

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Evaluation of Speedup and Expansion in Terabit Switch Fabrics

Ruepp, Sarah Renée; Rytlig, Andreas; Berger, Michael Stübert; Wessing, Henrik; Fagertun, Anna
Manolova; Yu, Hao; Rasmussen, Anders
Published in:
Proceedings of OPNETWORK 2011

Publication date:
2011

Link back to DTU Orbit

Citation (APA):
Ruepp, S. R., Rytlig, A., Berger, M. S., Wessing, H., Fagertun, A. M., Yu, H., & Rasmussen, A. (2011).
Evaluation of Speedup and Expansion in Terabit Switch Fabrics. In Proceedings of OPNETWORK 2011
OPNET.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13793193?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/evaluation-of-speedup-and-expansion-in-terabit-switch-fabrics(da77664f-9109-4c71-948d-86574f2b1a73).html

 1

Evaluation of Speedup and Expansion in Terabit Switch Fabrics
Sarah Ruepp, Andreas Rytlig, Michael Berger, Henrik Wessing, Anna V. Manolova, Hao Yu, Anders Rasmussen

DTU Fotonik, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
E-mail: {srru,s052800,msbe,hewe,anva,haoyu,anras}@fotonik.dtu.dk

e
Abstract
This paper evaluates speedup and expansion in a multi-stage
Terabit switch fabric. Single-stage switch fabrics, e.g. crossbar
switches, are difficult to scale up to a Terabit system. Hence, a
multi-stage switch fabric, where traffic can be distributed on
different chips, offers a promising perspective. We evaluate
buffer usage, number of out-of-sequence cells and fabric delay.
Simulation results obtained in OPNET Modeler show that
speedup outperforms expansion and that both approaches
significantly gain from applying an output line speedup. By
reducing the buffer usage in the middle stage, fewer cells arrive
out-of-sequence and hence the need for re-sequencing is
decreased as well.

Introduction
The Internet is increasingly populated by bandwidth-demanding
applications. Following the evolution of 10 and 40 Gigabit
Ethernet (GE), 100 Gigabit Ethernet is currently emerging as a
promising candidate to fulfill the request for increased line
speed.
Switching 100 GE signals requires that the selected switch
architecture is scalable enough to accommodate high capacity
transmission [1], as the 100 GE port speed easily accumulates to
the Terabit range within the switch fabric. It is difficult, if not
impossible, to obtain Terabit speeds in single stage switch
fabrics. A promising alternative is therefore to use a multi-stage
switch fabric where the traffic can be distributed on different
chips. In particular, the Clos’ architecture relies on three stages
of switching modules, where each module connects to all the
modules in the adjacent stages via a unique path [2], as
illustrated in Figure 1. The modules are named Input Module
(IM), Central Module (CM) and Output Module (OM),
respectively [3].
In a Space-Space-Space (S3) architecture, which does not
contain any buffers, switching is carried out only in the space
domain. Since no buffers are available, an advanced scheduling
algorithm is required to avoid blocking, which increases the
complexity and implementation cost considerably due to
hardware constraints at increasing speeds. The Memory-Space-
Memory (MSM) architecture is bufferless in the middle stage
(CM), which avoids the out-of-sequence problem. Out-of-
sequence problems are caused by cells belonging to the same
packet being distributed over multiple CMs, hence being delayed
for different amounts of time in the individual CM queues. The
Concurrent Round-Robin Dispatching (CRRD) scheme [3],
developed to schedule cells to the middle stage efficiently,
allows for 100% throughput under uniform traffic, but its
performance drops significantly under unbalanced traffic.
Scheduling for the MSM requires a request-grant-accept (RGA)
handshaking scheme, whose implementation is non-trivial and
costly. If buffers are used in all stages, the architecture is
referred to as Memory-Memory-Memory. In this case the buffers
at the input and output stages operate like those in the MSM
architecture, and the buffers in the middle stage are organized as

