation through an Atlantic storm. Roll resonance was
not believed to be present so these data represent the H0

condition. A threshold can then be readily chosen to obtain a
desired probability of false alarms. A false alarm probability of
PFA = 0.01 is obtained for threshold 0.18, and PFA = 0.001
for 0.26.

B. The W2-GLRT detector

The W2-GLRT detector (39) was derived assuming that
the p (d;θ0,H0) is known a priori. Actually this is not the
case, and an estimate of θ0 is to be computed. Since the
sea state varies over time and θ0 describes non sub-harmonic
roll motion induced by the wave motion, the hypothesis H0

needs to be constantly updated to track changes in sea state.
This implicitly provides robustness to the W2-GLRT detector:
by changing H0 with a suitable estimate of θ0, the detector
becomes insensitive to the current sea state.

Assuming to be at time t = T two phases can be distin-
guished:
• Estimation phase: θ̂0 is computed via MLE (37)-(38) on

data logged within the time window [T −Mdet−Mest +
1, T −Mdet]

• Detection phase: θ̂1 is computed via MLE (37)-(38) on
data logged within the time window [T −Mdet + 1, T ].

Hence the test statistics (39) (or (42)) is calculated and
compared against the threshold

where Mest is the estimation window, and Mdet is the detec-
tion window.

When the W2-GLRT detector is started an initialization
phase is run, where the first Mest data samples are used to
generate the initial θ̂0. During this time the detection is idle
since the hypothesis H0 is not available yet.

The W2-GLRT detector further assumes that the double
Weibull PDFs for the non-resonant and resonant case differ
both for the shape parameter β and for the scale parameter υ.
To computationally achieve a precise estimate of β requires
to solve a nonlinear equation within each iteration of the
GLRT algorithm, as shown in Section III-C. This obviously
determines an undesired computational burden and time con-
sumption. However Fig. 6 shows that the double Weibull PDFs
for the non-resonant and resonant case differ mainly for the
scale parameter (υr ≈ 31υnr) whereas the shape parameter
deviates for less than 2%. Therefore it is assumed that the
shape parameter is constant – i.e. β0 = β1 = β – and that
the W2-GLRT detector only looks for variations in the scale
parameter υ.

1) Threshold Selection: The derivation of the double
Weibull GLRT detector was based on an IID assumption.
Fig. 9 shows the autocorrelation Rdd for d(k), from which
it is evident that the driving signal is neither independently
distributed nor white. Further, the assumption on identical
distribution implies stationarity, and it is known that it is
satisfied only to a certain extent. Wave elevation for a fully
developed sea, and in turn ship motions, can be considered
quasi-stationary for a period of time that depends on weather
conditions [39].

If the derived detection scheme is applied disregarding the
IID assumption
• the detector will be suboptimal
• the false alarm rate will be higher than expected if the

threshold was chosen according to Section III-C1
• the change in statistic over time will affect the perfor-

mance of the detector.
In this paper, the last item is in practice handled by using
data windows, which are sufficiently small to approximate
stationarity.

The correlation structure, which is clearly seen in Fig. 9,
should ideally be included in (36). However, this is a very hard
task in connection to the double Weibull distribution. Another,
and maybe more important, issue is the relation between the
lack of stationarity and the large horizon needed to estimate
the correlation structure.

For these reasons, the approach taken in this paper is to
apply the detection scheme derived under the IID assumption
but find the threshold from the cumulative density function of
the test statistic under non-resonant conditions. In practice,
non-resonant conditions can be determined using a sliding
window over immediately past data where both the frequency
and the synchronization detectors indicated a H0 condition.

In rigorous terms, the threshold γg to obtain a sufficiently
low false alarm rate, depends on the statistics of g(k) in (42)
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Fig. 10. GLRT test statistics g(k) fitted against a Lognormal distribution.
Data from Atlantic passage of Clara Maersk during a storm.

under hypothesis H0. Given that g(k) behaves according to a
PDF p(g;H0), which is estimated from data, the threshold is
selected from

PFA =

∫
{g: g>γg}

p (g;H0) dg. (46)

Estimation of the density function p(g;H0) from data is
illustrated in Fig. 10. A Lognormal distribution with the PDF,

p(g;H0) =
1√

2πσ0gg
exp

(
− (ln(g)− µ0g)

