

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Multi-Level Round-Robin Multicast Scheduling with Look-Ahead Mechanism

Yu, Hao; Ruepp, Sarah Renée; Berger, Michael Stübert

Published in:
2011 IEEE International Conference on Communications (ICC)

Link to article, DOI:
10.1109/icc.2011.5962481

Publication date:
2011

Link back to DTU Orbit

Citation (APA):
Yu, H., Ruepp, S. R., & Berger, M. S. (2011). Multi-Level Round-Robin Multicast Scheduling with Look-Ahead
Mechanism. In 2011 IEEE International Conference on Communications (ICC) IEEE. DOI:
10.1109/icc.2011.5962481

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13792619?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/icc.2011.5962481
http://orbit.dtu.dk/en/publications/multilevel-roundrobin-multicast-scheduling-with-lookahead-mechanism(2782cca3-efa5-4d94-a1b9-a70d2f0fcbbd).html

Abstract—In this paper, we propose a multi-level round-

robin multicast scheduling (MLRRMS) algorithm with look-
ahead (LA) mechanism for N×N input-queued switches. Fan-
out splitting is applied, where a multicast cell can be
transferred to all its destinations over any number of cell times.
The scheduler constructs the Traffic Matrix before each cell
transmission based on the fan-out vectors of the cells in the
queues. A scheduling pointer independently moves on each
column of the Traffic Matrix in a round-robin fashion and
returns the decision to the Decision Matrix. The sync procedure
is carried out to reduce the unnecessary transmissions of a cell.
The look-ahead mechanism is executed to reduce the head-of-
line blocking problem resulting in increased the throughput
and reduced cell delay.

Index Terms—Multicast, switching, scheduling, input-

queued switch, round robin

I. INTRODUCTION
HE popularity of bandwidth-intensive services, e.g.
IPTV, video conferencing, and telepresence, have

placed a great demand on the multicast switching
technology because multicast is able to deliver the traffic in
a resource-efficient manner. However, resource contentions
are more likely to occur if the packets are bound for multiple
destinations. Based on various switch architectures,
abundant literature has come up with multicast scheduling
algorithms [1], [2], [4]-[11] to solve the resource
contentions and increase the throughput. TATRA [1] is
proposed based on the input-queued (IQ) architecture with
first-in-first-out (FIFO) queuing discipline. The algorithm
provides good fairness and efficiency in terms of high
throughput and low latency but is too complex to
implement. As a replacement, the weighted-based algorithm
(WBA) [1] assigns weights to the new cell at the head-of-
line (HOL) position based on the cell age and the fan-out in
each input queue. Outputs grant permissions to the input
with the highest weight. In [2], we proposed an efficient
method to schedule multicast traffic based on the same FIFO
IQ architecture. A process called sync is carried out to
reduce the unnecessary transmissions of cells caused by the
independent scheduling process. However, operating on the
HOL cells suffers from the HOL blocking problem and fails
to reach a high throughput [3].

To eliminate the HOL blocking problem and increase the
throughput, output-queuing (OQ) can be used. But due to

Manuscript received September 20, 2010. This work was supported in

part by the Danish National Advanced Technology Foundation in the
project The Road to 100 Gigabit Ethernet.

Hao Yu, Sarah Ruepp, and Michael S. Berger are with the Technical
University of Denmark, Kgs. Lyngby, 2800, Denmark. (emails: {haoyu,
srru, msbe}@fotonik.dtu.dk)

the poor scalability where the internal speed-up should be 𝑁
times the line speed, where 𝑁 denotes the number of inputs,
OQ is not suitable for high-speed or large-scale switches.
Using a non-FIFO IQ architecture, e.g. virtual output
queuing (VOQ), the switch is able to reduce the HOL
blocking problem without increasing the speed-up.
However, 2𝑁 − 1 queues are required for multicast traffic in
each input, which dramatically reduce the scalability.
FIFOMS [4] and CMF [5] utilize the VOQ architecture for
unicast and generate several address cells and one data cell
for each arriving cell and store them in separate queues. For
each destination in the fan-out set, an address cell is
generated, which means the total number of queues for
multicasting in an 𝑁 × 𝑁 switch is 𝑁2. The bottleneck of
such architecture is the unit which is responsible for
generating data and address cells, which may require high
complexity and speed-up.

