
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Spatial impulse response of a rectangular double curved transducer

Bæk, David; Jensen, Jørgen Arendt; Willatzen, Morten

Published in:
Journal of the Acoustical Society of America

Link to article, DOI:
10.1121/1.3693659

Publication date:
2012

Document Version
Early version, also known as pre-print

Link back to DTU Orbit

Citation (APA):
Bæk, D., Jensen, J. A., & Willatzen, M. (2012). Spatial impulse response of a rectangular double curved
transducer. Journal of the Acoustical Society of America, 131(4), 2730-2741. DOI: 10.1121/1.3693659

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13793194?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1121/1.3693659
http://orbit.dtu.dk/en/publications/spatial-impulse-response-of-a-rectangular-double-curved-transducer(ef020480-95f6-4553-b77c-cc8a1be03a6a).html


Spatial impulse response of a rectangular double curved transducer

David Bæka) and Jørgen Arendt Jensen

Center for Fast Ultrasound Imaging,

Department of Electrical Engineering,

Technical University of Denmark,

Ørsteds Plads Building 349,

2800 Kgs. Lyngby,

Denmark

Morten Willatzen

Mads Clausen Institute for Product Innovation,

University of Southern Denmark,

Alsion,

6400 Sønderborg,

Denmark

(Dated: January 11, 2012)

Convex elevation focused transducers 1



Abstract

Calculation of the pressure field from transducers having both a convex

and a concave surface geometry is a complicated assignment that often

is accomplished by subdividing the transducer surface into smaller flat

elements of which the spatial impulse response is known. This method

is often seen applied to curved transducers because an analytical so-

lution is un-known. In this work a semi-analytical algorithm for the

exact solution to a first order in diffraction effect of the spatial impulse

response of rectangular shaped double curved transducers is presented.

The algorithm and an approximation of it are investigated. The ap-

proximation reformulates the algorithm to an analytically integrable

expression which is computationally efficient to solve. Simulation re-

sults are compared with the simulation software Field II. Calculating

the response from 200 different points yields a mean error for the differ-

ent approximations ranging from 0.03 % to 0.8 % relative to a numerical

solution for the spatial impulse response. It is shown that the presented

algorithm gives consistent results with Field II for a linear flat, a linear

focused, and a convex non-focused element. Best solution was found

to be 0.01 % with a three-point Taylor expansion.

PACS numbers: 43.38.Hz,43.20.Px,43.40.Rj
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I. INTRODUCTION

Calculation of the spatial impulse responses (SIR) for predicting acoustic pressure and

pulse-echo responses has been a well known technique for decades. Some of the first works

utilizing SIRs on planar transducers were by Tupholme and Stepanishen1,2 and later sev-

eral analytical expressions for rectangular, circular, concave circular, and array transducer

have been reported3–11. Expressions for transducers with slightly in-homogenous surface

movement have also been introduced12,13. However, most of the reported solutions represent

simple transducer geometries that are rarely found in more sophisticated acoustic applica-

tions, e.g. medical imaging applications. The simple planar solutions may be utilized to

calculate SIRs of the more complicated surface geometries such as annular arrays, linear

elevation focused transducers, convex transducers, and double curved transducers, i.e. rect-

angular transducers with a convex geometry and an elevation focused geometry. To achieve

this a subdivision of the transducer surface into smaller simpler elements such as triangles

or rectangles is often performed. The final response is then calculated by applying superpo-

sition of the responses from many smaller planar elements. An example where this principle

is practically applied is the Field II simulation software package14,15. This package utilizes

the algorithms described by Jensen8,16,17.

Only a minor part of the literature within SIRs addresses the problem of finding analyti-

cal expressions of curved rectangular transducers. Within this literature the work18–20 shows

that subdivision of the elements into small stripes or rectangles is possible. The motivation

for applying these assumptions is that no analytical solution has been found for these rel-

atively complicated geometries. Theumann et al.21 formulated a semi-analytical expression

for points inside a closed cylinder. To model the response from slightly curved transducer

elements, which often are found in medical imaging, simulation tools such as Ultrasim22,

DREAM23, DELFI24, and Field II typically apply a discretization of the surface into smaller

elements as mentioned above whereby they efficiently can solve the Rayleigh integral with

a)Electronic address: db.mechatronic@gmail.com
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its planar assumptions.

Alternative solutions to the problem are finite element implementations. A finite element

method implementation can account for second order diffraction effects due to surface curva-

ture, shear waves and attenuation. Finite element methods can be made almost arbitrarily

detailed but numerical problems can occur in the implementation of open boundary condi-

tions for limiting the fluid domain and in the resolution of e.g. a tissue domain to account

for the complicated acoustic scattering. Also finite element solutions are inherently slow,

which significantly limits their use in studying complex multi-element transducers used for

advanced imaging like 3D and flow. There is, thus, a need for analytic and faster solutions.

This paper presents an exact expression for the SIR of a rectangular convex elevation

focused transducer (or double curved transducer) in the form of an elliptical integral. This

integral is shown to be solvable by applying either a Taylor expansion or fitting a second

order polynomial to a part of the elliptical integral. The motivation for developing such

algorithms is connected with an attempt to make the Field II software more efficient in

solving the response from double curved surfaces. Double curved surfaces are present in

the medical ultrasound industry of today but an efficient solver for multiple array elements,

as can easily be found for linear areas, is not present. A research on finding an efficient

alternative to subdividing the double curved surface into smaller elements has therefore

been of high interest and may potentially speed up the solving process of such transducer

geometries.

II. THEORY

The general mathematical formulation of the SIR can be extracted from the Rayleigh

integral1,2 to yield:

h(r⃗, t) =
1

2π

∫
S

δ(t− |r⃗|
c
)

|r⃗|
dS (1)

The validity of this equation is subject to the assumption that the wavelength is much

smaller than the curvature of the transducer so that the secondary diffraction effects are
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FIG. 1. The geometrical definition of the double curved transducer.

negligible10,25. It is furthermore assumed that the surface movement is uniform and that a

piston movement is forced onto the surface. The transducer surface transmits into a fluid

or tissue in a longitudinal single mode operation of the solid.

