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1. INTRODUCTION 

Several reac to r physics problems involve three-dimensional neutron 

flux calculations. The c lass ica l technique for solution of the mult i -dimen

sional diffusion equations is the difference approximation technique. Actu

ally, the difference technique is the most s t raightforward aad the most a c 

curate solution technique, and its only drawback is that it requjres too 

much computing t ime . F o r many purposes such a2 burn-up and void c a l c u 

lations where many flux calculations a r e necessa ry , the computing t ime is 

quite unacceptable if ordinary difference equation techniques ar^> used. 

Therefore many approximate methods have been clsveloped, cTid out: these 

is flux synthesis . In a few words iLux synthesis consis ts in expanding of the 

three-dimensional flux after some two-dimensional precalculated flux func

t ions. The f irst approach to flux synthesis was made by Meyer in the s o -

called single-channel flux synthesis (ref. 1), and l a te r the mull.?--channel 

synthesis was developed by Wachspress (ref. 2). In this report a computer 

p rogramme called SYNTRON will be presented. SYNTRON uses a var ia 

tional single-channel flux synthesis technique pr imar i ly based on re fs . 3 

and 7. 

Besides the actual synthesis , the SYNTRON programme contains a 

subroutine for calculation of the two-dimensional expansion functions by 

use of ordinary difference equation technique. 

2. THE PHYSICAL PRINCIPLES OF FLUX SYNTHESIS 

2 . 1 . The Diffusion Equations 

In this chapter the physical principles for solution of the th ree -d imen

sional diffusion equations by use of flux synthesis will be presented. 

We have the mult i -group diffusion equations: 

-D&72 0 S + Kg<$ = Sg (1) 

where 

D* = diffusion coefficient in group g 

A^ * absorption c r o s s section in group g 

S^ • source in group g. 
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The source t e r m is given by the following expression: 

GR 
S g m i <*£*g" + * * • ?Zf ' /k

eff> ' 0*'- (2) 
g := l 

Here 

GR = number of groups 

£ ° e = scat ter ing c r o s s section from group g1 to group g 

xi = fission spect rum 

•yEf = y-fission c r o s s section in group g' 

k „ * effective multiplication factor (eigenvalue of the problem). 

2. 2. The Synthesis Approximation 

In the synthesis approximation for solution of the multi- group diffusion 

equations (1) an attempt is made to find the three-dimensional solution 0^ 
g 

(z ,y ,x ) by expansion of 0 (z ,y ,x ) after some two-dimensional precalculated 
g 

flux functions, R"(y,x) , called t r i a l functions. In the SYNTRON programme 

a variational single-channel flux synthesis formal ism primari lv based on 

re fs . 3 and 7 was used. 

As Kaplan descr ibes in ref. 3 the group flux 0**(z,y,x) is found by 

means of the following expansion: 

K 
— g 

0 g ( z , y , x ) = £ Zg(z) • H^(y,x) , (3) 
k=1 

where 

K » number of t r i a l functions in group g 

H?(y,x) = t r i a l function number k in group g 

ZJMz) = mixing function number k in group g. 

If the H?(y,x) function set is assumed to be known, then the problem 

is how to find the mixing functions. 

2 .3 . The Basic Synthesis Equation 

If the flux expansion (3) i s substituted into the group diffusion equations 

(1) and (2), we have 
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K 

( - D g v 2 + A«). ^ zg(z) • H g ( y j X ) ) = 

GR Kg« 

k=1 

K W 

L Ji 
( i f « ' + * « • yzf / k ) • Zf ' (z) . Hf ' (y .x) . 

Equation (4) is the basic equation for finding the unknown mixing func

tions Z?(ii). 

The variational formal ism for finding the mixing functions is fully 

discribed in re f s . 6 and 3. 

In the mixing function set the re a r e two so r t s of coupling: 

1. The mutual coupling between z f (z) . . . Zf, (z) for fixed z. 
1 K g 

2. The z-dependence of the mixing functions. 

2 .4 . The Mutual Coupling, Weighting Functions 

The mutual coupling between the mixing functions Zf (z) . . . ZB- (z) for 

fixed z is found by introduction of a new function set, the weighting func

tion set W?(y,x). F o r weighting functions one /nay ei ther select the t r i a l 

functions or the adjoint t r i a l functions. In the f i rs t case , W?(y, x) = HJ=(y, x), 

we have Galerkin weighting., in the second. W°(y, x) = H ^ ( y , x ) , Selengut 

weighting, compare refs . 3, 5, 6 and 7. The following t rea tment i s inde

pendent of the method used. 

