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Abstract—In this paper, we propose a multi-level round-

robin multicast scheduling (MLRRMS) algorithm with look-
ahead (LA) mechanism for N×N input-queued switches. Fan-
out splitting is applied, where a multicast cell can be 
transferred to all its destinations over any number of cell times. 
The scheduler constructs the Traffic Matrix before each cell 
transmission based on the fan-out vectors of the cells in the 
queues. A scheduling pointer independently moves on each 
column of the Traffic Matrix in a round-robin fashion and 
returns the decision to the Decision Matrix. The sync procedure 
is carried out to reduce the unnecessary transmissions of a cell. 
The look-ahead mechanism is executed to reduce the head-of-
line blocking problem resulting in increased the throughput 
and reduced cell delay. 

 

 
Index Terms—Multicast, switching, scheduling, input-

queued switch, round robin 

I. INTRODUCTION 
HE popularity of bandwidth-intensive services, e.g. 
IPTV, video conferencing, and telepresence, have 

placed a great demand on the multicast switching 
technology because multicast is able to deliver the traffic in 
a resource-efficient manner. However, resource contentions 
are more likely to occur if the packets are bound for multiple 
destinations. Based on various switch architectures, 
abundant literature has come up with multicast scheduling 
algorithms [1], [2], [4]-[11] to solve the resource 
contentions and increase the throughput. TATRA [1] is 
proposed based on the input-queued (IQ) architecture with 
first-in-first-out (FIFO) queuing discipline. The algorithm 
provides good fairness and efficiency in terms of high 
throughput and low latency but is too complex to 
implement. As a replacement, the weighted-based algorithm 
(WBA) [1] assigns weights to the new cell at the head-of-
line (HOL) position based on the cell age and the fan-out in 
each input queue. Outputs grant permissions to the input 
with the highest weight. In [2], we proposed an efficient 
method to schedule multicast traffic based on the same FIFO 
IQ architecture. A process called sync is carried out to 
reduce the unnecessary transmissions of cells caused by the 
independent scheduling process. However, operating on the 
HOL cells suffers from the HOL blocking problem and fails 
to reach a high throughput [3]. 

To eliminate the HOL blocking problem and increase the 
throughput, output-queuing (OQ) can be used. But due to  
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the poor scalability where the internal speed-up should be 𝑁 
times the line speed, where 𝑁 denotes the number of inputs, 
OQ is not suitable for high-speed or large-scale switches. 
Using a non-FIFO IQ architecture, e.g. virtual output 
queuing (VOQ), the switch is able to reduce the HOL 
blocking problem without increasing the speed-up. 
However, 2𝑁 − 1 queues are required for multicast traffic in 
each input, which dramatically reduce the scalability. 
FIFOMS [4] and CMF [5] utilize the VOQ architecture for 
unicast and generate several address cells and one data cell 
for each arriving cell and store them in separate queues. For 
each destination in the fan-out set, an address cell is 
generated, which means the total number of queues for 
multicasting in an 𝑁 × 𝑁 switch is 𝑁2. The bottleneck of 
such architecture is the unit which is responsible for 
generating data and address cells, which may require high 
complexity and speed-up. 

In this paper, we focus on the FIFO IQ switch structure 
and propose a method with low implementation effort yet 
high performance to handle multicast traffic with a look-
ahead (LA) mechanism to alleviate the HOL blocking 
problem described in [2]. 

II. BACKGROUND 

A. Assumed Switch Architecture 
We consider an 𝑁 × 𝑁 input-queued switch due to the 

fact that an input and an output port usually reside in pair on 
the same line card. Within the switch, arriving packets are 
fragmented into fixed-size multicast cells and stored in the 
FIFO queues before traversing the switch fabric. Packets are 
reassembled at the output ports. Sufficient buffer capacities 
are assumed so that no cell loss occurs due to buffer 
overflow. 

