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Abstract 

Spatially varying high frequency oscillations 

will influence the electron motion in plasmas 

(through ponderomotive forces) and in turn affec1 

the characteristics of ion acoustic oscillations. 

In this report we derive the dielectric function 

for long wavelength, low frequency ion acoustic 

waves in the presence of high frequency, short 

wavelength oscillations. Apart from reproducing 

well known results this dielectric function 

shows the possibility of unstable ion acoustic 

waves for extreme intensities of high frequency 

oscillations. It is demonstrated that moderate 

intensities have a stabilizing effect on linear

ly unstable double humped ion distribution func

tions and it is argued that this effect may be 

of importance in laboratory experiments, 

nally we point out some generalisations. 
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Ion acoustic waves in tne presence 

of high frequency oscillations 

H.L. Pecseli 

Introduction 

In this preliminary report we consider tne influence of 

high frequency short wavelength electron oscillations on the 

propagation on low frequency .̂ong wavelength ion acoustic os-
1,2 

dilations. The high frequency oscillations are denoted by (<c»,ic) 

and the ion acoustic oscillations by (I7,q). We describe the ions 

by the collisionfree Vlasov equation 

The electrons are considered as an isothermal fluid and we let the 

electron motion be determined by 

The force F arises from the high frequency oscillations (plasmons) 

1 3 and is determined by the following argument * : Let E(x,t) be a 

high frequency field that varies slowly in amplitude with position. 

The equation of motion for an electron is then 

*-£^0 (3) 

We look for solutions in the form x*y+ jr where y is a slow dis

placement of the particle due to spatially varying amplitude of E 

and ^ is a small displacement in the high frequency field. Ex

panding E(x,t) in powers of \ we obtain 

»*f • ft(«*o *f§fi».o) < i ) 



Taking the rapiJi]* oscillating term in (1) we obtain 

f - i l ^ *«-•*') (S) 
A/* 

I n s e r t i n g tb) in i*) and averaging over a t t ime 7" where £ « f * < J r 

we obtain 

F **.<«;>. - £ / ̂  (6) 

A similar problem is considered in ref. 4 in a more general form. 

The nigh frequency oscillations obeys the dispersion relation 

where Co- ^vtCy) is the local electron plasma-frequency. We 

prefer to use k as a summation index. Transforming the sum in 

(6) into an integral (with proper change in the dimensions of the 

integrand since £, -* h-]<tk ) we obtain 

Introducing M - {zS± equation (2) reduces to 

The variation of N. is determined by 

(B) 

(9) 

(10) 

where yk is the appropriate decay time for the distribution of 

high frequency oscillations. Equation (10) corresponds to the 

zero order W.K.B. approximation for the evolution of a wave packet 

of high frequency oscillations. This approximation is valid sine« 

we assume k » q and Jj refers to the spatial variation of the 

ion density. 
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Using (7) we reduce (10) to: 

Finally we introduce Poisson's equations 

(11) 

(12) If-£'*-".) 
Equations (1), (9), (11) and (12) form a closed set of equations. 

In the following we will use the terms "radiation pressure" for 

F and "number of quasiparticles" (or plasmons) for Nk although this 

terminology may be slightly misleading. 

He linearize the equations (1), (9) and (11) and obtain 

8'• "8 •**#«>"> (13) 

(It) 

(15) 

In the integrand in the last term of (9) we have replaced l/«k with 

!/«•». • This is a reasonable approximation for the case of weak dis

persion (see eq. (7)). The zero order distribution of quasiparticles, 

N0, is a function of time No(k) = N0(k)exp(-2 y t). In the follow

ing we assume V^-0 corresponding to a stationary spectrum. We may 

for inst. assume that N (k) qualitatively represents a fluctuation 

level due to the thermal fluctuations of the electrons. 

In a more interesting case N (k) is determined by a turbulent spec

trum. 

The following features of F and Nj. may be noted : the force F 

tries to push the electrons to regions at low fluctuation level 

i.e. small Ny thus justifying the term "radiation pressure". The 



force acting on the quasi-part ic les , - ^~ t r i es to condense the 

quasi-particles in regions of low ion density, a feature obtained 

also by physical intuition when the dispersion relat ion (7) is 

taken into account. 

