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e
Abstract 
This paper evaluates speedup and expansion in a multi-stage 
Terabit switch fabric. Single-stage switch fabrics, e.g. crossbar 
switches, are difficult to scale up to a Terabit system. Hence, a 
multi-stage switch fabric, where traffic can be distributed on 
different chips, offers a promising perspective. We evaluate 
buffer usage, number of out-of-sequence cells and fabric delay. 
Simulation results obtained in OPNET Modeler show that 
speedup outperforms expansion and that both approaches 
significantly gain from applying an output line speedup. By 
reducing the buffer usage in the middle stage, fewer cells arrive 
out-of-sequence and hence the need for re-sequencing is 
decreased as well. 
 
 
Introduction 
The Internet is increasingly populated by bandwidth-demanding 
applications. Following the evolution of 10 and 40 Gigabit 
Ethernet (GE), 100 Gigabit Ethernet is currently emerging as a 
promising candidate to fulfill the request for increased line 
speed. 
Switching 100 GE signals requires that the selected switch 
architecture is scalable enough to accommodate high capacity 
transmission [1], as the 100 GE port speed easily accumulates to 
the Terabit range within the switch fabric. It is difficult, if not 
impossible, to obtain Terabit speeds in single stage switch 
fabrics. A promising alternative is therefore to use a multi-stage 
switch fabric where the traffic can be distributed on different 
chips. In particular, the Clos’ architecture relies on three stages 
of switching modules, where each module connects to all the 
modules in the adjacent stages via a unique path [2], as 
illustrated in Figure 1. The modules are named Input Module 
(IM), Central Module (CM) and Output Module (OM), 
respectively [3]. 
In a Space-Space-Space (S3) architecture, which does not 
contain any buffers, switching is carried out only in the space 
domain. Since no buffers are available, an advanced scheduling 
algorithm is required to avoid blocking, which increases the 
complexity and implementation cost considerably due to 
hardware constraints at increasing speeds. The Memory-Space-
Memory (MSM) architecture is bufferless in the middle stage 
(CM), which avoids the out-of-sequence problem. Out-of-
sequence problems are caused by cells belonging to the same 
packet being distributed over multiple CMs, hence being delayed 
for different amounts of time in the individual CM queues. The 
Concurrent Round-Robin Dispatching (CRRD) scheme [3], 
developed to schedule cells to the middle stage efficiently, 
allows for 100% throughput under uniform traffic, but its 
performance drops significantly under unbalanced traffic. 
Scheduling for the MSM requires a request-grant-accept (RGA) 
handshaking scheme, whose implementation is non-trivial and 
costly. If buffers are used in all stages, the architecture is 
referred to as Memory-Memory-Memory. In this case the buffers 
at the input and output stages operate like those in the MSM 
architecture, and the buffers in the middle stage are organized as 

output queues. This avoids contention in the central modules, 
which simplifies the scheduling scheme considerably, but may 
cause out-of-sequence problems. It has also been suggested to 
only place buffers in the central stage, leading to a Space-
Memory-Space [4] architecture. But for this approach to be 
practical, schedulers are needed like those studied in [5]. Again 
this causes scalability problems when speeds increase, and they 
can be costly to implement in hardware.  
Each internal module (i.e. IM, CM, OM) may be constructed as 
an individual crossbar switch. However, the sheer amount of 
data that must be switched in a Terabit system causes a number 
of challenges [6], especially related to delay, buffer and queue 
management. 
To increase the switch throughput and reduce the delay, a 
speedup can be introduced where the internal link speed in the 
switch is higher than the interface speed [6]. A speedup can 
compensate for flow control in case of limited internal buffering 
resources or ensure faster transmission of packets over the 
switch fabric leading to a performance closer to an output 
buffered switch, which provides optimal throughput and is thus 
usually used as a reference for performance analysis. For 
multistage switches, speedup can also compensate for a non-
optimal traffic distribution scheme (load-balancing).  
Speedup in multistage switches, e.g. Clos’ networks, can be 
obtained by link speedup or by expansion (explained in detail in 
the next section).  
The behaviour of a Clos’-based switch fabric under uniform and 
bursty traffic without speedup or expansion has been studied in 
[8]. In this paper, we analyze different speedup and expansion 
methods, and evaluate their performance in terms of buffer 
usage, cell reordering and delay. 
 
