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1. INTRODUCTION 

It is well known that bombardment of metals by energetic 

neutrons induces considerable changes in their physical and 

mechanical properties. The increase in critical shear stress by 

irradiation (irradiation hardening) is due to the interaction off 

the irradiation-produced defects with dislocations. Several 

irradiation hardening studies have been performed on fee metals 

especially copper . At first, pure and well annealed metals 

were used. Later, the effects of alloying and pre-straining on 
(4-5) irradiation hardening of copper were studied 

The present report reviews the effect of neutron irradiation on 

the mechanical properties and the deformation behaviour of pure 

copper and copper alloys. The mechanism of irradiation hardening 

is described in section 2. In section 3, the neutron dose depen­

dence of the critical shear stress is investigated. The contradic­

tion between some experimental data and the dispersed barrier 

hardening theory1 'is discussed. The effect of both alloying and 

cold-work on irradiation hardening is reviewed in sections 4 and 

5, respectively. The superposition of irradiation hardening and 

the hardening due to either alloying or cold-work is outlined. In 

section 6 the deformation behaviour of neutron irradiated copper 

and copper alloys is investigated. Studies connected with the 

deformation behaviour of both irradiated copper and copper alloys 

using tensile testing and transmission electron microscopy are 

summarized. 

2. MECHANISM OP IRRADIATION HARDENING 

The basic mechanisms of irradiation hardening in fee metals, 

such as copper, nickel and gold, have been extensively studied* . 

The main conclusion of the studies concerning the critical resolved 

shear stress (CSS) is that the increase in the CSS, due to neutron 

irradiation, is caused by vacancy agglomerates which act as barriers 

to dislocation motion. Seeger considered these small vacancy 

agglomerates as depleted zones ( ̂  10 A) created by fast neutrons. 

During irradiation at temperatures where vacancies are mobile, 

these vacancy agglomerates grow into vacancy loops. 
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In the dispersed-barrier hardening model, proposed by Seeger , 

the motion of dislocations under an applied shear stress (T) is 

impeded by obstacles randomly distributed in the glide plane. The 

dislocations can overcome these obstacles either by the Orowan 

mechanism , in which the dislocations bow out between the obstacles 

and then surround them, or by passing over them or cutting through 

them. In the passing or cutting mechanism, thermal activation can 

help in overcoming the energy barrier caused by the obstacles. 

This thermal activation decreases the force (F) necessary for the 

dislocations to pass over the obstacles. 

The distribution of the dislocation obstacles can be correlated 

with the shear stress (T ) necessary to drive the dislocations 

through these obstacles as follows: 

xs = As( *) (1) 

s 

where 1 is the average distance between obstacles in the slip plane. 

For the Orowan mechanism, 

As = ayb (2) 

where ;• is the shear modules, b is the Burgers' vector and a is 

constant. 

For the cutting or passing mechanism, 

* , - U g ^ . (S) 

In randomly distributed obstacles, Y~ is proportional to the 

square root of the area density of the obstacles (N ), i.e. 

± a (N )* . (4) 
Xs S 

Since the area density (N ) is proportional to the volume 

density (C ) of the obstacles, it can be concluded from equation 
S 

(1) that, for dispersed barrier hardening, 

ts a (C8)* (5) 

The superposition of hardening due to irradiation with 

hardening of other origin such as alloying and cold-work will be 

discussed in the following sections. 
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3. DOSE DEPENDENCE OF CSS 

The dispersed barrier hardening model proposed by Seeger 

predicts a (<J>t)' dependence of the CSS, where $ is the neutron flux 

and t is the time of irradiation. In this model, the motion of 

dislocations under applied shear stress is hindered by randomly 

distributed radiation-produced barriers. The point defect clusters 

are considered to be barriers to dislocation motion; their concen­

tration is assumed to be proportional to the fluence ($t). It was 

shown that the CSS should be proportional to the square root of the 

dose at o k. 

