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1 Introduction

Classification and perception for autonomous vehicles in natural environments is notoriously difficult. One of the
problems is that high dimensional data is often involved like those coming from video streams. With stochastic
sensor signals that have limitations in accuracy and range, it is hard to model and generalise objects and contexts.
Metric localisation, which for outdoor applications is commonly based on position from Global Positioning Sys-
tem (GPS) Satellites combined with motion sensing from Inertial Measurement Units (IMU), provides very useful
information, but needs to be supplemented by environment sensing and perception to obtain safe autonomous op-
eration. Semantic mapping can be used to extract non-metric features from sensors such as cameras and laser
scanners by dimensionality reduction and can be used to provide a way of supervising metric localisation ap-
proaches. In a changing natural environment, autonomous operation is a challenge because GPS availability can
be irregular or prone to outliers, and feature extraction from advanced sensors frequently suffers from artifacts.
Robust methods to recognise objects and scenes are, therefore, a key to assure that a robot shows correct and
safe behaviour, even in faulty conditions or unforeseen situations (Bouguerra et al., 2008; Chandrababu & Chris-
tensen, 2009). Semantic mapping will in this chapter be defined as a function mapping a high dimensional input
down into a set of semantic features such as locations, obstacles or features of the environment. Safe autonomous
operation will require robust semantic mapping and object recognition, and the technology needed must reach far



beyond conventional robotic motion planning, (LaValle, 2006; Mettler et al., 2010).
Recent developments in outdoor robots and sensor technology have made autonomous field operations

a realistic aim (Blas & Blanke, 2011). The challenge is to develop and add functionality so that vehicles will
behave in a safe and reliable manner under unmanned operation. Safe behaviour is crucial if outdoor robots are
to become acceptable to authorities and society. High reliability is also required if robots are to be attractive to
farmers and other professional users. The biggest technological challenge in such autonomous outdoor systems
is ability to sense the environment, as well as to classify and use perceptual information for control.

This chapter will discuss diagnosis, monitoring and classification of current conditions in the environment
and supervision at different levels in an autonomous robot. Based on stochastic automata (Lunze, 2001), a recent
approach to create and use outdoor semantic maps (Caponetti et al., 2011) is demonstrated to provide autonomous
navigation in an orchard. The role of supervision based on conventional diagnostic methods (Blanke et al., 1997;
Blanke et al., 2006; Isermann, 2006; Noura et al., 2009) is shown in the context of localisation. Supervision
based on representation of semantic characteristics of the environment (Galindo et al., 2005a; Galindo et al.,
2005b; Galindo et al., 2008) is introduced in a framework of stochastic automata, the states of which conveniently
correspond to different characteristic environments, hence giving models an intuitive interpretation. The states
are determined from probabilistic analysis of the complex sensor signals from laser scanner and stereo vision,
using perception patterns and vehicle motion history to determine when to switch state. It is discussed how signal
quantisation can enhance robustness against noise and achieve fault-tolerant performances, and how quantisation
of signal spaces can be optimised according to the probability distributions of observations. Combining well-
known task planning and re-planning methods (Choset et al., 2005) with robust semantic mapping, it is shown
how safe operation can be achieved.

1.1 Autonomous Operation - Illustrated by an Orchard Case

To diagnose whether behaviours are normal or not-normal is instrumental to obtain true autonomy with depend-
able operation (Avizienis et al., 2000). Fault diagnosis technology offers well established methods to obtain
such information at levels where information is metric. At a higher level of abstraction, detailed metrics become
impossible in a natural environment and is supplemented by semantic classification. Semantic mapping is of
extreme importance for mobile robots (Galindo et al., 2005a). With a good state estimate of a semantic map, this
information can be used to supervise plan execution, redefine controllers, or aid the localisation process, helping
to assure safety and reliability. Semantic mapping in indoor environments is commonly done by matching the
metric position of the robot in a known map. This is still viable outdoors but falls short when evaluated in terms
of robustness. Missions have to continue, regardless of weather or season, leading to the need for a sensing sys-
tem robust against vegetation shape, environment changes or localisation faults. Fig. (1) illustrates the use of an
automaton model to represent semantic information of an orchard.

