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Nomenclature

Main symbols:
ρk Wind power producer revenues at trading period k
Wk Wind power production at trading period k
πk Market price at trading period k
Ck Negative wind power producer revenues due to imbalance at trading pe-

riod k
ψk Unit regulation costs for positive and negative imbalances at trading pe-

riod k
W (max) Installed wind power capacity
rk Quantile of wind power distribution at trading period k
Pk Probability of imbalance direction at trading period k
av Parameter determining the width of the bound to the optimal bid in the

decision space
ap Parameter determining the width of the bound to the optimal bid in the

probability space

Superscripts:
(S) Referring to the day-ahead market
(↑/↓) Referring to the real-time market
(↑) Referring to up-regulation in the real-time market
(↓) Referring to down-regulation in the real-time market
∗ Optimal˜ Contracted at the day-ahead market̂ Forecast

1 Introduction

The recent year’s tremendous growth in installed wind power generation capacity worldwide
has fuelled growing interest in how electricity generated by these plants is best offered to the
market. A pioneer work on the topic is presented in Bremnes (2004) which shows analytically
that the optimal bid for a wind energy producer in the day-ahead market is a particular
quantile of a predictive generation density. Building further on these findings, the authors of
this report present in Zugno et al. (2012) a case study where trading of wind power, entirely
based on forecasts, during a 10 month period is simulated.

The biggest limitation of the strategy presented in Zugno et al. (2012) is that it only yields
an optimal bid as long as the quantity traded is small enough not to affect the market
outcome in any way. As soon as the strategy is adopted for a price making quantity, the
deviations from the point forecast can act to increase the probability of deviations in that
direction being penalised. Thus the effects of the strategy risk becoming exactly the opposite
of what is intended. This situation can be the result of either a single price making producer
adopting the strategy or prompted a collective adaptation of the strategy by a number of
wind power producers (given that their production at any given time is highly correlated).
Even though both of these scenarios have the same effect, the appropriate countermeasures
are most likely different. Whereas a single price making producer has to explicitly consider
the full extent of the feedback his actions create on the market, a small producer can still
take advantage of the fact that the market is indifferent to his individual actions. His main
concerns are therefore to add the knowledge that other small producers are also strategic in
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their bidding, e.g. by taking a more game theoretical approach to his bidding.

The strategy presented in Zugno et al. (2012) also pays no explicit regard to the risk involved.
The hours of severe losses are merely avoided by restricting the deviation from the point
forecast either in terms of percentage of the point forecast or in terms of probability. These
constraints on the bid are imposed by the TSO although how much deviation would be
accepted is not clear. The reasoning for regarding this choice as sufficient consideration
for risk is twofold. Firstly, most likely will any popular restriction of the variance of the
revenue would lead to larger deviations from the point forecast than allowed by the TSO.
Secondly, the revenue risk is only relevant on a quarterly or annual basis and due to the
many independent decisions made within one year (8760 on a non-leap year to be exact)
that maximising expectations is sufficient.

Generally speaking however the need for some risk awareness is undisputed since applying the
optimal quantile strategy directly without restrictions yields several hours of excessive losses
during the test period in Zugno et al. (2012). Then due to the fact that the producers are
only subject to downside risk these losses are not countered by huge gains. Moreover, even
though the practical constraints seem to be sufficient in the case study there exist (in theory
at least) scenarios where a producer might suffer large losses despite the aforementioned
restrictions. This is because putting a limit on the deviation from the point forecast only
addresses the part of the risk that arises from the uncertain production and not the part that
is owed to the volatility of the regulation prices/penalties. In other words the possibility
of a large loss arising from a small deviation times a large penalty is not addressed by
the restrictions in Zugno et al. (2012). Thus excessive losses could be suffered e.g. in a
more volatile market/period than the one considered in Zugno et al. (2012). This aside, the
market feedback from a price maker’s decisions might prompt an increased risk of excessive
losses despite retaining the bid within a certain limit from the point forecast and market
circumstances being similar to that in the previously mentioned case study. So in summary,
the incorporation of a more comprehensive risk measure in the bidding strategy would
strengthen the theoretical grounds for the strategy already developed and contribute to a
more seamless adoption to other markets and extensions.

The aim of this report is to derive and analyse the methods for wind power trading which
account for risk and are applicable for a price maker in the market. At first the general
formulation of the risk averse bidding problem is derived analytically and the effect of
the price taker assumption discussed. Similar to Morales et al. (2010) and Dent et al.
(2011), the risk criteria considered is the Conditional Value-at-Risk (CVaR). Afterwards, an
operational formulation of the problem in a stochastic programming framework is obtained
and the generation of the scenarios necessary for solving it informally discussed. Finally
the characteristics of such a strategy are demonstrated through a small case study and the
resulting bids compared to the bids found by the strategy in Zugno et al. (2012). Readers
of this report are assumed to have basic knowledge about the general functionalities of
Nord Pool’s markets and about strategic bidding of wind power. A more comprehensive
introduction to these aspects is given in Zugno et al. (2012).

2 Being a Price Maker

Before going any further, spending a few words on what being a price maker or a price
taker involves and why the concepts are relevant in the context of this report is in order.
In a perfect competitive market, all participants are price takers since the do not affect the
market outcome in any way by the actions. A price maker in a particular market on the
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other hand can influence the price on the market it is involved in by its trades. Since the
potential influence on the market is owed (in this case) to a prominent share in the electricity
supply the actual market power of a producer may vary both between the markets he’s active
on and might also be not constant in time. More precisely a wind power producer1 with
a production capacity that is large enough to affect the spot price in a single price area
(say DK-1) may loose some of his impact during hours when there is no congestion on the
transmission lines to the surrounding areas.