There is a discrepancy concerning the dependence of the CSS 
(2) on irradiation dose (<t>t) . Diehl showed that copper followed 

(<J>t) dependence, in agreement with Seeger's theory, while others 
(3 8) 1/3 
' indecated that it follows a cube root dependence (i.e. (<j>t) ' ), 

(9-12) A number of workers have investigated the effect of neutron 
irradiation on the CSS. For small neutron doses, the irradiation-

induced increase in the CSS cf Cu was found to be proportional to 

the square root of the dose, as lcng as the obstacle concentration 
(9-12) increased linearly with the dose . However, a decrease in 

hardening rate was observed at high neutron doses. This was 

attributed tc the saturation in the density of the depleted zones 

that are active as dislocation barriers. 

Blewitt et al. , Young ' and Thompson and Paré' ' also 

investigated the dependence of the CSS on (<j>t) in the fluence range 
11 20 2 

1-5x10 <^t<l«3xl0 n/cm at a temperature of 303 K. The CSS was 
1/3 found to be proportional to (<t>t) , which is not in agreement with 

the square root dependence predicted by Seeger. 
(15) Makin and co-workers attempted experimentally to con-elate 

the CSS with the density of defect clusters produced in neutron 

irradiated copper as observed by transmission electron microscopy. 

Single-crystal tensile specimens and corresponding specimens for 

electrom microscopy were irradiated together using the same dose 
18 2 (2-5x10 n/cm ) and examined after annealing for various times at 

548, 579 and 609 K. A single linear relationship was found between 

the CSS at 4-2 K and the square root of the density of clusters 

less than 50 A in diameter after annealing at the temperatures 

mentioned. For the larger clusters, which are thought to be inter­

stitial loops, this linear relationship was not obtained. Better 
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results were obtained when the CSS was correlated with the cube 

of the large clusters. This indicates that the ($t)' dependence 

of the CSS applies only when there are small defect clusters, and 

this is the condition for the dispersed barrier hardening theory 

proposed by Seeger 

It can be concluded that the agreement of stress-dose dependence 

with the dispersed barrier model (T a ($t) ) is due to small defect 

clusters (< 50 A). The discrepancy in the data reported must be 

due to differences in experimental conditions, such as irradiation 

temperature, differences in reporting the neutron fluence, and 

material characteristics . 

4. EFFECT OF ALLOYING ON IRRADIATION HARDENING 

Studies on the basic mechanisms of irradiation hardening have 

been primarily focused on pure metals and generally using single 

crystals. Attempts are made to clarify the principal problems that 

arise in going from pure to alloyed metals to meet the requirements 

of various reactors. The superposition of solid solution hardening 

and irradiation hardening was investigated by irradiating copper-

gold and copper-aluminium alloys . 

Copper-gold Alloys: 

Neutron irradiation hardening of copper-gold single crystals 
(18) was investigated by Basu and Diehl . The concentration of Au 

ranged between o.3 and 10 at.%. Test peices from Cu-Au alloys 

with concentrations of 0.3, 1, 3 and 10 at.% Au were irradiated 

at ^ 353 K. The dependence of the CSS on neutron dose at two 

In recent work ' samples of zirconium alloys and stainless 

steels were irradiated together in one capsule at low temper-
20 2 fc ature (̂  323 K) up to a dose of 1*43x10 n/cnt. (<J>t)̂  dependence 

of the yield stress was obtained in stainless steels, while 
1/3 

(<J>t) dependence was found in zirconium alloys. The agreement 

of stress-dose dependence in stainless steels, with the dispersed 

barrier model is probably due to the presence of small defect 

clusters in irradiated stainless steels, as was shown by 

transmission electron microscopy investigations. 
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deformation temperatures (90 and 295 K) was studied. The results 

are shown in Fig. (1) together with pure Cu. The CSS is plotted 

versus (<|>t) . A linear relationship appeared at small doses for 

the alloy crystals as well as for the pure copper single crystals. 

According to these plots, the authors stated that a linear 

superposition of alloy hardening and irradiation hardening exists 

according to the following equation: 

T = Tj + T2 (6) 

where T is the total shear stress necessary to drive the 

dislocations in the as-irradiated alloy 

T, is the shear stress necessary for moving the dislocations 

through the stress field resulting from alloying 

Xy is the shear stress necessary to push the dislocations 

over the obstacles resulting from irradiation. 