To validate robustness of solutions, data used in this chapter were recorded during autonomous operations
of a tractor in an experimental orchard owned by Copenhagen University (Griepentrog et al., 2009). The area
is characterised by geometric features: trees or plants, set along straight and parallel lines as visible in Fig. (2).
Orchard maintenance is an application, which is of high commercial interest to automate, because tasks are
repetitive and labour intensive. What makes it difficult to automate is that the trees in the orchard tend to occlude
satellite reception for GPS systems. While this does not mean complete loss of localisation it has the consequence
that it can be hard to localise a tractor to a specific row of trees. This is crucial when accurate and safe navigation
in the orchard is required. The accuracy needed calls for a GPS receiver based on real-time kinematics (RTK)
technology, which uses carrier frequency phase tracking, but these are sensitive to shadowing from trees with
leaves, and their readout may suffer from artifacts. Conventional GPS receivers in the 1-2 m class are less prone
to artifacts but do not have the required accuracy unless used in a sensor fusion solution with other instruments.



Figure 1: Environment-distinctive areas and their topological relations are modelled by states and
transitions of a stochastic automaton. To identify the model probabilities, the real-valued, measured
input and perceived output are quantised and are tuned through frequency count probabilities. Robust
semantic localisation is achieved in real time by recursive evaluation in an observer.

Semantic mapping provides the means to supervise navigation based on metric localisation. Typical mis-
sion plans for the tractor involve either spraying or mowing. Errors in metric localisation, and/or an operator
based plan, can have consequences for the environment. Spraying, as an example, should only be activated when
the autonomous vehicle is located next to the tree rows. Semantic information can create context aware super-
vision of the process so attempts to spray in open field or headland could be detected as faults. As spraying
is potentially harmful to humans it is critical that such faults are detected. A rule-based planning system was
demonstrated to work well in (Andersen et al., 2010). A system formally based on semantic mapping has a wider
generality.

1.1.1 Autonomous Tractor

The autonomous robot in this application was a standard orchard tractor, build by Hako Werke, that was retrofitted
with additional sensors and computing power (Griepentrog et al., 2009). A SICKr LMS-200 laser scanner is
mounted on the robot. The scanner measures distances to objects in a two-dimensional 180◦ fan in front of the
robot. The maximal range of the SICK scanner is 8 m in the configuration used. A stereo vision camera, which
makes a 3D point cloud of the field of view, was also mounted on the robot, see Fig. (3). Standard software
coming with the stereo device was used to extract the 3D points. The tractor was further equipped with an
RTK-GPS which gives a position estimate with a theoretical precision of 2 cm. To provide this precision, 6
satellites or more must be in the field of view, otherwise the precision drops. Quadrature encoders that measure
the wheels’ rotation, a steering angle transducer and a rate gyro complete the instrumentation package. The low
level interfacing to these sensors and actuators is done using the Mobotware software (Beck et al., 2010), where
also the odometry based on the travelled distance and gyro data is calculated. Calibration of the odometry is
done before the mission, by completing a number of manoeuvres and optimise the sensor models to best fit the



Figure 2: Google Earthr view of orchard. The numbers denote some of the zones for semantic
mapping: 1. Open field (Road) 2. Headland 3. Dense trees 4. Sparse trees.

(a) Autonomous tractor and coordinate definitions (b) Dense trees part of orchard during Summer

Figure 3: Autonomous tractor and the dense trees orchard environment.

trajectory measured by the RTK-GPS.

1.1.2 Supervision

At the highest level of abstraction the robot should try to complete its given tasks while assuring safe operation.
In the case of faults it will have to work under reduced capabilities but may still be able to finish its mission. At
the highest level of abstraction the role of the supervisor is largely to coordinate functionalities of lower levels to
obtain the overall goals, while at the same time preventing the robot from turning local faults or signal artifacts
into failure at the overall level.



Figure 4: Overview of the architecture of the robot and how supervision is used at component levels.
Semantics form an important part of the supervision process.

At lower levels of abstraction, individual modules should try to provide the information (service) needed
by other parts of the robot. Fault diagnostic methods and hypothesis testing are used at the lower levels to
ensure fault-tolerant operation, where full performance of a module is traded for possibly lower performance but
uninterrupted output when faults occur.