Furthermore, a producer’s impact may change from being on the supply side in one market
to being on the demand side in another. On the spot market though, it is clear that it is the
volume bid to the market that affects the price as it is indeed that volume that enters the
supply function and shifts it to the right. The same wind power producer and his actions on
the spot market is a source for demand on the regulation market. That is their imbalances
are what prompts the demand for regulation power. However at the same time this very
same wind power affects the supply of regulating power indirectly as it has the ability to
push less cost efficient yet flexible power generators to the right of the equilibrium price. So
the impact on opposite sides of the supply/demand might act as counterbalancing to some
extent. This is the case as long as the wind power producer can’t be a direct supplier of
regulating power. Finally it is important to realise that the market power of a particular
collection of wind turbines is not the same on the spot market and the regulation market
even in situations where the spot price is unique for the area in question. This is because the
different parties are involved in the different markets (e.g. not everybody need to regulate).

So in conclusion, abandoning the price taker assumption prompts that the following rela-
tionships need to be accounted for:

• The impact of the bid quantity (W̃k) on the spot price (π(S)
k ) and the regulation

price (π(↑/↓)
k )/penalty (ψ(↑/↓)

k )

• The impact of the price maker’s imbalance (Wk−W̃k) on the regulation price/penalty
through the demand for regulating power

• The impact of the price maker’s imbalance on the regulation price/penalty through
impact on the supply of regulating power

This aside, the regulation prices/penalties are known to be dependent on the spot prices.
Now assuming that all the mentioned variables actually impact the prices the spot price
should be written as a function of the bid wind power, π(S)

k (W̃k), and the regulation
prices/penalties as a function of the bid wind, the produced wind power and the spot price
π

(↑/↓)
k (W̃ ,Wk, π

(S)
k )/ π(↑/↓)

k (W̃ ,Wk, π
(S)
k ). Obviously, it has to be investigated whether ac-

counting for all these relationships is necessary but for the time being we will assume that
to be the case.

3 Problem Formulation

In this report we continue along the lines of Zugno et al. (2012) and consider the bidding
decision to be taken for each hour individually. This is in contrast to the formulations of
Morales et al. (2010) and Dent et al. (2011) which consider all 24 bidding decisions for the

1or an aggregation of a number of producers with highly correlated production/behaviour
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upcoming day simultaneously. A further discussion on the differences between those two
approaches in theory and practise is given in the final section of this report. In this section
analytical expressions for the expected revenue and the CVaR are derived to the extent
possible. The formulation presented here is mainly adopted from Rockafellar and Uryasev
(2000, 2002); Schultz and Tiedemann (2006); Chen et al. (2009).

As shown in Zugno et al. (2012) the revenue ρk for hour k can be written in the following
ways:

ρk = π
(S)
k W̃k

+ I{Wk > W̃k}(Wk − W̃k)π
(↓)
k + I{Wk < W̃k}(Wk − W̃k)π

(↑)
k

= π
(S)
k Wk + (W̃k −Wk)π

(S)
k

+ I{Wk > W̃k}(Wk − W̃k)π
(↓)
k + I{Wk < W̃k}(Wk − W̃k)π

(↑)
k

= π
(S)
k Wk

− I{Wk > W̃k}(Wk − W̃k) (π(S)
k − π

(↓)
k )︸ ︷︷ ︸

ψ
(↓)
k

+I{Wk < W̃k}(Wk − W̃k) (π(↑)
k − π

(S)
k )︸ ︷︷ ︸

ψ
(↑)
k

.

(1)

Same place it is shown that a risk neutral producer is interested in the bid, W̃k that max-
imises its expected revenues, i.e.

W̃
(∗)
k = arg max

fWk

E[ρk|W̃k] (2)

which is shown to be equivalent to solving

W̃
(∗)
t = arg max

fWt

E

[
C

(↑/↓)
t

]
(3)

where

C
(↑/↓)
t = I{Wk < W̃k}(Wk − W̃k)ψ(↑) − I{Wk > W̃k}(Wk − W̃k)ψ

(↓)
k (4)

if the market is unaffected by the producer’s actions, i.e it is price taker.

Taking the expectation of Eq. (1) yields either

E[ρk|W̃k] = E[Wkπ
(S)|W̃k]

− E[I{Wk > W̃k}(Wk − W̃k)(π
(S)
k − π

(↓)
k )|W̃k]

+ E[I{Wk < W̃k}(Wk − W̃k)(π
(↑)
k − π

(S)
k )|W̃k]

=

W (max)∫
0

WkdPW

∞∫
π(S)=−∞

π
(S)
k (W̃ )dPπ(S)

−
∞∫

π(S)=−∞

W (max)∫
Wk=fW

∞∫
ψ(↓)=0

[Wk − W̃k]ψ(↓)(W̃k,Wk, π
(S)
k )dPψ(↓)dPW dPπ(S)

+

∞∫
π(S)=−∞

fW∫
Wk=0

∞∫
ψ(↑)=0

[Wk − W̃k]ψ(↑)(W̃ ,Wk, π
(S)
k )dPψ(↑)dPW dPπ(S)

(5)
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or

E[ρk|W̃k] = E[W̃kπ
(S)
k |W̃k]

+ E[I{Wk > W̃k}(Wk − W̃k)π(↓)|W̃k]

+ E[I{Wk < W̃k}(Wk − W̃k)π(↑)|W̃k]

= W̃k

∞∫
π(S)=−∞

π
(S)
k (W̃ )dPπ(S)

+

∞∫
π(S)=−∞

W (max)∫
Wk=fW

π(S)∫
π(↓)=−∞

[Wk − W̃k]π
(↓)
k (W̃k,Wk, π

(S)
k )dPπ(↓)dPW dPπ(S)

+

∞∫
π(S)=−∞

fW∫
Wk=0

∞∫
π(↑)=π(S)

[Wk − W̃k]π
(↑)
k (W̃ ,Wk, π

(S)
k )dPπ(↑)dPW dPπ(S)

(6)

where in both equations, dPx = f(x)dx where in turn f(x) is the probability density function
(PDF) of x. In order to ease the notation in the following, π(S)

k (W̃ ) will be written as
π

(S)
k . Likewise we will note π(↑/↓)

k (W̃ ,Wk, π
(S)
k ) and ψ(↑/↓)

k (W̃ ,Wk, π
(S)
k ) as π(↑/↓)

k and ψ(↑/↓)
k

respectively.