output queues. This avoids contention in the central modules,
which simplifies the scheduling scheme considerably, but may
cause out-of-sequence problems. It has also been suggested to
only place buffers in the central stage, leading to a Space-
Memory-Space [4] architecture. But for this approach to be
practical, schedulers are needed like those studied in [5]. Again
this causes scalability problems when speeds increase, and they
can be costly to implement in hardware.
Each internal module (i.e. IM, CM, OM) may be constructed as
an individual crossbar switch. However, the sheer amount of
data that must be switched in a Terabit system causes a number
of challenges [6], especially related to delay, buffer and queue
management.
To increase the switch throughput and reduce the delay, a
speedup can be introduced where the internal link speed in the
switch is higher than the interface speed [6]. A speedup can
compensate for flow control in case of limited internal buffering
resources or ensure faster transmission of packets over the
switch fabric leading to a performance closer to an output
buffered switch, which provides optimal throughput and is thus
usually used as a reference for performance analysis. For
multistage switches, speedup can also compensate for a non-
optimal traffic distribution scheme (load-balancing).
Speedup in multistage switches, e.g. Clos’ networks, can be
obtained by link speedup or by expansion (explained in detail in
the next section).
The behaviour of a Clos’-based switch fabric under uniform and
bursty traffic without speedup or expansion has been studied in
[8]. In this paper, we analyze different speedup and expansion
methods, and evaluate their performance in terms of buffer
usage, cell reordering and delay.

Fabric Speedup and Expansion
A decrease in buffer usage and delays can be achieved in two
ways: Either by speeding up the internal connections (i.e.,
running them at a higher speed than the line rate); or by adding
extra central modules (CMs) in the Clos’ design. Both
approaches are explained in the following sections, and are
illustrated in Figure 1.
Using speedup, the cells are forwarded faster from the IM
through the CM to the output modules (OMs).
We call this approach internal speedup. The aim of internal
speedup is to lower the buffer usage in the CMs of the Clos’
network. In addition to speeding up the lines between the CMs
and the OMs, we investigate the effect of full speedup, where
also the connection between the OM to the linecard is also sped
up. Expansion describes the approach where more CMs than
IMs/OMs are present in the switch fabric. The idea behind this
approach is that the traffic can be distributed over a larger
number of CMs, hence avoiding delays caused by CM-buffering.
For a Clos’ network the expansion factor is defined as the
number of outputs divided by the number of inputs at the first
stage. The approach is illustrated in Figure 1, where an extra
module is added to the central stage.

Figure 1: Clos’ fabric speedup and expansion

OPNET Model of Switch
In this work, we focus on a switch with 16 ports configured as a
Clos’ (4,4,4) system, as illustrated in Figure 2. Any other
configurations are however possible as well. Buffers are present
in the CMs and the OMs leading to a Space-Memory-Memory
configuration [10].

Figure 2: Switch configuration used for simulation study

Process models
To understand how the model works we need to take a look at
how the switch processes are organized internally.

Source (SRC)
The source process is generating and sending packets towards
the switch fabric. It generates a number of child processes that
represent individual sources. The traffic rate of the entire source

is shared between all of its child processes. This means that a
source with a specified rate of 100 Gbit/s and 10 individual sub-
sources, every sub-source generates traffic at 10 Gbit/s. It should
be noted that the possibility of using multiple sub-sources is
designed to employ different traffic pattern, such as bursty
(Pareto) and uniform (Bernoulli) traffic.
The Finite State Machine (FSM) can be seen on Figure 3. In the
init state it creates the sub-sources, discovers the reachable
destinations (sinks) and set up relevant data structures. It will
then enter the idle state at the designated start time and here the
child processes will be awakened, meaning traffic generation
will start. The source can change the way traffic is distributed
during the simulation, usually from uniform to unbalanced. It
uses this temporary distribution for a given time interval after
which it will change back. The dist_change state is used for this
purpose, as the process will go from the init state to this state
and stay here for as long as the temporary distribution lasts.
Finally, if a stop time was given it will go to the stop state and
destroy all of its child processes, thereby ending the traffic
generation.