 
Fabric Speedup and Expansion 
A decrease in buffer usage and delays can be achieved in two 
ways: Either by speeding up the internal connections (i.e., 
running them at a higher speed than the line rate); or by adding 
extra central modules (CMs) in the Clos’ design. Both 
approaches are explained in the following sections, and are 
illustrated in Figure 1. 
Using speedup, the cells are forwarded faster from the IM 
through the CM to the output modules (OMs). 
We call this approach internal speedup. The aim of internal 
speedup is to lower the buffer usage in the CMs of the Clos’ 
network. In addition to speeding up the lines between the CMs 
and the OMs, we investigate the effect of full speedup, where 
also the connection between the OM to the linecard is also sped 
up. Expansion describes the approach where more CMs than 
IMs/OMs are present in the switch fabric. The idea behind this 
approach is that the traffic can be distributed over a larger 
number of CMs, hence avoiding delays caused by CM-buffering. 
For a Clos’ network the expansion factor is defined as the 
number of outputs divided by the number of inputs at the first 
stage. The approach is illustrated in Figure 1, where an extra 
module is added to the central stage.  



 

 

Figure 1: Clos’ fabric speedup and expansion 

 
OPNET Model of Switch 
In this work, we focus on a switch with 16 ports configured as a 
Clos’ (4,4,4) system, as illustrated in Figure 2. Any other 
configurations are however possible as well. Buffers are present 
in the CMs and the OMs leading to a Space-Memory-Memory 
configuration [10]. 
 

 

Figure 2: Switch configuration used for simulation study 

 
Process models 
To understand how the model works we need to take a look at 
how the switch processes are organized internally. 
 
Source (SRC) 
The source process is generating and sending packets towards 
the switch fabric. It generates a number of child processes that 
represent individual sources. The traffic rate of the entire source 

is shared between all of its child processes. This means that a 
source with a specified rate of 100 Gbit/s and 10 individual sub-
sources, every sub-source generates traffic at 10 Gbit/s. It should 
be noted that the possibility of using multiple sub-sources is 
designed to employ different traffic pattern, such as bursty 
(Pareto) and uniform (Bernoulli) traffic.  
The Finite State Machine (FSM) can be seen on Figure 3. In the 
init state it creates the sub-sources, discovers the reachable 
destinations (sinks) and set up relevant data structures. It will 
then enter the idle state at the designated start time and here the 
child processes will be awakened, meaning traffic generation 
will start. The source can change the way traffic is distributed 
during the simulation, usually from uniform to unbalanced. It 
uses this temporary distribution for a given time interval after 
which it will change back. The dist_change state is used for this 
purpose, as the process will go from the init state to this state 
and stay here for as long as the temporary distribution lasts. 
Finally, if a stop time was given it will go to the stop state and 
destroy all of its child processes, thereby ending the traffic 
generation. 

 

Figure 3: Parent source process 

 
Source Child Process 
As described before, the source child process is used to generate 
traffic and is controlled by the parent source process. The FSM 
for the child process is illustrated on Figure 4. In the init state all 
the necessary parameters are read and the needed distributions 
set up. If the chosen arrival method is Bernoulli, it will not use 
the off and on states, but will instead transition to the idle state 
and from there to the pkgen state. In this state packets are 
generated and sent depending on the level of utilization and 
other traffic parameters. As long as the child process is alive, the 
state machine alternates between the idle and pkgen states. 
However, if the ON-OFF Pareto method has been selected, the 
on and off states are used to start and stop traffic generation. 
When the process is on, traffic is generated just like in the 
Bernoulli case, and when it is off nothing is sent. 
At the start of the simulation the process will transition from the 
init state, through the idle state, to the off state. Here the next on 
period is calculated and a self interrupt of type "on" is scheduled 
to this time. This results in an event that causes the child process 
to enter the on state at the scheduled time. Here it calculates the 
time until the next off period and schedules a self interrupt of 
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type "off" to this time, and in this way the child source alternates 
between being on and off. To calculate the on and off times two 
Pareto distributions are used. 

 

Figure 4: Child Source Process 

 
Input Port Process (IPP) 
The sources are connected to input port processes which are 
equivalent to traffic managers in a real switch. When packets 
arrive at the IPP they are split into cells of fixed using the 
segmentation and reassembly package provided by OPNET 
(SAR package). Using the SAR package allows for the cells to 
be treated as packets internally in OPNET, meaning they trigger 
the same packet stream interrupts. After a packet has been 
segmented, the resulting cells are buffered in Virtual Output 
Queues (VOQs). The FSM for this module is seen in Figure 5. 
The init state is used for the usual functions, like reading 
parameters from the simulation console and to initialize 
variables. From the init state the process advances to the idle 
state. Here it awaits either a stream interrupt signalling a new 
packet has arrived from the source, or a self interrupt causing the 
process to transmit a cell. The strm_int state is triggered by the 
stream interrupts and deals with the received packets, after 
which the process returns to the idle state. The self_int state is 
used for transmitting cells at regular intervals (every timeslot) 
and it is triggered by a self interrupt. Finally, the end state is 
used when the simulation ends to collect statistics. 
 