Any multicast cell is characterized by its fan-out set, 
which is the set of output ports for which the cell is bound. 
As a simple example shown in Fig. 1, input 0 has a cell at 
the head of the queue bounded for outputs {2, 3, 8}, and 
fan-out set can thus be expressed as {2, 3, 8}. We consider 
the case where fan-out splitting [6] is applied so that copies 
of multicast cells can be delivered to output ports over any 
number of cell times. Unless all the destinations in the fan-
out set are reached, the cell is not removed but remains in 
the queue. A multicast scheduler makes scheduling 
decisions prior to each cell time and grants cell 
transmissions accordingly. We assume that the scheduler is 
able to examine the cells stored deeper in the queues and 
that it is capable of sending them to the corresponding 
outputs. 

Multi-Level Round-Robin Multicast Scheduling 
with Look-Ahead Mechanism 

Hao Yu, Student Member, IEEE Sarah Ruepp, and Michael S. Berger, Member, IEEE 

T 



 

B. Definitions 
We define several terms used in the scheduling algorithm 

throughout the paper. 
Def. 1 (Maximum Look-Ahead Depth): The maximum 

look-ahead depth, L, is defined as the limit of the number of 
cells that the scheduler is able to examine further into the 
queue. 𝐿 = 0 means that the switch only operates on the 
HOL cells, while 𝐿 = 𝑙 indicates that the switch can look up 
to 𝑙 cells after the HOL cell. 

Def. 2 (Cell Position): The cell position, p, is defined as 
the position of a cell in the queue. The cell at the HOL of the 
queue has p = 0. 

Def. 3 (Fan-out Vector): A fan-out vector is used to 
indicate the fan-out set carried by a multicast cell in input i 
at position p, and is denoted as 𝑓(𝑖,𝑝) ≜ 〈𝑓𝑘

(𝑖,𝑝)〉, 𝑘 =
0,1, … ,𝑁 − 1, 𝑖 = 0,1, … ,𝑁 − 1, 𝑝 = 0,1, … , 𝐿, 𝑓𝑘

𝑖,𝑝 ∈ {0,1}. 
𝑓𝑘

(𝑖,𝑝) = 0 indicates that output k is not in the fan-out set of 
the cell and 𝑓𝑘

(𝑖,𝑝) = 1 indicates the opposite. The cardinality 
of the fan-out set thus becomes �𝑓(𝑖,𝑝)� ≜ ∑ 𝑓𝑘

(𝑖,𝑝)𝑁−1
0 . 

Def. 4 (Traffic Matrix): The Traffic Matrix is an N×N 
matrix constructed by the scheduler based on the fan-out 
vectors of the cells in the position p of each input i before a 
cell transmission. It is denoted as 𝑻(𝑝) = �𝑇𝑖,𝑗

(𝑝)�, 𝑖 =
0,1, … ,𝑁 − 1, 𝑗 = 0,1, … ,𝑁 − 1. Obviously, we have 
𝑇𝑖,𝑗

(𝑝) = 𝑓𝑗
(𝑖,𝑝),∀𝑖, 𝑗, 𝑝. And we define 𝑇𝑖,𝑗

(𝑝) = 0,∀𝑗, 𝑝 if input 
queue i is empty. 

Def. 5 (Decision Matrix): The Decision Matrix is an N×N 
matrix denoted as 𝑫(𝑝) = �𝐷𝑖,𝑗

(𝑝)�, 𝑖 = 0,1, … ,𝑁 − 1, 𝑗 =

0,1, … ,𝑁 − 1,𝐷𝑖 ,𝑗
(𝑝) ∈ {0,1}. This matrix contains the 

scheduling decisions for each output j with 𝐷𝑖,𝑗
(𝑝) = 1 

indicating that a copy of the cell in input i at position p will 
be transferred to output j and 𝐷𝑖,𝑗

(𝑝) = 0 meaning that no 
copy will be sent to output j. We can know that 0 ≤
∑ 𝐷𝑖 ,𝑗

(𝑝) ≤ 1𝑗 ,∀𝑗 
Def. 6 (Set of Decision Matrices): The Set of Decision 

Matrices is defined as 𝚫 = �𝑫(0),𝑫(1), … ,𝑫(𝐿)�. It contains 
up to L decision matrices. Multicast cells are released by the 
scheduler according to the decision matrices stored in 𝚫. 