In eqs. (L3)-(15)«j and J refer to the unperturbed s t a t e . 

The die lec t r ic function 

By considering the adiabatic response t - a test charge we fir.'. 

the d ie lec t r ic function for the medium. In the zalculatioris we 

neglect electron iner t ia i . e . the tera :>n the left side of ( I t ) . 

where 

and 

The sign \r indicates that the integration path runs below 

V.i« pole. Since we have assumed that q is small (q << 1/d) we 
2 

will neglect the term <qd) in the paranthesis in (16). 

The validity of (16) for the case where NQ=0 is well established 

experimentally. ' We will now consider the effect of the high 

frequency oscillations. 

We consider turee special cases since eq. (16) is somewhat 

confusing for arbitrary fQ(v) and N (k). 

I. Assume fQ(v) * £(v). 

Then 



For N =0 eq. (17) describes undamped oscillations. When N rfO, 

these oscillations are damped (if N' < 0 since Q > 0 for cases 

of interest) on quasiparticles with distribution N (k) in a 

way much similar to the conventional Lanaau damping (This effect 

is discussed in Ref. 2). Conversely a distribution of quasi

particles for which N' > 0 for some k may lead to instability. 

(Not« however that for A/q * C the quantity ( jfc *> m)/(3qjtT ) 

corresponds to a very small k-value. We have assumed q « k. 

For small k we may let Q ~ -£ )• 
o 

The imaginary part of the frequency is determined by the well 

known expression 

z-ttK.a*) 
j R.KK,aK) 

where A. is tho solution to Re £ (K,Aj.)=0. Eq. (IB) is valid 

for small Im<J. 

II. As a second case assume N (k)*N K rf(k-K). This assumption 

corresponds to the case of a monochromatic high frequency os

cillation. Then: 

(19b) 

It is well known that this particular NQ(k) leads to instability 

if we also choose f_tv) = *(v). ("Instability of a cold plasmon 

gas" see ref. 2 and 3). In the case where fQ(v) *o(v) (assume 

f to be a Maxwellian for definiteness) we consider: 

ais. * K 3**T, -Kl«p 3*7; 

When K has tworeal solutions the paranthesis in (19b) becomes 

negative for sufficiently large N , and K chosen appropriately. 

Obviously there is a threshold value for N . If Re £(q,fl.) » 0 

has solutions also we get unstable oscillations. Since the case 

where f = o(v) is unstable for arbitrary K we notice a stabilizing 

effect of the thermal spread in ion velocities. This instability 

belongs to the class of parametric instabilities. For a review 
g 

see for inst. F.F. Chen. 

III. Finally we consider the case where 

f O f.- U|>K 

K(0 /H f.r IlUK 

Then: 

i 

(20a) 

(20b) 



For physical reasons K is of the order 1/d (d the Debye-length). 

Then 

where v . is the electron thermal velocity. Equations (20a) 
therm 

and (20b) then reduces to 

Assume for definiteness that f (v) is a Maxwellian. We may then 

9 make use of the plasma dispersion function in calculating the 

integral in (21a). For sir.all n/q this integral is negative. 

If 

J ci^a- ho«)') . ri 
(22) 

then a Nyquist contour encircles the origin and the plasma is 

. v., 1 0 , 1 1 

unstable. 

K > <*r.rc*.K m ) 
*>}*0-K(Kdf) 

the inequality (22) is satisfied. 

The physical mechanism for this instability is easily understood: 

In a plasma where N *0 an ion acoustic oscillation is driven by 

the E-fieid that builds up because of the electron pressure. This 

-9-

E-field points from the high density region to the low density 

region of wave. When H tQ the radiation pressure will hinder 

the electron motion from crest to trough of the wave. If the 

radiation pressure is strong enough it will overcome the electron 

pressure thus giving rise to an E-field in the opposite direction. 

This E-field will in turn force the ions towards regions of higher 

density and instability sets in. In the case where the two pressure 

terras cancel (equality in eq„ (23)) an initial perturbation of the 

ions is damped solely due to ion free streaming. 