A torus can be formed by an outer revolution angle γ and an inner revolution angle θ

describing a circle that rides on the outer circle. The angles are limited within 0− 2π for γ

and 0− π for θ.

A double curved transducer as considered in this work is defined by the torus coordinates

x = (R− r sin θ) sin γ (2)

z = (R− r sin θ) cos γ, (3)

y = r cos θ, (4)

where the angles γ and θ are the revolving angles and R and r define the outer and the inner

circle radii, respectively. Figure 1 depicts the boundary limiting angles and the geometry.

The maximum and minimum opening angles for the concave curvature are defined as θmin

and θmax, where θmax = π − θmin. Similarly do γL and γR define the limiting angles of the

convex curvature and due to the transducer symmetry γR = −γL is valid. It should be noted

that in this work the positive angle definition for γ is calculated CCW around the y-axis and
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FIG. 2. Figure showing the geometrical definition of the angle β.

relative to the z-axis. The angle γR is therefore negative. Furthermore, the θ angle definition

has its zero reference from the vertical line going through the point {0, 0, R} parallel to the

y-axis, hence 0 ≤ θ ≤ π. All Cartesian coordinates are relative to the {0, 0, 0} coordinate.

A point, P = {xp, yp, zp}, can be placed at any location in front of the transducer, to the left

and to the right, and below or above the transducer. The only requirement for the point’s

location is that a spherical wave emitted from the location does not meet the back of the

concave transducer before meeting the front.

To perform the integration in (1) a definition of the surface element, dS, on the torus

surface S is needed

dS = r(R− r sin θ)dγdθ, (5)

which is valid when the torus is parametrically defined as T (γ, θ) = z⃗i+ x⃗j + yk⃗.

By considering Fig. 2 and by applying cosine relations one can obtain an expression for

the angle β as

β = cos−1

(
|OP ∗|2 + (R− r sin θ)2 − (c2t2 − (yp − r cos θ)2)

2(R− r sin θ)|OP ∗|

)
= cos−1

(
k − c2t2 − 2ryp cos θ − 2rR sin θ

2|OP ∗|R− 2|OP ∗|r sin θ

)
, (6)
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where t is the time and c is the speed of sound and k = |OP ∗|2 + r2 +R2 + y2p. The angle β

is defined to rotate around the y-axis as shown in Fig. 2.

At any time instant the surface element, dS, can be found as

dS = r(R− r sin θ)
∂β

∂t
dtdθ

= r(R− r sin θ)
2c2t

(2|OP ∗|R− 2|OP ∗|r sin θ)
√

1− (−k+c2t2+2ryp cos θ+2rR sin θ)2

(2|OP ∗|R−2|OP ∗|r sin θ)2

dtdθ. (7)

By substituting (7) into (1) the integral for the SIR becomes:

h(ti) =
1

2π

∫ θmax(ti)

θmin(ti)

cr

|OP ∗|
√
1− (−k+c2t2+2ryp cos θ+2rR sin θ)2

(2|OP ∗|R−2|OP ∗|r sin θ)2

dθ. (8)

The surface integral in (1) has hereby been transformed into a line integral of elliptical

form that integrates along the intersection between a crossing sphere and the transducer.

The integration boundaries θmin and θmax are to be found from (6). A general expression

for the angle θ is found by isolating it in (6) for a given angle of β. This yields four solutions

of which two are valid in the integration domain defined for this type of transducer. The

two remaining angles are to be used if π ≤ θ ≤ 2π.

θ = cos−1

(
f1 ± f2

f3

)
, (9)

where

f1 = 2ryp(k − c2t2 − 2|OP ∗|R cos (β))), (10)

f2 = ((2rR− 2|OP ∗|r cos (β))2(−(k − c2 t2)2 + (2r)2(R2 + y2p) + ...

+ (2|OP ∗| cos (β)(2R(k − 2 r2 − c2t2) + 2|OP ∗|(r2 −R2) cos (β)))))1/2, (11)

f3 = 4r2
(
R2 + y2p + |OP ∗| cos (β) (|OP ∗| cos (β)− 2R)

)
. (12)

There are three values of β to which the integration boundaries correspond. These are

for the angles at which the intersecting curve crosses the vertical tranducer edges, and for

the angle at which the intersecting closed curve can be split into two arcs by a vertical plane

through P and the y-axis. The values are βl = (γL − γp), βr = (γR − γp), and β0 = 0, where

γp = tan−1

(
xp

zp

)
. (13)
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FIG. 3. The definition of the integration angles θLmin, θ
L
max, θ

R
min, and θRmax, which occur

when the spherical wave has passed the boundaries of the transducer. The transducer is

seen from the back side toward the positive z-axis.

The angle γp is the angle at which the point P is located relative to the z-axis in the xz-plane.

Fig. 3 illustrates a transducer seen from the back side in the xy-plane and towards the

positive z-axis. The solid arcs are defining the intersection between a sphere emanating from

a point P and the transducer. The dotted lines are the sphere’s crossing with a imaginary

extension of the transducer. The boundary integration angles θRmin, θ
R
max, θ

L
min, θ

L
max, θ

0
min,

and θ0max are dependent on β and time as defined in (9) and they split the closed arc into

the sub arcs illustrated. E.g. the angles θ0min and θ0max ”split” the solid arcs into a left and

a right arc line. For the depicted situation in Fig. 3 the SIR found from (8) is calculated by

organizing the integration angles as

h = 2
1

2π

∫ θ0max

θ0min

I(θ)dθ − 1

2π

∫ θLmax

θLmin

I(θ)dθ − 1

2π

∫ θRmax

θRmin

I(θ)dθ, (14)

where I(θ) is the integrand found in (8).
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It is beneficial to define two functions for the integration angles as:

θ(t, χ, ts, θs, te, θe, β) =


θs t ≤ ts

cos−1
(

f1(β,t)+χf2(β,t)
f3(β,t)

)
ts < t < te

θe t ≥ te,

(15)

θsingle(t, χ, β)) = cos−1

(
f1(β, t) + χf2(β, t)

f3(β, t)

)
. (16)

Here ts defines a lower time at which the integration angle is a constant. Similarly, te defines

an upper time at which the angle is constant. In between these times the angle θ takes on a

time dependent value. The constant χ takes on the values 1 or −1 and determines the sign in

front of the function f2. The function θsingle is useful for calculating single angle values, which

is necessary in some of the follow definitions of the SIR. By defining the integration angles

as having a value at all time instants the number of time branching needed to define the SIR

is limited. It is hereby meant that the pulse will have a starting time which corresponds to

the time at which the sphere touches the aperture for the first time. Similarly, the pulse has

an end time. In between these two times there are many intersections between the edges

of the aperture and the sphere present. Therefore, by properly subtracting and adding line

contributions as shown in (14) each time the sphere crosses a boundary it becomes possible

to account for all possible point locations relative to the transducer’s surface.