Eq. (4) is multiplied by W?(y, x), and a integration over the (y,x) plane 

is performed for fixed z. 

Then we have 

j J ((-D^72 + Ag) • ( ^ zg(JB) • Hj*(y,x) • W*(y,x)) ) dy dx = 

y x k=1 

GR Kg« 

y x g*«1 i»1 

Zf'(z) • H ^ V x ) • V/J{y,x) dy dx 

) x (5) 

i » 1 . . . . K . 
" g 
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The first term of the left-hand side in eq. (5) is treated as follows: 

.D^v2 = - D ^ v 2 + v 2 ) . (7) 
v z yx ' v ' 

From (?) we get two new terms 

-DZg.(z). v*zg(z) , 

where 

Dzg.(z) = | j Dg-Hg(y,x)-Wg(y,x) dy dx , (8) 

y x 

and 

DBZg.(z) • Zg(z) , 

where 

DBZJ^z) = j j D g .wS( y j x) -V 2
x Hg(y ,x )dydx . (9) 

y x 

The subscript k represents trial function no. k and the subscript j 

weight function no. j in group g. The terms DBZ?.(z) express the radial 

neutron leakage at the axial position z. 

The second term in eq. (5) is treated just like (8) 

A k j ( 2 ) = / / AS' Hk(y'x)'Wf(y'x) dy ^ ' (10) 

y x 

Eq. (10) represents the total absorption terms. 

The right-hand side of eq. (5) is treated in a similar fashion. 

We have 

SPif{z)= i! Zff g,-Hf(y,x).Wg(y,x)dydx , 
y * 

and (11) 
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XIFgg '(z) = j J xiS . Y zf- Hf'(y,x)- Wg(y,x) dy dx . 

y x 

According to the transformations above eq. (5) is replaced by: 

K 
-g 
^ (-DZ^(z) v-2 + DBZg.(z) + A*.(z)) • Z«(z) = 

k=1 

GR K^t 
^ ^ (SPj^zJ + X I F j ^ z J / k ^ . z f ' f z ) . (12) 

g»=l i=1 

This is performed for each j , 1:K . 
6 

In this way we have K linear inhomogeneous equations for determin-

ing the K mixing function terms at any axial point z, in group no. g. 
O 

K 
- g 
I ^ w « ? 
k=1 

2. 5. The z-Dependence of the Mixing Functions 

We now return to the problem of finding the z-dependence of the mix

ing functions. We only consider mixing functions that a re continuous in the 

argument z, through the whole reactor. On the other hand, we do not make 

any assumptions of complete continuity of the integrated cross sections, 

we only assume that the cross sections are constant piece by piece, that 

is , there are no variations in the cross sections in the z-direction in each 

axial zone. 

The mixing equations (12) are solved approximately by a finite differ

ence method. The axial zones are subdivided into a fine-mesh structure, 

and a mesh point is chosen in the middle of each mesh. Eq. (12) is t r ans 

formed into a set of difference equations by means of an integration over 

the remaining direction, z. 

If we neglect all subscripts (k, j , g) and only look at one term on the 

left-hand side of eq. (11), we have 



i (-DZ(z)v^ + DBZ(z) + A(z)) Z(z) dz = 

(14) 

DZ(z)V Z(z) dz + I DBZ(z) Z(z) dz + , A(z) Z(z) dz 
z J J 

z z 

When the integration is performed mesh by mesh we have (compare 

ref. 10), if the length of mesh no. z i s called LZ(z) : 

I DBZ(z)-Z(z) dz = DBZ(z)-Z(z)-LZ(z) , 

J A(z ) -Z(z )dz = A(z ) -Z(z ) .LZ(z ) , (15) 

z 

and 

f 2 
j DZ(z) V^ Z(z) dz = j DZ(z ) -V z Z(z) dS , 
z S 

where S represen t s surface integration; in this one-dimensional case dS 

i s taken as one a rea unit. 