In this paper, we focus on the FIFO IQ switch structure
and propose a method with low implementation effort yet
high performance to handle multicast traffic with a look-
ahead (LA) mechanism to alleviate the HOL blocking
problem described in [2].

II. BACKGROUND

A. Assumed Switch Architecture
We consider an 𝑁 × 𝑁 input-queued switch due to the

fact that an input and an output port usually reside in pair on
the same line card. Within the switch, arriving packets are
fragmented into fixed-size multicast cells and stored in the
FIFO queues before traversing the switch fabric. Packets are
reassembled at the output ports. Sufficient buffer capacities
are assumed so that no cell loss occurs due to buffer
overflow.

Any multicast cell is characterized by its fan-out set,
which is the set of output ports for which the cell is bound.
As a simple example shown in Fig. 1, input 0 has a cell at
the head of the queue bounded for outputs {2, 3, 8}, and
fan-out set can thus be expressed as {2, 3, 8}. We consider
the case where fan-out splitting [6] is applied so that copies
of multicast cells can be delivered to output ports over any
number of cell times. Unless all the destinations in the fan-
out set are reached, the cell is not removed but remains in
the queue. A multicast scheduler makes scheduling
decisions prior to each cell time and grants cell
transmissions accordingly. We assume that the scheduler is
able to examine the cells stored deeper in the queues and
that it is capable of sending them to the corresponding
outputs.

Multi-Level Round-Robin Multicast Scheduling
with Look-Ahead Mechanism

Hao Yu, Student Member, IEEE Sarah Ruepp, and Michael S. Berger, Member, IEEE

T

B. Definitions
We define several terms used in the scheduling algorithm

throughout the paper.
Def. 1 (Maximum Look-Ahead Depth): The maximum

look-ahead depth, L, is defined as the limit of the number of
cells that the scheduler is able to examine further into the
queue. 𝐿 = 0 means that the switch only operates on the
HOL cells, while 𝐿 = 𝑙 indicates that the switch can look up
to 𝑙 cells after the HOL cell.

Def. 2 (Cell Position): The cell position, p, is defined as
the position of a cell in the queue. The cell at the HOL of the
queue has p = 0.

Def. 3 (Fan-out Vector): A fan-out vector is used to
indicate the fan-out set carried by a multicast cell in input i
at position p, and is denoted as 𝑓(𝑖,𝑝) ≜ 〈𝑓𝑘

(𝑖,𝑝)〉, 𝑘 =
0,1, … , 𝑁 − 1, 𝑖 = 0,1, … , 𝑁 − 1, 𝑝 = 0,1, … , 𝐿, 𝑓𝑘

𝑖,𝑝 ∈ {0,1}.
𝑓𝑘

(𝑖,𝑝) = 0 indicates that output k is not in the fan-out set of
the cell and 𝑓𝑘

(𝑖,𝑝) = 1 indicates the opposite. The cardinality
of the fan-out set thus becomes �𝑓(𝑖,𝑝)� ≜ ∑ 𝑓𝑘

(𝑖,𝑝)𝑁−1
0 .

Def. 4 (Traffic Matrix): The Traffic Matrix is an N×N
matrix constructed by the scheduler based on the fan-out
vectors of the cells in the position p of each input i before a
cell transmission. It is denoted as 𝑻(𝑝) = �𝑇𝑖,𝑗

(𝑝)�, 𝑖 =
0,1, … , 𝑁 − 1, 𝑗 = 0,1, … , 𝑁 − 1. Obviously, we have
𝑇𝑖,𝑗

(𝑝) = 𝑓𝑗
(𝑖,𝑝), ∀𝑖, 𝑗, 𝑝. And we define 𝑇𝑖,𝑗

(𝑝) = 0, ∀𝑗, 𝑝 if input
queue i is empty.

Def. 5 (Decision Matrix): The Decision Matrix is an N×N
matrix denoted as 𝑫(𝑝) = �𝐷𝑖,𝑗

(𝑝)�, 𝑖 = 0,1, … , 𝑁 − 1, 𝑗 =

0,1, … , 𝑁 − 1, 𝐷𝑖,𝑗
(𝑝) ∈ {0,1}. This matrix contains the

scheduling decisions for each output j with 𝐷𝑖,𝑗
(𝑝) = 1

indicating that a copy of the cell in input i at position p will
be transferred to output j and 𝐷𝑖,𝑗

(𝑝) = 0 meaning that no
copy will be sent to output j. We can know that 0 ≤
∑ 𝐷𝑖,𝑗

(𝑝) ≤ 1𝑗 , ∀𝑗
Def. 6 (Set of Decision Matrices): The Set of Decision

Matrices is defined as 𝚫 = �𝑫(0), 𝑫(1), … , 𝑫(𝐿)�. It contains
up to L decision matrices. Multicast cells are released by the
scheduler according to the decision matrices stored in 𝚫.