 

Figure 5: Input Port Process 

 
Input Module (IM) 
This module is a key module in the entire model, mainly because 
of its load balancing functions. It takes incoming cells and 
forwards them immediately to the CM's. The actual forwarding 
procedure depends on the kind of connection scheme used (e.g. 
static, random, round robin). The general layout and 

functionality of the FSM in this module is quite similar to that of 
the IPP, but it does have one more state as can be observed in 
Figure 6. The init state is used for reading the parameters, 
initializing data structures, discovering the topology and so on. 
After leaving the init state, the process will enter the idle state. 
To leave the idle state the IM must receive one of four 
interrupts: a steam interrupt indicating that a cell has been 
received from an IPP, a remote interrupt from either a CM or 
OM signaling backpressure changes1, a self interrupt used for 
timeslot behavior - meaning it should send the received cells 
towards the CM's, or lastly an end simulation interrupt. In the 
strm_int state a received cell is inspected and it is determined to 
which CM it will be forwarded to. The remote_int state is used 
for handling incoming backpressure notifications. The self_int is 
used for the timeslot behavior (forwarding cells), and the end 
state is used for statistics collection, as in the IPP. 
 

 

Figure 6: Input Module Process 

 
Central Module (CM) 
The CM takes the incoming cells from the IM and stores them in 
its queues, which can be organized in different ways. Each 
timeslot, the queues are served and cells are sent to the OM's. 
The layout of the FSM is the same as for the IM albeit the 
functionality of each state is a bit different, therefore no 
illustration of it is given – please see Figure 6 instead. 
The strm_int state handles received cells, determines their 
destination OM and stores them in the internal queues. The 
self_int state serves these queues each timeslot, handling output 
contention for cells destined to the same OM. Every time the 
process returns to the idle state, the size of the buffers are 
checked and if an overflow is impending while backpressure is 
enabled, it will transmit remote interrupts to the relevant IM's. 
The remote int_state is used for incoming backpressure signals 
that will halt transmission from certain queues. 
 
Output Module (OM) 
The OM is the last stage of the internal switch fabric, situated 
between the CM and the OPP. It forwards cells to the OPP at 
every timeslot, serving its internal queues. Like the queues in the 
CM, these can be organized in different ways. As with CM, the 
FSM looks similar to the one in the IM case seen on Figure 6. 

                                                           
1 The model is designed to handle backpressure operations. 
However, we do not use any backpressure in the results 
presented here – hence backpressure is not explained in detail. 
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Therefore it also uses the init state for discovering the topology, 
creating data structures and so on. Likewise, the idle state 
contains buffer size checks, and it transitions from this state to 
either the strm_int, self_int, remote_int or the end state, 
depending on if it receives a cell, needs to send a cell, etc. 
 
Output Port Process (OPP) 
When the cells arrive at the OPP, they are reassembled to 
complete source packets that are forwarded to the destination 
sink. But before this operation the OPP checks if the cells arrive 
out of order, using the information conveyed in the cell ICI. If 
they do, they are temporarily stored in a re-sequencing buffer 
until the correct order is restored. The internal state-machine 
looks like the one in the IPP, as illustrated in Figure 5, but 
working in reverse order. This means the internal states are used 
in almost the same way, except cells are received and treated in 
the strm_int state and packets are sent in the self_int state. 
Additionally, the self_int state is also used to check for how long 
the cells have resided in the buffers. If they have been there 
longer than a specified flush time, they are removed as it is 
assumed some of the cells belonging to the same packets have 
been lost inside the fabric, thus the packet can never be 
completed. 
 
Sink 
The sink represents the output of the switch. It is a modified 
standard OPNET model that simply discards the arriving 
packets, while updating some statistics. The FSM is seen on 
Figure 7. After the simulation has started, it transitions from the 
idle state to the discard state, where it awaits packet arrivals. 
Basically it just loops the discard state every time a packet 
arrives. 