2

2σ2
0g

)
(47)

fits the upper part (tail) of the distribution well. The tail of the
distribution are particularly important to determine PFA, the
g(k) and data in the plot were censored to the range g(k) >
100. Having obtained the estimated parameters µ0g and σ0g of
the Lognormal distribution for g(k) under H0, the threshold
for a desired false alarm probability is obtained from (46) with
the distribution from (47),

1− PFA = Φ

(
ln(γg)− µ0g

σ0g

)
(48)

where Φ(x) = 1
2

(
1 + erf

(
x√
2

))
is the standard (zero mean,

unit variance) Gaussian distribution function. Hence,

γg = exp
(
µ0g + Φ−1 (1− PFA)σ0g

)
. (49)

For the hypothesis H0 shown in Fig. 10 the Lognormal fit
gives a threshold γg = 1080 for PFA = 0.01 and γg = 1870
for PFA = 0.001.
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Fig. 11. Top: roll motion time series recorded from experimental runs.
Experiment 1195 is the only one where parametric roll clearly developed.
Bottom: roll motion time series recorded during navigation across the North
Atlantic Ocean.

C. Implementation

The results shown in Section V were obtained using the
estimation window Mest ≈ 30 min, the detection window
equivalent to four roll periods, Mdet = 4 ·Tφ, where Tφ is the
roll natural period, and 75% window overlap. Both the spectral
correlation detector and the double Weibull GLRT use these
settings.

V. DETECTION SCHEMES VALIDATION
The performance of the proposed detection schemes for

parametric roll have been validated on two data sets. In order
to simulate a continuous navigation the single records of
each data set have been stitched together. A smoothing filter
was applied around the stitching points to avoid that sudden
fictitious variations within the signals at hand could trigger an
alarm. Hence the roll time series scrutinized are those shown
in Fig. 11.

A. Model Tank Data

The first data set (Fig. 11, top plot) consists of eight
experiments run in irregular waves scenario1 at the Marine
Technology Centre in Trondheim. The vessel used for the
tank experiments is a 1:45 scale model of a 76.000 m3

displacement, 281 m long container ship. The roll period is
21 s (ωφ = 0.298 rad/s). The detailed model and all the
hydrodynamic coefficients can be found in [31].

Table I summarizes the parameters of the experimental
runs, where Texp is the duration of the experiment, Hs is the
significant wave height, Tp is the wave peak period, φmax is
the maximum roll angle achieved during the experiment, and
σφ is the standard deviation of the roll motion. All data in
Table I are in full scale.

1The terminology irregular waves means that the wave motion used to
excite the vessel is generated by the superposition of multiple sinusoidal waves
centered at different frequencies, and described by a given power spectrum.
In regular waves the vessel is excited by a single sinusoidal wave.
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TABLE I
IRREGULAR WAVE EXPERIMENTS

Exp. Texp [s] Hs [m] Tp [s] |φmax| [◦] σφ [◦]

1194 1338 9 13.54 2.91 1.02
1195 1048 9 13.54 17.24 5.53
1196 1345 9 13.54 2.88 0.97
1197 1504 7 13.54 1.68 0.49
1198 1522 7 13.54 4.23 1.31
1199 1582 9 13.54 1.83 0.55
1200 1369 9 13.54 1.74 0.46
1201 1419 9 13.54 1.45 0.41

TABLE II
SEA TRIALS

ST Hs [m] Te [s] χe [◦]

82 5-8 5-6 150
83 5-8 5-6 150
84 8-10 5-8 150
85 10-12 7-10 150
86 10-12 - 135-150
87 10-11 - 160
88 8-11 6 150
89 8-10 5-7 150-170
90 8-10 - 170
91 8-10 5-6 150
92 11 11 -

It is emphasized that, although the vessel experienced
parametric roll only once, all the tank tests were made to
trigger the phenomenon, but in the irregular wave scenario it is
difficult to obtain a fully developed parametric roll resonance
as consecutive wave trains may not fulfill all the conditions
for its existence. The experimental data set is used to evaluate
the capability of the detectors to timely catch the onset of
parametric roll.

B. Atlantic Passage Data

The second data set (Fig. 11, bottom plot) consists of full
scale data recorded on board the container ship Clara Maersk
crossing the North Atlantic Ocean. The length of the vessel
was LPP = 197 m, and its displacement was ∇ = 33000 m3;
its roll period was 22 s (ωφ = 0.286 rad/s) in the voyage
condition.