III. TIME OF FLIGHT DEFINITIONS

To fully describe all possible locations of a point in front of the transducer one needs to

define nine time of flight values. These times are given by the distances from the point, P,

to each transducer corner, the shortest distances to the side edges at γL and γR, the shortest

distances to the upper and the lower horizontal edges at θmax and θmin, and the shortest

distances to the transducer. The transducer corners are defined as c1, c2, c3, and c4. Corner

9



coordinates are defined as ci = {x, y, z}:

c1 = {(R− r sin (θmin)) sin (γL), r cos (θmin), (R− r sin (θmin)) cos (γL)}, (17)

c2 = {(R− r sin (θmax)) sin (γL), r cos (θmax), (R− r sin (θmax)) cos (γL)}, (18)

c3 = {(R− r sin (θmin)) sin (γR), r cos (θmin), (R− r sin (θmin)) cos (γR)}, (19)

c4 = {(R− r sin (θmax)) sin (γR), r cos (θmax), (R− r sin (θmax)) cos (γR)}. (20)

Coordinates for the shortest distances to the vertical edges at γL and γR are geometrically

differently defined according to the location of the point, P, and in this work are referred

to as cL, and cR, respectively. Similar situations occur for coordinates defining the shortest

distance to the upper and the lower horizontal transducer edges. The locations of these

horizontal edges are defined by θmin as shown in Fig. 1 and θmax = π−θmin. The coordinates

to the shortest distances at these locations are defined as c5 and c6 for the edges associated

with θmin and θmax, respectively. The location of the coordinate for the shortest distance to

the transducer is denoted c0.

The time of flights associated with the different coordinates are hereafter defined as tc0 ,

tc1 , tc2 , tc3 , tc4 , tc5 , tc6 , tcL , and tcR .

IV. THE DIFFERENT ZONES

The final integral expression in (1) takes on different forms depending on the loca-

tion of the point, P, relative to the transducer. In this work there are ten zones in front

of the transducer defined. Points located in these zones share the zone specific integral form.
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Zone 1: θmin ≤ θp ≤ θmax , |OP ∗| < R , γR ≤ γp ≤ γL,

Zone 2: θmin ≥ θp ≤ θmax , |OP ∗| < R , γL ≤ γp ≤ γR,

Zone 3: (|θp| > θmax || |θp| < θmin) , γR ≤ γp ≤ γL , yp ̸= 0 , |OP ∗| ≥ R,

Zone 4: ((γp < γR) || (γp > γL)) , |OP ∗| > R , θmin < |θp| < θmax,

Zone 5: θmin < |θp| < θmax , γL ≥ γp ≥ γR , |OP ∗| > R,

Zone 6: ((θmax < θp) || (θmin > θp)) , ((γp < γR) || (γp > γL)) , yp ̸= 0 , |OP ∗| < R,

Zone 7: ((|θp| > θmax)||(|θp| < θmin)) , γR ≤ γp ≤ γL , yp ̸= 0 , |OP ∗| < R,

Zone 8: ((θmax < |θp|) || (θmin > |θp|)) , ((γp < γR) || (γp > γL)) , yp ̸= 0 , |OP ∗| ≥ R,

Zone 9: yp = 0 , |OP ∗| = R,

Zone 10: |OP ∗| = R , γL ≤ γp ≤ γR , yp = 0.

See ZoneVideo. [Link to zoneVideo.avi]

A. Spatial impulse response for Zone 1

This zone is located directly in front of the transducer and in front of the elevation

focus. A sphere emanating from within this zone may intersect the transducer as shown in

Fig. 4a and Fig. 4b. Initially, the crossing will be a closed trajectory with upper and lower

integration boundaries θ0min and θ0max as seen in Fig. 4a. The angle θ0min gets equal to θmin

when the crossing exceeds the upper horizontal edge of the transducer. A similar situation

occurs for the θ0max that equals θmax when the crossing exceeds the lower horizontal edge of

the transducer. For the time instants, at which the intersections have not yet exceeded the

vertical side of the transducer, the SIR is calculated as

h = 2
1

2π

∫ θ0max

θ0min

I(θ)dθ, (21)

where I(θ) is the integrand found in (8). The factor of two is used because the integration

only integrates along one of the two line segments and one has to integrate along the left

and the right trajectory.

At the time instants at which the intersections crosses the vertical sides of the transducer,

i.e γR and γL, two new sets of integration limits occur: θRmax and θRmin for γR and also θLmax

11



FIG. 4. A sphere’s crossing with a transducer (solid) and virtual crossings (dotted). View

seen from the transducer’s back side in direction of the z-axis. a) The sphere has not yet

crossed the side edges. The sphere is symmetrically placed at xp = 0. b) The sphere has

crossed the edges. Dotted lines indicate the virtual arc crossings. The sphere center is offset

to the left, which makes the left virtual arc significantly longer than the right virtual arc.

See AngleVideo. Link to AngleVideo.avi

and θLmin for γL as seen in Fig. 4b. The SIR can then be calculated following one of two

principles. The first principle relies on integrating along arcs that actually intersect the

transducer (See solid lines on Fig. 4). The SIR is then formulated as

h =
1

2π

∫ θRmin

θ0min

I(θ)dθ +
1

2π

∫ θLmin

θ0min

I(θ)dθ +
1

2π

∫ θ0max

θRmax

I(θ)dθ +
1

2π

∫ θ0max

θLmax

I(θ)dθ. (22)

The second method relies on calculating contributions from arc lengths located outside

the transducer geometry as if the transducer was violating the limitations by γL ≤ γ ≤ γR.