According to further approximations we have 

J DZ(z) . Vz Z(z) dS = DZ1(Z(z) - Z(z-1)) + D Z 2 . ( Z ( z ) - Z(z+1)) , 

S 
(16) 

where 

DZ'j = 2/(LZ(z)/DZ(z)+ LZ(z-1)/DZ(z-1)) , 

and 

DZ 2 = 2/(LZ(z)/DZ(z) + LZ(z+ 1)/DZ(z+1)) . 
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The right-hand side of eq. (12) is treated in the same way as eq. (15). 

Thus eq. (12) is transformed into a set of finite difference equations. The 

remaining problems are how to perform these transformations in practice, 

and how to solve the equation system. 

3. PRACTICAL SOLUTION TECHNIQUE 

3. 1. Cross Section Integration and Coefficient - Matrix Preparation 

In this chapter a brief description of the methods used to perform the 

cross section integration is presented. As mentioned before the t r ia l func

tions and the weighting functions are taken to be precalculated function 

sets containing one flux point per mesh point in the x-y plane. How these 

functions are calculated will be shown later in this section. 

When it is assumed that there is no variation in cross sections in axial 

direction, i . e . z-direction, in each zone, it is only necessary to perform 

one set of cross section integrations in each zone. 

Fine and coarse mesh divisions in the x-y planes are shown in fig. 2. 

The integrations of eq. (8), (9) and (11) are equivalent. Let us look at 

eq. (8). 

i i 

DZfk = L L Dg(y'x)' Hk (y# x)" w f ( y ' x ) *ARE(y'x) * (17) 

y x 

where 

ARE(y,x) = area of mesh (y, x) . 

The most interesting and most complicated calculation is that of cal

culating the radial leakage terms DBZM (z). This calculation is performed 

in accordance with the method suhhested in ref. 7. 

In the programme SYNTRON it is possible to handle an arbitrary dis

tribution of meshes represented by cross sections, and meshes represented 

as boundary conditions, i .e . extrapolation factors EXT°(y,x). Boundary 

conditions will be further described in section 3. 2. 

Let us define the leakage terms from mesh (y, x) to its adjacent 

meshes 
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QA = leakage term from (y,x) to (y, x-1) , 

QB = leakage term from (y, x) to (y, x+ 1) , 

QC = leakage term from (y, x) to (y-1,x) , 

QD = leakage term from (y, x) to (y+ 1, x) . 

We shall look at QA. If both mesh (y, x) and mesh (y,x-1) are rep

resented by cross sections, we have just as in eq. (16), section 2. 5, 

QA = 2/(LX(x-1)/Dg(y,x-1) + LX(x)/Dg(y, x)) . 

If mesh (y,x-1) is represented as boundary conditions, 

QA = 2/(2/EXTg(y,x-1) + LX(x)/Dg(y,x)) . 

QB, QC, QD are treated in a similar way. 

We are now ready to construct the DBZg, (z) terms 

i t 

DBZg
k(z) = ^ £ Wg(y,x) x ( 

y x 

(QA(y,x)- (Hg(y,x) - Hg(y,x-1)) + 

QB(y,x)-(Hg(y,x) - Hg(y,x+1))) • LY(y) + (18) 

(QC(y,x).(Hg(y,x) - Hg(y-1,x)) + 

QD(y, x) • (Hg(y, x) - Hg(y+ 1, x))). LX(x) ) . 

The subscript ' indicates that the integrations are only performed at 

meshes tnat are represented by cross sections. 

From these integrated quantities it is possible to construct the neces

sary coefficient matrices for the mixing function difference equation sys

tem. 

Leakage terms between meshes nos. z and z+ 1 and vice versa are 

constructed in a fashion similar to that used for leakage terms in the x-y 

plane. We have 
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DDJ^z) =2/(LZ(z) /DZ j
g

k (z)+ LZ(z+1)/DZg
k(z+1)) . (19) 

»« It i s now possible to construct the total absorption t e r m s KOB-, (z), 

i. e. the t e r m s which include all the neutrons which leave the mesh z and 

the group g. 

KOB g (z) = DDg (z-1) + DD g (z) + DBZg, (z) + Ag, (z) , 
Jk jk jkV (20) 

where 

DDg, = axial leakage t e r m s to the neighbouring meshes 
J* 

DBZf, = rad ia l leakage t e r m s 
J k 

A^. = total absorption t e r m s . 

