

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Algorithms and programs for consequence diagram and fault tree construction

Forskningscenter Risø, Roskilde; Taylor, J.R.

Publication date:
1976

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Hollo, E., & Taylor, J. R. (1976). Algorithms and programs for consequence diagram and fault tree construction.
(Risø-M; No. 1907).

http://orbit.dtu.dk/en/publications/algorithms-and-programs-for-consequence-diagram-and-fault-tree-construction(a9368eeb-75b5-4eb6-9af8-096b2f7e8ec5).html

A. E. K.Risø R k f l - M - 1 i907

Title and author(s)

Algorithms and programs for consequence

diagram and fault tree construction.

E. Hollo and J.R. Taylor

pages -f~ tables -f illustrations

Date December 1976

Department or group

Electronics

Group's own registration
numbers)

R-l-77

Abstract

Algorithms and programs for consequence

diagram and sequential fault tree construction

are presented which are intended for reliability

and disturbance analysis of large systems.

The system to be analysed must be given as

a block diagram formed by mini fault trees of

individual system components. The programs

were written in LISP programming language and

run on a PDP8 computer with 8k words of storage.

This report describes the methods used and

gives a detailed description of the program

construction and working.

Copies to

Permanent address:

Institute for Electrical Power Research (VEIKI)

H-1051 Budapest

Zrinyi-street 1

HUNGARY

Available on request from the Library of the Danish
Atomic Energy Commission (Atomenergikommissionens
Bibliotek), Rise, DK-4000 Roskilde, Denmark
Telephone: (03) 35 51 01, ext. 334, telex: 43116

ISBN 87-550-0442-3

CONTENTS PAGE

Introduction 1

1. Unit model 3

1.1 Failure transfer functions 3

1. 2 Unit descriptions 4

1.3 Illustrative example ?

2. Consequence diagram construction ^

2.1 Consequence diagram construction algorithm . 10

2.2 Program for consequence diagram construction

(CONSEQ) 11

2.2.1 General program structure and

description 11

2.2.2 Subroutine description 1^

2.2.3 Input/output

2.3 An example 18

3. Fault tree construction 22

3.1 Fault tree construction algorithm 22

3.2 Program for fault tree construction (CAUSE) 22

3.2.1 General program structure and

description 24

3.2.2 Subroutine description 26

3.2.3 Input/output 31

3 . 3 An example 31

4. Present status and further developments 33

References 34

Appendix 1. Consequence diagram construction 35

Appendix 2. Fault tree construction 4 0

Appendix 3. Outline of a LISP-8 code 4 7

- 1 -

Introduction

Fault tree and consequence diagram analyses have recently

received widespread interest as methods for reliability and

safety analysis of complex systems. Haasl's paper (1) can be

considered as the starting point of fault tree technique appli

cations and Nielsen's report (2) indicates the beginning of

cause-consequence charts' use in practice. In the field of

fault trees, however, after an optimistic start, there has been

some scepticism. The main problems were the cost and time aspects

of constructing complex fault trees; to consider all failure

combinations; and to obtain proper failure data; and to find

qualified staff with experience in fault tree method, probability

analysis, and system operation. By the late 60's and early 70's

several of these problems have been overcome, but the fault tree

and consequence diagram construction is still the most critical

point of the analysis procedure. The state of the art of fault

trees and CCD's are summarized in Pussell/Powers/Bennets' joint

paper (3) and Nielsen's report (4), respectively.

In order to reduce the cost of adequate diagram construction

and to avoid oversights of some failure sources or consequences,

automated treatment is required. Cn the other hand, it has some

disadvantages, e.g. human errors and environmental effects cannot

be considered but it can be a rapidly executed initial procedure,

to be followed by a more detailed fault tree or consequence

analysis. Up to the present algorithms published on automated

fault tree or consequence diagram construction are rather limited.

Fussell's method (5) uses mini fault trees of different com

ponents, the system fault tree is created by their consistent

connections. His technique has been implemented on computers for

electrical systems. Powers and Tompkins (6) use input-output

component models for fault tree constructions, where the com

ponent's normal or failure state can be identified by the actual

input-output process variable values. Lapp and Powers (7) employ

digraph models for components which describe the normal, failed

and conditional relations among variables and events. Their

computer program was applied to chemical processes.

- 2 -

Methods for obtaining consequence diagrams are given by

Taylor (8, 9). His method uses algebraic equations for components

to describe their normal or failed operation. The application

of his algorithm on computers is in progress.

Generally both the automatic fault tree development and

the automatic consequence diagram constructions require three

main steps:

- to find a proper system or component modelling method which

is suitable for computer programming,

- to develop an algorithm for fault tree and consequence

construction,

- tc implement these algorithms on computers.

In this paper algorithms and programs for automatic fault

tree and consequence diagram construction are presented. The

programs were written in a LISP dialect and developed for a

PDP8 computer with 8k. For plant component models input/output

and state transfar functions formalized as mini fault trees

are used, the algorithms work with their causal links which form

the system model.

- 3 -

1. Unit model

1.1 Failure transfer functions

Both consequence and fault tree programs use individual

plant component failure transfer functions. The unit models

receive input events/conditions as well as state information

and depending en combinations of these, the output events can

be determined. The transfer functions are considered as compo

nent mini fault trees describing the possible failure modes of

the unit. To determine the mini fault trees thorough component

failure mode and effect analysis (FMEA) is required. The results

of this analysis, i.e. failure transfer functions are formalised

as Boolean expressions using OR and AND gates to describe the

connection between input and output events.

The structure of mini fault trees for the programs presented

here is as follows:

{Transfer function>::=(TF<TF>)

<TF>::=((STF1 <STF1>)(STF2 <STF2>)...)

<STFi>:: = ((OR(ANDCInput Event/Cond>)(AND*Input Event/Cond>)...)

(AFTER 0 <Mark> <Immediate event?)

