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Introduction 

Fault tree and consequence diagram analyses have recently 

received widespread interest as methods for reliability and 

safety analysis of complex systems. Haasl's paper (1) can be 

considered as the starting point of fault tree technique appli

cations and Nielsen's report (2) indicates the beginning of 

cause-consequence charts' use in practice. In the field of 

fault trees, however, after an optimistic start, there has been 

some scepticism. The main problems were the cost and time aspects 

of constructing complex fault trees; to consider all failure 

combinations; and to obtain proper failure data; and to find 

qualified staff with experience in fault tree method, probability 

analysis, and system operation. By the late 60's and early 70's 

several of these problems have been overcome, but the fault tree 

and consequence diagram construction is still the most critical 

point of the analysis procedure. The state of the art of fault 

trees and CCD's are summarized in Pussell/Powers/Bennets' joint 

paper (3) and Nielsen's report (4), respectively. 

In order to reduce the cost of adequate diagram construction 

and to avoid oversights of some failure sources or consequences, 

automated treatment is required. Cn the other hand, it has some 

disadvantages, e.g. human errors and environmental effects cannot 

be considered but it can be a rapidly executed initial procedure, 

to be followed by a more detailed fault tree or consequence 

analysis. Up to the present algorithms published on automated 

fault tree or consequence diagram construction are rather limited. 

Fussell's method (5) uses mini fault trees of different com

ponents, the system fault tree is created by their consistent 

connections. His technique has been implemented on computers for 

electrical systems. Powers and Tompkins (6) use input-output 

component models for fault tree constructions, where the com

ponent's normal or failure state can be identified by the actual 

input-output process variable values. Lapp and Powers (7) employ 

digraph models for components which describe the normal, failed 

and conditional relations among variables and events. Their 

computer program was applied to chemical processes. 
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Methods for obtaining consequence diagrams are given by 

Taylor (8, 9). His method uses algebraic equations for components 

to describe their normal or failed operation. The application 

of his algorithm on computers is in progress. 

Generally both the automatic fault tree development and 

the automatic consequence diagram constructions require three 

main steps: 

- to find a proper system or component modelling method which 

is suitable for computer programming, 

- to develop an algorithm for fault tree and consequence 

construction, 

- tc implement these algorithms on computers. 

In this paper algorithms and programs for automatic fault 

tree and consequence diagram construction are presented. The 

programs were written in a LISP dialect and developed for a 

PDP8 computer with 8k. For plant component models input/output 

and state transfar functions formalized as mini fault trees 

are used, the algorithms work with their causal links which form 

the system model. 
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1. Unit model 

1.1 Failure transfer functions 

Both consequence and fault tree programs use individual 

plant component failure transfer functions. The unit models 

receive input events/conditions as well as state information 

and depending en combinations of these, the output events can 

be determined. The transfer functions are considered as compo

nent mini fault trees describing the possible failure modes of 

the unit. To determine the mini fault trees thorough component 

failure mode and effect analysis (FMEA) is required. The results 

of this analysis, i.e. failure transfer functions are formalised 

as Boolean expressions using OR and AND gates to describe the 

connection between input and output events. 

The structure of mini fault trees for the programs presented 

here is as follows: 

{Transfer function>::=(TF<TF>) 

<TF>::=((STF1 <STF1>)(STF2 <STF2>)...) 

<STFi>:: = ((OR(ANDCInput Event/Cond>)(AND*Input Event/Cond>)...) 

(AFTER 0 <Mark> <Immediate event?) 

(AFTER <Time delay> <Mark> <Delayed event>)) 

<Mark >::=SIGNEVILASTEVIPUNEV 

The failure transfer function consists of a set of sub-

transfer functions (STFi). Each sub-transfer function has an 

input and output part, the input part contains the OR/AND com

binations of input events/conditions and state variables, the 

output part involves an immediate and delayed event. The 

immediate output event has zero time delay, the delayed output 

event has to have a non-zero time delay. Either of them may be 

missing from the given sub-transfer function. In both of them 

a marker is used for indicating a significant (SIGNEV), a 

last-in-chain (LASTEV), or minor puny (PUNEV) event for display 

selection purposes. 
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The structure of input combinations and output events is as 

follows: 

<Input Event/Cond> : :=<Input IX Input 2) .... <Input rO 

Unput n> :: *<SEn>K NSn> K ECn> 

<Output Event> : :*<EC1><EC2> <ECra> 

<SEi >::=(SB <VNi> -* <Wi>) 

<NSj ::=(NS <VNj> = <Wj>) 

<ECk>::=(EC <VNk> <Relation) < W k » 

<Relation>: s=-»l« 

In this structural description a distinction is made between 

spontaneous events (SE), normal state information (NS) and events/ 

conditions (EC) appearing between components. To make clearer the 

difference of events and conditions "V and "=" relations marks 

between variable names (VN) and their values (YV) are used. 