3. 2. Boundary Conditions 

At each boundary a boundary condition is specified. As boundary con

ditions "gamma-ma t r ix" formal ism is used (ref. 11). 

The flux at the boundary 0 and the current out through the boundary I 

a r e coupled by the v-matr ix 

I = Y - 0 

r 
i ' 

i 2 

i G 

L ^ 

= 

Y11 Y12 V1G 

rGl 'GG 

0 

0V 

(21) 

The diagonal elements express the ordinary extrapolation factors 

E X T g = v g g . 

The off-diagonal elements r ep re sen t down- and up-sca t te r ing ; these 

t e r m s a r e added to the sca t te r ing mat r ices in the adjacent meshes . 

In this way i t i s possible to t rea t control rods a s boundary conditions 

and take into account the down- and up-sca t te r ing . 

When only the diagonal elements a r e non-zero , "gamma-ma t r ix" 

formal ism i s equivalent to the method of ordinary extrapolation factors 

in each group. 



- 10 -

3. 3. Solution of the Equation System 

The basic problem of flux synthesis i s the solution of eq. (13). It is 

of great importance that the solution technique i s fast and re l iable . 

In this p rogramme a semi- i t e ra t ive technique i s used. The fine mesh 

s t ruc ture in the axial zones is shown in fig. 1, one mesh point taken in 

the middle of each mesh. 

The source t e r m s in eq. (12) a r e calculated a s follows: 

Qf (Z) = Z l ( S P ifg ' ( Z ) + X I F§g ( z ) / keff ) ' Zf'(z) 

g»=l i=1 

(22) 

The ' on SP indicates that only t e r m s where g / g1 a r e taken into 

account. 

When the difference approximation and the coefficient mat r ices (19) 

and (20) a r e inser ted into eq. (12), we get the following matr ix equations: 

-I5Mg(z-1)."Zg(z-1) + AA*g(z)-'Zg(z) 

- !fMg(z) • "zg(z+ 1) = § g ( z ) , 

(23) 

where 

Mg = 

D D?1 D D ?2 

D D v 

DDfK 
g 

D D K , K , 
g g 

AA S = 

K O B ^ KOB g
2 

K O B K g 1 

KOBfK 

g 

KOB 
Vi g 

(24) 
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rg Q g 

zg = Q g = 

Z g 

g 
•4 

g 

Argument z i s omitted. 

To simplify the notation and to i l lus t ra te the principle of the solution 

technique, let us f i rs t look at the s imple case where K = 1. The m<itrices 

in eq. (24) a r e then degenerating into constants , and thus we s imply deal 

with ordinary line difference equations as descr ibed in ref. 9; eq. (23) i s 

then simple. 

-DD g (z - l ) • Z g (z-1) + KOB6(z). Zg(z) - DDg(z)- Z g(z+ 1) = Qg(z) 

z = 1:N 

or in matr ix formal i sm 

N = number of mesh point in z-di rec t ion . 

KOBg(1) -DDg(1) 0 

-DDg( l) KOBg(2) -DDg(2) 

\ \ \ 

-DD g(N-l) 

0 -DD g (N- l ) KOBg(N) 

• 

zg(i) 

Zg(N) 

Q g ( i ) 

• 

• 

Qg(N) 

(25) 

This matr ix problem can be solved direct ly in the following manner . 

Two auxiliary vec tors W^(z) and Gg(z) a r e defined a s 

W i< i ) . -JE*CL, 
KOBg(l) 

Wg(z) = DDg(z) 

KOBg(z) + DD*(ss-1) . Wg(z-1) 
2 * z * N 
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and 

g # n - Q g0) G6(1) 
KOBg0) 

(26) 

G g ( z ) = Qg(s) + DDg(z-1)-Gg(z-1) 
KOBg(z) + DDg(z-1)-Wg(z-1) 

2 * z * N 

The solution vectors Zg(z) are then given recursively by 

Zg(N) = Gg(N) , 

Zg(z) = Gg(z) - Wg(z) • Zg(z+1) . 

(27) 

1 « Z £ N-1 

The solution technique used for the synthesis problem is similar to 

that of line difference technique only, the elements in the matrix equation 

are now submatrices. 