(AFTER <Time delay> <Mark> <Delayed event>))

<Mark >::=SIGNEVILASTEVIPUNEV

The failure transfer function consists of a set of sub-

transfer functions (STFi). Each sub-transfer function has an

input and output part, the input part contains the OR/AND com

binations of input events/conditions and state variables, the

output part involves an immediate and delayed event. The

immediate output event has zero time delay, the delayed output

event has to have a non-zero time delay. Either of them may be

missing from the given sub-transfer function. In both of them

a marker is used for indicating a significant (SIGNEV), a

last-in-chain (LASTEV), or minor puny (PUNEV) event for display

selection purposes.

- 4 -

The structure of input combinations and output events is as

follows:

<Input Event/Cond> : :=<Input IX Input 2) <Input rO

Unput n> :: *<SEn>K NSn> K ECn>

<Output Event> : :*<EC1><EC2> <ECra>

<SEi >::=(SB <VNi> -* <Wi>)

<NSj ::=(NS <VNj> = <Wj>)

<ECk>::=(EC <VNk> <Relation) < W k »

<Relation>: s=-»l«

In this structural description a distinction is made between

spontaneous events (SE), normal state information (NS) and events/

conditions (EC) appearing between components. To make clearer the

difference of events and conditions "V and "=" relations marks

between variable names (VN) and their values (YV) are used.

1.2 Unit descriptions

Although the failure transfer functions determined by FMEA

analysis form the critical part of system unit descriptions, some

further information is needed to describe the physical connections

between individual components, and to make effective programming

possible.

The complete unit description which is applicable for both

algorithms contains the following information.

Unit description):: = «Component name)

<Failure transfer function)

<Proceeding connected component list>

<Following connected component list)

spontaneous event list?

<Normal state)

<variable list?)

- S -

CProceeding connected component l i s t > : : =

(PC <PCName 1) tPCName 2> . . .)

(.Following connected component l i s t > : : =

(FC <FCName 1> <FCName 2 > . . .)

(Spontaneous e v e n t l i s t > : : * (S E <SE1XSE2>. . .<SEi>)

<Normal s t a t e > : : * (N S <HS1XNS2> . . . < N S j >)

<Variable l i s t > : : - (V R <ECl>VEC2>...<ECk>)

The preceeding/following connected component lists can be

obtained from the system block diagram; the spontaneous event list,

the normal state, and the variable list can be filtered from the

failure transfer function. This unit description method has some

advantages and some drawbacks.

Drawbacks: - the unit descriptions are dependent of the

system being analyzed (as PC/FC lists are

contained),

- redundant information is involved (in TF and

SE/NS/VR).

Advantages: - clear, complete, and easy-to-change structure,

- efficient computer programs can be developed,

- a library data of transfer functions can be set

up which is independent of the system structure

on a large scale. In current state this inde

pendency is restricted by the condition that

the names of input-output variables in a causal

connection must be identical.

This means that in order to get well developed programs and

shorter running times, a certain amount of surplus storage capacity

is necessary. The detailed specific rules to create unit descrip

tions are summarized in Table 1.

- 6 -

Table 1 Rules specified for unit •odel descriptions

1. Only atomic, non-zero component name is allowed.

2. Only atomic, non-zero variable naae is allowed.

3. Only atomic variable value is allowed.

4. Each unit indicated in PC/FC list must be figured on CL.

5. A variable might appear at the same ?ub-TF's input and

output only if it is an internal state variable.

6. If 2 ccsponenL luts an internal feedback variable, the

variable name must be in its PC/FC list.

7. Several identical sub-TF's output events may occur in a

TF, but their time delays must be different.

x 8. Each variable of TF inputs must appear on VR list of compo

nent in question, except normal state.

x 9. Each variable of TF outputs must appear on FC's VR lists.

xlO. The sequence of variables in VR list should be adequate

to the sequence of components in FC list.

xxll. The sequence of variable types in a sub-TF's input combi

nations must be: first SE/NS and EC.

xxl2. If in a sub-TF's input combination an SE/NS-type variable

occurs, the component name must be on its PC list and on

the first place.

Note:

Rules signed by x are raised by consequence diagram program,

signed by xx are raised by fault tree program.

•^ -,^,-^^>lrt„,.-'-.-^|-^ > *„,._<- ^_ _.-_„ . _ • -m*^ "- •" naTTi i iBir- ii i'iia" m-niianninni n •T"iiw»wir"-ir-

- 7 -

It must be noted that unit descriptions used for either

consequence diagram or fault tree construction alone« can be sig

nificantly simplified. Namely, for consequence program the pro

ceeding connected component list (PC), spontaneous event list

(SE) and normal state (NS) can be eliminated, for fault tree

program the following connected component list (PC) and variable

list (VR) can be omitted.

1.3 Illustrative example

To illustrate the method, a simple example with general

event transfer functions is given in Fig. 1. The system consists

of three components: a HEATER, a pile of WASTE-PAPER, and a

FIRE-BRIGADE.

The HEATER can be switched on by SWITCH. After the heater

has been turned on, there will be a time delay 4tp, after which

a FIRE-ALARM may occur, but only if the WASTE-PAPER is DRY. The

FIRE-BRIGADE which is probably WATCHFUL is alarmed by the

papers SMOKING and tries to extinguish the fire. (WASTE-PAPER

state - BURNING, SMOKING is changed to EXTINGUISHED). If the

fire-brigade is not quick enough (atg> t#), the papers may be

COMPLETELY-BURNT.

The component descriptions are summarized in Table 2. It can

be seen that in order to get a unified library data of component

descriptions for both programs, a relatively complex data structure

was chosen, but simultaneously it yields a profit of clear and

efficient program outline.

- 8 -

imiixM

m*r

snotte

«.̂ S/oc/r tcAeiMt

CCHEAT CC ttC*-l»iCi* « € • - # * • * * ses*iTCH

g»*yf-Mfff

i^llfei^l
^7 ^7 d7

* CC: tttC- M M M

Et Frf€'*L«#H

{., fft'iu' /««/£ ^re«r

Fig. 1. Unit model example (HEATER/WASTE-PAPER/FIRE-BRIGADE).