The architecture implemented in the orchard application has three different levels of supervision. At the
lowest level the metric localisation is based on interpreted environment features from the LIDAR, position from
the GPS, turn rate from a rate gyro and odometry using wheel angle and wheel speed sensors. The instruments
are supervised using industry accepted methods for achieving fault-tolerance as detailed in (Blanke et al., 2006).
Localisation is detailed in Section 2. Above this level, a semantic supervisor is used to evaluate any inconsis-
tencies between an a-priori semantic annotated metric map, the metric localisation, and the semantic mapping
of inputs from extrovert sensors (laser and vision). The higher level supervisor is then used to take decisions on
which operations to perform (driving, spraying, mowing, ...) based on the current metric position, current mission
tasks, metric semantic supervisor and information on any detected obstacles. An overview of the architecture is
given in Fig. (4). Splitting the supervision into a number of subsystems allows for individual unit tests and it also
significantly reduces the complexity of the automata for supervision. This in turn makes system development
simpler, modular, easier to maintain and presumable also more reliable due to reduced complexity.
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1.2 Chapter Outline

The chapter is organised according to the levels of supervision. First, metric localisation is discussed and how
it can be self-supervised making use of metric-based fault diagnosis. The pitfalls with metric localisation for
the robot are also discussed in the context of augmenting the supervision processes with semantic mapping.
Perception for semantic mapping is introduced using a stochastic automaton framework, signal space quantisation
is discussed and an optimisation is suggested to minimise the false alarm probability. It is then outlined how the
semantic mapping can be exploited in a supervisory architecture to enhance overall safety and reliability for the
autonomous robot. Lastly, supervision of the mission execution is discussed for enhancing such supervision with
output of a semantic state machine. A section showing results from autonomous operation and a conclusion
finalises the chapter.

2 Supervision of Metric Localisation

The robot’s pose relative to the objects in its environment is essential for carrying out its objectives. In this section
the robots pose is kept in the Universal Transverse Mercator (UTM) coordinate system also used by the on-board
GPS receiver. The pose is denoted z = [R,ψ]T where the position is R and the heading angle is ψ. Metric
information about position is available from sensors like GPS, Rgps, and through odometry, Rodo, where steering
wheels’ angle θ and average wheel speed δL are utilised for estimating the pose. This is done be integrating the
robots velocity ug in the GPS coordinate system. The transformation matrix between the robots body coordinate
system and its ground system is denoted Agb.

True locations of objects in the environment are represented in a map M k(oi) of known objects where oi

are the objects. The laser range finder gives information about objects in view poi
las(z). There will also be unknown

objects in the environment. These are denoted M u(oi).
The constraints describing the kinematics of the tractor are then given in Table 1, with δL being the transla-

tional distance driven in each time step, θ being the steering angle, f odo an odometry relation and ρgyro measured
turn rate and ρb bias on the rate measurement. The odometry relation is split up into translational f odo,tran and
rotational f odo,rot parts to accommodate easy comparison with measurements from a rate gyro. Finally, by pro-
cessing the range scan r from the laser-scanner in different ways, it is possible to estimate parts of the pose. The
methods used in this text are discussed in more detail in section 2.1. The overall behavioural models of these
processes will be denoted L1, L2 and L3. These different ways of estimating the pose can formally be written
as a set of constraints, where ci are physical constraints of the system and mi the measurements.

Following the procedure for analysis of system topology properties, referred to as structural analysis,



System Constraints Measurement constraints
c1 : ub = f odo,tran (δL,θ) m1 : ∆nenc =

δL
γ

c2 : ug = Agbub m2 : θmeas = θ

c3 : ρb = f odo,rot (δL,θ) m3 : Rgps = R
c4 : R =

∫ t
0 ug (τ) dτ+R0 m4 : ρgyro = ρ

c5 : ψ =
∫ t

0 ρb (τ) dτ+ψ0 m5 : Rm1 = L1(r,R,ψ,M k(oi))
c6 : r = g3

(
R,ψ,M k(oi)

)
m6 : Rm2 = L2(r,R,ψ,M k(oi))
m7 : ψm = L3(r,R,ψ,M k(oi))

Table 1: Constraints that define the FDI problem for localisation

c1 c2 c3 c4 c5 c6 m1 m2 m3 m4 m5 m6 m7

r1 : 1 1 1 1 1 1 1 1
r2 : 1 1 1 1
r3 : 1 1 1 1 1
r4 : 1 1 1 1 1
r5 : 1 1 1 1 1

detectable
isolable

d1 d1 i d1 d2 i d3 d3 d2 i i i i

Table 2: Residuals’ dependency on constraints

see (Blanke et al., 2006) and references herein for details, the set of known variables in Table 1 are K ={
R0,ψ0,M k(oi)

}
and the set of unknowns, Z = {δL,θ,R,ψ,ub,ug,ρb,r}. In this setting the robots starting

pose R0, ψ0 and the map M are considered known. Analytic redundancies are obtained by matching of a struc-
ture graph resulting from the constraints in Table 1 and these redundancies form the residuals used for diagnosis.
With 13 constraints and 8 unknowns, 5 constraints become available for sensor fusion, diagnosis and / or super-
vision of the metric localisation. Despite describing normal behaviours, constraints m5 to m7 are dependent on
the objects in view. In certain areas of the orchard, in between rows of trees, individual objects can not always
be distinguished, trees need be grouped as rows etc. Hence, a higher level of abstraction is needed to supplement
metric localisation. This abstraction level is semantic maps and there is a dependency between the semantic state
and the computations for FDI within the localisation module and its supervisor.