1.2 Unit descriptions 

Although the failure transfer functions determined by FMEA 

analysis form the critical part of system unit descriptions, some 

further information is needed to describe the physical connections 

between individual components, and to make effective programming 

possible. 

The complete unit description which is applicable for both 

algorithms contains the following information. 

Unit description):: = «Component name) 

<Failure transfer function) 

<Proceeding connected component list> 

<Following connected component list) 

spontaneous event list? 

<Normal state) 

<variable list?) 
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CProceeding connected component l i s t > : : = 

(PC <PCName 1) tPCName 2> . . . ) 

( .Following connected component l i s t > : : = 

(FC <FCName 1> <FCName 2 > . . . ) 

(Spontaneous e v e n t l i s t > : : * ( S E <SE1XSE2>. . .<SEi>) 

<Normal s t a t e > : : * ( N S <HS1XNS2> . . . < N S j > ) 

<Variable l i s t > : : - ( V R <ECl>VEC2>...<ECk>) 

The preceeding/following connected component lists can be 

obtained from the system block diagram; the spontaneous event list, 

the normal state, and the variable list can be filtered from the 

failure transfer function. This unit description method has some 

advantages and some drawbacks. 

Drawbacks: - the unit descriptions are dependent of the 

system being analyzed (as PC/FC lists are 

contained), 

- redundant information is involved (in TF and 

SE/NS/VR). 

Advantages: - clear, complete, and easy-to-change structure, 

- efficient computer programs can be developed, 

- a library data of transfer functions can be set 

up which is independent of the system structure 

on a large scale. In current state this inde

pendency is restricted by the condition that 

the names of input-output variables in a causal 

connection must be identical. 

This means that in order to get well developed programs and 

shorter running times, a certain amount of surplus storage capacity 

is necessary. The detailed specific rules to create unit descrip

tions are summarized in Table 1. 
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Table 1 Rules specified for unit •odel descriptions 

1. Only atomic, non-zero component name is allowed. 

2. Only atomic, non-zero variable naae is allowed. 

3. Only atomic variable value is allowed. 

4. Each unit indicated in PC/FC list must be figured on CL. 

5. A variable might appear at the same ?ub-TF's input and 

output only if it is an internal state variable. 

6. If 2 ccsponenL luts an internal feedback variable, the 

variable name must be in its PC/FC list. 

7. Several identical sub-TF's output events may occur in a 

TF, but their time delays must be different. 

x 8. Each variable of TF inputs must appear on VR list of compo

nent in question, except normal state. 

x 9. Each variable of TF outputs must appear on FC's VR lists. 

xlO. The sequence of variables in VR list should be adequate 

to the sequence of components in FC list. 

xxll. The sequence of variable types in a sub-TF's input combi

nations must be: first SE/NS and EC. 

xxl2. If in a sub-TF's input combination an SE/NS-type variable 

occurs, the component name must be on its PC list and on 

the first place. 

Note: 

Rules signed by x are raised by consequence diagram program, 

signed by xx are raised by fault tree program. 
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It must be noted that unit descriptions used for either 

consequence diagram or fault tree construction alone« can be sig

nificantly simplified. Namely, for consequence program the pro

ceeding connected component list (PC), spontaneous event list 

(SE) and normal state (NS) can be eliminated, for fault tree 

program the following connected component list (PC) and variable 

list (VR) can be omitted. 

1.3 Illustrative example 

To illustrate the method, a simple example with general 

event transfer functions is given in Fig. 1. The system consists 

of three components: a HEATER, a pile of WASTE-PAPER, and a 

FIRE-BRIGADE. 

The HEATER can be switched on by SWITCH. After the heater 

has been turned on, there will be a time delay 4tp, after which 

a FIRE-ALARM may occur, but only if the WASTE-PAPER is DRY. The 

FIRE-BRIGADE which is probably WATCHFUL is alarmed by the 

papers SMOKING and tries to extinguish the fire. (WASTE-PAPER 

state - BURNING, SMOKING is changed to EXTINGUISHED). If the 

fire-brigade is not quick enough (atg> t#), the papers may be 

COMPLETELY-BURNT. 

The component descriptions are summarized in Table 2. It can 

be seen that in order to get a unified library data of component 

descriptions for both programs, a relatively complex data structure 

was chosen, but simultaneously it yields a profit of clear and 

efficient program outline. 