- 9 -

Table 2. Example of unit description

((HEATER

(TF(STF(OR(AND(SE SWITCH -» CLOSED) (EC POWER ^ ON)))

(AFTER 7 SIGNEV (EC HEAT -» APPEARS))))

(PC HEATER)

(FC WASTE-PAPER)

(SE (SE SWITCH -* CLOSED))

(NS)

(VR (EC POWER = ON)(EC SWITCH -» CLOSED)))

(WASTE-PAPER

(TF(STFl(OR(AND(NS tAPER - DRY) (EC HEAT -4 APPEARS)))

(AFTER 0 SIGNEV (EC PAPER -» SMOKING) (EC FiRE-ALARM -* APPEARS))

(AFTER 5 SIGNEV (EC PAPER -> BURNING)))

(STF2(OR(AND(EC PAPER -t BURNING)))

(AFTER 20 LASTEV (EC PAPER -̂ COMPLETELY-BURNT)))

(STF3(OR(AND(EC PAPER -» SMOKING) (EC FIRE-BRIGADE-* WORKING))

(AND(EC PAPER-* BURNING) (EC FIRE-BRIGADE-4 WORKING)))

(AFTER 3 SIGNEV (EC PAPERS EXTINGUISHED))))

(PC WASTE-PAPER HEATER)

(FC WASTE-PAPER FIRE-BRIGADE)

(SE)

(NS (NS PAPER = DRY))

(VR (EC HEAT -» APPEARS) (EC FIRE-BRIGADE -» WORKING)))

(FIRE-BRIGADE

(TF(STF(OR(AND(NS GUARD = WATCHFUL) (EC FIRE-ALARM -* APPEARS)))

(AFTER 10/30 SIGNEV (EC FIRE-BRIGADE -» WORKING)))

(PC WASTE-PAPER)

(FC WASTE-PAPER)

(SE)

(NS (NS GUARD = WATCHFUL)?

(VR (EC ALARM -4 APPEARS))))

- 10 -

2. Consequence diagram construction

The consequence diagram is an event-sequence diagram, which

relates the input events of a system into its output events.

During the consequence analysis procedure a tracing work is done,

where at each step taking the actual system state into conside

ration the current component's input event is implied on the

component and its related output event is deduced. In the next

step this output event is considered as input event for the

selected next components, thus determining the possible event

chains until last chain events or unfulfilled input conditions

are reached.

2.1 Consequence diagram construction algorithm

The consequence analysis procedure can be considered as a

transformation of a system block diagram into an event sequence

diagram. The descriptions of individual system units must be

given in the form of failure transfer functions and some other

additional information described in Chapter 1.2. The system may

contain components connected simply in series or components with

internal/external feedback and feedforward loops. A single

series block diagram is converted into a simple series event

chain or if the components have memory (i.e. its output event

contains a delayed event with non-zero time delay) the chains

may branch. The components may have several connected components

which are affected by the current output event of the preceeding

component. Each of the activated following components initiates

a new branch or branches (components with memory). Similarly,

the physical series branches of a block diagram can be transferred

into a simple series event chain or several series event chains

depending on the causal interconnections. Feedback/feedforward

loops containing components with several input/output connections

and time delays draw special attention. Several input connections

indicate several input conditions which must be investigated to

determine an event propagation through the component. Feedback

loops with time delays produce several delayed event chains of

- 11 -

one input event, which makes the consistency checking very im

portant. Details and some other aspects of block/consequence

diagram transformation (e.g. multiple failures) are described

in (8).

To perform event tracing tasks in complex systems containing

either simple series or complicated loop block diagrams a simple

algorithm was developed. The main steps of the algorithm are

presented in Table 3, the detailed description in Table 5, in

Appendix 1.

2.2 Program for consequence diagram construction (CONSEQ)

To adapt the shown algorithm on computers a dialect of

LISP language was chosen which made the list processing of data

possible. Structured programming techniques were applied to give

a possibility of easy modifications and to yield well-arranged

programs.

2.2.1 General program structure and description

The general block structure of the developed program is

given in Fig. 2.

The system information is stored as component description

list CL. The program starts with creating a data-field containing

all the component information in a clear, easy-to-handle way,

i.e. the data-field is set up by an object-set. Each object is

related to a component and its attributes comprehend the unit

description in a slightly modified, internal data structure.

To manipulate the data-base (to select an object or an attribute,

to update attribute values, etc.) a program system for heuristic

programming (10) was used. The object structure is as follows:

- 12 -

Table 3 Consequence mapping algorithm

1. Get initial input events marked with their time and

influenced component's name.

2. Select earliest output event and active component:. If

there are no more output events, stop.

3. Find the affected following components.

4. Select randomly a following component. If there are no

more, go to 2.

5. Check for match between the selected components' input

events and current input conditions/internal state.

If there is no match, go to 4.

6. Deduce its current intermediate and/or delayed output

events and their real time of occurrence.

7. Update internal state condition.

8. Go to 4.

- 13 -

V o/.6> inie CL)

Data-tøtt crta-
tCo*(T*>iTlAUl£ Cl)

\l/nJPur

i ba tn I«yw/ I
| Ccc/t I

I „ J

rz/CS£L£CT

Co^ponttit 1

I I

shfVDEDUCE

r~7 1
| Deo/ucm] Coo/e I

I , I

Fig. 2 Consequence program block scheme.

- 14 -

<Object structure>«»<Internal component description>

^Internal component descriptions : =

((NAME <Component name?)

(TF SS <D> (STF1) (STF2))

(PC SS <D> <PCN17 <vPCN2>)

(FC SS vD> CFCND <FCN2>)

(SE SS <D> <SEL> VSE2>)

(NS SS CD> <.NS1><.NS2>)

(VR SS <.D> \'EC1XEC2>)

(FE SS <D> (0 <Mark> (Immediate event>)

UTime delay) < Mark> (.Delayed event?)))

where SS is an indicator of a Simple £et, FE contains the com

ponent's actual following output events and *>D) is a Dummy

value resulting from the used heuristic programming technique.