Using the system equations listed above between three and five parity relations can be created in different
areas of the orchard. The parity relations use different constraints for their evaluation. This is listed in Table 2,
which shows that faults related to constraints c3, c6, m4, m5, m6 and m7 are structurally isolable, indicated by i in
the last row, while others are group-wise detectable, denoted d1,d2,d3 in the table.

An example of the residual during a turn from one row to the next is shown in Fig. (6). The Figure shows
two passages: the solid lines are the development of r2− r4 for a fault-free case and the dashed lines for a case
where an artifact occurs on the GPS position. The fault is not affecting r3.

2.1 Localisation Based on Extended Kalman Filter

An orchard is a semi-structured natural environment, where fruit trees are planted in straight rows, and headland is
available to drive the tractor to consecutive rows. Hence, the map M k is easily defined. Therefore, using distance
measurements between the robot and the tree rows for localisation is obvious when the robot is in between rows.
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Figure 6: Residuals formed from the structural analysis of the system constraints in c1 to m7.

In the headland, the robot must drive in a particular pattern due to physical limitations in turning capability. It
must skip at least one row, and reversing need be avoided when a fungicide sprayer is in a trailer behind the
tractor.

The task of keeping track of the robots pose as it executes its mission in the orchard, is not as easy as
it might appear. Because of the issues with sensor dependency on objects in view, supervision is needed. An
example of the different sensors pose estimates is shown in Fig. (7).

The high precision RTK-GPS gives good position indications when a clear view to GPS satellites is present,
but when driving between fruit trees, which cover the path to satellites with their foliage, erroneous behaviour is
often experienced (Hansen et al., 2009). This is illustrated in Fig. (7).

2.2 Fault-tolerant Sensor Fusion

With redundant information available, gross artifacts or faults in signals from one sensor are commonly dealt with
by sensor fusion and excluding sensors with detected faults. In an orchard, 2D laser scans can be used to aid the
GPS in estimating the robot’s pose utilising the prior knowledge about of the structure of this environment. The
laser scanner gives a field of distance measurements in a 180◦ fan in front of the robot. The scanner is mounted
as seen in Fig. (3). Using a feature extracting algorithm on these data, lines representing the orchard rows are
created.

2.2.1 Row Feature Extraction Algorithm

The feature extraction is relatively simple because of the sparse data coming from the laser scanner. Each set of
range data points ri = [xi,yi]

T , is transformed into the GPS coordinate system based on the tractor’s pose estimate.

qi = Agb pi (1)

The range data are then grouped into groups Q j according to there proximity to the mapped tree rows o j from the
known map M k(o j).

Q j = {q j | dist(o j,qi)< D} (2)
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Figure 7: Trajectory of robot in a headland turn given by the GPS and the most likely position accord-
ing to a statistical estimate. The robot moves clockwise from the leftmost row to the middle one. A
case where the RTK-GPS has temporal faults is also plotted.

A straight line of the description A jx+B jy+C j = 0 of each Q j is then estimated using least squares estimation.

2.2.2 Robot Pose Estimation

The estimated lines are then compared with regard to distance and angle from the robot pose to the mapped lines
and this difference is used as innovation in the filter. A well known way to unify this information is the extended
Kalman filter (EKF). The state information is the robots pose, z, which is predicted by feeding the wheel encoder
measurements to a model of the robots steering system, c1,c2 in Table 1,

zk+1 = f(zk,uk,εk) (3)

where u = [v,α]T is input and ε process noise. Using the 2D laser scanner information to update the pose by
comparing the extracted lines to the map, constraint m1. With measurement noise ε,

zk = h(poi
las(z),rm,εk) (4)

Both process and measurement noises wk and vk are assumed white and Gaussian in the Kalman filter formulation.
Deviations from this assumption can make the Kalman filter less accurate. The sometimes crude linearisation
done by the EKF can have quite negative effects and solutions using higher order derivative free filters have been
tested on this orchard case, see (Hansen et al., 2011).