 

Figure 7: Sink Process 

 
Simulation Scenario and Results 
The performance of internal speedup, full speedup and 
expansion is evaluated in a simulation study using OPNET 
Modeler [9], and compared to a switch that does not use speedup 
for benchmarking purposes. 
Simulations are carried out on a switch with 16 ports configured 
as a Clos’ (4,4,4) system, as illustrated in Figure 2. Buffers are 
present in the CMs and the OMs (Space-Memory-Memory 
configuration [10]). The traffic is of the uniform Bernoulli type 
and the connection scheme within the switch is Desynchronized 
Static Round Robin (DSRR) [10]. The incoming packets are of 
variable size, and are split into fixed sized cells of 512 bits for 
transmission over the switch fabric. Simulations are carried out 
under heavy traffic load of 0.99. The line speed is 150 Gbit/s for 
the 1.5 speedup ratio and 200 Gbit/s for the 2.0 speedup ratio, 
related to the input speed of 100 Gbit/s. 
 
Using speedup, the cells are forwarded faster from the IM 
through the CM to the OM, which should potentially lower the 
buffer usage in the CMs. The resulting reduction in buffer usage 
in the CMs is illustrated in Figure 8. The original switch without 

speedup (i.e., Ratio 1.0) has a mean buffer size of 1643 cells, 
please note the different axis for this plot. The buffer usage 
clearly decreases when the line is sped up internally, both for the 
Ratio 1.5 case and even more if the internal line speed is run at 
twice the external line speed, i.e. Ratio 2.0. Furthermore, it is 
interesting to note that the line speedup performs better than 
adding more CMs using expansion. 
 

 

Figure 8: Mean number of cells in the CMs. 

 
As seen in Figure 8, the buffer usage in the CMs is clearly 
reduced by both internal speedup and expansion. Next we 
evaluate how these two methods affect the buffer usage in the 
OMs, which is illustrated in Figure 9. The results clearly show 
that there is a bottleneck in the OM’s. With expansion ratios 
above 1.0, the OMs are overloaded with traffic and cannot 
dispatch it fast enough. The original switch without speedup 
actually has less cells residing in the OMs, but this is because 
they are situated in the CMs instead. 
 

 

Figure 9: Mean number of cells in the OMs  
(using internal speedup only) 

 
The effect of the long CM queues can be seen in the 
resequencing buffer, illustrated in Figure 10, where the amount 
of cells arriving out-of-sequence is shown. The result for the 
original switch is that 50% of the cells arrive out-of-sequence 
(not plotted here). In comparison, the switch configurations with 

 4 



internal speedup and expansion benefit from a lower amount of 
out-of-sequence cells, below 5% in all cases. This confirms that 
the amount of out-of-sequence cells is directly tied to the buffer 
usage in the CMs. The internal speedup again outperforms the 
expansion method. 
 

 

Figure 10: Percentage of Out-of-sequence (OOS) cells 

 
The end-to-end delay is shown in Figure 11. The original switch 
has the worst delays, but due to the bottleneck in the OMs 
neither speedup nor expansion provides significant 
improvements. While the combined mean buffer usage in the 
CMs gets lower as the expansion ratio increases, the end-to-end 
delays does not change significantly due to the bottleneck at the 
OMs.  

 

Figure 11: Mean end-to-end delay  
(using internal speedup only) 

 
A full speedup from the OM to the linecard could potentially 
alleviate the bottleneck. Results of the OM buffer usage are 
shown in Figure 12. The buffer usage in the OMs is significantly 
decreased compared to both the original switch without speedup 
as well as for internal speedup (shown on Figure 9). 
Furthermore, the performance of expansion is improved by full 
speedup since it also benefits from the speedup from the OMs to 
the linecards. Speedup still slightly outperforms expansion. The 
CM usage stays the same for both internal and full speedup (not 
shown here).  

 

Figure 12: Mean number of cells in the OMs  
(using full speedup) 

 
The significant drop in mean buffer usage in the OMs affects the 
end-to-end delay for the packets, which is illustrated in Figure 
13. The packet delays for full speedup shown here are much 
lower than in the internal speedup case (seen on Figure 11). 
 

 

Figure 13: Mean end-to-end delay  
(using full speedup) 

 
 
Conclusion 
In this paper, we analyze speedup and expansion for a Terabit 
switch fabric. Simulation results show that an increase in 
speedup or expansion ratio is most beneficial when the output 
line of the switch is also run at a higher speed. This lowers the 
buffer usage and thereby the delays in the switch. A reduction in 
CM buffer usage also has the benefit that fewer cells arrive out-
of-sequence. Finally we see that speedup outperforms expansion.  
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