In Fig. (1) the data actually show linear increase, in the 

CSS at small neutron doses, and the extrapolation of the linear 

parts of the curves to zero dose agrees well with the CSS of the 

unirradiated alloy crystals, but the additivity in the CSS for the 

superposition of solid solution hardening and irradiation hardening 

cannot be stated, since the straight portions are not parallel. 

The increase in the CSS due to neutron irradiation is affected by 

alloying gold with copper. The dose dependence of T at low doses 

decreased with increasing amounts of gold in copper. This can be 

due to either a decrease in the production rate of dislocation 

obstacles with increasing gold concentration, or a decrease of the 

effectiveness of the depleted zones as dislocation obstacles. The 
(18) latter was preferred by Basu and Diehl . They concluded that 

the depleted zones become smaller with increasing gold concentration. 

This is due to the shortening of the ranges of dynamic crowdions 

which play an important role in the formation of these zones 

Another feature of the results in Fig. (1) is that, at high doses, 

the tendency to saturation in irradiation hardening diminishes 

with increasing Au concentration. 

The data in Fig. (1) (90 K) were replotted on double logarithmic 

paper to correlate the CSS with the neutron dose (((it) . This is 

shown in Fig. (2), from which the following relation was obtained: 
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T a (•t)m . (7) 

The exponent ra decreased with increasing Au concentration. 

It decreased from 0.36 for pure Cu to 0.06 for 10% Au concentration. 

Copper-aluminium Alloy: 
(4) 

Koppenaal investigated the neutron irradiation hardening 

of copper-aluminium single crystals with aluminium concentrations 

0.5, 5 and 14 at.%. Single crystals of these alloys were irradiated 

at -v 333 K to neutron doses of 1.4xl017, 0.94xl018, 0.97xl019 and 
20 2 0.98x10 n/cm . The dose dependence of the CSS of these alloys is 

shown in Fig. (3), indicating the following: 

1. The CSS of pure copper showed cube root dependence, i.e. 
1 '3 

T a <<j>t> 

2. The increase in x due to neutron irradiation decreases with 

the increase of Al concentration at low neutron doses 

^ < 5.xl017n/cm2 

3. At high aluminium concentration (14 at.% Al), the CSS 

is neutron dose-independent when the dose is less than 
17 2 2x10 n/cm , while the CSS is independent of solute 

17 2 concentration at high neutron doses (> 2x10 n/cm ). 

(19) In other publications, Koppenaal , and Blewitt and 

Koppenaal studied the superposition of alloy hardening and 

irradiation hardening in Cu-Al alloys. They re-interpreted the data of 
(4) Koppenaal according to the following superposition: 

T 2 = T 2 + x2 (8) 

where x, is the stress necessary to drive the dislocation through 

alloying-produced obstacles 

x~ is the stress necessary to drive the dislocaticns through 

irradiation-produced obstacles. 

2 2 -\ 
In these publications, the CSS was plotted versus (x., +x. ) *, 

where T.. is the CSS of the unirradiated alloy and x, is the CSS of 

irradiated pure copper. A reasonably good fit to a straight line 

was observed, supporting the validity of equation(8). 
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5. EFFECT OF COLD-WORK ON IRRADIATION HARDENING 

The effect of pre-irradiation stressing on irradiation 

hardening of copper single crystals has been investigated by 

al.< 
(22) 

Blewitt el al. , Essnann , Koppenaal and Kuhlmann-Wilsdorf 

and Brunner 
(23) According to Kuhlmann-Wilsdorf"s theory , the flow stress in 

work-hardened fee metals is the stress required to multiply the 

dislocations by the Frank-Read mechanism. Work-hardening occurs 

due to the increase of the pinning points at which dislocations 

block the motion of each other. These pinning points increase with 

strain as the dislocation density increases. It is recognized that 

not all pinning points on dislocations are due to dislocation 

interactions, but additional types of pinning may exist. The 

additional pinning points of constant linear density on the dis­

location line increase the flow stress, but do not increase the 

work-hardening rate. 

Within the framework of this theory, irradiation hardening, 

after pre-irradiation stressing, can affect the CSS in different 

ways. The following possibilities have been suggested : 

1. Neutron irradiation causes strong pinning points on the 

existing dislocations at an average linear density of -s—. 