In Eq. 5 the expectations in the first term can be separated without loss of generality. This
is because the wind power actually produced has no impact on the prices. Instead, any
correlation between Wk and π(S)

k can be explained by the correlation between W̃k and π(S)
k .

The remaining terms are however inseparable in the general setting. Only if the producer is
a price taker, the triple integrals can be separated into a wind power part and a price part
as shown in Zugno et al. (2012). Between the formulations in Eqs. (5) and (6) the former
has the appeal in the price taker case that the term for the spot market can be omitted in
the optimisation making it a maximisation of the (non-positive) imbalance costs instead of
the revenue. When the price taker assumption is abandoned however, the contribution from
the spot market has to be considered as well. This in turn makes the choice between the
two formulations less obvious.

A producer who is not completely risk neutral and characterises his risk in terms of CVaR
seeks a solution to

W̃
(∗)
t = arg max

fWt

{
E

[
C

(↑/↓)
t

]
+ λCVaRα

[
C

(↑/↓)
t

]}
(7)

or similarly in terms of the revenue as:

W̃
(∗)
t = arg max

fWt

{E [ρt] + λCVaRα [ρt]} (8)

where in both cases CVaRα[·] is the expected cost/revenue given that it deceeds the α-
quantile (α is in the lower tail) of the cost/revenue and λ, 0 ≤ λ ≤ 1, is a parameter
indicating the risk attitude of the producer.

Generally the CVaR-term on for a confidence level α (with α in the left tail) is defined as

CVaRα (X) = ηα − 1
α

E [max {(ηα −X) , 0}] (9)

where ηα is the α-Value-at-Risk (VaRα) or

ηα = F−1
X (α) (10)
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where FX (·) is the cumulative density function (CDF) of X .

If the prices and thereby the penalties are fixed we find that the CDF of the imbalance costs
can be found as

FC (x) = P

[
C(↑/↓) ≤ x

]
= P

[
ψ(↑)

(
W − W̃

)
I
{
W < W̃

}
− ψ(↓)

(
W − W̃

)
I
{
W > W̃

}
≤ x

]
= P

[
W < W̃ ∩ ψ(↑)

(
W − W̃

)
≤ x

]
+ P

[
W > W̃ ∩ −ψ(↓)

(
W − W̃

)
≤ x

]
= P

[
W ≤ W̃ +

x

ψ(↑)

]
+ P

[
W ≥ W̃ − x

ψ(↓)

]
= FW

(
W̃ +

x

ψ(↑)

)
+ 1 − FW

(
W̃ − x

ψ(↓)

)
(11)

which yields a PDF

fC (x) =
∂

∂x
FC (x) =

1
ψ(↑) fw

(
x

ψ(↑) + W̃

)
+

1
ψ(↓) fw

(
− x

ψ(↓) + W̃

)
(12)

and thus

E

[
max

{(
ηα − C(↑/↓)

)
, 0
}]

=
1
ψ(↑)

ηα∫
−∞

(ηα − c) fw

(
c

ψ(↑) + W̃

)
dc

+
1
ψ(↓)

ηα∫
−∞

(ηα − c) fw

(
− c

ψ(↓) + W̃

)
dc.

(13)

Now let

c = ψ(↑) min
{
W − W̃ , 0

}
− ψ(↓) max

{
W − W̃ , 0

}
dc =

[
ψ(↑)I{W̃ > W} − ψ(↓)I{W̃ < W}

]
dw
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and obtain

E

[
max

{(
ηα − C(↑/↓)

)
, 0
}]

=
ψ(↑)I{W̃ > W} − ψ(↓)I{W̃ < W}

ψ(↑)

·
[ ∞∫
−∞

max
{(
ηα − ψ(↑) min

{
W − W̃ , 0

}
+ ψ(↓) max

{
W − W̃ , 0

})
, 0
}

· fw
ψ(↑) min

{
W − W̃ , 0

}
− ψ(↓) max

{
W − W̃ , 0

}
ψ(↑) + W̃

 dw

]

+
ψ(↑)I{W̃ > W} − ψ(↓)I{W̃ < W}

ψ(↓)

·
[ ∞∫
−∞

max
{(
ηα − ψ(↑) min

{
W − W̃ , 0

}
+ ψ(↓) max

{
W − W̃ , 0

})
, 0
}

· fw
−

ψ(↑) min
{
W − W̃ , 0

}
− ψ(↓) max

{
W − W̃ , 0

}
ψ(↓) + W̃

 dw

]

=
1
ψ(↑)

[
ψ(↑)

ηα+ψ(↑) fW

ψ(↑)∫
0

(
ηα − ψ(↑)

(
W − W̃

))
fw

ψ(↑)
(
W − W̃

)
ψ(↑) + W̃

 dw

+ ψ(↓)
W (max)∫

ψ(↓) fW−ηα
ψ(↓)

(
ηα + ψ(↓)

(
W − W̃

))
fw

−
ψ(↓)

(
W − W̃

)
ψ(↑) + W̃

 dw

]

+
1
ψ(↓)

[
ψ(↑)

ηα+ψ(↑) fW

ψ(↑)∫
0

(
ηα − ψ(↑)

(
W − W̃

))
fw

ψ(↑)
(
W − W̃

)
ψ(↓) + W̃

 dw

+ ψ(↓)
W (max)∫

ψ(↓) fW−ηα
ψ(↓)

(
ηα + ψ(↓)

(
W − W̃

))
fw

−
ψ(↓)

(
W − W̃

)
ψ(↓) + W̃

 dw

]

=

ηα+ψ(↑) fW

ψ(↑)∫
0

[(
ηα − ψ(↑)

(
W − W̃

))
·

(
fw (W ) +

ψ(↑)

ψ(↓) fw

(
W̃ − ψ(↑)

ψ(↓)

(
W − W̃

)))]
dw

+

W (max)∫
ψ(↓) fW−ηα

ψ(↓)

[(
ηα + ψ(↓)

(
W − W̃

))
·

(
ψ(↓)

ψ(↑) fw

(
W̃ − ψ(↓)

ψ(↑)

(
W − W̃

))
+ fw (W )

)]
dw.