Def. 7 (Assistant Matrix): The Assistant Matrix is an N×N
matrix denoted as 𝑨(𝑝) = �𝐴𝑖,𝑗

(𝑝)�, 𝑖 = 0,1, … , 𝑁 − 1, 𝑗 =

0,1, … , 𝑁 − 1, 𝐴𝑖,𝑗
(𝑝) ∈ {0,1}. This matrix is used to help

generate 𝑫(𝑝), 𝑝 > 0.
Def. 8 (Cross Disable Mark °𝑿): We define °𝑿 as a

matrix transform mark for the sake of convenience where

𝑿 = �𝑋𝑖,𝑗�, 𝑋𝑖,𝑗 ∈ {0,1} is the in-operation matrix. If we
have 𝒀 = °𝑿, first let 𝒀 = 𝑶, (𝑌𝑖,𝑗 = 0, ∀𝑖, 𝑗) with the same
dimensions as 𝑿, and if 𝑋𝑘,𝑙 = 1, then 𝑌𝑘,𝑗 = 1, 𝑌𝑖,𝑙 =
1, ∀𝑖, 𝑗.

III. FIFO-BASED MULTI-LEVEL ROUND ROBIN MULTICAST
SCHEDULING

We here describe the proposed multicast scheduling
algorithm in detail based on the previous definitions. Before
each cell transmission time, the scheduler executes the
following procedures and accordingly releases cells after
completion.

Initial condition: 𝑝 = 0, 𝚫 = ∅, and 𝑫−1 = 𝑶 (𝐷𝑖,𝑗−1 =
0, ∀𝑖, 𝑗)

1) The scheduler examines the fan-out vector 𝑓(𝑖,𝑝) of the
cell in input i at position p for all inputs to construct 𝑻(𝑝).

2) 𝑨(𝑝) = 𝑻(𝑝) − °�∑ 𝑫(𝑝−1)|𝚫|
𝑝=0 �, and if 𝐴𝑖,𝑗

(𝑝) < 0, then

set 𝐴𝑖,𝑗
(𝑝) to 0, ∀𝑖, 𝑗.

3) The round-robin scheduling algorithm is independently
executed on each non-zero column of 𝑨(𝑝). Only one
element in a column can be selected due to the constraint of
one output port only being able to one transmission during a
cell time. The results thus form 𝑫(𝑝).

4) The sync [2] procedure is carried out on 𝑫(𝑝) to reduce
the unnecessary multiple transmissions of cells: if column y
plays the role of dictator during this cell time and 𝐷𝑥,𝑦

(𝑝) = 1,
and ∀𝑗 ≠ 𝑦, 𝐴𝑥,𝑗

(𝑝) = 1 and 𝐷𝑥,𝑗
(𝑝) ≠ 1, then let 𝐷𝑥,𝑗

(𝑝) = 1 and

𝐷𝑖,𝑗
(𝑝) = 0, ∀𝑖 ≠ 𝑥. The scheduler stores the refined 𝑫(𝑝) to

𝚫, i.e. 𝑫(𝑝) → 𝚫.
5) If a zero column is found in ∑ 𝑫(𝑝−1)|𝚫|

𝑝=0 , check the
queue size of each unreserved input, which is the
corresponding row in ∑ 𝑫(𝑝−1)|𝚫|

𝑝=0 . If the queue size is larger
than 𝑝 + 1, and 𝑝 + 1 ≤ 𝐿, increase 𝑝 with 1 and go to step
1. Otherwise, continue to step 6.

6) The scheduler should examine 𝚫 and release multicast
cells at particular positions from input queues according to
each 𝑫𝑝. If the fan-out set of a cell becomes empty after the
service, the cell will be removed from the queue. Otherwise,
the cell remains with a new fan-out set.

IV. COMPLEXITY AND PERFORMANCE ANALYSIS

A. Implementation of the MLRRMS
The MLRRMS algorithm is in essence designed to be

implemented in a parallel and distributed fashion and
require no linear scan. Since we allow the switch to look
ahead into the queues, iterations will occur to increase the
output utilization for each cell time as described in previous
section. The position parameter 𝑝 is incremented by 1 at the
end of iteration.

