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1. INTRODUCTION 

In a previous report (Bilde-Sørensen, B#cker Pedersen and 

Lilholt 1975 - in the following called BBL) we discussed the 

creep properties of discontinuous fibre composites with non-

creeping fibres. He concluded that the creep curve for fibre 

composites with non-creeping fibres to a good approximation 

can be obtained from the matrix creep curve by a simple dis

placement of the latter curve in a log t vs. log o diagram. The 

direction of displacement is such that the transition from a 

power law to an exponential law occurs at a lower strain rate 

for the composite than for the unreinforced matrix. This has 

important practical consequences for the prediction of the creep 

strength of fibre composites with non-creeping fibres. It is 

therefore of interest to investigate the implications of 

extending the displacement vector analysis to include also 

discontinuous fibre composites with (partly) creeping fibres. 

A list of the symbols used in the analysis is presented 

on page 18. 

2. THEORY 

2.1. The physical model 

We shall base our analysis on the model for composites 

with partly creeping fibres proposed by Kelly and Street (1972). 

They consider a single fibre element, and the fibres are assumed 

to creep in the central part, 0 < z < z , where the strain 

rate of the fibres, I-, equals that of the composite, I . In 
i the range z < z < j the fibres are assumed to be rigid. This 

approach neglects the creep rate transient in the fibres up to 

the point z » z , where £f becomes equal to t c . Kelly and Street 

pointed out, that this approach is a good approximation provided 

that the stress sensitivity of the fibre is large, since the 

transient then would be very steep. 

Because of the symmetry, about the midpoint of the fibre 

element we only consider positive values of z in the analysis. 
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In order to carry through the displacement vector analysis, 
it is necessary to introduce a specific creep law. As in our 
previous report (BBL) we employ a power law 

at intermediate stresses and an exponential law 

(1) 

«-« ; «p fe) (2J 

at high stresses. 

Kelly and Street's model gives the following expressions 
for the shear strain rate in the matrix: 

t = c
 h for z > zc (3) 

and 

? * 0 for 0 < z < zc (4) 

When the shear values y * •= t and a * 2x (BBL) are 

inserted into the exponential law of eq. (2), we find, with 

h • ad. 

T • r In I i il . j — (5) 3 t' ad y 
o 

The stress distribution in the fibre is found from the integral 

*) 
A numerical analysis carried through with a hyperbolic sine 
law leads to the same results. 
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4 l/2 

»f * 3 / T <** 
z 

1 IW c/ 3 { e o d c 3e, e o d j 

The naxiaua fibre stress, af -» is found by setting z » z_: 

of M x - -2 £- 1„ -£ S_ (7) 
r'"*x d 3£» eod 

o 

The average s t r e s s in the f i b r e i s found from 

t/2 2 / ' \ 
°f " T t V f ,»ax + /E °f d 2 j 

Since 

we find 

° o ( 1 - 2 z c ) f/, 2 M , lc{t-2tc) 

* . — ^ K 1 - ? ) -2d l v t ' 3 f Æ " a d 
o 

4z_ å ( l -2z„) 
• —£ ln c * * - " c ' 1 

(8) 

t /2 ø ' ( t -2z ) 2 « (l-2z„> 
/ o dz » —2 £ _ m _ £ E _ ( 9 ) 

z„ 4d 3* ' / é a d 
c o 

31- « a d J <10> 
o 



4 -

In a treatment analogous to the above derivations, but based 

on the power law, the following expressions can be derived for 

°f max *nd °f *TOL*: 

qo(i-2*c> n ^c(l-2«c)Nl/n 

*'"•* d n+1 ^ 3* «d * 
o 

- O 
ao(l-2zc> (lcll-2zc)^ 1/n 

V 3* ea d^ o 
(11) 

and 

5 , g o U - 2 2 c } \(x . 2Jc_\ ^ c ( t - 2 » c ) ^ / " 
f 2d IV I / V 34 /7 0 d7 

o 

4zc /*cU-2zc> X ^ l 
• — - { — — ) (12) 

I v 3É e a d' J 

o 

n 1/n 

In eq. (11) the factor — * « has been set equal to 1. The 

actual value of the factor varies, e.g. from 1.047 for n = 3 to 

1.009 for n * 7. 