Time series data used here correspond to nine hours of
navigation. Table II summarizes the sailing conditions, where
Hs is the significant wave height, Te is the encounter wave
period, and χe is the wave encounter angle. Values have been
manually observed and are subject to uncertainty.

For this data set there was no prior awareness about the
onset of parametric roll resonance; hence the assessment of
detections and/or false alarms was done by visual inspection
of the time series around the alarm time. The real navigation
data set is used to ensure the insensitivity to usual forced roll.

C. Spectral Correlation Detector Validation

Figs. 12–13 show the outcome of the spectral correlation
detector versus its robustified version after processing the
model and full scale data sets.
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Fig. 12. Normal and robust spectral correlation detector on the experimental
data set.

On the experimental data set the spectral correlation and
the robust spectral correlation detectors show similar good
performance. Fig. 12 illustrates that the major parametric roll
event that occurs between t = 70 min and t = 90 min is
promptly detected when the roll angle is about 3◦ by both
detectors. The other alarms issued by the detectors within
the first 40 minutes and after 100 minutes are currently
considered false alarms since there is no visual evidence that
parametric roll is taking place. However it must be noted that
in all experiments the wave spectrum wan tuned to induce
parametric resonance, that is to fulfill the frequency condition
ωe ≈ 2ωφ. Therefore, although parametric roll did not develop
to its dangerous level, its sparkle was present and that is what
triggered these alarms. The difference between the normal and
robustified spectral correlation detector is very marginal, and
this is due to the very narrow band wave spectrum used to
excite the model.

Fig. 13 clearly acknowledge the importance of pre-filtering
the signals for the spectral correlation index. Without the
pre-filtering, the wide spectra of pitch and roll in the sea
trial data give many false alarms, which are reduced to
three when the robustified detector is used. Pre-filtering hence
ensures robustness, although few alarms are still issued by the
detector. By looking at the overall performance over 9 hours
of heavy roll motion it can be concluded that insensitivity to
synchronous roll is achieved.

D. Phase Synchronization Detector Validation

Fig. 14 shows the detection performance of the double
Weibull GLRT detector of phase synchronization on the exper-
imental data set. The parametric roll event is promptly detected
when the roll angle is smaller than 3◦, and the alarm lasts for
the entire duration of the major event.

Fig. 15 shows the performance of theW2-GLRT on the full
scale data set. The double Weibull GLRT detector issues one
alarm, which by visual investigation is classified as false alarm.
Although the W2-GLRT is not false alarm free, its overall
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Fig. 13. Spectral correlation detector on the sea trial data set with broad
spectral content in pitch and roll: a large amount of false alarms with the
unfiltered signals are avoided by applying the pre-filtering.
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Fig. 14. W2-GLRT on the experimental data set.

behavior on this data set supports the choice of the double
Weibull distribution for describing the statistical properties of
the driving signal under the hypothesis H0.

E. Robust Performance by Combined Hypothesis Testing

The spectral correlation detector and the double Weibull
GLRT detector each shown good performance providing a
timely detection of the parametric roll event that occurs within
the experimental time series, giving a moderate number of
false alarms when applied to the experimental and the real
navigation data sets. However, it is only the combination of the
detectors that can provide a PFA rate that is acceptable. With
update interval Tφ ≈ 22 s, a one-month interval between false
alarms is equivalent to PFA ' 10−5 for tests with independent
samples. Combining the two detectors provide the false alarm
probability,

PFA(g, fSφ2θ) , PFA
(
g > γg ∩ fSφ2θ > S

)
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Fig. 15. W2-GLRT on the sea trial data set.
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Fig. 16. Performance of the monitoring system on the experimental data set.

= PFA
(
g > γg|fSφ2θ > S

)
PFA

(
fSφ2θ > S

)
.

The effect of combined hypothesis testing is
a drastically reduced false alarm probability. If
PFA

(
g > γg|fSφ2θ > S

)
' PFA (g > γg), PFA(g, fSφ2θ) '

PFA (g > γg)PFA
(
fSφ2θ > S

)
, but data are not available to

make this conclusion at a rigorous level. At a heuristic level,
however, a vast improvement of the use of the combined
detectors is illustrated in Fig. 16 for the experimental data
set, and in Fig. 17 for the real navigation data.