Eq. (23) is now in matrix formalism 

AAg(1) - DMg(1) 0 

-DMg(1) AAg(2) - DMg(2) 

DMg(N-1) 

5Mg(N-i) A£S(N) 

Zg ( l ) 

•Zg(N) 

Sg(D 

Sg(N) 

Auxiliary quantities equivalent to W and G are introduced. Gg(z) 

vectors and Wg(z) square matrices and further auxiliary matrices 

KASg(z) are introduced. 

We have 

KASg(z) = AAg(z) + f3Bg(z-1)-Wg(z-1) . 

The inverted KAS is calculated with a subroutine, INVERT (ref. 12). 
Equivalent to eq. (26) we have 

-1 Wg(z) * -KASg(z)" .f5Bg(z) (29) 
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Gg(z) = H 5 g ( z ) " - (3 g (z )+ DDg(z-1)."Gg(z-1)) . (30) 

It is seen that only the vectors Gg(z). contain terms that are altered 

from iteration to iteration, the source terms § g(z) . It is then possible to 

precalculate the matrices Wg(z) and k35g(z)~ once before the iterations 

are started. It is of great importance for the fastness of the iteration that 

it is only necessary to compute the T3g(z) vectors during each iteration. 

By msans of a backsubstitution like eq. (27) the mixing functions are 

found. 

*Zg(N) = Gg(N) , (31) 

Zg(z) = G"g(z) - W g (z) .Z g (z+l) . 1 * z * N-1 . 

After each iteration the eigenvalue k .., the effective multiplication 

factor, is found by an over-all neutron balance equation. 

k .- = production/(absorption + leakage) . 

3.4. Convergence Acceleration Technique 

To accelerate the convergence of the iteration we introduce an extra

polation technique based on the largest eigenvalue of the error matrix. 

We have 

Yi = the exact solution vector 

"Z = the solution vector at the n ^ iteration, n 

The deviation from iteration to iteration is coupled by a matrix 

equation. 

A is the er ror matrix of th«* system, n i ts largest eigenvalue, n 

must be less than 1 if the iteration is to be convergent. After some i ter 

ations the largest eigenvalue dominates, and we have 

?
n +1-V*-<VZn-1> • <32> 
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Let us set up the e r ror vector Z - Z for the n**1 iteration. The er-
n 

ro r vector is expanded after the deviation vectors. 

= <*+ ^2 + u 3 + -"2 )+ ^ n - v r # • 

Z = Z n + T T - ( Z n - V l ) (33) 

After each iteration (i is calculated from the norm of the deviation 
vector. 

• - - r 
Ress = | Zn^ - Z n _ 2 I = y 2, ( Z n - l ( i ) " Z n - 2 ^ ) ' 

i=l 

N 
ReS = I V \ - , Is "/ Z, (Zn(i>-Zn-lW)" . 

i=l 

n = Res/Ress . (34) 

When |i has been converged to a certain extent, an extrapolation by 

means of eq. (33) is made, supplying a guess at the solution vector "Z. 

For good utilization of this extrapolation technique it is necessary to 

take into account the sign of the error eigenvalue n . This is done by com

paring the sign of the largest deviation term with the sign of the deviation 

term at the same point at the next iteration. If these signs are equal, M 

is selected positive, if not, negative. If y is positive, eq. (33) represents 

an extrapolation. If ji is negative, eq. (33) actually represents an inter
polation. 

3.5. Three-Dimensional Flux and Power Shapes 

When the mixing functions are found, it is easy to calculate the three-
dimensional flux distribution from eq, (3), 
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K 
a 

Ø g ( ^ y , x ) = , zg(z ) .H&y t x) 
u 

k=l 

The power density distribution is then simply found as 

GR GR K„ 

POW(z,yjX)= £ Eg-Øg = £ ^ £f'Zf(z)'Hg(y,x) . (35) 
„ - i g=1 k=1 
g=' s 

3. 6. Calculation of T r i a l and Weighting Functions 

So far the t r i a l functions have been t rea ted as a known set of p r e c a l -

culated two-dimensional flux shapes . In this section a brief descript ion of 

a two-dimensional difference equation subroutine called DIFFERENS will 

be given. The subr outine was constructed to make the p rogramme self-

sufficient with t r i a l functions, i . e. to make it possible to calculate the 

necessa ry t r i a l and weighting functions within the p r o g r a m m e . 