One should then subtract contributions from these virtual arcs from the total response. A

mathematical formulation of this can be found as

h = 2
1

2π

∫ θ0max

θ0min

I(θ)dθ − 1

2π

∫ θLmax

θLmin

I(θ)dθ − 1

2π

∫ θRmax

θRmin

I(θ)dθ. (23)

The latter principle may be considered more stable than the first principle because it

has fewer small arc contributions. Throughout this work the second principle is utilized for
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formulating the SIR in all zones. Note, however, that the first integration principle will give

exactly the same result and could just as well have been used.

The complete SIR integral for the zone in focus is:

hzone1(t) = 2h(θ(t, 1, t0, θ0, tc5 , θmin, β0), θ(t,−1, t0, θ0, tc6 , θmax, β0))−

h(θ(t, 1, t0, θR, tc3 , θmin, βr), θ(t,−1, t0, θR, tc4 , θmax, βr))−

h(θ(t, 1, t0, θL, tc1 , θmin, βl), θ(t,−1, t0, θL, tc2 , θmax, βl)). (24)

This pulse is therefore defined from the minimum time instant, t0, to the maximum time

instant, which is one of the times tc1, tc2, tc3, tc4, tc5, or tc6. Note that (24) accounts for the

different edge times and angle limitations through the formulation of the analytical function

θ in (15).

A short analysis of the integration angles represented in (24) can be performed for a

given case by plotting the different θ angles as shown in Fig. 5. The considered situation is

shown for a point located at {xp, yp, zp} = {5, 0, 45} mm near a transducer with a height of

30 mm, outer radius, R, of 60 mm, inner radius, r, of 90 mm, and a γL = 0.26. The point

is therefore placed in the xz-plane wherefore tc5 = tc6 . Furthermore, the point is placed to

the left (xp > 0) of the z-axis, which results in tcL < tcR and tc1 = tc2 < tc3 = tc4 . The

contribution from the virtual arc to the left of the transducer is therefore only nonzero in the

time interval tcL ≤ t ≤ tc3 , and for the right virtual arc it is the time interval tcR ≤ t ≤ tc3 .

Notice also that (15) introduces a cut off at tc1 and tc2 , which are the time instants at which

the virtual arc length to the left of the transducer exceeds the minimum and maximum

opening angles θmin and θmax.

B. Spatial impulse response for Zone 2 to Zone 10

The same analysis principle as applied for Zone 1 can be applied for all other zones.
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FIG. 5. The integration angles plotted for a point located in Zone 1 of a transducer. The

angles show that the wave crosses the left edge before it crosses the right. Start and end

times are tc0 and tc3 , respectively.

1. Zone 2

For Zone 2 the SIR formulation is dependent on the point’s location being to the right

or to the left of the transducer. The responses are formulated as

For γp < γR

hzone2(t) = h(θ(t, 1, tcR , θcR , tc3 , θmin, βr), θ(t,−1, tcR , θcR , tc4 , θmax, βr))−

h(θ(t, 1, tcL , θcL , tc1 , θmin, βl), θ(t,−1, tcL , θcL , tc2 , θmax, βl)). (25)

For γp > γL

hzone2(t) = h(θ(t, 1, tcL , θcL , tc1 , θmin, βl), θ(t,−1, tcL , θcL , tc2 , θmax, βl))−

h(θ(t, 1, tcR , θcR , tc3 , θmin, βr), θ(t,−1, tcR , θcR , tc4 , θmax, βr)). (26)
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2. Zone 3

For Zone 3 the SIR is formulated as

If yp > 0

χr =

 1, θsingle(tc3 , 1, βr) = θmin

−1, else
(27)

χl =

 1, θsingle(tc1 , 1, βl) = θmin

−1, else
(28)

hzone3(t) = 2h(θ(t, 1, tc5 , θmin, tc5 , θmin, βo), θ(t, 1, tc5 , θmin, tc6 , θmax, βo)) +

h(θ(t, χr, tc3 , θmin, tc3 , θmin, βr), θ(t, χr, tc3 , θmin, tc4 , θmax, βr))−

h(θ(t, χl, tc1 , θmin, tc1 , θmin, βl), θ(t, χl, tc1 , θmin, tc2 , θmax, βl)), (29)

and for yp < 0

χr =

 −1, θsingle(tc4 ,−1, βr) = θmax

1, else
(30)

χl =

 −1, θsingle(tc2 , 1, βl) = θmax

1, else
(31)

hzone3(t) = 2h(θ(t,−1, tc6 , θmax, tc5 , θmin, βo), θ(t,−1, tc6 , θmax, tc6 , θmax, βo)) +

h(θ(t, χr, tc4 , θmax, tc3 , θmin, βr), θ(t, χr, tc4 , θmax, tc4 , θmax, βr))−

h(θ(t, χl, tc2 , θmax, tc1 , θmin, βl), θ(t, χl, tc2 , θmax, tc2 , θmax, βl)), (32)
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The determination of the sign for χl,r is needed because the nature of the angles at the

side edges of the transducer is dependent on the point being before or after the elevation

focus for a translated and rotated coordinate system to these edges. This means that if

the location of the z-coordinate of the point, P, is before or after the elevation focus at the

edge when the coordinates xp, yp, zp are transformed to a coordinate system located at the

given edge, it alters the sign of χr,l. A reformulation of the zone definitions may avoid this

problem, but for the zone definitions applied in this work it is valid.