Def. 7 (Assistant Matrix): The Assistant Matrix is an N×N 
matrix denoted as 𝑨(𝑝) = �𝐴𝑖,𝑗

(𝑝)�, 𝑖 = 0,1, … ,𝑁 − 1, 𝑗 =

0,1, … ,𝑁 − 1,𝐴𝑖,𝑗
(𝑝) ∈ {0,1}. This matrix is used to help 

generate 𝑫(𝑝), 𝑝 > 0. 
Def. 8 (Cross Disable Mark °𝑿): We define °𝑿 as a 

matrix transform mark for the sake of convenience where 

𝑿 = �𝑋𝑖,𝑗�,𝑋𝑖,𝑗 ∈ {0,1} is the in-operation matrix. If we 
have 𝒀 = °𝑿, first let 𝒀 = 𝑶, (𝑌𝑖,𝑗 = 0,∀𝑖, 𝑗) with the same 
dimensions as 𝑿, and if 𝑋𝑘,𝑙 = 1, then 𝑌𝑘,𝑗 = 1,𝑌𝑖,𝑙 =
1,∀𝑖, 𝑗. 

III. FIFO-BASED MULTI-LEVEL ROUND ROBIN MULTICAST 
SCHEDULING 

We here describe the proposed multicast scheduling 
algorithm in detail based on the previous definitions. Before 
each cell transmission time, the scheduler executes the 
following procedures and accordingly releases cells after 
completion. 

Initial condition: 𝑝 =  0, 𝚫 = ∅, and 𝑫−1 = 𝑶 (𝐷𝑖 ,𝑗−1 =
0,∀𝑖, 𝑗) 

1) The scheduler examines the fan-out vector 𝑓(𝑖,𝑝) of the 
cell in input i at position p for all inputs to construct 𝑻(𝑝). 

2) 𝑨(𝑝) = 𝑻(𝑝) − °�∑ 𝑫(𝑝−1)|𝚫|
𝑝=0 �, and if 𝐴𝑖,𝑗

(𝑝) < 0, then 

set 𝐴𝑖,𝑗
(𝑝) to 0, ∀𝑖, 𝑗. 

3) The round-robin scheduling algorithm is independently 
executed on each non-zero column of 𝑨(𝑝). Only one 
element in a column can be selected due to the constraint of 
one output port only being able to  one transmission during a 
cell time. The results thus form 𝑫(𝑝). 

4) The sync [2] procedure is carried out on 𝑫(𝑝) to reduce 
the unnecessary multiple transmissions of cells: if column y 
plays the role of dictator during this cell time and 𝐷𝑥,𝑦

(𝑝) = 1, 
and ∀𝑗 ≠ 𝑦, 𝐴𝑥,𝑗

(𝑝) = 1 and 𝐷𝑥,𝑗
(𝑝) ≠ 1, then let 𝐷𝑥,𝑗

(𝑝) = 1 and 

𝐷𝑖,𝑗
(𝑝) = 0,∀𝑖 ≠ 𝑥. The scheduler stores the refined 𝑫(𝑝) to 

𝚫, i.e. 𝑫(𝑝) → 𝚫. 
5) If a zero column is found in ∑ 𝑫(𝑝−1)|𝚫|

𝑝=0 , check the 
queue size of each unreserved input, which is  the 
corresponding row in ∑ 𝑫(𝑝−1)|𝚫|

𝑝=0 . If the queue size is larger 
than 𝑝 + 1, and 𝑝 + 1 ≤ 𝐿, increase 𝑝 with 1 and go to step 
1. Otherwise, continue to step 6. 