The main program can be divided into three main parts:

data input, component selecting and event deducing codes. The

Data Input Code receives the initial input events, their times

and the influenced component's names to start the event tracing

procedure. Each initial component name is checked to be a system

component or not and in case of correctness is placed on the

active component list (ACL) marked with the initial event time.

ACL indicates the active components in absolute time order,

thus enabling the consequence evaluation of multiple failures.

Its structure corresponds to an object structure having one

attribute:

<ACL)::=((NAME AL)

(AL SS \D> (<>Time 1> <ACNP <.ACN2>....)

KTime n> <ACNi> <ACNi+l>)))

The Component Selecting Code searches for components to be

currently investigated. First the "main" component with earliest

output event time is selected from ACL, its output event has

been stored in it-, attribute FE. In the next step the affected

(current) following components are selected from its connected

following comporent list which are indicated in attribute FC.

- 15 -

The basis of this selection is a match-tracing procedure which

looks for an identity between the main component's output event

and the connected components' possible input events/conditions.

The Event Deducing Code is the most central part of the

consequence program which determines all the possible local

output events and their time values. For simplification the ele

ments of the current input events/conditions and current compo

nent state are placed in a global variable list VR, and the

deducing procedure is reduced to a systematical match-search

mechanism between VR and the input combinations of the current

following component' transfer functions. After the immediate/

delayed output events and their time having been evaluated, the

components' future event list FE and the active component list

ACL are updated to prepare them for the next calculation cycles.

The connections between the above described codes are shown

on Fig. 2, their detailed structure is presented on Fig. 9-11*

in Appendix 1. The program outline is set up to meet the require

ments of a general LISP-8 program. This framework is illustrated

in Appendix 3, and the structure of the internal global variables

in Table 6, in Appendix 1.

2.2.2 Subroutine description

Both the consequence and fault tree codes are written by

structured programming technique, i.e. all the separatable

tasks are comprised within subroutines and only their interfaces

are involved in the main routine. The functional description of

the consequence subroutines, interpretation of their arguments

and outputs are given below.

INITIALISE X

This routine creates the object on the active component

list ACL and on the data-base using the input data de

scription list CL.

- 16 -

Arg. X must be set to CL.

It returns with NIL (DATA-ERROR) in case of empty CL or

with CL otherwise.

CHECK X Y

The routine checks the existence of a component marked with

its name in component list CL.

Arg. X must be set to CL, Y to component name.

It returns with NIL (DATA-ERROR) if the component has not

been found in CL (or empty CL) or with the component name

otherwise.

CSEL X

This routine selects the active component name with earliest

output event time from the active component list ACL.

Arg. X must be set to ACL.

It returns with NIL if ACL is empty or with (<Time> <ACName>)

pair.

CDEL X Y

This routine deletes a given component name from ACL in

function of the specification:

- if the entry specification is a (CTfrne? ̂ CName?) pair,

the component name is only deleted from the specified

time-branch,

- if the entry specification is a <.'CName>, it is deleted

from all existing time-branches.

Arg. X must be set to ACL, Y to the entry specification.

It returns with the modified ACL.

CINS A X Y

The routine appends a component name to the end of a speci

fied time-branch of ACL.

Arg. A must be set to ACL, X to the event time, and Y to the

component name.

It returns with the modified ACL.

- 17 -

FFEV X

The routine selects the earlier output event from a component's

future output event list FE and deletes it.

Arg. X must be set to component description.

It returns with the selected output event or with NIL if FE

is empty.

FCSEL A X Y

This routine determines the current following components of

a main component which are affected by its output event.

Arg. A must be set to CL, X to the main component description,

and Y to the output event.

It returns with tne affected following component list.

INUPDT X Y

The routine updates the values of variables contained in the

variable list VR of a component. Arg. X must be set to com

ponent description, Y to the actual variable list.

It returns with the new set of variables VR.

DEDUCE X

This routine deduces the possible output event of an active

component, i.e. of a component whose variable values are

updated by the actual input events/conditions.

Arg. X must be set to the activated component description.

It returns with the founded output event or NIL if there is no

fulfilled transfer function input combination.

2.2.3 Input/output

Input

The system block diagram is stored as a unit description list.

The multiple input failure event descriptions, i.e. initial com

ponent names, their input failure events marked with times must

be reported through display keyboard. The initial data transfer

is over by giving 0 component name.

- 18 -

.—* COMPONENT:

TIME:

EVENT:

Output

In current version the information on event occurrence chains

are presented on teletype and display screen. On the teletype

each investigated component's name, marked with event time, output

event, active following components' names associated with their

selected output events are printed out. This information serves

for manual or automatic consequence diagram drawing.

MAIN-COMPONENT: KTime? <Comp.namc>)

OUTPUT-EVENT: <.Output event>

FOLLOWING-COMPONENTS:

KFCN1? <FCN2> ...<.FCNi>)

<FCN1> <FC1 Output event>

<FCNi> <FCi Output event>

On the screen only the significant output events (SIGNEV) or last

chain events (LASTEV) and the relating main component name with

time are displayed.

MAIN-COMPONENT: (<Time> <Comp. name»

OUTPUT-EVENT: <, Output event?

2•3 An example

To illustrate the results gained by the consequence diagram

construction program CONSEQ, the outputs of HEATER/WASTE-PAPER/

FIRE-BRIGADE example shown in Chapter 1.3 are presented on

Fig. 3-4.

KComp.

KEvent

<.Input

name>)

time>)

event>

- 19 -

Fig. 3 contains the output got by COMPLETELY-BURNT HASTE

PAPER, i.e. the FIRE-BRIGADE's interaction was too late to

extinguish the fire (<* t =30>*t^=20) . In Fig. 4 *:he elements

of consequence diagram gained by NON-3URNT WASTE-PAPER are

shown. In this case the FIRE-BRIGADE was quick enough to

extinguish the paper-fire (*t =10<4t =20).