- 8 -

imiixM 

m*r 

snotte 

«.̂  S/oc/r tcAeiMt 

CCHEAT CC ttC*-l»iCi* « € • - # * • * * ses*iTCH 

g»*yf-Mfff 

i^llfei^l 
^7 ^7 d7 

* CC: tttC- M M M 

Et Frf€'*L«#H 

{., fft'iu' /««/£ ^re«r 

Fig. 1. Unit model example (HEATER/WASTE-PAPER/FIRE-BRIGADE). 
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Table 2. Example of unit description 

((HEATER 

(TF(STF(OR(AND(SE SWITCH -» CLOSED) (EC POWER ^ ON))) 

(AFTER 7 SIGNEV (EC HEAT -» APPEARS)))) 

(PC HEATER) 

(FC WASTE-PAPER) 

(SE (SE SWITCH -* CLOSED)) 

(NS) 

(VR (EC POWER = ON)(EC SWITCH -» CLOSED))) 

(WASTE-PAPER 

(TF(STFl(OR(AND(NS tAPER - DRY) (EC HEAT -4 APPEARS))) 

(AFTER 0 SIGNEV (EC PAPER -» SMOKING) (EC FiRE-ALARM -* APPEARS) ) 

(AFTER 5 SIGNEV (EC PAPER -> BURNING) )) 

(STF2(OR(AND(EC PAPER -t BURNING))) 

(AFTER 20 LASTEV (EC PAPER -̂  COMPLETELY-BURNT))) 

(STF3(OR(AND(EC PAPER -» SMOKING) (EC FIRE-BRIGADE-* WORKING) ) 

(AND(EC PAPER-* BURNING) (EC FIRE-BRIGADE-4 WORKING))) 

(AFTER 3 SIGNEV (EC PAPERS EXTINGUISHED)))) 

(PC WASTE-PAPER HEATER) 

(FC WASTE-PAPER FIRE-BRIGADE) 

(SE) 

(NS (NS PAPER = DRY)) 

(VR (EC HEAT -» APPEARS) (EC FIRE-BRIGADE -» WORKING))) 

(FIRE-BRIGADE 

(TF(STF(OR(AND(NS GUARD = WATCHFUL) (EC FIRE-ALARM -* APPEARS))) 

(AFTER 10/30 SIGNEV (EC FIRE-BRIGADE -» WORKING))) 

(PC WASTE-PAPER) 

(FC WASTE-PAPER) 

(SE) 

(NS (NS GUARD = WATCHFUL)? 

(VR (EC ALARM -4 APPEARS)))) 
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2. Consequence diagram construction 

The consequence diagram is an event-sequence diagram, which 

relates the input events of a system into its output events. 

During the consequence analysis procedure a tracing work is done, 

where at each step taking the actual system state into conside

ration the current component's input event is implied on the 

component and its related output event is deduced. In the next 

step this output event is considered as input event for the 

selected next components, thus determining the possible event 

chains until last chain events or unfulfilled input conditions 

are reached. 

2.1 Consequence diagram construction algorithm 

The consequence analysis procedure can be considered as a 

transformation of a system block diagram into an event sequence 

diagram. The descriptions of individual system units must be 

given in the form of failure transfer functions and some other 

additional information described in Chapter 1.2. The system may 

contain components connected simply in series or components with 

internal/external feedback and feedforward loops. A single 

series block diagram is converted into a simple series event 

chain or if the components have memory (i.e. its output event 

contains a delayed event with non-zero time delay) the chains 

may branch. The components may have several connected components 

which are affected by the current output event of the preceeding 

component. Each of the activated following components initiates 

a new branch or branches (components with memory). Similarly, 

the physical series branches of a block diagram can be transferred 

into a simple series event chain or several series event chains 

depending on the causal interconnections. Feedback/feedforward 

loops containing components with several input/output connections 

and time delays draw special attention. Several input connections 

indicate several input conditions which must be investigated to 

determine an event propagation through the component. Feedback 

loops with time delays produce several delayed event chains of 
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one input event, which makes the consistency checking very im

portant. Details and some other aspects of block/consequence 

diagram transformation (e.g. multiple failures) are described 

in (8). 

To perform event tracing tasks in complex systems containing 

either simple series or complicated loop block diagrams a simple 

algorithm was developed. The main steps of the algorithm are 

presented in Table 3, the detailed description in Table 5, in 

Appendix 1. 

2.2 Program for consequence diagram construction (CONSEQ) 

To adapt the shown algorithm on computers a dialect of 

LISP language was chosen which made the list processing of data 

possible. Structured programming techniques were applied to give 

a possibility of easy modifications and to yield well-arranged 

programs. 

2.2.1 General program structure and description 

The general block structure of the developed program is 

given in Fig. 2. 

The system information is stored as component description 

list CL. The program starts with creating a data-field containing 

all the component information in a clear, easy-to-handle way, 

i.e. the data-field is set up by an object-set. Each object is 

related to a component and its attributes comprehend the unit 

description in a slightly modified, internal data structure. 

To manipulate the data-base (to select an object or an attribute, 

to update attribute values, etc.) a program system for heuristic 

programming (10) was used. The object structure is as follows: 
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Table 3 Consequence mapping algorithm 

1. Get initial input events marked with their time and 

influenced component's name. 

2. Select earliest output event and active component:. If 

there are no more output events, stop. 

3. Find the affected following components. 

4. Select randomly a following component. If there are no 

more, go to 2. 

5. Check for match between the selected components' input 

events and current input conditions/internal state. 

If there is no match, go to 4. 

6. Deduce its current intermediate and/or delayed output 

events and their real time of occurrence. 