6) The scheduler should examine 𝚫 and release multicast 
cells at particular positions from input queues according to 
each 𝑫𝑝. If the fan-out set of a cell becomes empty after the 
service, the cell will be removed from the queue. Otherwise, 
the cell remains with a new fan-out set. 

IV. COMPLEXITY AND PERFORMANCE ANALYSIS 

A. Implementation of the MLRRMS 
The MLRRMS algorithm is in essence designed to be 

implemented in a parallel and distributed fashion and 
require no linear scan. Since we allow the switch to look 
ahead into the queues, iterations will occur to increase the 
output utilization for each cell time as described in previous 
section. The position parameter 𝑝 is incremented by 1 at the 
end of iteration. 

At the beginning of each cell time, the scheduling process 
begins. All inputs and outputs are initially free and 𝑝 = 0 . 
Only those inputs and outputs not reserved at the end of one 
iteration are eligible for the next. The scheduling process 
below operates in parallel on each outputs and inputs. 

i) Submission 
Each free input submits to every free output for which it 
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Fig. 1.  N×N input-queued multicast switch with FIFO architecture. 



 

has a multicast cell at 𝑝 bounded. The outputs that have 
received requests from the inputs will appear in a round-
robin schedule of the dictator assignment. 

ii) Dictator Assignment 
A dictator arbiter chooses the output that appears next in a 

round-robin schedule starting from the highest priority 
element to be the dictator over other outputs for 𝑝. The 
dictator pointer 𝑎(𝑝) to the highest priority element of the 
round-robin schedule is incremented (modulo N) to one 
position beyond the current dictator after the assignment. 

iii) Decision 
If a free output receives any request, it chooses the one 

that appears next in a round-robin schedule starting from the 
highest priority element. The output notifies each input 
whether its request is selected as the decision. The decision 
pointer 𝑑(𝑝) to the highest priority element of the round-
robin schedule in incremented (modulo N) to one location 
beyond the selected input if and only if the output receives a 
cell from its selected input. 

iv) Sync 
If one input receives a decision from the dictator, it 

invalidates the decisions of other outputs which are 
contained in its request set, and keeps its own decision valid. 
The input that has an invalid decision loses permission to 
transmit cells. Only the input that has a valid decision is 
eligible for sending cells. 

This process iterates until either all the outputs are 
reserved or the maximum LA depth is reached. The effect of 
the algorithm and the sync mechanism in this framework are 
the same as described in the previous section but the 
complexity is reduced. 

B. Heuristic Analysis of the Look-Ahead (LA) Mechanism 
The LA mechanism is only performed when the output 

ports are not fully reserved. There are potentially two 
reasons to cause the partial occupancy: 1) the HOL 
blocking, and 2) the traffic pattern. Obviously, there is 
nothing to improve if it is the traffic pattern that causes the 
partial occupancy. On the other hand, the HOL blocking 
phenomenon may be the cause and therefore LA mechanism 
will be able to reduce the degradation. 

Assume that each multicast cell has the same probability 
of being bound to each output: 

 
𝑃 �𝑓𝑘

(𝑖,𝑝) = 1� = 𝛿,∀𝑖, 𝑘, 𝑝 
 (1) 

The probability of a column 𝑗 in 𝑻(𝑝) being a zero column 
or an idle output: 

 
𝑃 �𝑇𝑖,𝑗

(𝑝) = 0� = (1 − 𝛿)𝑁 = 𝜃,∀𝑖, 𝑗, 𝑝 
 (2) 

Let the random variable 𝑋 be the number of zero columns 
found in 𝑻(0). Then we have the probability mass funcation 
(p.m.f). of 𝑋: 

 

𝑃(𝑋 = 𝑥) = �𝑁𝑥� 𝜃
𝑥(1 − 𝜃)𝑁−𝑥 , 𝑥 ∈ {0,1,2, … ,𝑁 − 1} 

 (3) 
Let 𝑆 be the random variable of the LA depth which the 

switch should examines to find a cell to send to an idle 

output. Since reserved inputs are not considered in the LA 
process, we can have the lower bound of the p.m.f. of 𝑆: 