The subroutine per forms two-dimensional x-y mul t i -group flux c a l 

culations by ordinary difference approximation technique. The diffusion 

equations a r e t ransformed into difference equations in the s ame fashion 

as descr ibed in section (2. 5). An i tera t ive solution technique based on line 

relaxat ion technique is used. F o r further accelera t ion of the convergence 

an extrapolation technique s imi l a r to that descr ibed in section (3. 1) i s 

used. 

No detailed descript ion of th is routine will be given h e r e because the 

purpose of this repor t i s to descr ibe flux synthesis and not two-dimensional 

difference equation technique. 
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4. SUMMARY 

The purpose of this report has been to present the mathematical 

methods used in the synthesis programme SYNTRON. A sample problem 

was calculated through by means of SYNTRON and by means of an ordi

nary three-dimensional difference code WHIRLAWAY (appendix n) . This 

example is not intended to be a verification of the code, but just an i l lus

tration. It is not possible to verify an approximate code by comparing the 

flux point by point with a more exact code, because no definite importance 

can be attached to a 5% deviation of the flux at a certain point. Not until 

the code is incorporated in a greater system including burn-up, void and 

so on will it be possible to make a rea l test of it by comparing more 

meaningful quantities with the results of measurements and more accurate 

calculations. 
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Fig. 1 

Axial zone division 
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Fig. 2 

Coarse and fine mesh division 
of a quarter of a reactor 
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Fig. 3 

Composition number distribution 
in axial zone no. k 

1 1 1 1 1 1 1 

1 

1 

1 

1 

1 

1 

1 

5 

5 

5 

4 

4 

6 

6 

7 

5 

3 

5 

4 

6 

6 

2 

5 

5 

4 

6 

6 

2 

4 

4 

6 

6 

2 

4 

6 

6 

2 

6 

6 
i 1 

2 

6 

2 
1 1 

3 Boundary conditions 
6 Cross section representation 

Symmetry boundary 

Zero flux 

Control rod, gamma matrix representation 

Fuel 

Fuel 

Reflector 



- 20 -

REFERENCES 

1) J. E. Meyer, Synthesis of Tliree-Dimensional Power Shapes - A 

Flux-Weighting Synthesis Technique. Proceedings of the 2nd United 

Nations International Conference on the Peaceful Uses of Atomic 

Energy, Geneva, 1-3 September 1958, 4 (IAEA, Vienna, 1958)519-22. 

2) E. L. Wachspress et a l . , Multichannel Flux Synthesis, Nucl. Sci. 

Eng. _[2 (1962) 381-389. 

3) S. Kaplan, Some New Methods of Flux Synthesis, Nucl. Sci. Eng. 13 

(1962) 22-31. 

4) J. B. Yasinsky and S. Kaplan, Synthesis of Three-Dimensional Flux 

Shapes Using Discontinuous Sets of T r i a l Functions, Nucl. Sci. Eng. 

28 (1967) 426-437. 

5) M. L. Steele, Variational Techniques as a Method for Multidimen

sional Reactor Calculations, Reactor Technology 13 (1970) 73-95. 

6) L. V. Kantorovich and V. I. Krylov, Approximate Methods of Higher 

Analysis (P. Noordhoff Ltd. , Groningen, 1958)258-262. 

7) S. Kaplan et a l . , Equations and P r o g r a m s for Solutions of the Neutron 

Group Diffusion Equations by Synthesis Approximations, WAPD-TM-

377 (1963). 67 pp. 

8) E. L. Wachspress et a l . , Variat ional Multichannel Synthesis with D i s 

continuous T r i a l Functions, KAPL-3095 (1965) 55 pp. 

9) R. S. Varga, Matrix I terat ive Analysis (Prent ice-Hal l , Inc . , Engle-

wood Cliffs, N . J . , 1962) 194-196. 

10) A. Hassitt , A Computer P r o g r a m to Solve the Multigroup Diffusion 

Equations, TRG Report 229 (R) (1962). 39 pp. 

11) J. Pedersen, Calculation of Heterogeneous Constants for Cylinders 

and Slabs, Risø-M-C50 (1969) 23 pp. 

12) B. Molbjerg, INVERT, Danish Atomic Energy Commission, Ris5, 

SA 70 (1965) 2 pp. 