7. Update internal state condition. 

8. Go to 4. 
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Fig. 2 Consequence program block scheme. 
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<Object structure>«»<Internal component description> 

^Internal component descriptions : = 

((NAME <Component name?) 

(TF SS <D> (STF1 ) (STF2 ) ) 

(PC SS <D> <PCN17 <vPCN2> ) 

(FC SS vD> CFCND <FCN2> ) 

(SE SS <D> <SEL> VSE2> ) 

(NS SS CD> <.NS1><.NS2> ) 

(VR SS <.D> \'EC1XEC2> ) 

(FE SS <D> (0 <Mark> (Immediate event>) 

UTime delay) < Mark> (.Delayed event?))) 

where SS is an indicator of a Simple £et, FE contains the com

ponent's actual following output events and *>D) is a Dummy 

value resulting from the used heuristic programming technique. 

The main program can be divided into three main parts: 

data input, component selecting and event deducing codes. The 

Data Input Code receives the initial input events, their times 

and the influenced component's names to start the event tracing 

procedure. Each initial component name is checked to be a system 

component or not and in case of correctness is placed on the 

active component list (ACL) marked with the initial event time. 

ACL indicates the active components in absolute time order, 

thus enabling the consequence evaluation of multiple failures. 

Its structure corresponds to an object structure having one 

attribute: 

<ACL)::=((NAME AL) 

(AL SS \D> (<>Time 1> <ACNP <.ACN2>....) 

KTime n> <ACNi> <ACNi+l> ))) 

The Component Selecting Code searches for components to be 

currently investigated. First the "main" component with earliest 

output event time is selected from ACL, its output event has 

been stored in it-, attribute FE. In the next step the affected 

(current) following components are selected from its connected 

following comporent list which are indicated in attribute FC. 
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The basis of this selection is a match-tracing procedure which 

looks for an identity between the main component's output event 

and the connected components' possible input events/conditions. 

The Event Deducing Code is the most central part of the 

consequence program which determines all the possible local 

output events and their time values. For simplification the ele

ments of the current input events/conditions and current compo

nent state are placed in a global variable list VR, and the 

deducing procedure is reduced to a systematical match-search 

mechanism between VR and the input combinations of the current 

following component' transfer functions. After the immediate/ 

delayed output events and their time having been evaluated, the 

components' future event list FE and the active component list 

ACL are updated to prepare them for the next calculation cycles. 

The connections between the above described codes are shown 

on Fig. 2, their detailed structure is presented on Fig. 9-11* 

in Appendix 1. The program outline is set up to meet the require

ments of a general LISP-8 program. This framework is illustrated 

in Appendix 3, and the structure of the internal global variables 

in Table 6, in Appendix 1. 

2.2.2 Subroutine description 

Both the consequence and fault tree codes are written by 

structured programming technique, i.e. all the separatable 

tasks are comprised within subroutines and only their interfaces 

are involved in the main routine. The functional description of 

the consequence subroutines, interpretation of their arguments 

and outputs are given below. 

INITIALISE X 

This routine creates the object on the active component 

list ACL and on the data-base using the input data de

scription list CL. 
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Arg. X must be set to CL. 

It returns with NIL (DATA-ERROR) in case of empty CL or 

with CL otherwise. 

CHECK X Y 

The routine checks the existence of a component marked with 

its name in component list CL. 

Arg. X must be set to CL, Y to component name. 

It returns with NIL (DATA-ERROR) if the component has not 

been found in CL (or empty CL) or with the component name 

otherwise. 

CSEL X 

This routine selects the active component name with earliest 

output event time from the active component list ACL. 

Arg. X must be set to ACL. 

It returns with NIL if ACL is empty or with (<Time> <ACName>) 

pair. 

CDEL X Y 

This routine deletes a given component name from ACL in 

function of the specification: 

- if the entry specification is a (CTfrne? ̂ CName?) pair, 

the component name is only deleted from the specified 

time-branch, 

- if the entry specification is a <.'CName>, it is deleted 

from all existing time-branches. 

Arg. X must be set to ACL, Y to the entry specification. 

It returns with the modified ACL. 

CINS A X Y 

The routine appends a component name to the end of a speci

fied time-branch of ACL. 

Arg. A must be set to ACL, X to the event time, and Y to the 

component name. 

It returns with the modified ACL. 
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FFEV X 

The routine selects the earlier output event from a component's 

future output event list FE and deletes it. 

Arg. X must be set to component description. 

It returns with the selected output event or with NIL if FE 

is empty. 

FCSEL A X Y 

This routine determines the current following components of 

a main component which are affected by its output event. 

Arg. A must be set to CL, X to the main component description, 

and Y to the output event. 

It returns with tne affected following component list. 

INUPDT X Y 

The routine updates the values of variables contained in the 

variable list VR of a component. Arg. X must be set to com

ponent description, Y to the actual variable list. 

It returns with the new set of variables VR. 

DEDUCE X 

This routine deduces the possible output event of an active 

component, i.e. of a component whose variable values are 

updated by the actual input events/conditions. 