 
𝑃(𝑆 = 𝑠) ≥ 𝜃𝑠−1(1 − 𝜃), 𝑠 ∈ {1,2, … } 

 (4) 
and the c.p.f: 
 

𝑃(𝑆 ≤ 𝑠) ≥ 1 − 𝜃𝑠, 𝑠 ∈ {1,2, … } 
 (5) 
 

In order to utilize all the idle outputs, the LA depth of the 
system, S�, should be the maximum of each zero column’s 
LA depth: 

 
S� = max(S1, S2, … , Sx) 

 (6) 
We can find the cumulative probability of all the 𝑥 zero 

columns becoming non-zero (output utilization 𝑈 = 100%) 
after �̂� = 𝐿 under the assumption that each column is 
independent: 

 
ℎ(𝑥, 𝐿) ≥ 𝑃�𝑋 = 𝑥, �̂� ≤ 𝐿�

= 𝐹𝑆1(𝐿)𝐹𝑆2(𝐿) …𝐹𝑆𝑥(𝐿) ∙ 𝑃(𝑋 = 𝑥 )
= (1 − 𝜃𝐿)𝑥 ∙ 𝑃(𝑋 = 𝑥) 

 (7) 
and the p.g.f. of ℎ(𝑥, 𝐿) with 𝐿 being a constant is: 

 
𝐻(𝑧, 𝐿) ≥ [1 − 𝜃 + 𝜃(1 − 𝜃𝐿)𝑧]𝑁 

 (8) 
We can thus derive the full-utilization probability that the 

outputs are fully utilized after a LA depth of 𝐿: 
 

𝐴(𝐿) = �𝐻(𝑧, 𝐿)|𝑧=1 ≥ (1 − 𝜃𝐿+1)𝑁 
 (9) 

In addition to the full-utilization probability, we are also 
interested in the relationship between the maximum LA 
depth 𝐿 and the output utilization 𝑈. The purpose of the LA 
mechanism, as explained previously, is to reduce the 
number of idle outputs so that the output utilization can be 
increased and the HOL blocking problem can be reduced. 
We know that the probability that an output remains idle 
after a LA depth of 𝐿 has a lower bound of 𝛿𝐿+1. Then we 
can derive the lower bound of the probability that there 
exists 𝑌 idle outputs after searching 𝐿 cells: 

 

𝑔(𝑦, 𝐿) ≥ 𝑃�𝑌 = 𝑦, �̂� ≤ 𝐿� = �
𝑁
𝑦
� (𝜃𝐿+1)𝑦(1 − 𝜃𝐿+1)𝑁−𝑦 

 (10) 
From above we know the probability that no idle output 

remains after a LA depth of 𝐿 is 𝑔(0, 𝐿) ≥ (1 − 𝜃𝐿+1)𝑁, 
which corresponds to (9). We can therefore derive the lowe 
bound of the probability of the output utilization 𝐿: 

 

𝑃 �𝑈 =
𝑁 − 𝑌
𝑁

� ≥ �
𝑁
𝑦
� (𝜃𝐿+1)𝑦(1 − 𝜃𝐿+1)𝑁−𝑦 

 (11) 
 

C. Simulation Result 
We compare the proposed MLRRMS with WBA [1] and 



 

FIFOMS [4] by simulations carried out in OPNET Modeler 
[11]. We assume that the multicast traffic to each input is 
independent and 𝑁 = 8 for the simulated switch. To 
compare the performance of the algorithms in various traffic 
conditions, we consider Bernoulli traffic and burst traffic 
with different fan-out schemes. 

We first apply the Bernoulli traffic to the switch. A cell 
arrives at an input with a probability of 𝑞 and 𝜃 = 0.5, 
which results in 𝐸(|𝑓|) = 4 for the 8 × 8 switch. The 
offered load is calculated as 𝜆 = 𝑞 ∙ 𝐸(|𝑓|). 