13) T. B. Fowler and M. L. Tobias , Whirlaway - A Three-Dimensional , 

Two-Group Neutron Diffusion Code for the IBM 7090 Computer, 

ORNL-3150 (1961) 30 pp. 



- 21 -

APPENDIX I 

The SYNTRON code is written in ILLINOIS ALGOL for the IBM 7094 

computer at NEUCC. The code makes use of two overlay tapes and th ree 

data s toring tapes . 

The present version of the p rogramme consis ts of a main p rog ramme , 

SYNTRON, and five procedures , MATINO, WEIGHT, M K , OUT, and 

DIFF, on overlays. 

MATINO 

WEIGHT 

SYNTRON 

MIX 

OU1 

DIFF 

MATINO . . . . input routine 

WEIGHT . . . . c ro s s section integration and coefficient matr ix 

preparat ion routine 

. . . . solution routine, calculates the mixing functions and 

the eigenvalue k . . . 

. . . . output routine, calculates the three-dimensional flux 

and power distribution 

DIFF . . . . this routine computes the two-dimensional t r i a l and 

weighting functions. 

MIX 

OUT 

Input Prepara t ion for SYNTRON 

F F 

problem n o . , day, month, year 

. . . . , AS = number of compositions represen ted as c ross sections + number 

of boundaries 

. . . . , NG = number of boundaries , i . e. gamma mat r ices 

. . . , , GR -! number of groups 
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. . . . , . . . . , . . . . , CX, CY, CZ = number of coarse mesh in x, y and z 

direction 

. . . . , . . . . . . . . . . . . . . . N [1 :GR ] = number of tr ial functions in each group 

. . . . . . . . . . . . . . . . . . . . CMX [ 1 :CX ] = the length of each coarse mesh in 
x-direction 

. . . . , . . . . . . . . . . . . . . FMX [ 1 :CX] = number of fine mesh in each coarse 

mesh in x-direction 

, , CMY [1:CY ] 

, , FMY [1: CY] 

CMZ [1-.C2 ] 

, . . . . FMZ [1:CZ ] 

. . . . , EXT UP = boundary composition no. at the top of the reactor 

<0:CX+ 1 > 

0 : C Y + ] ' • " SAM [1:CZ, 0:CY+ 1, 0:CX + 1 ] = 
v 

. . . . . . . . . . . . . . . . . c o a r s e mesh composition no. specifi
cation in the three-dimensional reactor, 
surrounded by boundary composition 

. . . . . . . . . , . . . . . . . numbers. Inside the reactor arbitrary 

. . . . . . . . . . . . . . , . . mixing of cross section compositions 
and boundary conditions are allowed. 

• • • • t • • • • $ • • • * £ • • 

• • • • f é m • m f • * • • £ * • 

EXTBOT = boundary composition no. at the bottom of the reactor 

<1:GR> 

1:GR , , . . . G A M [1 : N G , 1 : G R > 1 : G R j = 

A 
:G: 
V 

* • • * p * ø ø * ø • * • • $ • * gamma matrices; if only the diagonal 
elements are non-zero, the programme 
will only take into account the diagonal 
elements and treat them as ordinary 
extrapolation factors. 
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1:GR 

D AB 

<T:GR > 

SP:1:GR 

D 

AB 

NFIS 

XI 

FIS 

SP 

NFIS XI FIS 

diffusion constant, 

macroscopic absorption cross section, 

v* macroscopic fission cross section, 

fission spectrum, 

macroscopic fission cross section, 

macroscopic scattering matrix. 

1 + NG:AS 

. . . . , NTFC = number of two-dimensional difference equation calculations 

for trial functions preserved in a function library on tape. 

. . . , , WEIGHT if 1, only the ordinary flux is calculated, otherwise both 

the ordinary flux and the adjoint are calculated. 

Input for the specified number of tr ial function calculations. 

< 0:CX + 1 > 

A ' * * " » 

0:CY + 1 , COMP ;0:CY + 1, 0:CX+ l] 

MAXI 
STFLUX 

TOL OVR 

1:NTFC 

COMP = two-dimensional composition no. distribution for differ« 
ence calculation, 

MAXI = maximum number of iterations allowed, 
_4 

TOL = convergence criterion (suggestion 10 ), 

OVR s start value of the overrelaxation factor (suggestion 1.2), 
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STFLUX = flux start parameter; if 1, all flux points a re set equal 

to 1, otherwise the previous flux distribution is used as 

input. 