If the average linear density of pinning points between 

pre-existing dislocations is j—, then the total linear 
1 1 I P density will be: r- » -*— + •*—, where 1. is the average 
A lj_ lp 1 

distance between irradiation-produced pinning points and 

1 is the average distance between pinning points produced 

by pre-existing dislocations. The stress at which the pre-
(23) 

existing dislocations are expected to bow out equals * : 

where G is the shear modules and b is the Burgers' vector. 

This equation can be put in the form: 

T = Ti + Tp (10) 

where -i (pre-irradiation stress) = 
P 1Tl 

Gb_ 

P 

Ti 'IT. 
Gb_ 
i 
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2. The pinning of the pre-existing dislocations takes the 

form of an increased concentration of point defects. This 

increase* the frictional stress for dislocation aotion by 

Atp. The new stress will be: 

X « T + AT_. (11) 
p F 

3. Irradiation generates point defects in the whole crystal, 

raising the frictional stress acting on the dislocation by 

A T „ , and equation (11) applies. 

4. In addition to the pre-existing pinning points N per 

unit area of slip plane, neutron irradiation produces 

strong pinning points of density N., randomly distributed 

over the slip planes. New dislocation multiplication requires 

the bowing of dislocations of an average length 1, determined 

by the sura of the two pinning point densities, namely: 

1 <* (N.+N ) " ' . As 1. is proportional to N.~* and 1 is pro-
1 P _v * x P 

portional to N , the following equation can be obtained: 

T2 - T ±
2 • T p

2 . (12) 

5. Strong pinning points directly on the pre-existing 

dislocation give rise to equation (10), provided that 

the yield stress is determined by the bowing of the pre­

existing dislocations. However, a different behaviour 

results if the irradiation damage depends on pre-existing 

dislocations, giving rise to permanent pinning points 

at the sites of these dislocations, but with the yield 

stress determined by the onset of further dislocations 

multiplication. In that case, the density of pinning 

points N. must be proportional to the pre-existing dis-
-2 

location density which in turn is proportional to 1 

The average free length will be 1 « [ N (1+6)]"' with $ 

a parameter incorporating the neutron dose and the cross-

section for forming a pinning point at the dislocation 

core, so that: 

T = T (1+B)%. (13) 
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Koppenaal and Kuhlmann-Wilsdorf investigated the effect of 

pre-irradiation stressing on the strength of neutron-irradiated 

copper single crystals and discussed the above mentioned mechanisms. 

Copper single crystals with a purity of 99.999% were stressed before 
2 2 

irradiation to x ranging from ^0.6 kg/mm to ̂  5 kg/mm . Some of 

these crystals,together with some annealed crystals of the same 

material, were irradiated at 333 K in the Argonne CP-5 reactor for 

about three days. After irradiation, the shear stress, x, of all 

specimens was determined. The results are illustrated in Fig. (4). 

The increase in CSS due to neutron irradiation was much higher 

for small values of x than for large ones. This indicates that the 
P 

mechanisms described in items 1, 2 and 3 are not working, since T. 
and AT are constant for all specimens. The same also applies to 

the mechanism in item 5, since for higher x , the measured points 

approach a 45° line. This means that 8 in equation (12) equals zero. 

Also, the curve is not a straight line at the lo*?r points.The 

results obtained are in good agreement with the mechanism in item 4. 

The best interpolation curve of the data in Fig. (4) is given by: 

T = ATF + (T^+Tp
2)*. (14) 

2 2 
with AT„ =0.25 kg/mm and T. = 1.30 kg/mm . 

(5) Koppenaal and Kuhlmann-Wilsdorf concluded their work as 
follows: 

1. The dominant obstacles produced by neutron irradiation, 

which act as pinning points, are produced in a random 

array in the lattice rather than principally on dislocations, 

2. The CSS in r3Utron irradiated copper single crystals is 

governed by the stress required to generate dislocations 

rather than that required to move the pre-existing 

dislocations. 

(22) Brunner investigated the effect of irradiation on the CSS 

of pre-irradiation-stressed pure copper (99.999%). Pure copper 
2 

samples were deformed to flow stress T between 0.2 and 7.5 kg/mm . 