- 20 -

r * 4 »

Rp

I
— v 1—sr

ffPTi
I

T*4U

f^fel
r$*r-*L**«-9 ^r

i r *H**T

XX

[***

Fig. 3. Consequence diagram of BURNT WASTE-PAPER.

- 21 -

TX7

\

V 1 *

(tfKMC)

Y I U

QF£]

T-4«

ES

r*4»r

2
i*«»i

Fig. 4. Consequence diagram of EXTINGUISHED WASTE-PAPER.

- 22 -

3. Fault tree construction

The fault tree is a clear, graphic representation of a logical

function which relates a specified undesired event to its contri

buting events. The output event is often called as TOP event or

system failure event, and its causes as primary or spontaneous

events. In one fault tree only one TOP event is emphasized and

several primary events are presumed.

3.1 Fault tree construction algorithm

The fault tree construction starts with the definition of an

undesired event and a backward tracing is carried out to map the

combinations of possible input conditions/events and component

state whicn can cause the output failure event. The tree branches

are terminated if spontaneous input events or normal unit states

are reached.

The necessary unit and system information for fault tree

construction is described in Chapter 1, but now the system may

contain only internal loops, external loops cannot be handled.

Special attention is directed towards event timing, i.e. sequential

fault trees are handled. The automatic procedure cannot at present

treat environmental and human aspects of failure.

The main steps of the developed algorithm are described in

Table 4, its details in Table 7, in Appendix 2. The algorithm is

based on Fussell's method (S), the deviations mainly concern

event timing and description of components with memory.

3.2 Program for fault tree construction (CAUSE)

The program for fault tree algorithm was written in LISP

by structured programming technique.

- 23 -

Table 4 Backward tracing algorithm

1. Get initial output event marked with time and component name,

go to 4.

2. Select an input variable combination indicated in old sub-

branch. If there are no more, go to 7.

3. Find current preceeding components and their output events.

If there are no output events, go to 2.

4. Select an output ivent. If there are no more, create a new

AND-branch, go to 2.

5. Search for possible new input variable combinations which

can lead to the selected output event and calculate their

time of occurrence.

6. Create a new OR-branch, go to 4.

7. Get currently created set of AND-branches. If it is empty,

prune event tree, go to 9.

8. Create new tree-branch. If only primary events are involved,

build event tree.

9. Get next sub-branch of latest tree-branch. If there is no

more, build final fault tree, exit.

10. Go to 2.

- 24 -

3.2.1 General program structure and description

The general block, structure of the ueveloped program is

given on Fig. 5. The program starts with basic data-field creation

by using system information stored as unit description list in

CL. The produced component related objects have the same structure

as presented in Chapter 2.2.1, but no following output event

lists are involved.

The main program can be divided into three major parts:

cause-event searching, new branch making and event tree making

codes. The Cause-Event Searching Code gets the initial output

event marked with time and component name to start the backward

tracing. First the possible subtransfer functions and their

input variable combinations are selected for the given output

event. For proper selection a preliminary consistency checking

is carried out to delete mutually exclusive simultaneous events

and which can be completed by using a consequence checking

procedure. The input combinations may generally be built of

spontaneous events and normal states of the investigated compo

nent or input events/conditions coming from the previous connected

components. To find these categories of input variables a com

ponent related type selection is carried out and the result is

placed on a stack (IV). The separated spontaneous events/normal

state are built in the final part of fault tree (selected final

input - SI), the input events/conditions are regarded as possible

output events of previous components (selected temporary output -

SO) and are inserted in the temporary part of fault tree for

further investigations.

The relation between an output event and its input variable

combinations/ i.e. the current part of the fault tree to be

constructed is created by using AND- and OR-gates involved in

unit mini fault trees. The New Branch Making Code ret .ves the

formerly established logical functions of input/output variables

and produces a new preliminary branch of the fault tree. Each

prelinimary tree-branch is stored on a Branch Stack BS and is

built up of several sub-branches. To make their identifications

- 25 -

l «»Ui»l «UU U.UJ

T
P«to -{.itId crtt-
ticii- xmnnuu CL

I
Ctt inilial comfontnii
outfit ***.*t m*J éi-t

I
088 cmd fOt-ittr OPR

AuO&tAuCH *

BRfWCH

Ctt Ktatn ccH/fontut CD
and «i(LHfn.i t * tit/

77 £S£AKH

MMM ii_
' Cause - Evtit

I

| * — |
. Mtdbrahck J

I I
LcJ*.

vettgfiuctt ti
I

{ £vt*f Tree

™ A^I n

Fig. 5 Fault tree program block scheme.

- 26 -

easier, pointers and sub-pointers are introduced and placed on

a Pointer Stack PS. The structure og tree-branches and pointers

are shown on Fig. 6-7.

The main manipulation and supervision of tree-branches is

carried out by the Event Tree Making Code. A preliminary tree-

branch consists of two main parts: a tree-branch pointer and a

set of sub-branches. The sub-branches may be complete or preliminary

sub-branches. If all the sub-branches in a tree-branch are com

plete, i.e. they are traced back until spontaneous events/normal

states are reached, the tree-branch is inserted into its "mother-

branch", i.e. into a tree-branch for which itself is a sub-branch.

In other words, a tree-branch is complete and not treated further

if all its sub-branches are complete or is preliminary if one of

its sub-branches is preliminary.

The backward search is continued until only one complete

tree-branch is found, this represents the final fault tree. The

detailed block scheme of the above described codes are given

on Fig. 12-14, the structure of mini internal global variables

in Table 8, in Appendix 2.

3.2.2 Subroutine description

In the following the functional description of fault tree

subroutines, the interpretation of their arguments and outputs

are given.

INITIALISE X

The same as of consequence program described in Chapter
2.2.2.

CHECK X Y

The same as of consequence program described in Chapter
2.2.2.