2.2.3 Sensor Fusion

The localisation solution with extended Kalman filter in Eqs. (3) and (4) alone has a shortcoming in headland
manoeuvres. When the orchard rows are not visible from the laser scanner, no updates arrive to the pose estimate
Eq. (4), which then solely relies on odometry. This makes it drift because of wheel slippage, especially while
turning. This is seen in Fig. (7) where GPS artifacts are also apparent when passing from the foliage GPS signal
shadows to full satellite visibility in the headland.

The constraints c1 - m7 provide several complete matchings of the unknown variables. Unmatched con-
straints of one matching used by the Kalman filter for pose estimation would leave information that should be
evaluated for correctness. One intuitive result is that the pose should be validated through the vision system,

z(2)k = h(poi
vis(z),rm,εk) (5)

The structural analysis approach result in a complete fault diagnosis scheme for validating the estimates of
the pose. The pose is useful for real-time driving and track control but it does not possess sufficient information
when upper-level fault handling and re-planning are needed.

The use of an EKF filter solution is common in robotics but since it is relying on fault-free measurements,
may have accuracy issues with wheel slippage or field’s slope, that has not been modelled, overall supervision
of performance is needed to enhance reliability in an autonomous operation. When different algorithms need
to be employed in different sectors of the environment, it is natural to let the supervisor comprise a model that
attempts to recognise each sector where the robot operates and utilise this knowledge in its supervision of correct
performance and function. Semantic maps are well suited for abstraction for this purpose and supplementary to
the metric localisation.

2.3 Supervisor for the Localisation Module

The supervisor for the localisation must be able to operate with temporal faults or artifacts occurring at random in-
stants and in random sequence. The localiser should be able to operate under conditions of multiple simultaneous
faults, continuing to provide a pose estimate, or at least a position, perhaps down to last sensor available.

The supervisor needs to discard sensors isolated as faulty (H1) from the sensor fusion filter and include
a sensor again when the hypothesis normal (H0) has been confirmed. Events ei are either ei : H1 → H0 or
¬ei : H1→H0.

The set of residual generators that need be employed after one fault has occurred is generally different from
the set used for the non-faulty system. Given that one behaviour is not-normal, the associated constraint need
be removed from the analysis of structure, and the graph-matching and back-tracing be done along the matched
path of the graph to generate the parity relations valid for the particular case. The supervisor needs to handle this
complexity.

2.3.1 Automaton for state supervision

An automaton has the following form, where ek = {vk,wk} ∈E denote event k, sk ∈ S is the state when this event
happens and sk+1 is the consecutive state, {vk,wk} are the input and output associated with the event. With A being
a deterministic supervision automaton, which is here distinguished from the stochastic diagnostic automaton in
Eq. (22) and u ∈U the action performed by the supervisor,

sk+1 = A(ek,sk) (6)

uk = U(sk)



The plane architecture in Eq. (6) easily leads to considerable combinational complexity when both normal and
not normal operation need be dealt with.

An implementation as parallel automata (Blanke et al., 1997) gives the possibility of a significantly reduced
complexity. Following a notation derived from (Izadi-Zamanabadi, 1999), let a a hierarchy of automata consist
of an automaton in each layer that is coupled to other layers and in particular is coupled with the semantic state
ssem. The associated, layered automaton,

si j
k+1 = Ae§t(ek,si

k,s
j
sem) (7)

ui j
k = U(si j

k )

usually has much less states and significantly less state transitions compared to Eq. (6).

2.3.2 Localisation supervision

The supervisor automaton consists of states sk, s ∈ S , each of which represent the combination of sensors κ

available, among m sensors, sk = {κm,κm−1, · · · ,κ1} and is formally described by the sets of states S and actions
U, leaving the supervisor automaton formally defined by,

Let : κl ≡
{

1 sensorl = valid
0 sensorl 6= valid

∀l (8)

si
k = {κm,κm−1, · · · ,κ1}

A : si j
k+1← A(ek,s

i j
k−1,s

j
sem)

U : {ri j = π(si j
k ,s

j
sem),K(si

k,s
j
sem)}

where π(sk) is the parity vector available from analysis of the system of constraints corresponding to
available sensors and K(sk) is the fusion filter used in this state. The parity vector is generated from the list
of parity relations π(sk) obtained automatically from the structure graph matching and backtracking. The overall
diagnostic procedure is hence provable correct for residual generation and for the actions taken when faults occur.
It is noted that the supervisor Eq. (8) depends on upper level information because some calculations are dependent
on the semantic state.