These results can be rewritten in a generalized form in the 

sane way as could the results obtained for composites with non 

-creeping fibres. A matrix law, a • f(e), which can be approxi
mated by a power law at intermediate stresses and by an expo

nential law at high stresses leads in the case of composites with 

partly creeping fibres to the following expression for the 

maximum fibre stress: 

p«ff \rr^> 



s 

In eq. (13) the effective aspect ratio. — T — * has been called 

0-£ (Kelly and Street (1972) used the ten STAR - stress 

transfer aspect ratio - for this ratio). 

The composite creep strength is found froa 

°c - Vf "f + (1-V °. 

= vf 3£ 

where the last approximation is valid provided the additive 

aatrix ten can be neglected (BBL). With this approximation 

and with eqs. (10) and (12) we obtain the composite creep 

law in the generalized form 

2 oc , 2*„x / O - * * \ <*„ /*~P. 

Veff 
U - 2S) fP^»-) • ^ fpSsS) (14) 
V I ' ^ 3 / e a' I ^ 3 e a' 

2zc peff 
Since (1 ~) - -=£=-, eq. (14) can be rewritten 

* c peff 

Vf peff 

f('c '«») • 2(l - ISS) t&J«l) (15, 

In order to apply eq. (15) it is necessary to find Peff» 

Since z* • e„ at 0 * o« ...» o «« can be found by operations in 
1 c ifMx exz 

a log é vs. log 0 diagram by the help of eq. (13). Eq. (15), 

however, involves addition of two functions and therefore cannot 

be interpreted in terms of vector operations in a log e vs. log a 

diagram. In the formulation given by eqs. (13) and (15) the creep 

stress, 0 , must thus be calculated numerically from eq. (15). 
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log c 

v\ 
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matrix 

\v 
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fibre 

/ / 

op 
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FIGURE 1. Determination of the strain rate at which the fibres 

begin to creep. The vector V has the components (log(-j pVf), 

log ( —))» and the vector V * has the components (log p, 

log ( ^ » . 
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A great simplification is obtained if eq. (15) is 
approximated by 

i ! £ _ , (2 - &tt) f(k!?li) ci«) 
f Øef f V o ' V 3 /é a' 

2o 

It is noticed, that this expression degenerates to the 

expression for non-creeping fibres (BBL) for p _- * p. In 

the appendix it is shown, that the sore sieple form of 

eq. (16) in nost cases is a sufficiently good approximation. 

Eq. (15) can also be rearranged in an exact, but sore 

complicated fora if the local slope of the matrix creep curve 

at a - f(——£££) is introduced. This is discussed in the 

appendix. 3/* * 

With the use of the set of equations (13) end (16), the 

composite creep curve can readily be constructed in a log t 
vs. log a diagram on basis of the matrix and the fibre creep 
curves. 

2.2. The composite creep curve 

We shall first discuss how to determine the strain rate 

at tfhich the fibres start creeping. The necessary operations are 

illustrated in fig.l. 

Eq. (13) states that the maximum fibre stress of is 

related to the matrix stress o by the equation 

log af,max • 1«9 • • log Pe£f (17) 

and that the composite creep rate c_ (at af ) is related to the 
matrix creep rate c (at a) by 

log ec « log c • log f^-
52) <W 
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For non-creeping fibres P_ff equals p. so the ec vs. of 

curve for non-creeping fibres can be obtained by displacing the 

matrix curve by a vector V with components (log p, log (-7^)). 

The fibres can only be non-creeping if o- ̂ ,„ is lower 

than the stress needed to induce creep in the fibres. The fibres 

are therefore only non-creeping as long as the c_ vs. 0. „ „ curve 

lies to the left of the fibre creep curve. The intersection 

between the two curves, 0, thus gives the composite creep rate 

at which the fibres begin to creep. 

For composite creep rates lower than the creep rate at 0, 

the composite creep curve can therefore be obtained by displacing 

the aatrix curve by the vector V with components (log(%pV~), 

log ( * a)), as described in our previous report (BBL). 