3. Zone 4

For Zone 4 the equations are dependent on γL ≤ γp ≤ γR. For γL ≤ γp the formulation

becomes

hzone4(t) = h(θ(t,−1, tc2 , θmax, tcL , θcL , βl], θ(t,−1, tc2 , θmax, tc2 , θmax, βl)) +

h(θ(t, 1, tc1 , θmin, tc1 , θmin, βl), θ(t, 1, tc1 , θmin, tcL , θcL , βl))−

h(θ(t,−1, tc4 , θmax, tcR , θcR , βr), θ(t,−1, tc4 , θmax, tc4 , θmax, βr))−

h(θ(t, 1, tc3 , θmin, tc3 , θmin, βr), θ(t, 1, tc3 , θmin, tcR , θcR , βr)), (33)

and for γp ≤ γR the formulation becomes

hzone4(t) = h(θ(t,−1, tc4 , θmax, tcR , θcR , βr), θ(t,−1, tc4 , θmax, tc4 , θmax, βr)) +

h(θ(t, 1, tc3 , θmin, tc3 , θmin, βr), θ(t, 1, tc3 , θmin, tcR , θcR , βr))−

h(θ(t,−1, tc2 , θmax, tcL , θcL , βl), θ(t,−1, tc2 , θmax, tc2 , θmax, βl))−

h(θ(t, 1, tc1 , θmin, tc1 , θmin, βl), θ(t, 1, tc1 , θmin, tcL , θcL , βl)), (34)
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4. Zone 5

For Zone 5 only one expression is needed for describing the SIR

hzone5(t) = 2h(θ(t, 1, tc5 , θmin, tc5 , θmin, β0), θ(t, 1, tc5 , θmin, tc0 , θ0, β0)) +

2h(θ(t,−1, tc6 , θmax, tc0 , θ0, β0), θ(t,−1, tc6 , θmax, tc6 , θmax, β0))−

h(θ(t, 1, tc3 , θmin, tc3 , θmin, βr), θ(t, 1, tc3 , θmin, tcR , θR, βr))−

h(θ(t,−1, tc4 , θmax, tcR , θR, βr), θ(t,−1, tc4 , θmax, tc4 , θmax, βr))−

h(θ(t, 1, tc1 , θmin, tc1 , θmin, βl), θ(t, 1, tc1 , θmin, tcL , θL, βl))−

h(θ(t,−1, tc2 , θmax, tcL , θL, βl), θ(t,−1, tc2 , θmax, tc2 , θmax, βl)). (35)

5. Zone 6

In Zone 6 four different cases are defined. Zone 6 is located to the left and to the right

of the transducer and the sign of χ is dependent on yp < 0 or yp > 0.

For yp < 0 and γp < γR the SIRs are formulated as

hzone6(t) = h(θ(t, 1, tc4 , θmax, tc3 , θmin, βr), θ(t, 1, tc4 , θmax, tc4 , θmax, βr))−

h(θ(t, 1, tc2 , θmax, tc1 , θmin, βl), θ(t, 1, tc2 , θmax, tc2 , θmax, βl)). (36)

For yp > 0 and γp < γR the SIR is formulated as

hzone6(t) = h(θ(t,−1, tc3 , θmin, tc3 , θmin, βr), θ(t,−1, tc3 , θmin, tc4 , θmax, βr))−

h(θ(t,−1, tc1 , θmin, tc1 , θmin, βl), θ(t,−1, tc1 , θmin, tc2 , θmax, βl)). (37)

For yp < 0 and γp > γR the spatial impulse response is formulated as

hzone6(t) = h(θ(t, 1, tc2 , θmax, tc1 , θmin, βl), θ(t, 1, tc2 , θmax, tc2 , θmax, βl))−

h(θ(t, 1, tc4 , θmax, tc3 , θmin, βr), θ(t, 1, tc4 , θmax, tc4 , θmax, βr)). (38)

For yp > 0 and γp > γR the spatial impulse response is formulated as

hzone6(t) = h(θ(t,−1, tc1 , θmin, tc1 , θmin, βl), θ(t,−1, tc1 , θmin, tc2 , θmax, βl))−

h(θ(t,−1, tc3 , θmin, tc3 , θmin, βr), θ(t,−1, tc3 , θmin, tc4 , θmax, βr)). (39)
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6. Zone 7

This zone is dependent on the sign of yp

For yp > 0 the SIR becomes

hzone7(t) = 2h(θ(t,−1, tc0 , θmin, tc0 , θmin, β0), θ(t,−1, tc0 , θmin, tc6 , θmax, β0))−

h(θ(t,−1, tc3 , θmin, tc3 , θmin, βr), θ(t,−1, tc3 , θmin, tc4 , θmax, βr))−

h(θ(t,−1, tc1 , θmin, tc1 , θmin, βl), θ(t,−1, tc1 , θmin, tc2 , θmax, βl)). (40)

For yp < 0 the SIR becomes

hzone7(t) = 2h(θ(t, 1, tc0 , θmax, tc5 , θmin, β0), θ(t, 1, tc0 , θmax, tc0 , θmax, β0))−

h(θ(t, 1, tc4 , θmax, tc3 , θmin, βr), θ(t, 1, tc4 , θmax, tc4 , θmax, βr))−

h(θ(t, 1, tc2 , θmax, tc1 , θmin, βl), θ(t, 1, tc2 , θmax, tc2 , θmax, βl)). (41)

7. Zone 8

Zone 8 is very similar to Zone 6, where four conditions were found and it relies on finding

the sign of χ as it was seen in Zone 3.

For yp < 0 and γp < γR the SIR is formulated as

χr =

 −1, θsingle(tc4 ,−1, βr) == θmax

1, else
(42)

χl =

 −1, θsingle(tc2 ,−1, βl) == θmax

1, else
(43)

hzone8(t) = h(θ(t, χr, tc4 , θmax, tc3 , θmin, βr), θ(t, χr, tc4 , θmax, tc4 , θmax, βr))−

h(θ(t, χl, tc2 , θmax, tc1 , θmin, βl), θ(t, χl, tc2 , θmax, tc2 , θmax, βl)). (44)

For yp > 0 and γp < γR the SIR is formulated as
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χr =

 1, θsingle(tc3 , 1, βr) == θmin

−1, else
(45)

χl =

 −1, θsingle(tc1 ,−1, βl) == θmin

1, else
(46)

hzone8(t) = h(θ(t, χr, tc3 , θmin, tc3 , θmin, βr), θ(t, χr, tc3 , θmin, tc4 , θmax, βr))−

h(θ(t, χl, tc1 , θmin, tc1 , θmin, βl), θ(t, χl, tc1 , θmin, tc2 , θmax, βl)). (47)