The CSS of the samples was measured at 20 K after irradiation at 

low-temperature (- 20 K). Some of the results are shown in Fig. (5). 
2 

For small pre-irradiation stresses (T < 1 kg/mm), additivity is 

observed between pre-irradiation stress and the increase of CSS 

due to irradiation (equation 11). In the range of small pre-
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irradiation stress, the initial slope of the curves in Fig. (5) 

is unchanged, indicating that the deformation of the depleted zones 

is not influenced by the pre-irradiation deformation. S-shaped 

curves are observed at higher pre-irradiation stresses. At high 

neutron doses, these curves are parallel to the curves of annealed 

or slightly pre-irradiation-stressed samples. 
(23) Makin reported measurements of the dose dependence of the 

yield stress of pre-irradittion-stressed polycrystalline copper 

samples. Qualitatively, the polycrystals show a behaviour similar 

to that of the single crystals in the work of Koppenaal and 

Kuhlmann-Wilsdorf(5*. 

6. DEFORMATION OF NEUTRON-IRRADIATED COPPER AND COPPER ALLOYS 

The deformation of neutron-irradiated copper crystals is 

characterized by coarse and widely-spaced primary slip lines and 

prominent cross-slip lines. Several studies concerning the defor­

mation behaviour of copper single crystals have been carried out 

using stress-strain curves and replica techniques for studying 

surface slip lines(24,25'26). 

In general, the stress-strain curve of irradiated copper is 

characterized by an initial stage of constant stress where inhomo-

geneous slip takes place. This stage is called the "jerky flow" 

region or stage I. It is followed by a region of high work-hardening 

rate (stage II). This leads to a region of decreasing strain-

hardening rate (stage III). 

Transmission electron microscopy investigations on deformed 

irradiated copper crystals showed that the dislocations sweep out 

the irradiation-produced defects, leaving cleared channels. 

The effect of a dispersed second phase on the deformation 

behaviour of irradiated copper crystals showed that the slip 

lines become irregular. 

In the following, the deformation behaviour of neutron-irradiated 

copper and copper alloys is reviewed. 

Pure copper 

A considerable number of investigations have been performed 

on the effect of neutron irradiation on the deformation of copper 
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single crystals. In unirradiated copper crystals, three work-

hardening stages are observed. Stage I is characterized by small 

work-hardening rate, stage II by a rather high work-hardening rate, 

while in stage III, the work-hardening rate decreases continuously. 

These three stages are considerably changed by neutron irradiation. 
(27-29 11) 

Rukwied and Diehl made systematic studies ' and showed 

that the work-hardening behaviour of neutron-irradiated copper 

single crystals is much more complicated than that of unirradiated 

crystals. Stage I was replaced by a yield point elongation zone. 

Stage II, which was characterized in the unirradiated crystals by 

a constant, high work-hardening coefficient, was subdivided after 

irradiation into a number of substages. Several linear portions 

with different work-hardening coefficients were observed. 
(25) Diehl and Hinzner* ' investigated this behaviour in detail. 

Cylindrical, copper single crystals (4 mm diameter) having similar 
17 2 orientation were irradiated to a neutron dose of 5x10 n/cm 

(E > 0.1 MeV). The crystals were tested in an Instron tensile-
-3 

testing machine at room-temperature using a strain rate of 1x10 

sec . The stress-strain curve of both irradiated and unirradiated 

crystals is shown in Fig. (6). The work-hardening stages and sub-

stages can be noticed. The yield point elongation zone is clear 

and followed by a portion with a considerably high work-hardening 

coefficient (substage Ila). The remaining part of stage II is 

divided into two linear substages. The first one (substage lib) 

has a smaller work-hardening coefficient than the second (substage 

lie), and these two substages have a lower work-hardening coefficient 

than substage Ila. At the beginning of stage III, a linear substage 

(Ilia) with a smaller work-hardening rate than in substage lie is 

observed. After substage Ilia, the stress-strain curve approaches 

that of unirradiated crystals. 