Fig. 2 shows the simulation results when Bernoulli traffic 
is applied. Fig. 2(a) compares the average multicast delays 
under various traffic loads. A multicast cell is stored in the 
queue until all the destinations in its fan-out set are reached. 
The multicast delay of a cell is calculated as the cell times 
that the cell stays in the queue until it is removed. Since the 
WBA and MLRRMS (L=0) both operate only on the HOL 
cells, they become unstable as the offered load increases. 
With looking ahead maximum 1 cell further, the MLRRMS 
(L=1) has demonstrated a significant improvement of the 
multicast delay compared to MLRRMS (L=0) and WBA. As 
𝐿 increases, we can observe more improvement from 
MLRRMS (L=2) and (L=10) but we can also discover that 
the marginal improvement is decreasing. Among all, 
FIFOMS has the lowest delay because it uses the VOQ 
architecture to handle the multicast traffic with a total 
number of queues of 𝑁2. 

We examine the average queue size per input, including 
the cell in service, in Fig 2(b). Since MLRRMS (L=0) and 
WBA operate only on the HOL cells, they both suffer from 
the HOL blocking problem and have the highest average 
queue size compared to other schemes. We can again 
observe a significant improvement of MLRRMS (L=1). 

In Fig. 2(c), we examine the average LA depth. For 
MLRRMS (L=0), the average LA depth is always 0. For 
MLRRMS (L=1), it allows the switch to search up to 1 cell 
deeper in the queues. When the traffic load is heavy, the 
average LA depth is almost the same as 𝐿. For MLRMMS 
(L=2) and (L=10), the average LA depth under heavy load is 
less than its 𝐿 value revealing that the switch does not 
leverage its full potential. The average LA depth of 
MLRRMS (L=10) is approximately 7 when the switch is 
heavily loaded, indicating that the added implementation 
complexity of the switch is obsolete and the performance 
improvement is nonlinear. Both MLRRMS (L=1) and (L=2) 
begin to converge after 𝜆 = 0.9 because the queue size 
begin to become larger than the 𝐿 values. 

We further apply bursty traffic, or Correlated Arrival 
Process, which has two states, busy and idle. Cells are 
generated only in the busy state. The process stays in each 
state for a random number of cell times following the 
geometric distribution with mean values of 𝐸[𝐵] and 𝐸[𝐼], 
respectively. The arrival rate is calculated as 𝜆 =
𝐸[𝐵]/(𝐸[𝐵] + 𝐸[𝐼]). Since the traffic arrives at the switch 
in bursts, two modes of fan-out schemes can be applied, 
cell-based and burst-based. In cell-based fan-out mode, the 
fan-out vector is independently generated for each cell. And 
in burst-based mode, the fan-out vector is independently 
generated for each burst of cells, each burst of cells having 
the same fan-out vectors. 𝐸[𝐵] = 16 [1] and each cell 
arrives at an input with 𝜃 = 0.5, which results in 𝐸(|𝑓|) = 4 

for the 8 × 8 switch. 
Fig. 3 compares the performances under bursty traffic 

with cell-based fan-out mode. In Fig. 3(a), the average 
multicast latency of all the scheduling schemes increases. 
WBA and MLRRMS (L=0) have the largest delay compared 
to others. With looking up to 1 cell, MLRRMS (L=1) has 
reduced the multicast latency dramatically. MLRRMS (L=2) 
does not provide the same level of improvement compared 
to the complexity it adds to the switch. The delay 
performances of MLRRMS (L=10) and FIFOMS are nearly 
the same under heavy traffic loads. In Fig. 3(b), the average 
queue size per input is examined. Due to the bursty 
characteristic of the traffic, the average queue size is larger 
for light traffic load than when the Bernoulli traffic is 
applied. Since the fan-out scheme is cell-based, the LA 
mechanism can still reduce the HOL blocking problem and 
increase the throughput of the switch. This can be observed 
in the improvement of MLRRMS (L=1) in both Fig. 3 (a) 
and (b). In Fig. 3(c), we can observe similar results as in 
Fig. 2(c) but the average LA depth of MLRRMS (L=2) 
converges earlier than in Fig. 2(c). This is because the 
bursty traffic leads to larger queue size under light load than 
the Bernoulli traffic. 