Figure 3: Parent source process

Source Child Process
As described before, the source child process is used to generate
traffic and is controlled by the parent source process. The FSM
for the child process is illustrated on Figure 4. In the init state all
the necessary parameters are read and the needed distributions
set up. If the chosen arrival method is Bernoulli, it will not use
the off and on states, but will instead transition to the idle state
and from there to the pkgen state. In this state packets are
generated and sent depending on the level of utilization and
other traffic parameters. As long as the child process is alive, the
state machine alternates between the idle and pkgen states.
However, if the ON-OFF Pareto method has been selected, the
on and off states are used to start and stop traffic generation.
When the process is on, traffic is generated just like in the
Bernoulli case, and when it is off nothing is sent.
At the start of the simulation the process will transition from the
init state, through the idle state, to the off state. Here the next on
period is calculated and a self interrupt of type "on" is scheduled
to this time. This results in an event that causes the child process
to enter the on state at the scheduled time. Here it calculates the
time until the next off period and schedules a self interrupt of

 2

type "off" to this time, and in this way the child source alternates
between being on and off. To calculate the on and off times two
Pareto distributions are used.

Figure 4: Child Source Process

Input Port Process (IPP)
The sources are connected to input port processes which are
equivalent to traffic managers in a real switch. When packets
arrive at the IPP they are split into cells of fixed using the
segmentation and reassembly package provided by OPNET
(SAR package). Using the SAR package allows for the cells to
be treated as packets internally in OPNET, meaning they trigger
the same packet stream interrupts. After a packet has been
segmented, the resulting cells are buffered in Virtual Output
Queues (VOQs). The FSM for this module is seen in Figure 5.
The init state is used for the usual functions, like reading
parameters from the simulation console and to initialize
variables. From the init state the process advances to the idle
state. Here it awaits either a stream interrupt signalling a new
packet has arrived from the source, or a self interrupt causing the
process to transmit a cell. The strm_int state is triggered by the
stream interrupts and deals with the received packets, after
which the process returns to the idle state. The self_int state is
used for transmitting cells at regular intervals (every timeslot)
and it is triggered by a self interrupt. Finally, the end state is
used when the simulation ends to collect statistics.

Figure 5: Input Port Process

Input Module (IM)
This module is a key module in the entire model, mainly because
of its load balancing functions. It takes incoming cells and
forwards them immediately to the CM's. The actual forwarding
procedure depends on the kind of connection scheme used (e.g.
static, random, round robin). The general layout and

functionality of the FSM in this module is quite similar to that of
the IPP, but it does have one more state as can be observed in
Figure 6. The init state is used for reading the parameters,
initializing data structures, discovering the topology and so on.
After leaving the init state, the process will enter the idle state.
To leave the idle state the IM must receive one of four
interrupts: a steam interrupt indicating that a cell has been
received from an IPP, a remote interrupt from either a CM or
OM signaling backpressure changes1, a self interrupt used for
timeslot behavior - meaning it should send the received cells
towards the CM's, or lastly an end simulation interrupt. In the
strm_int state a received cell is inspected and it is determined to
which CM it will be forwarded to. The remote_int state is used
for handling incoming backpressure notifications. The self_int is
used for the timeslot behavior (forwarding cells), and the end
state is used for statistics collection, as in the IPP.

Figure 6: Input Module Process

Central Module (CM)
The CM takes the incoming cells from the IM and stores them in
its queues, which can be organized in different ways. Each
timeslot, the queues are served and cells are sent to the OM's.
The layout of the FSM is the same as for the IM albeit the
functionality of each state is a bit different, therefore no
illustration of it is given – please see Figure 6 instead.
The strm_int state handles received cells, determines their
destination OM and stores them in the internal queues. The
self_int state serves these queues each timeslot, handling output
contention for cells destined to the same OM. Every time the
process returns to the idle state, the size of the buffers are
checked and if an overflow is impending while backpressure is
enabled, it will transmit remote interrupts to the relevant IM's.
The remote int_state is used for incoming backpressure signals
that will halt transmission from certain queues.

Output Module (OM)
The OM is the last stage of the internal switch fabric, situated
between the CM and the OPP. It forwards cells to the OPP at
every timeslot, serving its internal queues. Like the queues in the
CM, these can be organized in different ways. As with CM, the
FSM looks similar to the one in the IM case seen on Figure 6.