INSEL X Y

This routine carries out a component related type-selection

- 27 -

Brinck Stack (BS)

Trtt - Franck
punier C

Trtl - (aroiuck
pointer /*.

/ "

/ 1

ffl
m

m
8 « V

rø« M\

trtt- branch i

Prtlimriurtj
értk - LraHck M.

ftub - re/«4t>iiS /*W0 - t* (f t4tc«i "^
-» f

I I-- 1 I ^ T ^
Lov*fU\l cuj- (,rtHck

*UD-rU\kc>

Srø

Suh - brand* pointer Spontantcu s itft*t/
kJ er ** at fitk-lt

FreUfit'uctr^ suC- éranck

OR- rUctJien

- 'nUitt fivd - XtftftfH ygd/D- rtiti.'ko*

i sea* I spti l
ptinitr coin éiHCili'cn

Fig. 6 Structure of tree-branches.

- 28 -

Pomttr Siack (pi)

SPM

S PR 2

HM4

spe:
5ftP«W

npn

frit, H« i»aru
TM4- 6r**c4

érat - K-r**c 4

$uÉ-éranc£ foi

tljltr

«{er:

Ti tut C<0*f>- M * l

tree- (»rakck peikler

(efiU- Ti *e > < ?£ jU*** >}

+ ?T\
PrtLmuurii tret -ért,»cÅ

tru - (, rane li fa h U r-.

i . i9

C-t>ra>U
,oi*U \r

Ti wc £V<*z> . /i«*it fWf K„< > < MC Uumt 7)

Fig. 7 Structure of pointers.

- 29 -

of input variable combinations into spontaneous events/

normal states and input events/conditions.

Arg. X must be set to main component description, Y to its

input variable combination.

It returns with NIL (DATA-ERROR) if an input variable has

not been found in the main component's SE/NS lists or among

the previous components' output variables, otherwise it

returns with the component related distributed variable list.

EySEARCH X Y

This routine searches for possible input variable combinations

of a component related to a supposed output event.

Arg. X must be set to component description, Y to output

event.

It returns with NIL if the output event turned out to be an

erroneous event or with input combinations marked with time

fast, otherwise.

TMAKE T X Y

The routine calculates the absolute time value of input va

riable combinations.

Arg. T must be set to initial time value, X to component

name, and Y to input combinations marked with their time

fast.

It returns with input variable combinations marked with

component name and absolute time.

SELBRANCH X Y

This routine selects a sub-branch marked with pointer from

its "mother" tree-branch.

Arg. X must be set to sub-branch pointer, Y to tree-branch.

It returns with NIL if the pointed sub-branch has not been

found in the given tree-branch or with the selected sub-

branch otherwise.

INSBRANCH X Y

This routine inserts a sub-branch into the pointed part of

its "mother" tree-branch (into head of BS). If the sub-branch

- 30 -

to be inserted is empty, the mother tree-branch is pruned.

Arg. X must be set to sub-branch, Y to its pointer.

It returns with NIL if the pointed sub-branch does not

belong to the head of BS or with modified BS otherwise.

PRUNETREE X

This routine reduces the event tree until it is possible,

i.e. eliminates empty sub-branches and empty tree-branches

from BS.

Arg. X must be set to the pointer of the empty sub-branch

to be eliminated at first.

It returns with NIL if pruned event tree is empty or with

BS otherwise.

NEWPTR X

This routine creates a "mother" pointer of a tree-branch.

Arg. X must be set to tree-branch.

It returns with new "mother" tree-branch pointer.

INSPTR X

This robtine inserts a "mother" pointer as well as its

sub-branch pointers into the pointer stack PS.

Arg. X must be set to "mother" pointer.

It returns with extended PS.

DELPTR X

The routine deletes given sub-branch pointers from their

"mother" tree-branch pointer.

Arg. X must be set to sub-branch pointer set to be deleted

(if X=0, the "mother" pointer is entirely deleted).

It returns with NIL if an indicated sub-branch pointer has

not been found in its "mother" pointer or with reduced PS

otherwise.

- 31 -

3.2.3 Input/output

Input

The system information is stored as a unit description list.

The system failure / undesired event description, i.e. initial

component name, its output failure event and time must be commu

nicated through display keyboard;

COMPONENT: «Comp. name>)

TIME: «.Time>)

EVENT: <TOP event)

Output

The input system failure / undesired event description as

well as the resulted Boolean fault tree expression are displayed

on screen:

COMPONENT: <Comp. name)

TIME: <Time)

EVENT: <.TOP event)

FAULT TREE: <Fault tree)

The final fault tree consists of spontaneous events/normal

states marked with components names and time values and connected

through AND/OR gates:

<Fault tree)::=((AND(OR(AND<Tree-branch 1>) (AND< Tree-branch? 2)...)))

<Tree-branch i?::<Sub-branch IXSub-branch 2>...

<Sub-branch j)::=(^Spontaneous event/Normal state)) |

(OR(AND<Tree-branch k>)(AND<Tree-branch k+l>)...)

3.3 An example

For illustration the example of HEATER/WASTE-PAPER/FIRE-

BRIGADE system described in Chapter 1.3 is presented on Fig. 8.

- 32 -

(ST HE.*T£k)
(*u* (SE wiren -* CLOSEj>))

^7

\thtrE-

I

^7

(fs wfisrre. -PAtee.)
.« (*»> (uc pine. « w))

COHPONEPT MST£' P»P£*
TIME' 4Q0
tt/SfJr > ((EC Pm& -• COM PIE T£ LY-

-gmiur))

F i g . 8 . F a u l t t r e e of COMPLETELY-BURNT WASTE-PAPER.

file:///thtrE-

- 33 -

4 . P r e s e n t sfcat-us *nH fnr«-h»r rU»w»1r.pm*nf-«r

The described programs were implemented on PDP8 computer

with 8k. The current limited storage capabilities have so far

prevented application on real complex physical systems, therefore

the early experiences are restricted into smaller examples. To

get sufficient experiences with complex systems the implementation

of programs on Burroughs 6700 computer are preceding, using a

LISP8/FAURTRAN-IV Compiler/Interpreter. This implementation makes

the connection of two algorithms possible and the consistency

checking complete.