For yp < 0 and γp > γL the SIR is formulated as

χl =

 −1, θsingle(tc2 ,−1, βl) == θmax

1, else
(48)

χr =

 −1, θsingle(tc4 ,−1, βr) == θmax

1, else
(49)

hzone8(t) = h(θ(t, χl, tc2 , θmax, tc1 , θmin, βl), θ(t, χl, tc2 , θmax, tc2 , θmax, βl))−

h(θ(t, χr, tc4 , θmax, tc3 , θmin, βr), θ(t, χr, tc4 , θmax, tc4 , θmax, βr)). (50)

For yp > 0 and γp > γL the SIR is formulated as

χl =

 1, θsingle(tc1 , 1, βl) == θmin

−1, else
(51)

χr =

 1, θsingle(tc3 , 1, βr) == θmax

−1, else
(52)

hzone8(t) = h(θ(t, χl, tc1 , θmin, tc1 , θmin, βl), θ(t, χl, tc1 , θmin, tc2 , θmax, βl))−

h(θ(t, χr, tc3 , θmin, tc3 , θmin, βr), θ(t, χr, tc3 , θmin, tc4 , θmax, βr)). (53)
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8. Zone 9

This zone is located at the elevation focus of the transducer. Considering (8) and setting

R = |OP ∗| and yp = 0 yields

hf (ti) =
1

2π

∫ θmax(ti)

θmin(ti)

c r

R

√
1−

(
1 +

r2 −c2 t2i
2 R2−2 r R sin θ

)2
dθ. (54)

For the initial time step, where r2 − c2 t2i = 0, the integral is infinite, which is both a

numerical problem and physically not appropriate. This has to be accounted for in a given

implementation by either finding an asymptotic value using the gradient of the integration

values from time t > tminimum and the following time steps, or by finding the initial step from

a point located just before the elevation focus as well as one located just after the elevation

focus. These initial values may give an approximate mean value of the initial samples at

the elevation focus. The mean energy between these two samples may then be distributed

across the samples.

The SIR takes on the following form

hzone9(t) = 2hf (θ(t, 1, tc0 , θmin, tc0 , θmin, β0), θ(t, 1, tc0 , θmax, tc0 , θmax, β0))− ...

hf (θ(t, 1, tcL , θL, tc1 , θmin, βl), θ(t,−1, tcL , θL, tc2 , θmax, βl))− ...

hf (θ(t, 1, tcR , θR, tc3 , θmin, βr), θ(t,−1, tcR , θR, tc4 , θmax, βr)). (55)

Notice that θ(t, 1, tc0 , θmin, tc0 , θmin, β0) for the first integration equals θmin and

θ(t, 1, tc0 , θmax, tc0 , θmax, β0) equals θmax for all time instants.

9. Zone 10

This zone is similar to Zone 2 and only differs at yp = 0. All time of flight calculations

are the same. Also the SIR is given by (25) and (26) as for Zone 2.
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V. APPROXIMATING THE INTEGRAL EXPRESSION

The integral in (8) is of elliptical type and has no direct analytical solution. However,

the following analysis of the integral will show that an approximation of the integrand makes

the SIR analytically integrable.

Consider (8) in the following form

h =
1

2π

∫ ϕmax

ϕmin

cr

|OP ∗|
√

1− P (θ)
dθ, (56)

where

P (θ) =
(−k + c2t2 + 2ryp cos θ + 2rR sin θ)2

(2|OP ∗|R− 2|OP ∗|r sin θ)2
. (57)

Example plots for the integrand at several time instant are seen in Fig. 6. The vertical

lines indicate the location of the ϕmin and ϕmax at different time steps and as indicated by

the form of (57) the integrand approaches infinity for P (θ) → 1.

Because of the integrand’s nature it gets difficult, (but not impossible), to perform a

series expansion that can replace the integrand and reveal an analytically integrable inte-

grand without introducing a significant error in energy conservation close to the maximum

integration angles. As a consequence this method may not be the most effective one to

apply.

It may be more beneficial to consider the expression in (57) and apply a second order

Taylor expansion to this polynomial and achieve a second order polynomial, T (θ, θ0), around

a local integration angle θ0.

T (θ, θ0) = A(θ0)θ
2 +B(θ0)θ + C(θ0), (58)

where A(θ0), B(θ0), and C(θ0) are the coefficients found by ordering the Taylor series.

Expanding the polynomial into only a second order is beneficial in this work, contrary

higher order expansions, since the indefinite integral of the SIR becomes analytically inte-
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FIG. 6. A curve shape of the integrand in (56) at different time steps. It is clearly seen

how the curve increases asymptotic forward infinity at ϕmin and ϕmax. Notice that a full

symmetric case is shown for the plot. Symmetry is always the case, however, depending on

the value of ϕmin and ϕmax one or both spikes at the start and end of the integration domain

may not be present.

grable

Int =
1

2π

∫
cr

|OP ∗|
√

1− (Aθ2 +Bθ + C)
dθ (59)

=
1

2π

c r tan−1
[

B+2Aθ
2
√
A
√
1−C−Bθ−Aθ2

]
|OP ∗|

√
A

(60)

=
1

2π

i c r log
[
2
√
−Aθ2 −Bθ − C + 1− i (2Aθ+B)√

A

]
√
A|OP ∗|

, (61)

where i =
√
−1.

An integration of (56) can be found by performing the second order Taylor expansion

around a sufficient number of θ0 angles within the interval of ϕmin and ϕmax and then

one makes the corresponding sub integrations. This will, however, compromise the desired

benefit of a fast computational expression in the analytical expression.
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FIG. 7. a) A comparison between P (θ) and T (θ) at two time instants, T1 and T2, where

T1 < T2. b) The difference between P (θ) and T (θ) at the two time instants. Notice how

ϕmin and ϕmax include a wider angle difference for T2 and how the error has increased

significantly.

Consider Fig. 7a. This figure shows how the second order polynomial, T (θ, θ0), fits

(57) for θ0 = ϕmin+ϕmax

2
at different time steps. It is seen that when a small angle interval

∆ϕ = ϕmax − ϕmin is considered, as for the T1 example, a very close curve fit is possible.