At the beginning of each cell time, the scheduling process
begins. All inputs and outputs are initially free and 𝑝 = 0 .
Only those inputs and outputs not reserved at the end of one
iteration are eligible for the next. The scheduling process
below operates in parallel on each outputs and inputs.

i) Submission
Each free input submits to every free output for which it

input 0 output 0... ...

switch fabric

λ0

λN-1

2
3
8

...

λi

...

scheduling
system

input i output i

output N-1

L

...

...

2
3
8

2
3
8

1
4
9

6
7
9

6
7
9

1
7
8

0
1
2

0
1
2

0
1
2

1
4
9

...
...

p=0
p=1
p=2

input N-1

Fig. 1. N×N input-queued multicast switch with FIFO architecture.

has a multicast cell at 𝑝 bounded. The outputs that have
received requests from the inputs will appear in a round-
robin schedule of the dictator assignment.

ii) Dictator Assignment
A dictator arbiter chooses the output that appears next in a

round-robin schedule starting from the highest priority
element to be the dictator over other outputs for 𝑝. The
dictator pointer 𝑎(𝑝) to the highest priority element of the
round-robin schedule is incremented (modulo N) to one
position beyond the current dictator after the assignment.

iii) Decision
If a free output receives any request, it chooses the one

that appears next in a round-robin schedule starting from the
highest priority element. The output notifies each input
whether its request is selected as the decision. The decision
pointer 𝑑(𝑝) to the highest priority element of the round-
robin schedule in incremented (modulo N) to one location
beyond the selected input if and only if the output receives a
cell from its selected input.

iv) Sync
If one input receives a decision from the dictator, it

invalidates the decisions of other outputs which are
contained in its request set, and keeps its own decision valid.
The input that has an invalid decision loses permission to
transmit cells. Only the input that has a valid decision is
eligible for sending cells.

This process iterates until either all the outputs are
reserved or the maximum LA depth is reached. The effect of
the algorithm and the sync mechanism in this framework are
the same as described in the previous section but the
complexity is reduced.

B. Heuristic Analysis of the Look-Ahead (LA) Mechanism
The LA mechanism is only performed when the output

ports are not fully reserved. There are potentially two
reasons to cause the partial occupancy: 1) the HOL
blocking, and 2) the traffic pattern. Obviously, there is
nothing to improve if it is the traffic pattern that causes the
partial occupancy. On the other hand, the HOL blocking
phenomenon may be the cause and therefore LA mechanism
will be able to reduce the degradation.

Assume that each multicast cell has the same probability
of being bound to each output:

𝑃 �𝑓𝑘

(𝑖,𝑝) = 1� = 𝛿, ∀𝑖, 𝑘, 𝑝
 (1)

The probability of a column 𝑗 in 𝑻(𝑝) being a zero column
or an idle output:

𝑃 �𝑇𝑖,𝑗

(𝑝) = 0� = (1 − 𝛿)𝑁 = 𝜃, ∀𝑖, 𝑗, 𝑝
 (2)

Let the random variable 𝑋 be the number of zero columns
found in 𝑻(0). Then we have the probability mass funcation
(p.m.f). of 𝑋:

𝑃(𝑋 = 𝑥) = �𝑁𝑥� 𝜃
𝑥(1 − 𝜃)𝑁−𝑥, 𝑥 ∈ {0,1,2, … , 𝑁 − 1}

 (3)
Let 𝑆 be the random variable of the LA depth which the

switch should examines to find a cell to send to an idle

output. Since reserved inputs are not considered in the LA
process, we can have the lower bound of the p.m.f. of 𝑆:

𝑃(𝑆 = 𝑠) ≥ 𝜃𝑠−1(1 − 𝜃), 𝑠 ∈ {1,2, … }

 (4)
and the c.p.f:

𝑃(𝑆 ≤ 𝑠) ≥ 1 − 𝜃𝑠, 𝑠 ∈ {1,2, … }
 (5)

In order to utilize all the idle outputs, the LA depth of the
system, S�, should be the maximum of each zero column’s
LA depth:

S� = max(S1, S2, … , Sx)

 (6)
We can find the cumulative probability of all the 𝑥 zero

columns becoming non-zero (output utilization 𝑈 = 100%)
after 𝑆̂ = 𝐿 under the assumption that each column is
independent:

ℎ(𝑥, 𝐿) ≥ 𝑃�𝑋 = 𝑥, 𝑆̂ ≤ 𝐿�

= 𝐹𝑆1(𝐿)𝐹𝑆2(𝐿) …𝐹𝑆𝑥(𝐿) ∙ 𝑃(𝑋 = 𝑥)
= (1 − 𝜃𝐿)𝑥 ∙ 𝑃(𝑋 = 𝑥)

 (7)
and the p.g.f. of ℎ(𝑥, 𝐿) with 𝐿 being a constant is:

𝐻(𝑧, 𝐿) ≥ [1 − 𝜃 + 𝜃(1 − 𝜃𝐿)𝑧]𝑁

 (8)
We can thus derive the full-utilization probability that the

outputs are fully utilized after a LA depth of 𝐿:

𝐴(𝐿) = �𝐻(𝑧, 𝐿)|𝑧=1 ≥ (1 − 𝜃𝐿+1)𝑁
 (9)

In addition to the full-utilization probability, we are also
interested in the relationship between the maximum LA
depth 𝐿 and the output utilization 𝑈. The purpose of the LA
mechanism, as explained previously, is to reduce the
number of idle outputs so that the output utilization can be
increased and the HOL blocking problem can be reduced.
We know that the probability that an output remains idle
after a LA depth of 𝐿 has a lower bound of 𝛿𝐿+1. Then we
can derive the lower bound of the probability that there
exists 𝑌 idle outputs after searching 𝐿 cells:

𝑔(𝑦, 𝐿) ≥ 𝑃�𝑌 = 𝑦, 𝑆̂ ≤ 𝐿� = �
𝑁
𝑦
� (𝜃𝐿+1)𝑦(1 − 𝜃𝐿+1)𝑁−𝑦

 (10)
From above we know the probability that no idle output

remains after a LA depth of 𝐿 is 𝑔(0, 𝐿) ≥ (1 − 𝜃𝐿+1)𝑁,
which corresponds to (9). We can therefore derive the lowe
bound of the probability of the output utilization 𝐿:

𝑃 �𝑈 =
𝑁 − 𝑌
𝑁

� ≥ �
𝑁
𝑦
� (𝜃𝐿+1)𝑦(1 − 𝜃𝐿+1)𝑁−𝑦

 (11)

C. Simulation Result
We compare the proposed MLRRMS with WBA [1] and

FIFOMS [4] by simulations carried out in OPNET Modeler
[11]. We assume that the multicast traffic to each input is
independent and 𝑁 = 8 for the simulated switch. To
compare the performance of the algorithms in various traffic
conditions, we consider Bernoulli traffic and burst traffic
with different fan-out schemes.

We first apply the Bernoulli traffic to the switch. A cell
arrives at an input with a probability of 𝑞 and 𝜃 = 0.5,
which results in 𝐸(|𝑓|) = 4 for the 8 × 8 switch. The
offered load is calculated as 𝜆 = 𝑞 ∙ 𝐸(|𝑓|).

Fig. 2 shows the simulation results when Bernoulli traffic
is applied. Fig. 2(a) compares the average multicast delays
under various traffic loads. A multicast cell is stored in the
queue until all the destinations in its fan-out set are reached.
The multicast delay of a cell is calculated as the cell times
that the cell stays in the queue until it is removed. Since the
WBA and MLRRMS (L=0) both operate only on the HOL
cells, they become unstable as the offered load increases.
With looking ahead maximum 1 cell further, the MLRRMS
(L=1) has demonstrated a significant improvement of the
multicast delay compared to MLRRMS (L=0) and WBA. As
𝐿 increases, we can observe more improvement from
MLRRMS (L=2) and (L=10) but we can also discover that
the marginal improvement is decreasing. Among all,
FIFOMS has the lowest delay because it uses the VOQ
architecture to handle the multicast traffic with a total
number of queues of 𝑁2.

We examine the average queue size per input, including
the cell in service, in Fig 2(b). Since MLRRMS (L=0) and
WBA operate only on the HOL cells, they both suffer from
the HOL blocking problem and have the highest average
queue size compared to other schemes. We can again
observe a significant improvement of MLRRMS (L=1).