(14)
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Similarly for ρ we get

Fρ (x) = P [ρ ≤ x]

= P

[
W < W̃ & π(S)W̃ + π(↑)

(
W − W̃

)
≤ x

]
+ P

[
W > W̃ & π(S)W̃ + π(↓)

(
W − W̃

)
≤ x

]
= P

[
W ≤ x

π(↑) + W̃

(
1 − π(S)

π(↑)

)]
+ P

[
W̃ ≤W ≤ x

π(↓) + W̃

(
1 − π(S)

π(↓)

)]
= FW

(
x

π(↑) + W̃

(
1 − π(S)

π(↑)

))
+ FW

(
x

π(↓) + W̃

(
1 − π(S)

π(↓)

))
− FW

(
W̃
)

(15)

thus yielding

fρ (x) =
∂

∂x
Fρ (x)

=
1
π(↑) fW

(
x

π(↑) + W̃

(
1 − π(S)

π(↑)

))
+

1
π(↓) fW

(
x

π(↓) + W̃

(
1 − π(S)

π(↓)

)) (16)

which in turn renders

E [max {(ηα − ρ) , 0}] =
1
π(↑)

ηα∫
−∞

(ηα − r) fw

(
r

π(↑) + W̃

(
1 − π(S)

π(↑)

))
dr

+
1
π(↓)

ηα∫
−∞

(ηα − r) fw

(
r

π(↓) + W̃

(
1 − π(S)

π(↓)

))
dr.

(17)

Following the same procedure as before and let

r = π(S)W̃ + π(↑) min
{
W − W̃ , 0

}
+ π(↓) max

{
W − W̃ , 0

}
dr =

[
ψ(↑)I

{
W̃ > W

}
− ψ(↓)I

{
W̃ < W

}]
dw
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and thereby obtain

E [max {(ηα − ρ) , 0}]

=
ψ(↑)I

{
W̃ > W

}
− ψ(↓)I

{
W̃ < W

}
π(↑)

·
[ ∞∫
−∞

max
{(
ηα − π(S)W̃ − π(↑) min

{
W − W̃ , 0

}
− π(↓) max

{
W − W̃ , 0

})
, 0
}

· fw
(
π(S)W̃ + π(↑) min

{
W − W̃ , 0

}
+ π(↓) max

{
W − W̃ , 0

}
π(↑)

+ W̃

(
1 − π(S)

π(↑)

))
dw

]

+
ψ(↑)I

{
W̃ > W

}
− ψ(↓)I

{
W̃ < W

}
π(↓)

·
[ ∞∫
−∞

max
{(
ηα − π(S)W̃ − π(↑) min

{
W − W̃ , 0

}
− π(↓) max

{
W − W̃ , 0

})
, 0
}
·

· fw
(
π(S)W̃ + π(↑) min

{
W − W̃ , 0

}
+ π(↓) max

{
W − W̃ , 0

}
π(↓)

+ W̃

(
1 − π(S)

π(↓)

))
dw

]

=

ηα+fW(π(↑)−π(S))
π(↑)∫
0

[(
ηα − π(S)W̃ − π(↑)

(
W − W̃

))
·

(
ψ(↑)

π(↑) fw (W ) +
ψ(↑)

π(↓) fw

(
W̃ +

π(↑)

π(↓)

(
W − W̃

)))]
dw

+

W (max)∫
ηα−fW(π(S)−π(↓))

π(↓)

[(
ηα − π(S)W̃ − π(↓)

(
W − W̃

))
·

(
ψ(↓)

π(↑) fw

(
W̃ +

π(↓)

π(↑)

(
W − W̃

))
+
ψ(↓)

π(↓) fw (W )
)]

dw.

(18)

Considering the prices to be fixed, as is done in Eqs. (14) and (18), allows for a closed
form solution of the problem to be obtained (Dent et al. (2011)). The prices are however
stochastic and as shown below the price expectation integrals can not be separated from the
wind expectation integral. Thus the certainty equivalence principle does not apply anymore.
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With stochastic prices, Eq. (14) & (18) become

E

[
max

{(
ηα (ψ) − C(↑/↓)

)
, 0
}]

=

∞∫
0

∞∫
0

ηα(ψ)+ψ(↑) fW

ψ(↑)∫
0

(
ηα (ψ) − ψ(↑)

(
W − W̃

))

·
(
fw (W ) +

ψ(↑)

ψ(↓) fw

(
W̃ − ψ(↑)

ψ(↓)

(
W − W̃

)))
fψ(ψ)dwdψ

+

∞∫
0

∞∫
0

W (max)∫
ψ(↓) fW−ηα(ψ)

ψ(↓)

(
ηα (ψ) + ψ(↓)

(
W − W̃

))

·
(
ψ(↓)

ψ(↑) fw

(
W̃ − ψ(↓)

ψ(↑)

(
W − W̃

))
+ fw (W )

)
fψ(ψ)dwdψ.

(19)

and

E [max {(ηα (π) − ρ) , 0}]

=

∞∫
−∞

∞∫
π(S)

π(S)∫
−∞

ηα(π)+fW(π(↑)−π(S))
π(↑)∫
0

(
ηα (π) − π(S)W̃ − π(↑)

(
W − W̃

))

·
(
ψ(↑)

π(↑) fw (W ) +
ψ(↑)

π(↓) fw

(
W̃ +

π(↑)

π(↓)

(
W − W̃

)))
fπ(π)dwdπ

+

∞∫
−∞

∞∫
π(S)

π(S)∫
−∞

W (max)∫
ηα(π)−fW(π(S)−π(↓))

π(↓)

(
ηα (π) − π(S)W̃ − π(↓)

(
W − W̃

))

·
(
ψ(↓)

π(↑) fw

(
W̃ +

π(↓)

π(↑)

(
W − W̃

))
+
ψ(↓)

π(↓) fw (W )
)
fπ(π)dwdπ

(20)

respectively where

ψ =
[
ψ(↓) ψ(↑) ]

π =
[
π(↓) π(↑) π(S)

]
are multivariate stochastic variables with the appropriate covariance structure.