We may introduce an effective electron temperature 

^•^•^^y) (21) 

although this definition refers to a particular choice for M (k). 
o 

The influence of a radiation pressure on double humped ion 

distributions, which are unstable when N =0 is immediately realized 

by considering the stability diagram shown in for inst. ref. 12. 

This diagram shows that a distribution consisting of two ion groups 

with a sufficiently large velocity difference is unstable for large 

enough electron temperatures, T . Replacing T by T .» from eq. 

(2t) we see that the radiation pressure reduces the instability 

(reduces Te), eventually stabilizes the plasma. This fact may be 

of importance for the study of ion acoustic instabilities in for 

inst. Q-machines. In these devices double humped ion distributions 

are created by charge-exchange processes and the electron tem

perature is increased by RF- or^i-wave heating " ' . These 

methods of electron heating are known to give rise to a high noise 

level1* (high N0>, considerably above the level of thermal fluct

uations. The effect of "radiation pressure" should therefore be 



r a x. •?; i i r. t c a •:?'-" c- - n: ir. t: i e analysis. 

!::•.' . ̂:; Ji *. i _n (̂  i) x.eans (roughly) that the energy in the 

f 1 A J* .: :i ic:i6 J.:\Z'J.\.JL LO larger than the thermal energy of the 

o lee: :e.-.i * :;,.. rendering the instability mentioned somewhat 

aedje^ic. I: we ropidcic (7) by the dispersion relation for 

•3 leer r:~.3:r.e: ie wave i *.-ie basic physical mechanisms remains un-

cnangei. 7;ie instability described may be observed for inst. 

wnen an intense laser beam interacts with a plasma. 
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Discussion 

In the foregoing sections we considered the influence of high 

frequency short wavelength oscillations on long wavelength ion 

acoustic waves. The question remains whether their effect is of 

any importance compared with the influence of the long wavelength 

electron oscillations. In this connection we draw the attention 

to the case of a cylindrical plasma column confined by a homo

geneous magnetic field, for inst. the plasma in a conventional 

Q-machine. Geometrical effects are negligible for ion-acoustic 

oscillations. The dispersion relation for electron oscillations 

is on the other hand drastically changed for k <c D (D is diameter 

of plasma column), the dispersion curve(for the mode m = 0) going 

through (V,k) = (0,0) instead of < fc*,k) = <** ,0) as for infinite 

17 -1 -1 
plasmas. (For D « k « d eq. 7 is still a good approximation). 

We may now excite electron oscillations in the plasma around the 

plasma frequency. (Tor inst. by band limited white noise around ** ). 

Because of this particular dispersion relation only large k will 

be excited and our analysis is appropriate (with properly chosen 

N (k)'s). Example XI of the previous section has obvious applica

tions also for an infinite plasma. Note that the instability in 

example III will be stabilized as time goes since the constant input 

of energy in the oscillations will heat up the electrons through 

nonlinear processes. 

It should be noted that a force similar to F in eq. (6) acts 

on the Ions also. This force is small since m « < H , but might be 

taken into account in a more sophisticated theory. It is worth 

noting, however, that this force will try to move ions from low 

density regions towards regions of higher density thus having a 



destabilising effect (rather than stabilizing) on the instability 

discussed in example III of the previous section. 

Finally we mention that the force on the quasi particles 

should properly read 

U'b) 

rather t.ian the expression used in eq. (15) where —• was in

serted. This iistinction is irrelevant since we later assumed 

(qj)'« 1 corresponding to the assumption of qjasi-neutrality 

In - n-). The expression in eq, (15) facilitates the calculations, 
e i c ^ 

If we apply (2S) vie outain: 

(26) 

It is easily shown that for (dq) <e. 1 the equation £(q,fl) = 0 

will havs the same solutions independent of which expression for 

£(q,C5) is used : (26) or (16). 

Note that we nowhere in the calculations make use of resonance 

conditions as kj = kj • kj and U1 - fc>2 • Uy These conditions 

can be satisfied for the dispersion relation mentioned earlier in 

this section if we let for inst. lut., k,) represent an ion acoustic 

oscillation. 
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Generalization and Conclusion 

Tne analysis in the preceding sections was based on the 

dispersion relation (7) for the high frequency oscillations. 