In a recent work, Howe ' studied the deformation of copper 

single crystals irradiated to high doses. Cylindrical crystals of 

2 mm in diameter were irradiated at 325 K to neutron doses of 

4xl018, 2.2xl019, 4xl020 and 8xl020 n/cm2 (E > 1 MeV). The as-

irradiated crystals were pulled in an Instron machine at a strain 
-4 -1 

rate of 'v 10 sec . In the stage I region, the flow stress was 

constant, the jerky flow was pronounced, and a Luders* front 

advancing along the specimen produced coarse slip lines. This 

behaviour is similar to that observed in crystals irradiated to 
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lower neutron doses ' ' . It was also noted that the CSS was 

relatively high and that the glide strain occurring in stage I 

before the start of linear hardening was large. 
(32) 

Using transmission electron microscopy techniques. Sharp 

studied the deformation of neutron-irradiated copper single crystals. 

Cylindrical, single crystals of 3.5 mm in diameter were irradiated 

at 299 K to various doses. Most o^ the crystals were exposed to a 
18 2 neutron dose of 1x10 n/cm (E > 1 MeV). Before irradiation, the 

crystals were annealed at 1123 K for one hour and slowly cooled 

to room-temperature. The as-irradiated crystals were polished and 

deformed to various strains using an Instron tensile testing 
-4 -1 machine at a strain rate of <v» 10 sec at 293, 77 and 473 K. 

Sections of 1 mm thickness, both parallel and normal to primary 

glide plane, were taken from the deformed crystals. Samples for 

electron microscopy (3 mm diameter) were obtained from these 

sections. Deformation occurred initially at all temperatures by 

the propagation of a Luders* front where the slip lines on the 

surface are widely spaced. A new slip line forms well ahead of the 

existing lines and then rapidly develops into a small cluster of 

slip lines linked by cross slip. 

All sections normal to the primary slip plane showed a high 

density of irradiation produced defects and defect-free channels 

parallel to the trace of a {111} plane. The widths of the channels 

were remarkably constant along their length. Different channels 

appeared to have slightly different widths. Within the cleared 

channels, dislocation debris was observed. Sections taken from 

crystals deformed tc stage II also showed cleared channels and a 

high density of defects between the channels, as observed in stage 

I. Between the channels, however, many dislocations lying on 

secondary glide planes were observed. The distance between channels 

was less than that in stage I. 

The slip band width determined by replica methods was smaller 

than the channel width as measured by transmission microscopy. 

However, slip band widths determined by replicas are subject to 

fairly large errors. The work of Makin and Manthorpev , using 

an electron shadowgraph technique, indicates that the slip lines 

on the surface of the crystal deformed to the end of stage I after 
18 2 

a dose of 2.3x10 n/cm have a width that is about the same as 

the observed channel width. The difference in data obtained by 
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replica and transmission electron microscopy may arise from the 

fact that the replica and thin foil are taken from different places 

in the specimen. It is interesting to note that the channel width 

decreased with decreasing deformation temperature and increasing 

neutron dose, while it is independent of strain rate at room-temper­

ature . 
(33) In a recent work, Sharp studied the correlation between 

cleared channels and surface slip steps in neutron-irradiated 

copper crystals. Cylindrical single crystals were neutron irradiated 
18 2 to a dose of 2.5x10 n/cm (E > 1 MeV) . A special electro-plating 

technique was used for preparing the specimens for the transmission 

electron microscope to show the relation between surface details 

and internal structure. After deformation to the end of stage I 

at room-temperature, the specimens were put in an electro-plating 

bath. Cleared channels were observed parallel to the trace of the 

primary slip plane. Each channel was found to terminate at a slip 

step on the surface. The channels were cleared of irradiation-

produced defects for approximately the full width of the slip step 

indicating that the removal mechanism is relatively efficient. 

In the work of Howe , cleared channels were also observed 

lying parallel to the primary and cross-slip planes, after the 
20 2 deformation of highly irradiated (<(>t = 8x10 n/cm ) copper crystals. 