1 The model is designed to handle backpressure operations.
However, we do not use any backpressure in the results
presented here – hence backpressure is not explained in detail.

 3

Therefore it also uses the init state for discovering the topology,
creating data structures and so on. Likewise, the idle state
contains buffer size checks, and it transitions from this state to
either the strm_int, self_int, remote_int or the end state,
depending on if it receives a cell, needs to send a cell, etc.

Output Port Process (OPP)
When the cells arrive at the OPP, they are reassembled to
complete source packets that are forwarded to the destination
sink. But before this operation the OPP checks if the cells arrive
out of order, using the information conveyed in the cell ICI. If
they do, they are temporarily stored in a re-sequencing buffer
until the correct order is restored. The internal state-machine
looks like the one in the IPP, as illustrated in Figure 5, but
working in reverse order. This means the internal states are used
in almost the same way, except cells are received and treated in
the strm_int state and packets are sent in the self_int state.
Additionally, the self_int state is also used to check for how long
the cells have resided in the buffers. If they have been there
longer than a specified flush time, they are removed as it is
assumed some of the cells belonging to the same packets have
been lost inside the fabric, thus the packet can never be
completed.

Sink
The sink represents the output of the switch. It is a modified
standard OPNET model that simply discards the arriving
packets, while updating some statistics. The FSM is seen on
Figure 7. After the simulation has started, it transitions from the
idle state to the discard state, where it awaits packet arrivals.
Basically it just loops the discard state every time a packet
arrives.

Figure 7: Sink Process

Simulation Scenario and Results
The performance of internal speedup, full speedup and
expansion is evaluated in a simulation study using OPNET
Modeler [9], and compared to a switch that does not use speedup
for benchmarking purposes.
Simulations are carried out on a switch with 16 ports configured
as a Clos’ (4,4,4) system, as illustrated in Figure 2. Buffers are
present in the CMs and the OMs (Space-Memory-Memory
configuration [10]). The traffic is of the uniform Bernoulli type
and the connection scheme within the switch is Desynchronized
Static Round Robin (DSRR) [10]. The incoming packets are of
variable size, and are split into fixed sized cells of 512 bits for
transmission over the switch fabric. Simulations are carried out
under heavy traffic load of 0.99. The line speed is 150 Gbit/s for
the 1.5 speedup ratio and 200 Gbit/s for the 2.0 speedup ratio,
related to the input speed of 100 Gbit/s.

Using speedup, the cells are forwarded faster from the IM
through the CM to the OM, which should potentially lower the
buffer usage in the CMs. The resulting reduction in buffer usage
in the CMs is illustrated in Figure 8. The original switch without

speedup (i.e., Ratio 1.0) has a mean buffer size of 1643 cells,
please note the different axis for this plot. The buffer usage
clearly decreases when the line is sped up internally, both for the
Ratio 1.5 case and even more if the internal line speed is run at
twice the external line speed, i.e. Ratio 2.0. Furthermore, it is
interesting to note that the line speedup performs better than
adding more CMs using expansion.

Figure 8: Mean number of cells in the CMs.

As seen in Figure 8, the buffer usage in the CMs is clearly
reduced by both internal speedup and expansion. Next we
evaluate how these two methods affect the buffer usage in the
OMs, which is illustrated in Figure 9. The results clearly show
that there is a bottleneck in the OM’s. With expansion ratios
above 1.0, the OMs are overloaded with traffic and cannot
dispatch it fast enough. The original switch without speedup
actually has less cells residing in the OMs, but this is because
they are situated in the CMs instead.

Figure 9: Mean number of cells in the OMs
(using internal speedup only)

The effect of the long CM queues can be seen in the
resequencing buffer, illustrated in Figure 10, where the amount
of cells arriving out-of-sequence is shown. The result for the
original switch is that 50% of the cells arrive out-of-sequence
(not plotted here). In comparison, the switch configurations with

 4

internal speedup and expansion benefit from a lower amount of
out-of-sequence cells, below 5% in all cases. This confirms that
the amount of out-of-sequence cells is directly tied to the buffer
usage in the CMs. The internal speedup again outperforms the
expansion method.