The point M in fig. 1, at the saae creep rate as point 0, 

is the point where creep in the fibres begin to influence the 

coaposite creep behaviour. He note that N has the corresponding 

point M on the aatrix curve. 

when the fibres are creeping, the coaposite curve is governed 

by both the aatrix and the fibre curves. In this case, the 

coapoclte curve aust be constructed point by point. Such a 

construction is shown in fig.2, where the point E on the coaposite 

curve, corresponding to the aatrix point A, is determined. 

We begin by determining p e f f - ith the help of eq. (13) (and 

the expanded forms eqs. (17) and (18)). A comparison with eq. (16) 

shows, that a point (ø_,é_) on the composite curve has the 

corresponding point (f(c), c) on the matrix curve, whereas a 

point with the same cc on the of mMX~cnrv* (°f M x » *c* "** ***• 

corresponding point (*<7y>» 7-) on the matrix curve. He 

therefore start from the point B on the matrix curve, which 

has a strain rate /e times lower than that at A. From B a 

vector BC is drawn with components (0, log (3ea)), and from 

C a vector CD is drawn with components (log p, - log p). 

The vector CD intersects the fibre creep curve at D'. The 

stress coordinate of D( is that maximum fibre stress, which 

will induce a fibre creep rate c{, equal to the composite creep 

rate c . The components of the vector BO' are thus (log Peff# 
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FIGURE 2. Construction of the composite creep curve from the 

matrix and the fibre creep curves. The vectors have the 

following components: BC(0, log (3 ea)), CD (log p, - log p), 

CD« (log peff, - log p e £ f ) , AE (log (\ Peff Vf (2 - ^ | ^ ) ) , 

log ( 3 ^a )). The point B on the matrix curve has a creep rate 

/e lowef than that of point A. 
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36Q 
log( )) so that the value of p p. . can be read off from the 

diagram 

Eq. (16) now states that the composite creep rate, e , is 

related to the matrix creep rate, £, by the equation 

log c„ = log I + log f — ^ 2 ) <19> 
c v peff' 

and that the composite stress, a , is related to the matrix 

stress, o, by the equation 

log oc = log a + log (^peff Vf(2 - - f ^ ) ) <20) 

In order to obtain the point E on the composite creep curve, 

corresponding to point A, it thus remains to draw a vector AE 

with the components 

(-. a».«*k - c-f))• - m)) 

The construction cannot be made using a single vector BD with 

components (log p, log -22). it is obvious that BD will not 

intersect the fibre curve in D*, but in a different point, say 

D'•. The reason for the two-vector construction is, that 1/q of 

a vector with components (a, b) is (*;, — ) . CD' thus has components 

l- log p, - - log p) which is interpreted as (log Peff/ - log Peff) 

for the reasons given in the main text. A hypothetical vector 

BD'1 cannot be given such an interpretation. 
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The composite creep curve can be drawn, when a sufficient 

number of points on this curve has been found by the outlined 

procedure. 

2.3. The matrix contribution 

We note, that the composite curve in the previous section 

was constructed under the assumption, that the additive matrix 

term is negligible compared with the V^o.-term in the equation 

°c - V f + (1-Vf)om <21) 

where om is the (average) stress in the matrix, when the whole 

composite creeps at the creep rate I . 

The importance of the matrix contribution can easily be 

checked in the way described below. The prescribed method 

furthermore allows us to include the matrix term in the composite 

creep strength. 

The method is valid for discontinuous composites with rigid 

fibres as well as composites with creeping fibres, and it is 

therefore of general applicability. 

We introduce a factor k of such a magnitude that 

Vfof = k (l-Vf)om (22) 

Combined with eq. (21) this gives 

*c - V . ( T T ) (23) 

We further find 

d-Vm _ 1 
øc 1+k 

(24) 
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It will be remembered that the curve we have constructed on 

the basis of eg. 16, really is a curve of I vs. V.o.. Eq. (22) 

states that 

log Vfof = log om + log(k(l-Vf)) (25) 

The vector connecting the matrix curve and the constructed 

V,o.-curve at a given £ (e.q. the vector FE in fig. 2) 

therefore has the magnitude (log(k(l-V*)), 0 ) . Hence, the value 

of k is easily calculated, and from eq. 24 the relative magnitude 

of the matrix contribution can be assessed. 