Another branch of current research work is the application

of the fault tree and consequence diagram construction programs

for plant disturbance analysis. As the sequential fault tree

analysis can establish the possible logical combinations of

primary faults for a distrubed plant situation and the con

sequence analysis can establish how far the disturbances extend,

their combined application during distrubance analysis can effec

tively support the operator's work.

- 34 -
References

(1) - D.F. Haasl: Advanced concepts in fault tree analysis.

Paper presented at System Safety Sumposium, Seattle.

The Boeing Company, 1965.

(2) - D.S. Nielsen: The cause/consequence diagram method as a

basis for quantitative accident analysis.

Risø-M-1374, Hay 1971.

(3) - J.B. Fussell, G.J. Powers, R.G. Bennets: Fault trees - a

state of the art discussion.

IEEE Trans, on Reliability, Vol. 23/No. 1, 1974.

(4) - D.S. Nielsen: Use of cause-consequence charts in practical

system analysis.

Paper presented at Reliability and Fault Tree Analysis Conf.,

Berkeley, September 1974.

(5) - J.B. Fussell: Synthetic tree model - a formal methodology

for fault tree construction.

ANCR-1098, March 1973.

(6) - G.J. Powers, F.C. Tompkins: Fault tree synthesis for chemical

processes.

AICHE Journal, Vol. 20/No. 2, March 1974.

(7) - S.A. Lapp, G.J. Powers: Computer-aided fault tree synthesis.

To be presented in IEEE Trans, on Reliability.

(8) - J.R. Taylor: A formalisation of failure mode analysis of

control systems.

Ris#-M-1654, September 1973.

(9) - J.R. Taylor: A semiautomatic method for qualitative failure

mode analysis.

Paper presented at CSNI specialist meeting, Liverpool,

April 1974.

(10) - J.R. Taylor: A language for heuristic programming.

To be published.

- 35 -

Appendix 1. Consequence diagram construction

Table 5. Detailed algorithm for consequence diagram construction

Start with data-base creation using component descrip

tion list CL.

INPUT, Get initial event description of next initial component.

If no more initial components, go to CSKT.KCT.

If initial component is not in CL, exit.

Place initial event on future event list of initial

component.

Place initial component on active component list ACL

marked with event time.

Go to INPUT.

CSELECT, Select main component MC with earliest event time ET

from ACL and place it on SC.

If there are no more components on ACL, exit.

Delete SC from ACL.

Find' the earliest event description on HC's future

event list and place it on EV.

Find which of the connected following components are

affected by EV.

Place affected components on the current following

component list FL.

EVDEDUCE, Get next following component NC from FL.

If there are no components on FL, go to CSELECT.

Update the input variable values of NC using EV.

Deduce NC's current output event COE using input

variable values, state variable values and transfvr

function.

If there is no output event, go to EVDEDUCE.

- 36 -

Table 5 cont.

Split COE into an immediate event IE and a delayed

event DE.

If IE exists, update the state variable values of

FC using their Modified values involved in IE.

Add both IE and DE to NC's future event list.

Delete HC Barked with old time values fro« ACL.

Evaluate new event time values using old time ET

and time delay values of IE and DE.

Place MC on ACL, Barked with new time values for

IE and DE.

Go to EVDEDOCE.

^X^ ir pur

t*t nvt CO*fo*i*t
CH \Mttk ti*t CT

CtlT

-*rf\ CSELBCr

CIVS ACL BT CfJ

ifjpar / ^ .

Fig. 9 Data input code.

J7 CSCLECT I
Ctt wain component
MC U"W 4tWt er

ACL <*U se.

COEl ACL SC

rrev HC

-^C^ £XIT

Si i FL lutc
re S£i CL MC ev

i

•*/\ £.Vt>£bl*C£

F i g . 10 Component s e l e c t i n g code.

file:///Mttk

- 38 -

I C\fDCt>UC£

C*i foto\t>i*Q cemflO-

MiCnptiCK CC

- y ^ CSEiECT

TUUPDT CC £1/

s*t coe. ••
D£DUC£ CD

Æ r-EUOSDUCE
SpUt COE i*io
r c <**<£ t>E

u

xvuppr cc XE

Pi aet COE OH CC

C DEL *CL CM

EvALutftt ntw event
ki*t B-T of XE n-J DE

ClUS ACL CT CV

i/K £VDEt>UC£.

Fig. 11 Event deducing code.

- 39 -

Table 6. Structure of internal global variables

Set of active components —* ACL

Component description list —> CL

Following component list —* FL

Component description —) CD

Main component description —* MC

Component name —* CN

Output event with time —* OE

Output event without time —* EV

Current output event with time —* COE

Immediate output event —} IE

Delayed output event —> DE

Event tine —^ ET

Current event time —> CT

ACL = (KTime V> <ACN1> <ACN2>...)

KTime n> <ACNi) <ACNi+l> ...))

CL = KComp. description l)<Comp. description 2) ...)

FL = «FCN1) <FCN2))

CD = <Comp. d e s c r i p t i o n)

MC = <.Main comp. d e s c r i p t i o n)

CN = <Comp. name)

OE = KTime de lay) <Mark> < E C 1 X E C 2) . . .)

EV = K E C 1 X E C 2) . . .)

COE = ((0 <Mark) <EC1)<EC2). . .)

KTime d e l a y) <Mark) <EC1)<EC2) . . .))
IE = (0 <Mark) £ E C 1 X E C 2) . . .)

DE = «Time d e l a y) <Mark) <EC1)<EC2) . . .)

ET = <Abs. t i m e)

CT = <Abs. t i m e)

- 40 -

Appendix 2. Fault tree construction

Table 7. Detailed algorithm for fault tree construction

Start with data-base creation using component

description list CL.