In Fig. 2(c), we examine the average LA depth. For
MLRRMS (L=0), the average LA depth is always 0. For
MLRRMS (L=1), it allows the switch to search up to 1 cell
deeper in the queues. When the traffic load is heavy, the
average LA depth is almost the same as 𝐿. For MLRMMS
(L=2) and (L=10), the average LA depth under heavy load is
less than its 𝐿 value revealing that the switch does not
leverage its full potential. The average LA depth of
MLRRMS (L=10) is approximately 7 when the switch is
heavily loaded, indicating that the added implementation
complexity of the switch is obsolete and the performance
improvement is nonlinear. Both MLRRMS (L=1) and (L=2)
begin to converge after 𝜆 = 0.9 because the queue size
begin to become larger than the 𝐿 values.

We further apply bursty traffic, or Correlated Arrival
Process, which has two states, busy and idle. Cells are
generated only in the busy state. The process stays in each
state for a random number of cell times following the
geometric distribution with mean values of 𝐸[𝐵] and 𝐸[𝐼],
respectively. The arrival rate is calculated as 𝜆 =
𝐸[𝐵]/(𝐸[𝐵] + 𝐸[𝐼]). Since the traffic arrives at the switch
in bursts, two modes of fan-out schemes can be applied,
cell-based and burst-based. In cell-based fan-out mode, the
fan-out vector is independently generated for each cell. And
in burst-based mode, the fan-out vector is independently
generated for each burst of cells, each burst of cells having
the same fan-out vectors. 𝐸[𝐵] = 16 [1] and each cell
arrives at an input with 𝜃 = 0.5, which results in 𝐸(|𝑓|) = 4

for the 8 × 8 switch.
Fig. 3 compares the performances under bursty traffic

with cell-based fan-out mode. In Fig. 3(a), the average
multicast latency of all the scheduling schemes increases.
WBA and MLRRMS (L=0) have the largest delay compared
to others. With looking up to 1 cell, MLRRMS (L=1) has
reduced the multicast latency dramatically. MLRRMS (L=2)
does not provide the same level of improvement compared
to the complexity it adds to the switch. The delay
performances of MLRRMS (L=10) and FIFOMS are nearly
the same under heavy traffic loads. In Fig. 3(b), the average
queue size per input is examined. Due to the bursty
characteristic of the traffic, the average queue size is larger
for light traffic load than when the Bernoulli traffic is
applied. Since the fan-out scheme is cell-based, the LA
mechanism can still reduce the HOL blocking problem and
increase the throughput of the switch. This can be observed
in the improvement of MLRRMS (L=1) in both Fig. 3 (a)
and (b). In Fig. 3(c), we can observe similar results as in
Fig. 2(c) but the average LA depth of MLRRMS (L=2)
converges earlier than in Fig. 2(c). This is because the
bursty traffic leads to larger queue size under light load than
the Bernoulli traffic.

Fig. 4 shows the results under bursty traffic with burst-
based fan-out mode. Each burst of cells has the same fan-out
vector which means looking ahead a limited number of cells
in the queues is enough for the switch to alleviate the HOL
blocking problem. A deeper searching should be carried out
for this type of traffic. Among other schemes, WBA has the
largest multicast latency as shown in Fig. 4(a). FIFOMS
performs better than MLRRMS with different 𝐿’s. Focusing
on the MLRRMS group, we can see the improvement of
MLRRMS (L=1) is not as significant as in Fig. 2(a) and Fig.
3(a), and MLRRMS (L=0), (L=1) and (L=2) have similar
multicast delay. This phenomenon corresponds to the reason
stated previously, i.e. the burst-based mode requires a larger
𝐿, since L=1 or 2 is not enough to include most possibilities
of the burst distribution. MLRRMS (L=10) is able to
generate a reduce the latency significantly because of the
large 𝐿.

In Fig. 4(b), we can obtain similar results as in Fig. 4(a).
All algorithms suffer from performance degradation due to
the traffic pattern. The average LA depths of MLRRMS
with different 𝐿’s under burst-based mode are shown in Fig.
4(c). MLRRMS (L=1) and (L=2) begin to converge when
the offered load 𝜆 reaches 0.6 due to the traffic pattern. The
MLRMMS (L=10) also converges at 𝜆 = 0.8 which
indicates that the traffic of burst-based fan-out mode has put
a greater demand on the possible LA depth than the cell-
based scheme and the queue size is always larger than 10.