Arg. X must be set to the activated component description. 

It returns with the founded output event or NIL if there is no 

fulfilled transfer function input combination. 

2.2.3 Input/output 

Input 

The system block diagram is stored as a unit description list. 

The multiple input failure event descriptions, i.e. initial com

ponent names, their input failure events marked with times must 

be reported through display keyboard. The initial data transfer 

is over by giving 0 component name. 
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.—* COMPONENT: 

TIME: 

EVENT: 

Output 

In current version the information on event occurrence chains 

are presented on teletype and display screen. On the teletype 

each investigated component's name, marked with event time, output 

event, active following components' names associated with their 

selected output events are printed out. This information serves 

for manual or automatic consequence diagram drawing. 

MAIN-COMPONENT: KTime? <Comp.namc>) 

OUTPUT-EVENT: <.Output event> 

FOLLOWING-COMPONENTS: 

KFCN1? <FCN2> ...<.FCNi>) 

<FCN1> <FC1 Output event> 

<FCNi> <FCi Output event> 

On the screen only the significant output events (SIGNEV) or last 

chain events (LASTEV) and the relating main component name with 

time are displayed. 

MAIN-COMPONENT: (<Time> <Comp. name» 

OUTPUT-EVENT: <, Output event? 

2•3 An example 

To illustrate the results gained by the consequence diagram 

construction program CONSEQ, the outputs of HEATER/WASTE-PAPER/ 

FIRE-BRIGADE example shown in Chapter 1.3 are presented on 

Fig. 3-4. 

KComp. 

KEvent 

<.Input 

name>) 

time>) 

event> 



- 19 -

Fig. 3 contains the output got by COMPLETELY-BURNT HASTE 

PAPER, i.e. the FIRE-BRIGADE's interaction was too late to 

extinguish the fire (<* t =30>*t^=20) . In Fig. 4 *:he elements 

of consequence diagram gained by NON-3URNT WASTE-PAPER are 

shown. In this case the FIRE-BRIGADE was quick enough to 

extinguish the paper-fire (*t =10<4t =20). 
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Fig. 3. Consequence diagram of BURNT WASTE-PAPER. 
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Fig. 4. Consequence diagram of EXTINGUISHED WASTE-PAPER. 
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3. Fault tree construction 

The fault tree is a clear, graphic representation of a logical 

function which relates a specified undesired event to its contri

buting events. The output event is often called as TOP event or 

system failure event, and its causes as primary or spontaneous 

events. In one fault tree only one TOP event is emphasized and 

several primary events are presumed. 

3.1 Fault tree construction algorithm 

The fault tree construction starts with the definition of an 

undesired event and a backward tracing is carried out to map the 

combinations of possible input conditions/events and component 

state whicn can cause the output failure event. The tree branches 

are terminated if spontaneous input events or normal unit states 

are reached. 

The necessary unit and system information for fault tree 

construction is described in Chapter 1, but now the system may 

contain only internal loops, external loops cannot be handled. 

Special attention is directed towards event timing, i.e. sequential 

fault trees are handled. The automatic procedure cannot at present 

treat environmental and human aspects of failure. 

The main steps of the developed algorithm are described in 

Table 4, its details in Table 7, in Appendix 2. The algorithm is 

based on Fussell's method (S), the deviations mainly concern 

event timing and description of components with memory. 

3.2 Program for fault tree construction (CAUSE) 

The program for fault tree algorithm was written in LISP 

by structured programming technique. 
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Table 4 Backward tracing algorithm 

1. Get initial output event marked with time and component name, 

go to 4. 

2. Select an input variable combination indicated in old sub-

branch. If there are no more, go to 7. 

3. Find current preceeding components and their output events. 

If there are no output events, go to 2. 

4. Select an output ivent. If there are no more, create a new 

AND-branch, go to 2. 

5. Search for possible new input variable combinations which 

can lead to the selected output event and calculate their 

time of occurrence. 

6. Create a new OR-branch, go to 4. 

7. Get currently created set of AND-branches. If it is empty, 

prune event tree, go to 9. 

8. Create new tree-branch. If only primary events are involved, 

build event tree. 

9. Get next sub-branch of latest tree-branch. If there is no 

more, build final fault tree, exit. 

10. Go to 2. 
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3.2.1 General program structure and description 

The general block, structure of the ueveloped program is 

given on Fig. 5. The program starts with basic data-field creation 

by using system information stored as unit description list in 

CL. The produced component related objects have the same structure 

as presented in Chapter 2.2.1, but no following output event 

lists are involved. 