In case the additive matrix term cannot be neglected, 

eq. (23) should be applied. At the given composite creep rate 

£ , the point on the (true) composite curve is found by 

displacing the point on the V,af-curve by log (-c—) along the 

log o-axis. 

3. DISCUSSION 

The present analysis of the steady-state creep of 

discontinuous fibre composites with partly creeping fibres is 

a more general version of the previous analysis (BBL) on which 

we imposed the condition of rigid fibres. The case including 

creeping fibres is complicated by the fact, that the creep 

properties at a given strain rate, lQ, depend both on the 

creep properties of the fibres at this strain rate and on the 

creep properties of the matrix at a higher strain rate. This 

means that the composite creep curve no longer is given by a 

simp]2 displacement of Lhe matrix curve. The principle of 

corresponding points is, however, maintained, but the magnitude 

of the displacement vector is varying from point to point. 

Previous predictions (Mileiko 1970, Kelly and Street 1972) 

of the composite creep strength have been made from matrix 

creep data at the same strain rate as that of the composite. 

As in the case of composites with rigid fibres this approach 
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only gives a correct prediction at very low composite strain 

rates where the corresponding matrix strain rate is still in 

the power law range. At higher strain rates, the composite 

creep strength will always be overestimated. 

The present, more correct, analysis has been made under 

the assumption that the matrix creep curve can be described by 

a power law at intermediate stresses and an exponential law 

at high stresses. However, the analysis places no restriction 

on the form of the fibre creep curve. 

Since the shape of the l vs. o curve in the range with 

creeping fibres is determined by the shape of both the matrix 

and the fibre curves it is not possible to give a detailed 

general description of ths composite creep curve. We shall, 

however, make some remarks on the example sketched in fig. 2, 

which shows a matrix curve and a fibre curve typical of practical 

composites (nf > n ). The important observation is that the 

stress exponent at, say, E is much higher than the stress 

exponent of the matrix at the same strain rate. The reason 

for this is partly that the corresponding matrix data are in 

the exponential range, and partly that the fibres (with 
nf > nm w n e r e nf is taken at D' and n at A) are creeping; this 

additional cause further promotes large values of n . This 

effect can be described in terms of the effective aspect 

ratio Peff which is a measure of the rigid part of the partly 

creeping fibre. For nf > n the matrix curve and the fibre 

curve approach each other; this means that Peff decreases for 

increasing applied stress and this in turn has the effect of 

making n larger than n . It is therefore clear that very 

high values of n can be expected for a typical composite 
<nf > nn? "it" Partly creeping fibres. 

In fig. 1 we considered the case where the fibres begin 

to creep with an increase in the applied stress. Kelly and 

Street (1972) pointed out that for the case nm > nf the fibres 

at some value of the stress would stop behaving as creeping 

fibres for a stress increase (the fibres would actually not 

stop creeping completely, but their creep rate would everywhere 

be less than Jiat of the matrix, and they would effectively 

behave as rigid fibres). This situation is also included in 

the present analysis. 



- 14 -

In summarizing, we expect that experiments on fibre com

posites often will show n - values (significantly) higher 

than those of the pure matrix. The limited range of experimen

tally obtainable stresses and strain rates can present 

difficulties nor a correct interpretation of a (fairly short) 

curving part of a composite creep curve (see fig. 2). On the 

other hand, the local value of n can be a valuable support 

to an identification of the actual region of creep law. 

Finally, we should like to point out that we have not 

made any changes in the theories, which we have reassessed in 

this and our previous report (BBL). All the points we have 

called attention to are actually inherent in the original 

theories, but were not taken to their logical conclusion. 

McLean (1972) even discussed amplification factors for the 

shear stress and the shear strain rate, but only on the basis 

of a power creep law. 