We emphasize that the physical arguments holds equally well if 

electromagnetic oscillations are considered. The expressions 

for F in eq. (6) remains unchanged * and eq. (7) should be re

placed by 

<u - iw\ * c'k* <"> 

Then 

and 

7 T °r (^r * c * ) ft 77 
The only important change is that now k J. Ej,- It is immediately 

realized (compare with the discussion p. 8-9) that a sufficiently 

strong radiation may drive an ion acoustic instability. Self-

focusing of an intense laser beam is a related effect but does 

not require ion motion. This effect is easily understood using 

the dielectric function £ • 1 - (u /w) . A decrease in elec

tron density (caused by the radiation pressure) is accompanied 

by an increase in t thus causing the self-focusing. Ar intense 

beam of electromagnetic radiation with a large cross section (much 

larger than the Debye-length) and a uniform energy distribution 

is thus unstable when passing through a plasma ("filamentation"). 

The theory for these phenomena is well established (e.g. ref. 18,19). 

We would like to point out that the previous analysis also 



applies to the influence of high frequency ion oscillations (around 

CJ .) on the propagation on low frequency, long wavelength-ion 

acoustic oscillations. We make use of the following set of equations: 

The ion Vlasov equation with the radiation pressure (por.der-

omotive force) included 

It * "S * (A * Si & J *•") &* - * 
The variation of N. is given by 

Since the frequency of the ion oscillations is low we nay 

assume that the electrons are in equilibrium and use the Boltz-

mann law 

In (30) we have used the assumption of quasi-neutrality i.e. 

ne ~ n- -* n, since our assumptions require q « d as in the 

previous analysis (q being the wavenumber of the low frequency, 

long wavelength oscillations). For the high frequency oscilla

tions we use the dispersion relation 

u> - C.k {l+Ukf)'"*- (3D 

(We assume Tg * 1.% in order to make (31) meaningful. Otherwise 

the waves will be damped within a period of oscillation for \ ~ d ' 1 

thus making the concept of a wavelike motion questionable). Using 

(31) we get 

&*»5 • ccfww;«) '* (M, 

and 

= *fc)f|- (33) 

Since we assume that the wavelengths of the high frequency os

cillations are small ( k ~ ^ ) we may replace fc^ in (28) by 

W . so eq. (28) reduces to 
pi 

We find that the zeroes of the dispersion relation are given by 

2 
This equation is formally the same as (IB) with (q«i) « 1 . Apart 

from the difference in «• and JJ the only change is that U> 

in (16) is replaced by ««l,. The effect of the ponderomotive 

forces is therefore rather weak in this case but otherwise it gives 

rise to the same effects as in the case considered before, in par

ticular it has a stabilizing effect on unstable double humped ion-

distribution functions. In spite of the similarity between the 

two problems in a linear treatment their nonlinear behaviour is 

entirely different, since electron oscillations are trapped in 

regions of low plasma density (wave troughs) while ion acoustic 

oscillations around u , will be trapped in regions of high density 

(wave crests). A correct treatment of these phenomena must take 

into account the problem of turning points in the WKB-approximation 

used in eq. (10). Such a treatment is of particular interest with 
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reference to soliton stability . We shall not consider this 

probles here. 

The influence of the turbulent spectrum of electron oscilla

tions on low frequency long wavelength drift waves is investigated 

21 

by Satya and Kaw . One finds also in this case that the in

fluence of the ponderomotive forces may lead to strong modifications 

of the wave behaviour. In particular the dispersion properties of 

the drift waves are drastically altered by even moderate amounts 

of short wavelength electron oscillations. We expect high freq

uency ion acoustic oscillations to give a similar, although weaker, 

effect (when r * T , - ) . e i 

Ponderomotive forces will, since they modify the linear di

electric function, also affect wave-vave interaction between the 

low frequency, long wavelength waves, through a modification of 

the coupling coefficients. This effect can be investigated by 

applying the theory of ref. 22 to the dielectric function (16). 

The coupling coefficients calculated in ref. 23 are easily modi

fied using (2i+) for the case of a rectangular distribution for 

»„CM. 

In conclusion we draw attention to the fact that the radia

tion pressure due to high frequency oscillations is a nonlinear 

effect. Fortunately it is possible to render the equations de

scribing this effect linear by the introduction of M. . 
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