However, Fig. 7b. shows that for bigger ∆ϕ, as for the T2 example, the residual of the

expansion becomes of more and more influence at the outer integration boundaries, which

is a natural consequence of the Taylor expansion. This is an undesirable consequence that

becomes very important for calculations on large transducers, since a significant amount of

energy is located in the neighborhood of ϕmin and ϕmax as shown in Fig. 6.

A strategy for capturing the energy at the outer integration boundaries could there-

fore be to perform Taylor expansions at ϕmin, ϕmax, and
ϕmin+ϕmax

2
and then subdivide the
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integration into three intervals:(
ϕmin → ϕmin + ϕ0

2

)
,

(
ϕmin + ϕ0

2
→ ϕmax + ϕ0

2

)
,

(
ϕmax + ϕ0

2
→ ϕmax

)
. (62)

This method ensures better conservation of the energy near the outer integration angles

than a single expansion around the mean integration value does. Furthermore, it captures

the centered curvature. The cost of this method is however three times more calculation

time for small angles.

VI. SIMULATIONS

To test the developed algorithms an adaptive Gauss-Kronrod quadrature numerical inte-

grator from MATLAB is applied for solving the exact form of the integral in (8). As reference

to validate the pulse shape of the exact solution a high resolution transducer model in Field

II is used. Furthermore, to approximate the exact integral of the SIR simulations with a

three-point Taylor expansion, a single-point Taylor expansion at the mean integration an-

gle, and a direct second order polynomial fit are used. The latter implementation uses three

points to find the coefficients of a second order polynomial. These three points are P [ϕmin],

P [(ϕmin + ϕmax)/2], and P [ϕmax]. The latter method differs from the three-point Taylor

approximation, because it finds a best polynomial fit through the three points and not a

local fit as the Taylor expansion does.

The error is calculated as

Ei = 100

√
1
N

∑
N(hi − hnumerical)2√
1
N

∑
N h2

numerical

, (63)

where hnumerical is the exact solution to the SIR as represented by (8) and solved using the

numerical integrator. hi is the SIR calculated with either Field II, hF , the three-point Taylor

expansion, h3T , the single-point Taylor expansion, h1T , or the second order polynomial fit,

h2p. N is the number of samples in the response. To get sample times aligned a simple spline

interpolation between the points are performed. This is necessary since start times for the
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pulses may be calculated slightly differently in Field II than in the MATLAB implementation

applied in this work.

A double curved transducer with a width of 20 mm and a 30 mm height is simulated.

The outer radius, R, is 60 mm and the inner radius, r, is 90 mm. Initially a single re-

sponse from a point located in Zone 1 at {xp, yp, zp} = {0, 0, 10} mm is calculated. The

coordinates are defined using the coordinate definition of Field II. The zero reference for

the z-coordinate is located at the outer most z-coordinates for the transducer defined in the

torus coordinates. The sampling frequency is set to 5 GHz.This relatively high sampling

frequency is used to avoid energy loss due to numerically difficult cases at edges and focus

points. A comprehensive discussion on this can be found in the discussion section. A second

simulation case investigates 200 points randomly distributed in front of the transducer and

covering all zones.

A third simulation investigates the error for the situation where R = 90 mm and r = 6

m by comparing h3T and h1T with Field II as reference. The mean error is calculated for 200

points randomly distributed across the zones. This simulation will due to the transducers’

large inner radius, r, mimic a convex transducer with no elevation focus. Yet a fourth

simulation investigates R = 6 m and r = 6 m which corresponds to a plane transducer and

the mean error of simulating 200 points is calculated. Finally a study case where R = 6 m

and r = 60 mm is performed. This type of transducer corresponds to a elevation focused

linear rectangular transducer. The transducer dimensions for simulation case three, four,

and five are changed to a more realistic size with a width of 1 mm and a height of 10 mm.

The sampling frequency is fixed at 5 GHz.

VII. RESULTS

Figure 8a shows the results of simulating the double curved transducer, i.e. R = 60

mm and r = 90 mm at the point {xp, yp, zp} = {0, 0, 10} mm. Clearly all the solvers agree

visually on the result from a full pulse perspective and a zoom as shown in Fig. 8b is needed
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FIG. 8. Results of simulating a single point in front of a double curved transducer. a) Full

pulse profile. b) Zoom onto (a) to magnify the difference.

to visually identify the difference. The relative errors were found to be: EField = 0.40%,

E1T = 0.80 %, E3T = 0.03 %, and E2p = 0.18 %. A higher exactness for the 3T approximator

was seen compared to the other solvers. Performing the same simulation for 200 points

randomly distributed across all zones resulted in a mean error (ME) of: MEField = 0.45 %,

ME1T = 1.78 %, ME3T = 0.01 %, and ME2p = 0.45 %. Also calculating the mean of the

solving time, Ti, for each solver yielded: TNumerical = 73.0 s, T1T = 8.7 s, T3T = 9.4 s, and

T2p = 7.0 s. Clearly the numerical solver is by far the slowest, which was also expected,

however, the mean times show that an improvement in the error from 1.78 % to 0.01 % can be

achieved with a 8.1 % increase in simulation time by applying the three point approximator

instead of the fast one point approximator or an improvement in the error from 0.45 % to

0.01 % with a 34.3 % increase in simulation time by changing the solver from the polynomial

fitting to the three point expansion.

Figure 9a shows a simulation for a point at {xp, yp, zp} = {0, 0, 105} mm. A point at this

location introduces a sharp spike into the response. From Fig. 9a a zoom onto the spike in
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FIG. 9. Results of simulating a sharp spiking spatial impulse response from a double curved

transducer. EField = 0.49%, E1T = 3.580 %, E3T = 0.006 %, E2p = 0.83 %. Only a few

data points are shown from each curve a) Full pulse profile. b) Zoom onto (a) to magnify

the difference.

Fig. 9a is to be found. Clearly the one point solver h1T is calculating the spike incorrectly.