What is still missing in the expressions are the formulations of ηα(·) in terms of the wind
and the price/penalty variables. Assuming that both the penalty and the imbalance had a
parametric distribution and were independent of each other an analytical expression for the
variance of the cost can be found ( in terms of ψ(↑/↓)) as

V

[
ψ(W − W̃ )

]
= V [ψ]

(
E

[
(W − W̃ )

])2

+V

[
(W − W̃ )

]
(E [ψ])2+V [ψ] V

[
(W − W̃ )

]
(21)

from which ηα could be derived. The distribution of W is however known to be best
characterised by non-parametric techniques and the same probably goes for the imbalance
penalties/prices (although probably nothing should be ruled out in this regard). More
importantly though ψ(↑/↓) and (W − W̃ ) are not necessarily independent. Even though ηα
could be found with the help of Eq. (21), an analytical solution to the optimisation problem
would be hard, if not impossible, to obtain. Thus a discrete formulation of the problem
using scenarios of the cost is probably a more likely road to success.

11



4 Operational Risk-Averse Bidding

4.1 Bidding as a Price Taker

Now assume that a set of N cost/revenue scenarios, ζs, s ∈ S, is available and that they are
ordered such that ζ1 < ζ2 < . . . < ζN . Then by defining the index kα such that

kα∑
k=1

pk ≤ α <

kα+1∑
k=1

pk,

where ps is the probability of scenario s, the mean-risk bidding optimisation problem can
be written as

W̃
(∗)
t = arg max

fWt

{
(1 − λ)E

[
ζ(W̃ )

]
+ λCVaRα

[
ζ(W̃ )

]}
= arg max

fWt

{
(1 − λ)

∑
s∈S

psζs(W̃ )

+ λ

(
ηα(W̃ ) − 1

α

[
kα∑
k=1

pkζk(W̃ ) +

(
N∑

k=kα+1

pk − (1 − α)

)
ζkα(W̃ )

])} (22)

where, depending on whether the objective is formulated in terms of cost or revenue, ζs(W̃ )
is either defined as

ζs(W̃ ) = I
{
Ws > W̃

}
(Ws − W̃ )ψ(↓)

s + I
{
Ws < W̃

}
(Ws − W̃ )ψ(↑)

s (23)

or

ζs(W̃ ) = π(S)
s W̃s + I

{
Ws > W̃

}
(Ws − W̃ )π(↓)

s + I
{
Ws < W̃

}
(Ws − W̃ )π(↑)

s (24)

respectively. As before ηα(W̃ ) is the α-VaR or

ηα(W̃ ) = VaRα(W̃ ) = F−1

ζ(fW )
(α)

Finally the producer’s risk attitude is characterised by the parameter λ, 0 ≤ λ ≤ 1, which
takes the value 0 for the completely risk-neutral producer and the value 1 for total risk-
aversion.

Now rewrite Eq. (22) as

W̃
(∗)
t = argmax

fW

{
(1 − λ)

∑
s∈S

psζs(W̃ ) + λ

(
ηα(W̃ ) − 1

α

∑
s∈S

psξs(W̃ )

)}
(25)

s.t. ξs(W̃ ) ≥ ηα(W̃ ) − ζs(W̃ ) (26)

ξs(W̃ ) ≥ 0 (27)

and introduce two auxiliary variables

∆W (↑)
s (W̃ ) ≤Ws − W̃ (28)

∆W (↓)
s (W̃ ) ≤ W̃ −Ws (29)

∆W (↑)
s (W̃ ),∆W (↓)

s (W̃ ) ≤ 0. (30)

12



Consequently Eq. (23) & (24) can be written as

ζs(W̃ ) = ∆W (↓)
s (W̃ )ψ(↓)

s + ∆W (↑)
s (W̃ )ψ(↑)

s (31)

and

ζs(W̃ ) = π(S)
s W̃ + ∆W (↓)

s (W̃ )π(↓)
s + ∆W (↑)

s (W̃ )π(↑)
s

= π(S)
s Ws + ∆W (↓)

s (W̃ )ψ(↓)
s + ∆W (↑)

s (W̃ )ψ(↑)
s

(32)

respectively. The augmented optimisation problem (25) subject to (26) - (30) can be solved,
for given values of α and λ, as an LP problem with a maximum(

W̃ (∗), η(∗)
α (W̃ (∗)),∆W (↑,∗)(W̃ (∗)),∆W (↓,∗)(W̃ (∗))

)
for which it holds that

η(∗)
α (W̃ (∗)) = VaRα

[
ζ(W̃ (∗))

]
(33)

η(∗)
α (W̃ (∗)) − 1

α

∑
s∈S

psξs(W̃ ) = CVaRα
[
ζ(W̃ (∗))

]
(34)

thus making W̃ (∗) also the optimal solution of (22).

4.2 Bidding as a Price Maker

Abandoning the price taker assumption can be done in two steps. First by assuming that the
producer is only a price taker on the day-ahead market (where there are more producers and
volume involved) but is a price maker or has some sort of market power on the regulation
market. Subsequently the the producer can be assumed to possess market power on both
markets. Whether the possibility of being a price maker only on the regulation market is
realistic will not be addressed in detail for the time being. However given that there is less
volume ”traded” on the regulation market and that there are fewer potential actors on that
market, this scenario seems intuitively plausible.