3 Supervision of Semantic Mapping

Previous work on semantic mapping focused on online building of semantic maps using perceptual information.
Starting from classification techniques based on boosting algorithms (Mozos et al., 2005), several approaches
were proposed in literature to improve performances by taking advantage of object recognition (Nuchter et al.,
2005) and probabilistic environment models (Mozos et al., 2007). Separation of semantic maps into spatial
and conceptual hierarchies was done for indoor environments in (Galindo et al., 2005a). The present approach
uses a non-hierarchical approach for the mission supervision , which makes it possible to utilises the intuitively
appealing modelling of semantics as states in an automaton. Staying in a state or shift to another is determined
by classification of the input received from available sensors and characterisation of sensor input as confirming
the presence in a particular state or decision that a change has happened, and the latter event should trigger a
change of state. An equivalent functionality as that of a hierarchy is obtained using different supervisors, and
hence automata, for each of the main modules.



3.1 Semantic State

Consider a semantic state as a geographical area, or context, which the tractor must recognise. Referring to
Fig. (2), a typical orchard can be divided into five interconnected zones, enumerated and described as follows:

1. Open field Few obstacles and freely traversable space in field of view of the tractor, i.e. a road or a low
vegetation field.

2. Headland Defines the start/end of the agricultural area. Delimited by fences, markers or open space.

3. Dense trees Distance between trees is tight. Limited manoeuvring possibilities. Robot may need to push
through branches to get by.

4. Sparse trees Sparse vegetation, manoeuvre possible between the trees without physical contact.

5. End of row End of row of trees.

3.2 Indicators used for Semantic Mapping

The semantic states in the orchard example has N = 5 states,

Nz = {Open field, Headland, Dense trees,Sparse trees,End of Row}= {1,2,3,4,5}. (9)

When dealing with a complex natural environment, laser range scanner and stereo vision information
need be processed into a form easily digestible for perception. The indicators used for semantic mapping in the
orchard were those listed above. The algorithms to extract the indicators from signals are listed below, adopted
from (Caponetti et al., 2011). These were designed to be computationally efficient for real-time application. More
expensive probabilistic models could also be used to take into account variations in the sensor readings. Instead
the stochastic automaton is later used to compensate for this by learning the signal distributions. With the onboard
processing powers of the tractor, these signals can be generated at approximately 4Hz.

3.2.1 Algorithm for Ground Plane

A signal ygp representing the amount of ground plane visible is extracted using a method similar to those shown
in (Konolige et al., 2009). Given a 3D point cloud a RANSAC technique (Fischler & Bolles, 1981) is used to
construct ground plane hypotheses. This is done by: (a) choosing three non-collinear points at random from the
point cloud; (b) constructing a plane estimate from the three points; (c) ranking the plane estimates based on
number of inliers.

A 2D grid map is then constructed by projecting the 3D point cloud to the ground plane. The sum of grid
cells that get assigned to the ground plane are summed to give the amount of ground plane visible.

Let the found ground plane be written in the Hessian normal form of a plane with unit normal vector n̂ and
distance p along the line. Let P be the set of points in the point cloud considered. If a point falls within a grid
cell cxy, defined by a quantisation interval Qxy, Eq. (10) and its distance to the plane is less than Dmax then the cell
belongs to the ground. For x ∈ P ,

cx,y =
∣∣{x
∣∣ xx ∈ Qxy∧ n̂ ·x+ p < Dmax

}∣∣> 0 (10)

ygp =
n1

∑
x=n0

m1

∑
y=m0

cx,y. (11)



3.2.2 Algorithm for Laser Free Space

The free space y f s observed by the laser is taken as the area spanned by the measurements. Given two adjacent
range measurements si,si+1 i = 1, . . . a triangle is formed and its area can be easily evaluated using Heron’s
formula,

di = ||li− li+1||2 (12)

si =
li + li+1 +di

2
(13)

Ai =
√

si(s− li)(s− li+1)(s−di). (14)

Having a single laser scan, by summing the area of each triangle defined by adjacent readings, an estimate of the
free space is,

y f s =
nl−1

∑
i=0

Ai. (15)

3.2.3 Algorithm for Obstacles

An obstacle signal yo is constructed by creating a 3D grid map. Each point from the stereo vision as well as the
laser scanner are projected into a grid map. A grid cell is then labelled as occupied if a stereo point or laser point
lands in it.