V. CONCLUSION
In this paper, we propose an efficient multi-level round-

robin based multicast scheduling (MLRRMS) algorithm with
a look-ahead (LA) mechanism for 𝑁 × 𝑁 switches with the
FIFO-IQ architecture. As discussed, the LA and the sync
mechanism consisting of matrix operations used in
MLRRMS can be implemented in a parallel fashion with a
low time complexity. Under varying traffic conditions,
MLRRMS with 𝐿 = 1 outperforms WBA and gains the

largest performance improvement. The HOL blocking
problem is alleviated by the LA mechanism. With a larger 𝐿,
the algorithm performs close to FIFOMS which uses the
VOQ structure, but the marginal performance improvement
obtained does not justify the introduced implementation
complexity. Being able to search up to 1 cell stored deeper
in the queues for the switch, i.e. being capable of processing
2 cells at the head of the queues within one cell time, instead
of creating multiple queues for each input is able to provide
the largest performance improvement in terms of multicast
delay and average queue size.

REFERENCES
[1] B. Prabhakar, N. McKeown, and R. Ahuja, “Multicast scheduling for

input-queued switches”, IEEE Journal on Selected Areas in
Commun., vol. 15, no. 5, Jun. 1997.

[2] H. Yu, S. Ruepp, and M. S. Berger, “A novel round-robin based
multicast scheduling algorithm for 100 gigabit Ethernet switches”, in
Proc. IEEE INFOCOM SW, 2010.

[3] M. J. Karol, M. G. Hluchyj, S. P. Morgan, “Input versus output
queueing on a space-division packet switch”, IEEE Trans. Commun,
vol. com-35, no. 12, Dec. 1987.

[4] D. Pan, and Y. Yang, “FIFO-based multicast scheduling algorithm for
virtual output queued packet switches”, IEEE Trans. Comput., vol.
54, no. 10, Oct. 2005.

[5] D. Pan, and Y. Yang, “Bandwidth guaranteed multicast scheduling for
virtual output queued packet switches”, J. Parallel Distrib. Comput.,
vol. 69, issue. 12, pp. 939-949, 2009.

[6] J.F. Hayes, R. Breault, and M. Mehmet-Ali, “Performance analysis of
a multicast switch”, IEEE Trans. Commun., vol. 39, pp. 581-587, Apr.
1991

[7] S. Sun, S. He, Y. Zheng, and W. Gao, “Multicast scheduling in
buffered crossbar switches with multiple input queues”, in Proc.
HPSR, 2005.

[8] W. Chen, C. Huang, Y. Chang, and W. Hwang, “An efficient cell-
scheduling algorithm for multicast ATM switching system”,
IEEE/ACM Trans. Networking, vol. 8, no. 4, Aug. 2000.

[9] M. Marsan, A. Bianco, P. Giaccone, E. Leonardi, and F. Neri, “Packet
scheduling in input-queued cell-based swiches”, in Proc. IEEE
INFOCOM, 2001.

[10] S. Gupta, and A. Aziz, “Multicast scheduling for switches with
multiple input queues”, in Proc. Symp. Hot Interconnects, 2002.

[11] M. A. Marsan, A. Bianco, P. Giaccone, E. Leonardi, and F. Neri,
“Multicast traffic in input-queued switches: optimal scheduling and
maximum throughput”, IEEE/ACM Trans. Networking, vol. 11, no. 3,
Jun. 2003

[12] OPNET Modeler, available at: http://www.opnet.com

 (a) (b) (c)

Fig. 2. Simulation results under Bernoulli traffic with N=8, θ=0.5. (a) Average multicast latency. (b) Average queue size per input (c) Average look-ahead
depth.

 (a) (b) (c)

Fig. 3. Simulation results under bursty traffic (cell-based fan-out mode) with N=8, θ=0.5. (a) Average multicast latency. (b) Average queue size per input
(c) Average look-ahead depth.

 (a) (b) (c)

Fig. 4. Simulation results under bursty traffic (burst-based fan-out mode) with N=8, θ=0.5. (a) Average multicast latency. (b) Average queue size per input
(c) Average look-ahead depth.

	INTRODUCTION
	Background
	Assumed Switch Architecture
	Definitions

	FIFO-based Multi-Level Round Robin Multicast Scheduling
	Complexity and Performance Analysis
	Implementation of the MLRRMS
	Heuristic Analysis of the Look-Ahead (LA) Mechanism
	Simulation Result

	Conclusion
	References