The main difference between solving the bidding problem for a price maker and a price taker
is that the scenarios (or the scenario probabilities) now depend on the decision. Essentially
we are still interested in solving the problem given in Eq. (25) only with the decision de-
pendent scenarios. If we discretise the decision space such that we have a set, W , of finite
number of decisions intervals and for each w ∈ W we have a corresponding set, Sw of
cost/revenue scenarios that have a constant probabilities on the entire span of w. Then the
problem in (25) can be revised to

W̃
(∗)
t = arg max

w∈W
Cw (w;α, λ) (35)

where

Cw (w;α, λ) = max

{
(1 − λ)

∑
s∈Sw

psζs(W̃ ) + λ

(
ηα(W̃ ) − 1

α

∑
s∈Sw

psξs(W̃ )

)}
(36)

still subject to (26)-(30) and with ζ(W̃ ) defined by (31) or (32).

Given a set W containing Nw decisions and for each w ∈ W a corresponding set of Ns
cost/revenue scenarios, the two-stage problem in (35) & (36) can be solved as is. This will
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however of course require generation of Nw × Ns scenarios in total which rather quickly
becomes a substantial amount.

An alternative to generating Nw different scenario sets, is only to generate a single set of
cost/revenue scenarios and let the scenario probabilities, ps,w, vary between different w’s.
Generally this is possible if zero scenario probabilities are allowed. However as the variations
in the bid won’t in any case alter the range of possible outcomes, this can be done for this
particular case without having to assign zero scenario probabilities. So again let W be a
set of bidding decisions, S be a set of cost/revenue scenarios and Ps be an Ns ×Nw matrix
of scenario probabilities, with element (s, w) stating the probability of scenario s under
decision w. Furthermore let w̃i be a bidding decision on the interval wi ∈ W . Finally define
a (column) vector of binary variables z of length Nw and with elements zwi . Then then we
can write the bidding problem as a mixed integer problem:

W̃
(∗)
t = arg max

fW

{
(1 − λ)

∑
s∈S

psζs(W̃ ) + λ

(
ηα − 1

α

∑
s∈S

psξs(W̃ )

)}
(37)

s.t. ξs(W̃ ) ≥ ηα(W̃ ) − ζs(W̃ ) (38)

ξs(W̃ ) ≥ 0 (39)

∆W (↑)
s (W̃ ) ≤Ws − W̃ (40)

∆W (↓)
s (W̃ ) ≤ W̃ −Ws (41)

∆W (↑)
s (W̃ ),∆W (↓)

s (W̃ ) ≤ 0 (42)
zwiwi ≤ w̃i ≤ zwiwi (43)∑
wi∈W

zwi = 1 (44)

W̃ =
Nw∑
i=1

wi (45)

ps =
Nw∑
i=1

Ps(s, i)zwi = Ps(s, :)z (46)

where wi and wi are the lower and the upper bound of wi respectively and ζ(W̃ ) still
defined by (31) or (32). So given the necessary scenarios, this mixed integer formulation of
the problem can then be used to optimise the bids of a producer that only has market power
on the regulation market as well as for a producer that also has market power on the day-
ahead market. Whereas in the former case, one still has the choice between optimising in
terms of his imbalance costs or in therm of his revenues, the revenue formulation is probably
the only sensible formulation for a producer with full market power. This is because the
first one is still not in any control over his spot market revenues and thus can look away
from them in the optimisation. In contrast, the second one can diminish the value of his
lower imbalance cost by reducing his spot market revenues in the process.

4.3 Objective - Revenue vs. Imbalance Costs

The choice between the two possible formulations of the objective function is not obvious.
In Zugno et al. (2012) the cost formulation is chosen since it can be shown that maximising
the expected deviation from perfect information revenue (or the expected imbalance costs)
the same as maximising the expected revenue for a price taker. Once any nonlinear measure
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of risk becomes an explicit part of the objective however this is no longer true - Regardless
of whether you only consider production risk or you consider the production and the price
risk together. This in turn yields different optimums depending on the formulation chosen.
Summarised in one sentence the difference for a mixed strategy (0 < λ < 1) is that whereas
the CVaR for the cost formulation pulls the bid towards the expected production, the CVaR
for the revenue pulls the bid towards the bid yielding the lowest probability of negative
revenue.

In order to further illustrate the difference between the two consider the following toy ex-
ample. Assume that we have for a given hour 10 equally probable scenarios of wind power
production so[

ws1 ws2 . . . ws10
]

=
[

0 1 . . . 9
]
MWh/h

pi = 0.1 ∀i = 1, 2, . . . , 10.

Furthermore assume that up-and down-regulation are equally probable for that same hour
and that the market prices (conditioned upon their realisation where appropriate) are fixed
at

π(S) = 20, π(↑) = 30, π(↓) = 10 ⇒ ψ(↑) = ψ(↓) = 10.

Finally let α = 0.1 and assume that wind power is always produced, i.e. that what’s not
sold day-ahead is sold at the down regulation price. Given all this, the bid maximising
both the expected revenues and the (non-positive) expected imbalance cost is the expected
production or 4.5MWh/h. The CVaR however is maximised at 0MWh/h for the revenue
formulation but at 4.5MWh/h for the cost formulation.

What makes the maximum CVaR be at zero for the revenue formulation is that since the
prices are fixed such that the down regulation price is positive, a non-negative revenue is
guaranteed by bidding zero into the market. Then making the prices stochastic and the
probability of negative down regulation price positive pushes the bid again away from zero
- still contributing to a lower bid than a pure optimisation of the expected revenue would
though. The push towards the expected production in the other case however is a result
of the fact that unless very different probabilities of each imbalance sign the worst case
scenarios are to be found at both ends of the revenue distribution. Hence the push towards
the expected value.