This may look like a wrong edge calculation for this solver, however, the implementation of

edge calculation, zones etc. are identical with all the other zones, which are seen to calculate

the response more correctly. The errors were found to be EField = 0.49 %, E1T = 3.58 %,

E3T = 0.006 %, E2p = 0.83 %.

Figure 10a shows the result of simulating a point at {xp, yp, zp} = {0, 0, 40} mm on a

convex non-elevation focused transducer using the model presented in this work. Figure 10b

shows a zoom from Fig. 10a of the horizontal line section. From the latter it can be seen

that the h1T curve is having difficulties in capturing the pulse shape. The error, Ei, relative

to the numerical solution is EField = 6.9 %, E1T = 5.9 %, E3T = 0.01 %, E2p = 0.0283 %.

This shows that the 3T and the 2p are good solvers for convex arrays, and the error EField

shows that the algorithm has consistency with what Field II predicts. Further experiments
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FIG. 10. Results of simulating a convex non-elevation focused array.

with simulations at points close to the convex transducer e.g. {xp, yp, zp} = {0, 0, 1} mm

have shown that the numerical integrator breaks down. However, the approximating models

are still stable. Field II is therefore applied as the reference to get a measure of the error for

simulations in all zones of a convex transducer. 200 points were investigated and the mean

error for each solver was found to be ME1T = 3.8 %, ME3T = 2.5 %, ME2p = 2.5 %, which

indicate a rather identical performance of the solvers.

Changing the transducer geometry to a linear flat transducer R = 6 m and r = 6

m for the model presented here and for Field II yields a mean error of ME1T = 3.56 %,

ME3T = 3.56 %, ME2p = 34.86 % for 200 points and with Field II as the reference. The

errors show that the model can capture the response from plane transducers as well. It also

indicates that the polynomial fitting, 2p, fails to predict the response in contradiction to the

1T and the 3T analytical solvers.

Finally, a linear elevation focused array element was considered. This array element is

mimicked by, R = 6 m, r = 60 mm, height = 10 mm, and γL = 83µrad, which corresponds

to a width of approximately 1 mm. The mean error relative to Field II was found to be
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ME1T = 4.43 %, ME3T = 3.46 %, and ME2p = 33.30 % for a simulation with 200 points.

The mean solving time for the three approximating methods was found to be T1T = 0.49 s,

T3T = 0.57 s, and T2p = 0.33 s. This implies an error improvement of 21.9 % with a 15.4 %

increase in the simulation time when using the 3T instead of the 1T and a 89 % improvement

in the error when applying the 3T instead of the 2p solver. The latter improvement costs

72.7 % more calculation time.

VIII. DISCUSSION

The results have shown that accurate predictions of the exact solution to (8) could be

achieved by using the three-point Taylor expansion, 3T, for all transducer configurations.

However, also good results were achieved by calculating the second order polynomial and

the one point Taylor expansion for the double curved transducer. As could be seen in Fig.

9 the 1T calculations fails for steep spikes. This is because the main energy that represent

the spike is found at the outer integration values ϕmin and ϕmax. The 1T solver in contrary

seems to be more stable for linear arrays which the 2p showed not to be. This shows that the

solvers 1T and 2p are sensitive to the curvatures of the transducer. Choosing which solver

that operates the best is therefore application dependent. Clearly the 3T exhibits the best

performance, but for the cost of a slight increase in the solution time relative to the other

solvers. It should also be mentioned that the influence of miscalculating a spike as seen in

Fig. 9 is significant when the pure shapes of the SIRs are to be compared. However, it should

be recalled that the SIR are typically convolved with a band-limited pulse representing the

transducer in emission or in pulse-echo. Therefore, when the SIR is used in a convolution

an error, as the ones typical for the 1T, becomes of less influence. If the convolved pulse

is sufficiently band-limited for the given application, it may be beneficial to calculate the

responses with the slightly faster approximation of 1T and 2p. It should, however, be noted

that the 8.1 % percent increase in simulation time that the 3T approximation offers relatively

to the 1T or 34.3 % relatively to the 2p is relatively small compared to the high accuracy
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and stability it represents for the double curved transducer.

From the results it is also noticeable that the algorithm is a fairly good approximation

as a model for linear arrays, elevation focused linear arrays, and convex arrays with no ele-

vation focus. The model therefore represents an all-round formulation of the SIR of general

rectangular arrays. Further development should therefore focus on a fast and competitive

implementation into a C/Fortran environment from which a simulation time comparison

between recognized programs such as Ultrasim, Dream, DELFI, and Field II could be made.

An initial C-implementation of the algorithms has been compared to Field II in the authors’

conference contribution26. This latest contribution also considers a narrower double curved

array element with a width and height of 250 µm and 10 mm, respectively.

Yet another aspect that should be discussed in the context of a practical implementation

is the sampling frequency. The sampling frequency applied in this work is relatively large, 5

GHz, which was chosen to validate the algorithm directly. A much lower sampling frequency

should be applied if the algorithm and the solver should be implemented into a simulation

program such as Field II, which is usually operated at a 100 MHz and with small elements.

The combination between small elements and low sampling frequency is only possible if

the implementation preserves conservation of energy in the SIR. This may be achieved by

performing an area integration of the pulse within the samples. This area integration is then

spread out onto the different global samples. In other words a sub-integration procedure is

to be performed and is a trivial task to perform.

IX. CONCLUSION

An exact mathematical formulation for the SIR of a convex rectangular elevation focused

transducer (double curved transducer) has been presented. The response can be represented

with an integral of elliptical type. For this integral to be solved it requires a numerical

integrator. It has been shown that a good approximation of the integral can be achieved

by applying a three-point Taylor expansion to a part of the integral. The Taylor expansion

30



yields an analytically integrable expression. A single-point Taylor expansion and a second

order polynomial fit was also shown to give good results for simulations of a double curved

transducer. The presented algorithm exhibited consistent results with Field II for a double

curved transducer, a linear flat rectangular transducer, a linear elevation focused rectangular

transducer, and a convex non-elevation focused rectangular transducer. The three-point

Taylor approximation showed to be the most stable approximation, at the cost of a slightly

higher simulation time.
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