Selecting thresholds for the combined phase and frequency
condition detectors ideally should require consideration of
detection probability as well,

PD(g, fSφ2θ) =

∫
I
p
(
g, fSφ2θ;H1

)
dg dfSφ2θ, (50)

where I = {g : g ≥ γg} ∩
{
fSφ2θ : fSφ2θ ≥ S

}
. This com-

putation would need the joint distributions under both non-
resonant and resonant behaviors but sufficient data were not
available and thresholds had to be selected based on PFA from
the observed distributions.
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VI. CONCLUSIONS

Two detection methods were proposed for the diagnosis of
parametric roll resonance and were validated against model
scale and full scale data.

A spectral correlation detector was developed in the fre-
quency domain, providing an indicator for energy flowing
from the pitch motion, directly excited by the waves, into roll
motion causing a sub-harmonic resonance. A double Weibull
GLRT detector worked in the time domain, and monitored the
behavior of a driving signal carrying information about the
phase correlation between roll and pitch. Robustness against
usual forced roll motion was proven.

The two detectors showed very satisfactory capabilities to
timely detect the onset of parametric roll, while achieving
a low false alarm rate. A significant overall performance
enhancement was obtained by using the two detectors for
combined hypothesis testing.

The methodologies reported in this paper were included in
international patent applications [40].

APPENDIX A
PHASE SYNCHRONIZATION

Phase synchronization occurs between roll and pitch during
parametric resonance. Consider the reduced roll model

φ̈+ ν2φ̇+
(
ω2
φ + κ1F cosωet

)
φ+ κ3φ

3 = 0, (A.1)

where the nonlinearity is restrained to the cubic term of the
restoring moment. By change of variable ξ = 1

2ωet (A.1) can
be rewritten as the nonlinear Mathieu equation

φ′′ + νφ′ + (δ + ε cos 2ξ)φ+ κφ3 = 0, (A.2)

where δ = 4ω2
2/ω

2
e , ε = 4κ1F/ω

2
e , ν = 2ν2/ωe, κ = 4κ3/ω

2
e ,

and the prime addresses differentiation with respect to ξ.
When the nonlinear Mathieu equation is in the principal
parametric resonance condition (δ ≈ 1) the solution to first
order approximation is given by

φ = α(εt) cos

(
1

2
ωet− χ(εt)

)
+O (ε) . (A.3)

The amplitude α and phase shift χ can be determined by
solving the autonomous system

α′ = −1

4

α

ω
sinχ− να (A.4)

αχ′ = 2σα− 1

2

α

ω
cosχ− 3

2

κ

ω
α3, (A.5)

where ω =
√
δ = 2ωφ/ωe, and σ is a detuning parameter that

measures how close the system is to the principal parametric
resonance condition. The steady state solution is,

− 1

4ω
sinχ− ν = 0 (A.6)

2σ − 1

2ω
cosχ− 3

4

κ

ω
α2 = 0 (A.7)

from which the amplitude and the phase shift are, to first order

α =

√
8

3

σ

κ
± 2

3κ

√
1− 16ν2 (A.8)

tanχ =
−4ν

±
√

1− 16ν2
. (A.9)

The phase shift depends exclusively on the system damping.
At steady state it is 0 or π according to the sign of cosχ.

APPENDIX B
INSENSITIVITY TO FORCED ROLL

This appendix shows that the detectors are insensitive to
forced roll under a narrow-band assumption. The two detectors
are treated in separate subsections.

A. Frequency Condition - Spectral Correlation Detector

Consider pitch and roll as narrow-band signals

θ(t) s.t. Θ(ω) = 0 for |ω − ωθ| ≥ Ωθ

φ(t) s.t. Φ(ω) = 0 for |ω − ωφ| ≥ Ωφ

where Θ(ω) and Φ(ω) are the spectra of pitch and roll centered
at the center frequency ωθ and ωφ respectively. The bands of
the spectra are given by Bθ = {ω s.t. |ω − ωθ| < Ωθ} and
Bφ = {ω s.t. |ω − ωφ| < Ωφ}, where Wθ = 2Ωθ and Wφ =
2Ωφ are the bandwidths. The spectral correlation coefficient
Sφ2θ is based on the computation of the cross-spectrum Pφ2θ,
the Fourier transform of the cross-correlation rφ2θ. Therefore,

Pφ2θ = F(rφ2θ) = F(φ2 ∗ θ) = F(φ2)F(θ)

where F(φ2) is the complex conjugate.
If ωθ = ωe = 2ωφ, as in parametric resonance, then Bθ =