Even in the presence of a high defect density and a more complex 

damage configuration, it was possible for the glide dislocations 

to remove the defects in the same way as at lcwer fluences. Also, 

the measurements of channel width and spacing are in good agreement 

with the slip step measurements, thus indicating that there is 

indeed a one-to-one correspondence between the formation of a slip 

band and a cleared channel. This agrees with the results of 
(33) 

Sharp* '. It should also be noted that the slip band width, spacing 

and height increase with increasing testing temperature as does the 

average shear per slip band. A similar temperature dependence of 
(33) slip parameters was noted by Sharp* ' . 

Copper Alloys 

The deformation behaviour of neutron-irradiated copper alloys 

is different from that of neutron-irradiated pure copper. In 

general, the deformation of as-irradiated copper solid solution 

alloys has the following features: 
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1. The slip line pattern changes from homogeneous to 

heterogeneous with the formation and propagation of a 

Luders' band. 

2. The amount of "easy glide" stage increases. 

3. The tensile axis overshoots indecating latent hardening 

on the secondary (conjugate) slip system. 

4. The flow stress is more temperature dependent than in 

pure copper. 

5. The formation of cleared channels decreases. 

6. The slip line spacing decreases. 

7. The average shear per slip line is smaller than in copper. 

The effect of the addition of a dispersed second phase on the 

deformation behaviour of irradiated copper crystals has received 

little attention*4, ' . In general, the following features 

have been observed: 

1. The formation and propagation of a Luders' band. 

2. A smoother stress-strain curve than in irradiated pure 

copper. 

3. The formation of well defined groups of slip lines with 

large spacing before the end of stage I, where the 

surface of the crystal is filled with slip lines. 

4. The slip lines are generally straight and interconnected 

by many cross slip segments. 

5. The formation of cleared channels with smaller spacing 

than in pure copper. 

In his work on the effect of neutron irradiation on the strength 
(4) 

of a Cu-Al single crystals, Koppenaal investigated the deformation 

of copper-base alloys containing o.5, 5 and 14 at % Al. The 

behaviour of the stress-strain curves of these alloys was similar 

to that shown in Fig. (7), indicating the following: 

1. The formation of two Luders* band similar to that observed 

in neutron-irradiated copper single crystals. 

2. The amount of strain, with nearly constant stress, corre­

sponding to the first Luders' band extension, increased 

with neutron dose. 

3. The rate of work-hardening during linear hardening decreased 

slightly with increasing neutron dose. 

4. The stress corresponding to the initiation of the second 

Luders's band increased with the neutron dose, but to a 
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lesser degree than the stress of the first Luders* 

band formation. 

( 34) 
Brimhall and Mastel* ' studied the deformation structure of 

neutron-irradiated copper-aluminium alloy (8% Al). The alloy was 

irradiated together with pure copper at 313 K to a neutron dose 
18 19 2 ranging from 1x10 to 1x10 n/cm , and then pulled in an Instron 

tensile testing machine to a maximum strain of 5%. The deformed 

structure of the irradiated alloys was different from that of pure 

copper. In pure copper, the moving dislocations swept out the 

irradiation-produced defects forming free channels. Such defect-

free channels did not appear in the irradiated alloy. 
(35) 

In a recent work. Sharp* ' studied the deformation behaviour 

of three different neutron-irradiated copper alloys, using mainly 

transmission electron microscopy. The alloys used were copper -

0.8% Cobalt single crystals containing equiaxed precipitates of 

diameter ^ 930 A, internally oxidized copper - 0.05% Al single 

crystals, and single phase Cu - 4% Al single crystals. All these 

crystals were irradiated at reactor ambient temperature to a neutron 
18 ? 

dose of 1x10 n/cm . The as-irradiated crystals were deformed in 
-4 -1 

an Instron tensile testing machine at a strain rate of ^ 10 sec 

at room-temperature. Both the mean slip line spacing and the mean 

slip line height were measured using replica technique. Sections 

both parallel and normal to the primary slip plane were taken from 

the deformed crystals for electron microscopy. The following 

observations were made: 

1. In all alloys, a Luders' band propagated down the crystals 

at approximately constant stress. 

2. Well defined groups of slip lines were formed with large 

spacing between groups, until at the end of stage I, the 

whole crystal was filled with slip lines. 

3. The stress-strain curve was smoother in the alloys than 

in the irradiated copper crystals, especially in the 

internally oridized copper-aluminium alloy (Cu-Al-CO. 