The main program can be divided into three major parts: 

cause-event searching, new branch making and event tree making 

codes. The Cause-Event Searching Code gets the initial output 

event marked with time and component name to start the backward 

tracing. First the possible subtransfer functions and their 

input variable combinations are selected for the given output 

event. For proper selection a preliminary consistency checking 

is carried out to delete mutually exclusive simultaneous events 

and which can be completed by using a consequence checking 

procedure. The input combinations may generally be built of 

spontaneous events and normal states of the investigated compo

nent or input events/conditions coming from the previous connected 

components. To find these categories of input variables a com

ponent related type selection is carried out and the result is 

placed on a stack (IV). The separated spontaneous events/normal 

state are built in the final part of fault tree (selected final 

input - SI), the input events/conditions are regarded as possible 

output events of previous components (selected temporary output -

SO) and are inserted in the temporary part of fault tree for 

further investigations. 

The relation between an output event and its input variable 

combinations/ i.e. the current part of the fault tree to be 

constructed is created by using AND- and OR-gates involved in 

unit mini fault trees. The New Branch Making Code ret .ves the 

formerly established logical functions of input/output variables 

and produces a new preliminary branch of the fault tree. Each 

prelinimary tree-branch is stored on a Branch Stack BS and is 

built up of several sub-branches. To make their identifications 
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easier, pointers and sub-pointers are introduced and placed on 

a Pointer Stack PS. The structure og tree-branches and pointers 

are shown on Fig. 6-7. 

The main manipulation and supervision of tree-branches is 

carried out by the Event Tree Making Code. A preliminary tree-

branch consists of two main parts: a tree-branch pointer and a 

set of sub-branches. The sub-branches may be complete or preliminary 

sub-branches. If all the sub-branches in a tree-branch are com

plete, i.e. they are traced back until spontaneous events/normal 

states are reached, the tree-branch is inserted into its "mother-

branch", i.e. into a tree-branch for which itself is a sub-branch. 

In other words, a tree-branch is complete and not treated further 

if all its sub-branches are complete or is preliminary if one of 

its sub-branches is preliminary. 

The backward search is continued until only one complete 

tree-branch is found, this represents the final fault tree. The 

detailed block scheme of the above described codes are given 

on Fig. 12-14, the structure of mini internal global variables 

in Table 8, in Appendix 2. 

3.2.2 Subroutine description 

In the following the functional description of fault tree 

subroutines, the interpretation of their arguments and outputs 

are given. 

INITIALISE X 

The same as of consequence program described in Chapter 
2.2.2. 

CHECK X Y 

The same as of consequence program described in Chapter 
2.2.2. 

INSEL X Y 

This routine carries out a component related type-selection 
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of input variable combinations into spontaneous events/ 

normal states and input events/conditions. 

Arg. X must be set to main component description, Y to its 

input variable combination. 

It returns with NIL (DATA-ERROR) if an input variable has 

not been found in the main component's SE/NS lists or among 

the previous components' output variables, otherwise it 

returns with the component related distributed variable list. 

EySEARCH X Y 

This routine searches for possible input variable combinations 

of a component related to a supposed output event. 

Arg. X must be set to component description, Y to output 

event. 

It returns with NIL if the output event turned out to be an 

erroneous event or with input combinations marked with time 

fast, otherwise. 

TMAKE T X Y 

The routine calculates the absolute time value of input va

riable combinations. 

Arg. T must be set to initial time value, X to component 

name, and Y to input combinations marked with their time 

fast. 

It returns with input variable combinations marked with 

component name and absolute time. 

SELBRANCH X Y 

This routine selects a sub-branch marked with pointer from 

its "mother" tree-branch. 

Arg. X must be set to sub-branch pointer, Y to tree-branch. 

It returns with NIL if the pointed sub-branch has not been 

found in the given tree-branch or with the selected sub-

branch otherwise. 

INSBRANCH X Y 

This routine inserts a sub-branch into the pointed part of 

its "mother" tree-branch (into head of BS). If the sub-branch 
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to be inserted is empty, the mother tree-branch is pruned. 

Arg. X must be set to sub-branch, Y to its pointer. 

It returns with NIL if the pointed sub-branch does not 

belong to the head of BS or with modified BS otherwise. 

PRUNETREE X 

This routine reduces the event tree until it is possible, 

i.e. eliminates empty sub-branches and empty tree-branches 

from BS. 

Arg. X must be set to the pointer of the empty sub-branch 

to be eliminated at first. 

It returns with NIL if pruned event tree is empty or with 

BS otherwise. 

NEWPTR X 

This routine creates a "mother" pointer of a tree-branch. 

Arg. X must be set to tree-branch. 

It returns with new "mother" tree-branch pointer. 

INSPTR X 

This robtine inserts a "mother" pointer as well as its 

sub-branch pointers into the pointer stack PS. 

Arg. X must be set to "mother" pointer. 

It returns with extended PS. 

DELPTR X 

The routine deletes given sub-branch pointers from their 

"mother" tree-branch pointer. 

Arg. X must be set to sub-branch pointer set to be deleted 

(if X=0, the "mother" pointer is entirely deleted). 

It returns with NIL if an indicated sub-branch pointer has 

not been found in its "mother" pointer or with reduced PS 

otherwise. 
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3.2.3 Input/output 

Input 

The system information is stored as a unit description list. 