A 3D grid cell cxyz is given the value of 1 if a point falls inside the cell and its height above the ground
plane is larger than Dmax. The number of occupied grid cells is then counted and used as a measure of the amount
of obstacles seen from the pose,

cxyz =
∣∣ {x

∣∣ x ∈ Qxyz∧ n̂ ·x+ p≥ Dmax
}∣∣> 0 (16)

yo =
n1

∑
x=n0

m1

∑
y=m0

k1

∑
z=k0

cxyz. (17)

3.2.4 Algorithm for Detecting Linear Structures

A signal yls indicates the presence of linear structures in the environment such as walls, fences, or hedges. The
3D grid map of obstacles is now collapsed into a 2D grid map on the ground plane by summing the number of
occupied cells along the vertical component, see Fig. (8).

A RANSAC line-fitting algorithm is then run on the 2D grid map to extract the strongest line. With gxy

denoting 2D grid map cells formed by summing data along the z dimension of the 3D grid map used in calculating
the obstacles signal,

gx,y =
k1

∑
z=k0

cx,y,z. (18)

A function l(a,b) returns the grid cells that intersect with the line parameterised by a and b,

l (a,b) = { j | j ∈ gx,y , jy = a jx +b} . (19)

The RANSAC algorithm finally attempts to maximise the sum of grid cells that intersect with the line,

yls = max
a,b

|w|

∑
i=1

l (a,b) . (20)



3.2.5 Algorithm for Detecting Row End

The row end detection is based on the intensity of laser scanner reflections per area unit. The detection density
ρ(θi) is calculated as number of detections in the 16 cm row slice θi along the tree row (maplines in Fig. 7) and
within the laser scanner coverage of the row, up to the scanners max range, M in Eq. (21). Change in mean density
was done in (Andersen et al., 2010) using a generalised likelihood ratio like test on the log-likelihood ratio of a
change in density down to zero, under Gaussian assumption,

k = arg max
1<k<M

k

∑
i=0

(
µrow

σ2
z
(ρ(θi)−µrow)

)
(21)

where k is the index pointing to the end of row distance, µrow is the test quantity for change in mean and σ2
z the

variance of ρ(θi) along the row.

(a) Image of situation (b) Detected: stereo detected objects (blue), laser de-
tected objects(red)

Figure 8: Detection of obstacles by stereo and laser in headland.

3.3 Validation of Indicator Algorithms in a Natural Environment

The validation data-set was recorded during a run which covered the track shown in Fig. (2). The run was made
in summer time to catch one extremum of the scenario. Full grown foliage, bushes and tree branches hanging
increased the variability of each zone. To stress more the robustness of the methods, people were moving or
standing in the tractor field of view during the data recording. Collecting the signals described in Sec.3.2, the
observed output consist of a vector y = [ygp,y f s,yls,yo,yvp] of continuous signals. The procedure introduced in
section 3.5.1 was then used (Caponetti et al., 2011) to design quantisers for the perceptual data. A training set was
used to determine distributions in different areas of the orchard. The state-conditioned probability distributions
were obtained by kernel density estimation and shown in Fig. (9). Perceptual aliasing is recognisable in the
probability space as an overlap of the distribution curves. This problem was handled by creating quantisation
levels for each region of interest and by combining all the signals in the automaton and using the state transition
model.
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Figure 9: State conditional probability density functions for two features.

3.4 Stochastic Automaton

A robot operating in an environment can be modelled as a hybrid system in which the states are given by the
situations or places that it could experience, a discrete-event system subject to input that evolves through states,
which generate output. One input is actuation of the robot causing it to potentially move from one environment
to another. Other input would be time, which affects the season and cause the environment to change. Measured
output are signals from the robots perception system that allows it to observe a change of state.

Raw sensor signals from extrovert sensors (LIDAR and vision) are real-valued and in order to be fed to the
model, a discretisation has to be performed, (Schroder, 2003; Supavatanakul, 2004).

Suppose that all signals are discrete and let events be changes in the discrete signals values. Let the states
be a set of semantic locations, which it is desired that the robot can distinguish between. Let the system discrete
input be v ∈ Nv ⊂ Q, Nv = {1,2, . . . ,M}, state z ∈ Nz ⊂ Q, Nz = {1,2, . . . ,N} and output w ∈ Nw ⊂ Q, Nw =
{1,2, . . . ,R} where M, N and R are finite.

The automaton behaviour is timed by the successive events but like all probability based models, a stochas-
tic automaton, at time k, is not in a unique state zk but has a probability of being within a set of possible states.
This is described by a discrete probability distribution P(zk),

P(zk) = {P(zk=1),P(zk=2), . . . ,P(zk=N)} .