Which of the two formulations is the more appropriate one is to some extent a matter of
preference and there are arguments in favour of either one. For one the producer’s financial
health is in the end affected by his revenues and therefore one can argue that revenue risks
should be considered when power is bid to the market. This was also the initial objective
of the strategy in Zugno et al. (2012) which was only revised since the cost formulation
was equivalent. For a risk-averse producer, an additional appeal of the revenue formulation
is that it offers the bid that truly minimises the probability of loosing money. Hence the
revenue formulation can be said to be more conservative than the cost formulation. However
it is important for the system operation standpoint that the volume bid to the market reflects
the actual future production. This prompted the constraint that the bid should be within a
certain limit from the point forecast in Zugno et al. (2012) and for the revenue formulation
of the CVaR bidding strategy, this constraint is still likely to be necessary in the same
form as before. In contrast optimising the CVaR in the cost formulation essentially has the
same effect as that constraint. Thus with a carefully chosen value of λ will in some ways
account for this constraint implicitly and what is more do it in a more intelligent manner.
In addition, the coherence of CVaR implies that

CVaRα[ρ] ≤ CVaRα[ρ(S)] + CVaRα[ρ(↑/↓)]
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where

ρ(S) = π(S)
s Ws

ρ(↑/↓) = ∆W (↓)
s (W̃ )ψ(↓)

s + ∆W (↑)
s (W̃ )ψ(↑)

s

and ρ(S) consists of two stochastic variables, neither of which the is in control of. So one
can argue that he/she who actually is responsible for trading wind power should focus on
maintaining as little deviation as possible from the perfect scenario and let someone else
take care of the revenue risk as such - possibly along with the producer’s total revenue risk
if it has a diverse production portfolio. So in addition to general taste, the appropriate
formulation might also depend on how the general structure of the company owning the
turbines is. For a producer only owning wind turbines the revenue formulation might be
more appropriate while the cost formulation might be better suited for a large company
with a diverged production portfolio. For both objectives it is important to realise though
that long-term goals for risk can be derived directly from the hourly risk criteria. Due to
the lack of apparent better choice it is decided to try out both formulation in attempt to
shed more light on the consequences of adopting either formulation of the strategy.

5 Scenario Generation

In order to solve the problem in the formulation just described, scenarios for production
and market outcomes are necessary. In this section generation of such scenarios are loosely
discussed. First the method used to obtain the scenarios used in the case study later pre-
sented are discussed. Thereafter, some thoughts on how these scenarios could be constructed
properly are presented.

5.1 Simple Scenarios

In order to find the optimal bid in terms of revenue, each scenario s ∈ S consists of simulated
realisations of 4 different variables. These are the wind power production,Ws, the spot price,
π

(S)
s , and the up-and down regulation penalties, ψ(↑)

s & ψ
(↓)
s . For the cost formulation, the

same variables are needed apart from the spot price. For now (and in the price taker test
case presented in the next section) we’ll assume that there isn’t any type of dependence
between the wind power production and the prices so that wind power scenarios and market
scenarios can be created independently of each other. Doing so allows us to create a wind
scenario only by drawing random realisations of the estimated CDF for that particular time.
For the market, its sequential arrangement prompts a hierarchy in the prices which somehow
has to be taken into account when market scenarios are generated. Therefore it is decided
to model the density of the penalties conditional to the actual spot price and adopt the
following scheme for generating the scenarios (including the wind power):

For generating each s ∈ S:

1. Generate a vector r with IID elements ri ∼ U(0, 1)∀i, i = 1, . . . , 4

2. Set π(S)
s = F−1

π(S)(r1)

3. Set I(ψ)
s = I(ψ(↑) > 0) − I(ψ(↓) < 0) = F−1

I (r2)
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4. Set Ws = F−1
W (r3)

5. If I(ψ)
s = −1

I Estimate Fψ(↓)(x;π(S), I
(ψ)
s )

II Set ψ(↓)
s = F−1

ψ(↓)(r4;π(S), Iψ)

III Set ψ(↑)
s = 0

else if I(ψ)
s = 1

I Estimate Fψ(↑)(x;π(S)
s , I

(ψ)
s )

II Set ψ(↑)
s = F−1

ψ(↑)(r4;π
(S)
s , I

(ψ)
s )

III Set ψ(↓)
s = 0

else ψ(↑)
s = ψ

(↓)
s = 0

For the cost formulation, the spot prices are not a part of the scenarios and thus uncondi-
tional densities for the penalties are required. However since

Fψ(x) =

∞∫
−∞

Fψ(x;π(S))dπ(S)

by generating a large number of scenarios as described above and discarding the spot prices
is a completely valid alternative to constructing new densities.

Regarding forecasts, those are required for the following variables:

1. The day-ahead spot price, π(S)

2. The wind power production, W

3. The imbalance sign, I(ψ)
s = I(ψ(↑) > 0) − I(ψ(↓) < 0)

4. The regulation penalties, conditioned on it being different from zero, i.e. ψ(↑)|I(ψ) = 1
and ψ(↓)|I(ψ) = −1

5.2 Further Development

The scenario generation scheme listed before is complete in the sense that all realisations all
necessary variables are created based obtainable predictive densities. Moreover, should the
assumption that there is no relationship between our wind power production and the market
outcome holds, the method for scenario generation outlined above complete. Whereas it’s
difficult to see any reason for this assumption not to hold for the spot market, since it is
settled before the production is realised, the situation is more complicated for the regulation
market. First of all, unless the producer’s turbines are relatively isolated geographically,
the production of the turbines and the remaining turbines in the system is going to be
positively correlated. Then if this correlation is present, the question becomes whether
or not the actual production in the system affects the market outcome or not. Now the
imbalance sign (defined by price) is determined by the system imbalance (and whether or
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not the prompt a penalty) which in turn intuitively seems influenced by that of the wind
turbines - At least during hours of medium to high production.

As previously mentioned, the relationship between the wind power production and regulation
penalty is two sided. For one, increased offering of wind power in the spot market prompts a
greater supply of relatively cheap regulating power since flexible units otherwise cleared on
the spot market will now be offering regulative power. The increased share of wind power
however also typically prompts a greater demand for balancing power which then counteracts
with the increased supply. In addition, the generation units capable of supplying balancing
power all operate with some substantial marginal cost. Therefore even if you only look
at the supply side there is a limit on how low the regulation price can be. Thus at some
point the increased share of wind in the cleared volume starts to increase the penalty again.
Empirical evidence supporting these statements can be viewed in Jónsson et al. (2012a).