Figure 10: Percentage of Out-of-sequence (OOS) cells

The end-to-end delay is shown in Figure 11. The original switch
has the worst delays, but due to the bottleneck in the OMs
neither speedup nor expansion provides significant
improvements. While the combined mean buffer usage in the
CMs gets lower as the expansion ratio increases, the end-to-end
delays does not change significantly due to the bottleneck at the
OMs.

Figure 11: Mean end-to-end delay
(using internal speedup only)

A full speedup from the OM to the linecard could potentially
alleviate the bottleneck. Results of the OM buffer usage are
shown in Figure 12. The buffer usage in the OMs is significantly
decreased compared to both the original switch without speedup
as well as for internal speedup (shown on Figure 9).
Furthermore, the performance of expansion is improved by full
speedup since it also benefits from the speedup from the OMs to
the linecards. Speedup still slightly outperforms expansion. The
CM usage stays the same for both internal and full speedup (not
shown here).

Figure 12: Mean number of cells in the OMs
(using full speedup)

The significant drop in mean buffer usage in the OMs affects the
end-to-end delay for the packets, which is illustrated in Figure
13. The packet delays for full speedup shown here are much
lower than in the internal speedup case (seen on Figure 11).

Figure 13: Mean end-to-end delay
(using full speedup)

Conclusion
In this paper, we analyze speedup and expansion for a Terabit
switch fabric. Simulation results show that an increase in
speedup or expansion ratio is most beneficial when the output
line of the switch is also run at a higher speed. This lowers the
buffer usage and thereby the delays in the switch. A reduction in
CM buffer usage also has the benefit that fewer cells arrive out-
of-sequence. Finally we see that speedup outperforms expansion.

Acknowledgment
This work has been partially supported by the Danish Advanced
Technology Foundation (Højteknologifonden) through the
research project ”The Road to 100 Gigabit Ethernet”.

 5

 6

References
[1] C. Hermsmeyer et al., “Towards 100G packet processing:

Challenges and technologies,” Bell Labs Technical
Journal, vol. 14, no. 2, 2009.

[2] C. Clos, “A study of non-blocking switching networks,”

Bell Systems Technical Journal, pp. 406–424, 1953.

[3] E. Oki, Z. Jing, R. Rojas-Cessa, and H. Chao,

“Concurrent Round-Robin-Based Dispatching Schemes
for Clos-Network Switches,” in IEEE/ACM Transactions
on Networking, 2002.

[4] F. Wang and M. Hamdi, “Analysis on the Central-stage

Buffered Clos-network for packet switching,” in IEEE
ICC, 2005.

[5] J. Kleban and S. Piotrowski, “Performance Evaluation of

Selected Packet Dispatching Schemes for the CBC
Switches,” in Communications Letters, IEEE, 2009.

[6] “Facing the Challenges Of Developing 100 Gbps

Platforms,” Road to 100G Alliance, 2008,
http://www.ethernetalliance.org.

[7] C. Shang-Tse, A. Goel, N. McKeown, B. Prabhakar.
“Matching output queueing with a combined input/output-
queued switch”, IEEE Journal on Selected Areas in
Communications, Jun 1999, Volume: 17 Issue:6 On
page(s): 1030 - 1039

[8] S. Ruepp, A. Rytlig, A. Manolova, M. Berger, H.

Wessing, H. Yu, and L. Dittmann, “Performance
evaluation of 100 Gigabit Ethernet switches under bursty
traffic,” in In proc. of 15th International Conference on
Optical Network Design and Modeling (ONDM),
Bologna, Italy, 2011.

[9] OPNET Technologies, Inc., http://www.opnet.com.

[10] X. Li, Z. Zhou, and M. Hamdi, “Space-Memory-Memory

Architecture for CLOS-network Packet Switches,” in
IEEE International Conference on Communications
(ICC), 2005, pp. 1031–1035.

http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=16775
http://www.opnet.com/

	Sarah Ruepp, Andreas Rytlig, Michael Berger, Henrik Wessing, Anna V. Manolova, Hao Yu, Anders Rasmussen
	DTU Fotonik, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
	e