The system failure / undesired event description, i.e. initial 

component name, its output failure event and time must be commu

nicated through display keyboard; 

COMPONENT: «Comp. name>) 

TIME: «.Time>) 

EVENT: <TOP event) 

Output 

The input system failure / undesired event description as 

well as the resulted Boolean fault tree expression are displayed 

on screen: 

COMPONENT: <Comp. name) 

TIME: <Time) 

EVENT: <.TOP event) 

FAULT TREE: <Fault tree) 

The final fault tree consists of spontaneous events/normal 

states marked with components names and time values and connected 

through AND/OR gates: 

<Fault tree)::=((AND(OR(AND<Tree-branch 1>) (AND< Tree-branch? 2)...))) 

<Tree-branch i?::<Sub-branch IXSub-branch 2>... 

<Sub-branch j)::=(^Spontaneous event/Normal state)) | 

(OR(AND<Tree-branch k>)(AND<Tree-branch k+l>)...) 

3.3 An example 

For illustration the example of HEATER/WASTE-PAPER/FIRE-

BRIGADE system described in Chapter 1.3 is presented on Fig. 8. 
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4 . P r e s e n t sfcat-us *nH fnr«-h»r rU»w»1r.pm*nf-«r 

The described programs were implemented on PDP8 computer 

with 8k. The current limited storage capabilities have so far 

prevented application on real complex physical systems, therefore 

the early experiences are restricted into smaller examples. To 

get sufficient experiences with complex systems the implementation 

of programs on Burroughs 6700 computer are preceding, using a 

LISP8/FAURTRAN-IV Compiler/Interpreter. This implementation makes 

the connection of two algorithms possible and the consistency 

checking complete. 

Another branch of current research work is the application 

of the fault tree and consequence diagram construction programs 

for plant disturbance analysis. As the sequential fault tree 

analysis can establish the possible logical combinations of 

primary faults for a distrubed plant situation and the con

sequence analysis can establish how far the disturbances extend, 

their combined application during distrubance analysis can effec

tively support the operator's work. 
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Appendix 1. Consequence diagram construction 

Table 5. Detailed algorithm for consequence diagram construction 

Start with data-base creation using component descrip

tion list CL. 

INPUT, Get initial event description of next initial component. 

If no more initial components, go to CSKT.KCT. 

If initial component is not in CL, exit. 

Place initial event on future event list of initial 

component. 

Place initial component on active component list ACL 

marked with event time. 

Go to INPUT. 

CSELECT, Select main component MC with earliest event time ET 

from ACL and place it on SC. 

If there are no more components on ACL, exit. 

Delete SC from ACL. 

Find' the earliest event description on HC's future 

event list and place it on EV. 

Find which of the connected following components are 

affected by EV. 

Place affected components on the current following 

component list FL. 

EVDEDUCE, Get next following component NC from FL. 

If there are no components on FL, go to CSELECT. 

Update the input variable values of NC using EV. 

Deduce NC's current output event COE using input 

variable values, state variable values and transfvr 

function. 

If there is no output event, go to EVDEDUCE. 
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Table 5 cont. 

Split COE into an immediate event IE and a delayed 

event DE. 

If IE exists, update the state variable values of 

FC using their Modified values involved in IE. 

Add both IE and DE to NC's future event list. 

Delete HC Barked with old time values fro« ACL. 

Evaluate new event time values using old time ET 

and time delay values of IE and DE. 

Place MC on ACL, Barked with new time values for 

IE and DE. 

Go to EVDEDOCE. 
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Table 6. Structure of internal global variables 

Set of active components —* ACL 

Component description list —> CL 

Following component list —* FL 

Component description —) CD 

Main component description —* MC 

Component name —* CN 

Output event with time —* OE 

Output event without time —* EV 

Current output event with time —* COE 

Immediate output event —} IE 

Delayed output event —> DE 

Event tine —^ ET 

Current event time —> CT 

ACL = (KTime V> <ACN1> <ACN2>...) 

KTime n> <ACNi) <ACNi+l> ...)) 

CL = KComp. description l)<Comp. description 2) ...) 

FL = «FCN1) <FCN2) ) 

CD = <Comp. d e s c r i p t i o n ) 

MC = <.Main comp. d e s c r i p t i o n ) 

CN = <Comp. name) 

OE = KTime de lay) <Mark> < E C 1 X E C 2 ) . . . ) 

EV = K E C 1 X E C 2 ) . . . ) 

COE = ( ( 0 <Mark) <EC1)<EC2). . . ) 

KTime d e l a y ) <Mark) <EC1)<EC2) . . . ) ) 
IE = (0 <Mark) £ E C 1 X E C 2 ) . . . ) 

DE = «Time d e l a y ) <Mark) <EC1)<EC2) . . . ) 

ET = <Abs. t i m e ) 

CT = <Abs. t i m e ) 
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Appendix 2. Fault tree construction 

Table 7. Detailed algorithm for fault tree construction 

Start with data-base creation using component 

description list CL. 

Get initial event description of initial component. 