Get initial event description of initial component.

If initial component is not in CL, exit.

Place initial event marked with component name on

selected output event list SO.

Create initial tree-branch, place it on oldbranch

OBR.

Get OBR's pointer and place it on OPR.

Go to ANDBRANCH.

BRANCH, Get description CD of main component MC marked in

OBR.

Get possible conjunctive combinations of its

output variables and place them on ZC.

ESEARCH, Get next conjunctive combination of input events/

conditions from IC.

If there are no more combinations, go to BRMAKE.

Distribute the selected input events/conditions

among the connected previous components of MC.

If one of them cannot be found in previous compo

nent's variable list, exit.

Place selected output events of previous components

on SO and spontaneous event/normal state of MC on SI.

ANDBRANCH, Get next selected output event from SO.

If there are no more, create a new conjunctive

sub-branch (AND-branch) and go to ESEARCH.

Search for possible respective input event/condition

sets.

If there are not, go to ESEARCH.

Evaluate new event times for founded event/condition

sets using absolute time value of OBR and time

delays of SO.

- 41 -
Table 7 cont.

Create a new disjunctive sub-branch (OR-branch)

using new input event/condition sets and their

time.

Go to ANDBRANCH.

BRMAKE, Get new conjunctive sub-branch set.

If there is not, prune fault tree and go to

NEXBRANCH.

Create a new tree-branch consisting of a printer PR

and a logical function of events/conditions.

Create a new pointer set for next sub-branches

using the created new tree-branch.

If there is no new pointers, build fault tree

and go to NEXBRANCH.

Append new tree-branch into branch stack BS.

Append new pointer set into pointer stack PS.

NEXBRANCH, Get next pointer OPR of pointer stack.

If it is not null, get its relating branch from

BS and place it on OBR, gc to BRANCH.

Build and display final fault tree.

Exit.

- 42 -

T
ivsej- ep zc

Qtt stltcttcl prtvt-cut.
CO*fOn**ts CO \ »»cl ft »ir
cutout «.i/tn.ty SO'i

4^£>B(?AWCH

EVsenecH CD tv

»

qtt S0\ t„ e^ UHl ET

THftkB CT CD EV

[
Crta.it an OtL-branch

Cnait «* HND-branch

I—&
£S£A(>CH

Fig. 12 Cause-event searching code.

http://Crta.it

- 43 -

I WHAKE-

C«f »twt/ sultree - r̂»*cli set

-£\

Crttt i t * M T Iv t t - i ra tcf «8C

JUEU/Pf* A«*

1VSUAHCH OK* Oft

Crt-.it Htw (nnik - sUtk Bi

ivitrtL UPf

,vm-

^ \ A/OWAUC«

Fig . 13 Newbranch making code.

http://Crt-.it

- 44 -

1
navertEE on.

I HCfiZMucH

Qtt Utnt irancl from BS

iht, DSR at.J iU pimhr iM Oft

£tlT

Ctt £'**(*viN.f ir«*«4
ckek tifie- tvtki tnt

j

SCL&MUCH O&ZOPR

- &
£UT *K &&(\vcH

wtour &$

-*^\ £XIT

Fig. 14 Event tree making code.

- 45 -

Table 8. Structure of global variables

Initial component name

Initial output event

Initial output event time

Component description list

Component description

Component name

Distributed input variables

Selected output events

Selected spontaneous event/normal state

Evaluated input event/condition sets

Input event/condition combinations

New tree-branch

Old tree-branch

Pointer of new tree-branch

Pointer of old tree-branch

Branch stack

Pointer stack.

Event time

COMP

EVENT

TIME

CL

CD

CN

IV

SO

SI

IS

IC

NBR

OBR

NPR

OPR

BS

PS

ET

COMP = (Component name)

EVENT - UEC1XEC2)....)

TIME • <Abs. time?

CL = ((Component descriptionX Component description). ..)

CD = (Component description)

CN = (Component name)

IV - (((MCName) (SE1)<SE2) . . . (NS1)(NS2>. . .)

((MCName> (E C 1 X E C 2) . . .)

(<PCN1? <EC1?(EC2>...)

SO

((PCNn) (EC1)(EC2) . . .

(((MCName) (E C D (E C 2) .

((PCN1) <EC1XEC2) . . .)

))

SI

«PCNn) (E C 1 X E C 2) . . .))

((MCName) <SE1)(SE2>. . . (NS1XNS2) . . .)

Table 8 cont.
- 46 -

IS = («.Time> (AND<VR1XVR2>...)(ANKVR1><VH2>...))

«Time> (AND...)(AND...))

•

«Time> (AND...)(AND...)))

IC = ((ANIXVR1XVR2))(AND<VH1><VR2>))

N3B = («A.Time> 4MCName»

(AND(«A .Time) <MCName>) (AND<SB1><SE2>.. .<NS1><NS2>....)

(0R(«A.Time> <PCName» (AND<VR1XVR2>) (AND<VR1>...)...)

())

(OR))

(AND))

OBR = a s N3R

NPR = (« . A . T i m e > <MCName>)(«A.Tin ie> < . P C N a m e » « A . T i m e > <.PCName»))

OER = « A . T i m e > <.PCName>)

BS = «OBR3><OBR2>)

PS = «OPRl><OPR2> <NFRlX0PRi><0PRi+l>. . .<NPR2> <NHln?)

ET = <Abs.Time>

- 47 -

Appendix 3. Outline of a LISP-8 code

/

x VARIABLES

<VN1> ,0

x FUNCTIONS

< Subroutine name 1> J

* I Subroutine names

C. Subroutine name j) J

0

EVAL

BEGIN GO START

/CONSTANTS

CRLF,CRLFPT

x.+1*7776

CRLFPT,4100;0

START,

END

<, Subroutine 1")

*

<Subroutine j)

END

FREE,

I

Variable names

Constants

Text constants

Main program

)

Subroutines

J