Fig. 4 shows the results under bursty traffic with burst-
based fan-out mode. Each burst of cells has the same fan-out 
vector which means looking ahead a limited number of cells 
in the queues is enough for the switch to alleviate the HOL 
blocking problem. A deeper searching should be carried out 
for this type of traffic. Among other schemes, WBA has the 
largest multicast latency as shown in Fig. 4(a). FIFOMS 
performs better than MLRRMS with different 𝐿’s. Focusing 
on the MLRRMS group, we can see the improvement of 
MLRRMS (L=1) is not as significant as in Fig. 2(a) and Fig. 
3(a), and MLRRMS (L=0), (L=1) and (L=2) have similar 
multicast delay. This phenomenon corresponds to the reason 
stated previously, i.e. the burst-based mode requires a larger 
𝐿, since L=1 or 2 is not enough to include most possibilities 
of the burst distribution. MLRRMS (L=10) is able to 
generate a reduce the latency significantly because of the 
large 𝐿.  

In Fig. 4(b), we can obtain similar results as in Fig. 4(a). 
All algorithms suffer from performance degradation due to 
the traffic pattern. The average LA depths of MLRRMS 
with different 𝐿’s under burst-based mode are shown in Fig. 
4(c). MLRRMS (L=1) and (L=2) begin to converge when 
the offered load 𝜆 reaches 0.6 due to the traffic pattern. The 
MLRMMS (L=10) also converges at 𝜆 = 0.8 which 
indicates that the traffic of burst-based fan-out mode has put 
a greater demand on the possible LA depth than the cell-
based scheme and the queue size is always larger than 10. 

V. CONCLUSION 
In this paper, we propose an efficient multi-level round-

robin based multicast scheduling (MLRRMS) algorithm with 
a look-ahead (LA) mechanism for 𝑁 × 𝑁 switches with the 
FIFO-IQ architecture. As discussed, the LA and the sync 
mechanism consisting of matrix operations used in 
MLRRMS can be implemented in a parallel fashion with a 
low time complexity. Under varying traffic conditions, 
MLRRMS with 𝐿 = 1 outperforms WBA and gains the 



 

largest performance improvement. The HOL blocking 
problem is alleviated by the LA mechanism. With a larger 𝐿, 
the algorithm performs close to FIFOMS which uses the 
VOQ structure, but the marginal performance improvement 
obtained does not justify the introduced implementation 
complexity. Being able to search up to 1 cell stored deeper 
in the queues for the switch, i.e. being capable of processing 
2 cells at the head of the queues within one cell time, instead 
of creating multiple queues for each input is able to provide 
the largest performance improvement in terms of multicast 
delay and average queue size. 
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     (a)                                                                           (b)                                                                             (c) 

Fig. 2.  Simulation results under Bernoulli traffic with N=8, θ=0.5. (a) Average multicast latency. (b) Average queue size per input (c) Average look-ahead 
depth. 

 
     (a)                                                                           (b)                                                                             (c) 

Fig. 3.  Simulation results under bursty traffic (cell-based fan-out mode) with N=8, θ=0.5. (a) Average multicast latency. (b) Average queue size per input 
(c) Average look-ahead depth. 

 
     (a)                                                                           (b)                                                                             (c) 

Fig. 4.  Simulation results under bursty traffic (burst-based fan-out mode) with N=8, θ=0.5. (a) Average multicast latency. (b) Average queue size per input 
(c) Average look-ahead depth. 
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