If initial component is not in CL, exit. 

Place initial event marked with component name on 

selected output event list SO. 

Create initial tree-branch, place it on oldbranch 

OBR. 

Get OBR's pointer and place it on OPR. 

Go to ANDBRANCH. 

BRANCH, Get description CD of main component MC marked in 

OBR. 

Get possible conjunctive combinations of its 

output variables and place them on ZC. 

ESEARCH, Get next conjunctive combination of input events/ 

conditions from IC. 

If there are no more combinations, go to BRMAKE. 

Distribute the selected input events/conditions 

among the connected previous components of MC. 

If one of them cannot be found in previous compo

nent's variable list, exit. 

Place selected output events of previous components 

on SO and spontaneous event/normal state of MC on SI. 

ANDBRANCH, Get next selected output event from SO. 

If there are no more, create a new conjunctive 

sub-branch (AND-branch) and go to ESEARCH. 

Search for possible respective input event/condition 

sets. 

If there are not, go to ESEARCH. 

Evaluate new event times for founded event/condition 

sets using absolute time value of OBR and time 

delays of SO. 
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Table 7 cont. 

Create a new disjunctive sub-branch (OR-branch) 

using new input event/condition sets and their 

time. 

Go to ANDBRANCH. 

BRMAKE, Get new conjunctive sub-branch set. 

If there is not, prune fault tree and go to 

NEXBRANCH. 

Create a new tree-branch consisting of a printer PR 

and a logical function of events/conditions. 

Create a new pointer set for next sub-branches 

using the created new tree-branch. 

If there is no new pointers, build fault tree 

and go to NEXBRANCH. 

Append new tree-branch into branch stack BS. 

Append new pointer set into pointer stack PS. 

NEXBRANCH, Get next pointer OPR of pointer stack. 

If it is not null, get its relating branch from 

BS and place it on OBR, gc to BRANCH. 

Build and display final fault tree. 

Exit. 
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Table 8. Structure of global variables 

Initial component name 

Initial output event 

Initial output event time 

Component description list 

Component description 

Component name 

Distributed input variables 

Selected output events 

Selected spontaneous event/normal state 

Evaluated input event/condition sets 

Input event/condition combinations 

New tree-branch 

Old tree-branch 

Pointer of new tree-branch 

Pointer of old tree-branch 

Branch stack 

Pointer stack. 

Event time 

COMP 

EVENT 

TIME 

CL 

CD 

CN 

IV 

SO 

SI 

IS 

IC 

NBR 

OBR 

NPR 

OPR 

BS 

PS 

ET 

COMP = (Component name) 

EVENT - UEC1XEC2)....) 

TIME • <Abs. time? 

CL = ((Component descriptionX Component description). ..) 

CD = (Component description) 

CN = (Component name) 

IV - (((MCName) (SE1)<SE2) . . . ( NS1)(NS2>. . . ) 

((MCName> ( E C 1 X E C 2 ) . . . ) 

(<PCN1? <EC1?(EC2>... ) 

SO 

((PCNn) (EC1)(EC2) . . . 

(((MCName) ( E C D ( E C 2 ) . 

((PCN1) <EC1XEC2) . . . ) 

) ) 

SI 

«PCNn) ( E C 1 X E C 2 ) . . . )) 

((MCName) <SE1)(SE2>. . . (NS1XNS2) . . . ) 
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IS = («.Time> (AND<VR1XVR2>...)(ANKVR1><VH2>...) ) 

«Time> (AND... )(AND... ) ) 

• 

«Time> (AND... )(AND... ) ) ) 

IC = ((ANIXVR1XVR2) )(AND<VH1><VR2> ) . . . . ) 

N3B = («A.Time> 4MCName» 

(AND( «A .Time) <MCName>) (AND<SB1><SE2>.. .<NS1><NS2>....) 

(0R( «A.Time> <PCName» (AND<VR1XVR2> ) (AND<VR1>...)...) 

( ) ) 

(OR )) 

(AND )) 

OBR = a s N3R 

NPR = ( « . A . T i m e > <MCName>)(«A.Tin ie> < . P C N a m e » « A . T i m e > <.PCName» )) 

OER = « A . T i m e > <.PCName>) 

BS = «OBR3><OBR2> ) 

PS = «OPRl><OPR2> <NFRlX0PRi><0PRi+l>. . .<NPR2> <NHln?) 

ET = <Abs.Time> 
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Appendix 3. Outline of a LISP-8 code 

/ 

x VARIABLES 

<VN1> ,0 

x FUNCTIONS 

< Subroutine name 1> J 

* I Subroutine names 

C. Subroutine name j) J 

0 

EVAL 

BEGIN GO START 

/CONSTANTS 

CRLF,CRLFPT 

x.+1*7776 

CRLFPT,4100;0 

START, 

END 

<, Subroutine 1") 

* 

<Subroutine j) 

END 

FREE, 

I 

Variable names 

Constants 

Text constants 

Main program 

) 

Subroutines 
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