4. Cross 3lip lines were frequently observed in all alloys 

except the Cu-4% Al (single phase). 

5. The slip lines in the Cu-Co alloy were generally straight, 

interconnected by many cross slip segments. In Cu-Al?0^ 

alloy, the straight segments were larger with shorter 

cross slip lines. In Cu-Al alloy, the slip lines were 

straight with a few isolated examples of short slip segments 



_ 20 _ 

parallel to cross slip planes. 

6. Cleared channels appeared in all alloys except Cu-Al 

alloys. In the Cu-Co alloy, the width of the cleared 

channels is similar to that of irradiated pure copper, 

where the channels are straight and nearly uniform. In 

Cu-Al203 alloy, the cleared channels are wider and 

irregular in width. 

7. CONCLUSION 

1. It is generally agreed that the increase in CSS due 

to fast neutron irradiation occurs according to the 

dispersed-barrier hardening model where the motion of 

dislocation under an applied shear stress Is iirpeded 

by localized obstacles randomly distributed in the glide 

plane; this increase in CSS is propoerional to the square 

root of the neutron dose. 

2. The agreement of the stress-dependence on <J>t with the 

dispersed-bavrier model exists when the irradiation-

produced defects are small clusters < 50 A. 

3. The irradiation hardening rate is less in copper alloys 

than in pure copper; this hardening rate decraases with 

increasing solute addition. 

4. The superposition of solid solution hardening and 

irradiation hardening is an alternative process for Cu-

Al alloys where the higher CSS is the actual one* 

additivity was not ensured in Cu-Au alloys. 

5. The supersosition of hardening due to cold-work and 

irradiation hardening is, in some investigations, given 

by: 

2 2 t 2 
T = Ti + Tp ' 

where t^ is the CSS of irradiated copper, and T is the 

stress due to cold-work. However, in others, linear 

additivity exists between the pre-stress and the increase 

in yield stress due to irradiation. 

6. Irradiation changes the stress-strain curve of copper, 
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where stage I is replaced by a yield point elongation 

zone with "jerky-flow", and stage II is replaced, after 

irradiation, by a number of substages with different 

work-hardening rates. 

7. In irradiated copper crystals, the primary slip lines 

are coarse and widely spaced, cross-slip lines are 

prominent and the deformation is inhomogeneous as a 

Luders' band propagates down the crystals. 

8. During the deformation of irradiated copper crystals, the 

dislocations sweep out the irradiation-produced defects 

leaving cleared channels with a remarkably constant width. 

9. The deformation hebaviour of irradiated single-phase 

copper alloys is different from irradiated pure copper; 

the nature of slip line patterns changes from homogeneous 

to heterogeneous, the amount of "easy glide" increases, 

the formation of cleared channels and the slip line 

spacing decreases. 

10. The addition of a dispersed second phase to copper causes 

a smoother stress-strain curve, the formation of cleared 

channels with irregular width and smaller spacing, and 

the formation of well defined groups of slip line,-! with 

large spacing before the end of stage I, where the surface 

of the crystal is filled with slip lines. 

According to the reported data, the following points are 

suggested for further investigation: 

a. The dose dependence of the CSS and its relation to the 

size of irradiation-produced defects. 

b. The effect of pre-deformation on irradiation hardening 

in order to establish the mechanism governing the super­

position of irradiation hardening and hardening due to 

cold-work. 

c. The deformation behaviour of irradiated copper and copper 

alloys during stage II. 

d. The effect of neutron irradiation on the strength and 

the deformation of second-phase copper alloys. 
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O 4 8 12x10® 
(NEUTRON DOSE)> [n/cm2]> 

) : Dependence of the CSS of copper-qold single crystals ( •• ) 
on the square root of the neutron dose U P for two ° 
deformation temperatures T^ and various Au concentrations. 
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Fig. (2). Dose Dependence of the CSS of Cu-Au Alloys, 
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Fig. (3). Dose Dependence of the CSS of Cu-Al Alloys. 
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Fig. (4): The yield stress T in neutron-irradiated Cu single 

crystals vs pre-stress T . 
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