So for the purpose of better scenario generation, both for a price taker and a price maker, it
would be interesting to first model a joint distribution between one’s own production errors
and those of the system and subsequently joint that distribution with the regulation market
densities e.g. through copulas by the method outlined in Pinson et al. (2009). Although
easier said than done, this task should be well within what’s achievable.

On a more overall note, there are several other factors that impact the regulation prices
which impact the regulation market outcome. An example of two of the more important
ones of these factors are the demand side imbalance and to which degree exporting/importing
the imbalances to neighbouring areas exists, if at all. These variables are of course not a
part of the required scenario explicitly. Basing the regulation market scenarios on that for
these extra variables however could help towards gaining a more accurate description of the
probability density of the imbalance penalties.

Once models for the aforementioned joint densities have been developed, the scenario reduc-
tion technique from Nicole Growe-Kuska and Romisch (2003) could be adopted to create
scenarios for the price maker solution. In short, the forward selection method of Nicole
Growe-Kuska and Romisch (2003) calculates the euclidean distances between every scenario
in a given set of scenarios, selects a reduced number of scenarios that conserve the moments
of the original set and reassigns scenario probabilities. So given a number of different sce-
narios sets for different wind power bid to the market, each of these scenarios sets could
be reduced to the same pre-determined scenarios that match the unconditional revenue
distribution.

6 A (Really) Small Case Study

Finally we present a small case study to illustrate the characteristics of the bidding behaviour
of a producer adopting the strategy here described. Before the actual bidding results are
presented, a brief discussion of the forecasts constructed for the purpose is given.

6.1 Forecasts

For all variables, the procedure for obtaining the forecasts for all the continuous variables
is similar. First a point forecast is made and then prediction intervals are estimated using
methods that explicitly forecast each quantile for a range of pre-determined set of quantiles.
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All models are tuned on data for the period from November 1st 2008 - January 31st 2010.

The point forecasts are obtained in the following manner:

• The wind power forecasts stem from WPPT, a statistically based and commercially
based prediction softwareNielsen et al. (2002) (see www.enfor.dk for further informa-
tion)

• The spot price predictions are found using the model presented in Jónsson et al. (2011).

• The imbalance penalty forecasts are found by a Holt-Winters model similar to the one
described in Jónsson et al. (2012a).

For all variables, the time-adaptive quantile regression method described in Møller et al.
(2008) and Jónsson et al. (2012b) are used to predict density quantiles of nominal propor-
tion between 0.05 and 0.95 in steps of 0.05. For the wind power no further modelling is done
and the 0 and installed capacity set as the 0 and 100% quantiles. For the prices and penal-
ties, the Conditional Autoregressive Value-at-Risk (CAViaR)Gorr and Hsu (1985); Engle
and Manganelli (2004); Taylor (2008) model are used to predict the 0.01, 0.025, 0.975, 0.99
quantiles as well. Then the highest and the lowest observations during the data period are
set as the 0 and 100% quantiles.

Finally, the imbalance sign probabilities are obtained by the Holt-Winters model described
in Jónsson et al. (2012a).

6.2 Bidding Behaviour

In order to illustrate the workings of the bidding strategy and the different formulations of
the objective, the strategy is tested for a single hour. The hour chosen is the 10th hour of
July 13th 2009 for which we have the forecasts shown in Figure 1. These forecasts are then
used to generate 10000 scenarios for the all variables involved using the previously described
scenario generation procedure and subsequently reduced to 100 by the method of Nicole
Growe-Kuska and Romisch (2003). After that the optimal bid is calculated using GAMS
for α = 0.05 and α = 0.1 and the value of λ is varied between 0 and 1 in steps of 0.1 and
compared to the bids obtained by the strategy formulated in Zugno et al. (2012).

In Figure 2, the resulting bids shown for different values of λ. As expected, the bids derived
from the revenue formulation of the objective decreases with increased risk aversion. The
fact that they don’t go all the way down to 0 is a result of some of the scenarios containing
negative down regulation price and that down regulation has a slightly higher probability
than up regulation. However since the probability of the two penalising imbalance signs
isn’t severely different, the bid from the cost formulation doesn’t change all that much with
λ. The bid is nonetheless being pulled towards the point forecast but large tail of the up-
regulation penalty density keeps it above the point forecast though for every value of λ. As
shown in Figure 3, the CVaR behaves according to expectations from the bids. In Figure 4
the estimated density of the revenues from the 10000 scenarios is plotted for different values
of lambda. As can be seen, the density doesn’t change all that much on the scale of the plot.
The expected value is decreasing though and the distribution goes from being two peaked
to a single peak. However if some quantiles in the very leftmost tail of the distribution are
viewed though some change becomes apparent as shown in Figure 5.
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Figure 1: Forecasts for July 13th 2009 made at noon the day before
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7 Concluding Remarks

A framework for risk averse bidding of wind power to day-ahead electricity market has been
derived. Should a risk-averse strategy for bidding be adopted, the CVaR seems like an
appropriate choice due to it is concerned with the worst possible outcomes. This property is
appealing for daily trading of wind power where the main focus of risk management should
be on avoiding the few potential occurrences of excessive losses from the real-time market.

The framework here presented addresses the bidding and the risk on an hourly basis. Ex-
tending the framework to consider multiple periods simultaneously, e.g. 24 hours as done in
Morales et al. (2010), is easy though. It simply involves swapping the hourly value for the
sum of multiple ones within the terms of the objective functions. The scenario generation for
such model would become considerably more complex since it would have to accommodate
the temporal correlation of all the variables.

Regardless of whether the trading is considered on a daily or an hourly basis it is important to
realise that long-term risk management goals are beyond reach with these types of strategies.
This is also important to consider when the choice between the two formulations of the
objective value presented is made. In light of all this, the relevancy and effect of short-term
risk management in context with such efforts on longer time scales would be interesting to
carry out.
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