{ω s.t. |ω − 2ωφ| < Ωθ}, hence the first harmonic of the
spectrum of roll squared overlaps in large part or completely
the pitch spectrum. With pitch θ(t) and roll φ(t)

θ(t) = θ0(t) cos(2ωφt+ ψθ(t)) (B.1)
φ(t) = φ0(t) cos(ωφt+ ψφ(t)) (B.2)
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the spectra of pitch and the square of roll are

Θ(ω) =
1

2
(Θi(ω − 2ωφ) + Θi(ω + 2ωφ))

− 1

2
(Θq(ω − 2ωφ) + Θq(ω + 2ωφ)) (B.3)

Φ2(ω) =
1

2
(Φ0(ω) + Φi(ω − 2ωφ) + Φi(ω + 2ωφ))

− 1

2
(Φq(ω − 2ωφ) + Φq(ω + 2ωφ)) , (B.4)

where Θi = F(θ0(t) cos(ψθ(t))), Θq = F(θ0(t) sin(ψθ(t)))
are the Fourier transforms of the in-phase and quadrature
components of the pitch angle, and Φ0 = F(φ20(t)), Φi =
F(φ20(t) cos(2ψφ(t))), Φq = F(φ20(t) sin(2ψφ(t))) are the
Fourier transform of the DC, in-phase and quadrature com-
ponents of the second power of roll. Thus,

Pφ2θ =
1

4
(ΦiΘi(ω − 2ωφ) + ΦiΘi(ω + 2ωφ)

+ ΦqΘq(ω − 2ωφ) + ΦqΘq(ω + 2ωφ)

− ΦiΘq(ω − 2ωφ)− ΦiΘq(ω + 2ωφ)

− ΦqΘi(ω − 2ωφ)− ΦqΘi(ω + 2ωφ)). (B.5)

The cross-spectrum is non-zero since φ2(t) and θ(t) are
centered at the same frequency, hence the spectral correlation
coefficient is non-zero and can be used for detection.

Consider now a ship sailing in near head seas. The lateral
component of wave force excites roll motion directly, hence
pitch and roll both respond at the same frequency ωe

θ = θ0(t) cos(ωet+ ψθ(t)) (B.6)
φ = φ0(t) cos(ωet+ ψφ(t)). (B.7)

The cross-spectrum in this case is equal to zero,

Pφ2θ =
1

4

[
Θi(ω − ωe) + Θi(ω + ωe)

−Θq(ω − ωe)−Θq(ω + ωe)
]
×[

Φ0(ω) + Φi(ω − 2ωe) + Φi(ω + 2ωe)

− Φq(ω − 2ωe)− Φq(ω + 2ωe)
]

= 0 (B.8)

since the spectra are different from zero only around ω = ωe or
ω = 2ωe, and they do not share frequency content. Therefore
the spectral correlation coefficient is zero, and the detection is
insensitive to forced roll.

B. Phase Condition - W2-GLRT Detector

Let pitch and roll be sinusoids, sampled at instants kTs

θ(kTs) = θ0 cos(ωθkTs + ς) (B.9)
φ(kTs) = φ0 cos(ωφkTs). (B.10)

With forced roll, (ωθ = ωφ = ω), hence

d(kTs) = φ2(kTs)θ(kTs)

= φ20θ0 cos2 (ωkTs) cos (ωkTs + ς) . (B.11)

To prove that the GLRT detector (42) is not sensitive to
forced roll, a constant Γ must exist such that for any ln(γ) > Γ
the detector does not trigger an alarm. In general Γ is function

of the phase shift ς and of the time window NTs used to
estimate scaling and shape factors.

With β1 = β0 the test statistics g(k) scaled by N is

β0 ln

(
υ0
υ̂1

)
− 1

N

N−1∑
k=0

(
|dk|
υ̂1

)β0

+
1

N

N−1∑
k=0

(
|di|
υ0

)β0

>
1

N
ln(γ), (B.12)

Under H0, υ̂1 = υ0, and an bound is determined from,

sup

{
− 1

N

N−1∑
k=0

(
|d(kTs)|
υ̂1

)β0
}
≤ 0, (B.13)

sup

{
1

N

N−1∑
k=0

(
|d(kTs)|
υ0

)β}
≤
(
φ20θ0
υ0

)β0

. (B.14)

Hence, the detector is not sensitive to forced roll when

ln(γ) > Γ , N

(
φ20θ0
υ0

)β0

. (B.15)

This bound is time varying since υ0 and β0 are changing
according to weather conditions.
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