The programme will calculate the specified number of two-dimensional 

flux functions and preserve them on tapes. 

. . . . , NTRR = number of flux readings from tape for trial function generation. 

. . . . , WEIGHT if 1, tr ial and weighting functions are equal, otherwise the 
trial functions are equal to the ordinary fluxes, and the 
weighting functions are equal to the adjoint fluxes. 

TRRNO 1 :NTRR 

the numbers on the trial functions in the function 

library which are used 

NTF 1 :NTRR 

number of trial functions out of each library func

tion used. 

GTR 

1:NTRR 

TRI 

• » • • % 

GRFL 

1:NTF [1 ] 

1:NTF [2] 

Mixing of library functions for trial functions. 

GRTR = group no. in t r ial functions, 

TRI = function no. in t r ial functions, 

GRFL = group no. in library functions, 

. . . . , MAXI = maximum number of iterations calculation, 

. . . . , TOL s convergence criterion in synthesis calculation, 

. . . . , POWOUT (if 0, only power mean value calculated, 
1, only power distribution on binary tape, 

2, power on tape + printing. 



- 25 -

3, power on tape + printing + flux printing). 

FF 
-1 after the last problem. 
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APPENDIX II 

F o r i l lustrat ion of the code a sample problem was calculated by means 

of SYNTRON and by means of an ordinary three-dimensional difference 

code, WHIRLAWAY (ref. 13). 

The sample reac tor \ s a two-zone reac to r . F o r c r o s s sections homo

genized Yankee cel l c r o s s sect ions in two energy groups a r e used. In the 

cen t re old fuel, A, on the outside fresh fuel, B; the whole r eac to r i s s u r 

rounded by a l ight-water ref lector , C. Cross sect ions a r e found in table I. 

Reactor dimensions and mesh divisions a r e i l lus t ra ted in fig. 1. 

in figs. 2 and 3 the fast and the rmal fluxes a r e depicted. The flux d i s 

tribution i s i l lus t ra ted by means of the flux distribution in the z-direct ion 

at some selected (y,x) points. 

WHIRLAWAY calculates the flux in the corne r of each mesh, whereas 

SYNTRON takes a flux point in the middle of the mesh. F o r the resu l t s to 

be comparable , l inear interpolation between the four neighbouring mesh 

points in the yx plane was used. 

F o r this problem two t r i a l functions were used in each energy group 

in SYNTRON. The t r i a l functions a r e found by two-dimensional ca lcula

tions on the r eac to r , one performed at axial zone no. 1 0 < z ( 60 cm 

and one at axia/. zone no. 2 60 < z ( 80 cm. The fast fluxes a r e used as 

fast t r i a l functions and the thermal fluxes a s t he rma l t r i a l functions. 

Problem s ize 15 * 15 x 15 mesh, two energy groups . The s ize of 

the sample problem i s determined by the capacity of WHIRLAWAY, which 

i s an old and r a the r slow code in only two energy groups . 

Computing t imes for the sample problem 

WHTRLAWAY total 25.60 min. 

SYNTRON: 

DIFFERENCE 1 0. 459 min. 

- " - 2 0.476 min. 

MATINO 0. 036 min. 

WEIGHT c. 0. 115 min. 

M K , 0. 230 min. 

OUT 0. 660 min. 

SYNTRON total , 2.00 min. 

If the computing t ime for t r i a l function calculations is neglected and 

no print-out of the flux i s wanted, the total SYNTRON computing t ime will 

be about 0.6 min. 
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Table I 

Cross sections for sample problems 

A 

B 

C 

D 1 

cm 

1.2894 

1.2866 

1.7290 

< 
D 2 

cm 

0.3915 

0.3966 

0.2392 

2 i a l 

c m " 

0.01159 

0.01164 

0. 00055 

L a2 

c m " 

0. 12124 

0.09916 

0.0111 

Y2 f l 

-1 c m 

0.00716 

0. 00779 

0 

* £ f 2 

-1 c m 

0. 16575 

0. 1502 

0 

X i 1 

1 

1 

1 

X i 2 

0 

0 

0 
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Fig.2 
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