A more correct interpretation of the models is obtained 

through our analysis, so that an experimental assessment of 

the models can be made on a fair basis. This has already 

(BBL) proved of value in explaining the unexpectedly high 

stress exponents for composites in certain stress ranges. 

More experiments are, however, needed before an unambiguous 

assessment of the models can be made. 

4. SUMMARY AND CONCLUSIONS 

The analysis of the creep properties of discontinuous 

fitre composites with non-creeping fibres (BBL) has been extended 

to cover the case of composites with partly creeping fibres. 

We have shown that the composite creep curve can be 

obtained from the matrix and the fibre creep curves by simple 

vector operations in a log c vs. log o diagram. 

For a matrix creep lew o » f(t), the composite creep law 

becomes 
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<>effVf 

2 o . 
C . f ^ c P e f f \ 

(*-w 

where p _, is the effective aspect ratio. For P_ff
 = P this 

equation degenerates to that previously found for composites 

with non-creeping fibres. 

The composite creep properties are governed by those of 

both the matrix and the fibres, and it is shown that for 

practical composites (nf > nJ very high values of the 

exponent n can be expected. 

The composite creep law is derived under the assumption 

that the additive matrix term is negligible. An easy method of 

checking this assumption is presented, and it is also shown 

that the additive matrix term can be included if it is not 

negligible. 

We finally note, that the composite creep curve of course 

could be determined analytically on basis of the equations 

given in this report. The calculations involved would, however, 

be rather lengthy. From the computational viewpoint, the easy 

graphical determination presented in this report is therefore 

a significant advantage. 
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APPENDIX 

In order to rearrange eq. (15), we introduce the local 

slope of the matrix creep curve, n » d"~loa""a' **ou»<I 

a » f (——— J. We then obtain the following relation: 

"- [£ fi£) 1" - W^")] - fc'- * 

or 

f(!sJs«) i 
V 3 ^ « y « e ^ (A2) 

V 1 an. ' 

If eq. (A2) is introduced into eq. (15) we find: 

!!=_ . (3*i , 2." k ( i - Sat)) f(isJsB) IM> 
Vfp „ ^ p V »" ( ! * 
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Eq. (A3) can of course be used instead of the approximative 

eq. (16), but the introduction of the additional parameter n^ 

which has to be measured at each individual point, renders the 

determination of the composite curve core complicated. 

The following table, which gives the ratio 

for different values of and n , shows that in most cases 
p m 

the difference between the approximative approach of eq. (16) 

and the exact approach of eq. (A3) is so small, that eq. (16) 

can be safely applied. 

p e f f _ 
P 

"m = 3 

m 
5 

10 

1 

1 

1 

1 

0 . 8 

1 .054 

i . 0 3 3 

1 .017 

0 . 6 

1 .096 

1 . 0 5 8 

1 . 0 2 9 

0 . 4 

1 . 1 3 0 

1 . 0 7 7 

1 . 0 3 8 

0 . 2 

1 . 1 5 8 

1 . 0 9 2 

1 . 0 4 5 
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LIST OF SYMBOLS 

a vector component 

b vector component 

d diameter of fibre 

h thickness of zone of constant shear strain rate 

k numerical constant 

1 length of fibre 

n stress exponent in creep law (subscripts c,f, and • refer 

to composite, fibre« and matrix, respectively) 

q numerical constant 

V. volume fraction of fibres 

$ displacement vector 
V displacement vector 

z length coordinate along fibre; z • O at fibre midpoint 

z half-length of creeping part of fibre 

a geometrical parameter 

Y shear strain rate in matrix 

c tensile strain rate of unreinforced matrix 

é tensile strain rate of composite 

Ef tensile strain rate of fibre 

é constant in power creep law 

e* constant in exponential creep law 

p aspect ratio (« i/d) 

p ff effective aspect ratio (*(l-2sc)/d) 

o tensile stress in unreinforced matrix 
o tensile stress in reinforced matrix m 
o tensile stress in composite 

a. tensile stress in fibre 

o. average tensile stress in fibre 

°* -.~ maximum tensile stress in fibre 

oQ constant in power creep law 

a' constant in exponential creep law 

T shear stress 
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