The probability distribution P(zk) is a function that associates to all the states z ∈ Nz the probability which the
automaton assumes at time k.

Using the notation of (Schroder, 2003), an initialised stochastic automaton S for diagnosis is fully de-
scribed by the f ive− tuple:

S = 〈Nz,Nv,Nw,L,P(zk)〉 (22)

L is a behavioural function, the law that governs the stochastic process underlying the automaton. The behavioural
function is defined as,

L : Nz×Nw×Nz×Nv→ [0,1]⊂ R (23)

L(z′,w,z,v) = P(zk+1 = z′,wk = w|zk = z,vk = v) , (24)



which has the properties

0≤ L(z′,w|z,v)≤ 1, ∀z′,z ∈Nz,v ∈Nv,w ∈Nw (25)

∑
z′∈Nz

∑
w∈Nw

L(z′,w|z,v) = 1, ∀z ∈Nz,v ∈Nv. (26)

Fig. (10) shows a simplified automaton with five states, equivalent to the semantic states defined earlier.
Transitions between states are triggered by probabilities, Eq. (24). Transition probabilities are abbreviated Lhd for
transition from headland to a row of dense trees, Ldr from dense trees to row end, Lrh from row end to headland,
Lsr from sparse trees to row end, Loh from open field to headland, etc.

Figure 10: Simplified illustration of stochastic automaton. Behavioural relations L in the form of Eq.
(23) are functions of observed features. Probabilities determine change of state but this is not shown
in the figure.

3.5 Classification

Being able to classify the current state among a set of possible choices using the local available information is
equivalent to solve an observation problem for the corresponding stochastic automaton. Defining the input and
output sequences till the current time sample kh,

input sequence: V (0...k) = (v0,v1, ..vk)

output sequence: W (0...k) = (w0,w1, ..wk),

the state observation problem can be formulated as the situation in which the I/O pair sequence

{V (0...k),W (0...k)}

is known up to present time k and the current state zk of the stochastic automaton is to be determined.
Given an input and output sequence and an initialised automaton S in the form of definition 22, the solution

to the observation problem is obtained by determining the conditional probability distribution (Blanke et al.,
2006),

P(zk|k) = P(zk|V (0...kh),W (0...k)). (27)



The solution of the observation problem is in general not unique and given by the set

Z (k|k) = {zk : P(zk|V (0...k),W (0...k))> 0} (28)

which includes all states zk to which the automaton may move with non zero probability while accepting the input
sequence V and generating the output sequence W .

Considering a stochastic automaton with the initial state distribution P(z0), if the I/O pair (V,W ) is consis-
tent with the stochastic automaton, the a-posteriori state probability distribution is obtained by recursive applica-
tion of Eqs. (29) and (30), (Schroder, 2003; Blanke et al., 2006):

P(zk|k) =
∑
zk+1

L(k)P(zk|k−1)

∑
zk,zk+1

L(k)P(zk|k−1)
, (29)

where kh ≥ 0 ,

P(zk|k−1) =
∑
zk−1

L(k−1)P(zk−1|k−2)

∑
zk,zk−1

L(k−1)P(zk−1|k−2)

P(z0|−1) ::= P(z(0)), (30)

and input vk and output wk are arguments in

L(k) = L(zk+1,wk|zk,vk).

Eq. (29) describes how the prediction is obtained from the previous time point, Eq. (30), have to be corrected
after the new measurements v(k) and w(k) become available.

Figure 11: Given the current discrete value input output couple, the probabilities of the states can be
estimated recursively by prediction and correction. The current state is then chosen as the one with the
highest probability among the possible states.

3.5.1 Quantisation of Signal Spaces

Modelling through a stochastic automaton requires that all signals are discrete variables in a finite set. When input
are continuous-variables, a quantisation procedure is needed and quantisation is also very useful in terms of re-
ducing the computational efforts. Quantisation of the extrovert signals in the orchard was dealt with in (Caponetti
et al., 2011) where an optimised quantisation procedure was suggested that would minimise the false detection
probability for semantic classification. This procedure is an essential element in obtaining a fast computational
procedure and a reliable estimate of the semantic state.



3.5.2 Training of classifier

Regarding semantic map building for mobile robots, it is common to have a set of already classified examples
from which a model can be built (Mozos et al., 2005; Nuchter et al., 2005; Triebel et al., 2008). Such examples
can be automatically recorded by the robot in a first tour in an environment or it can be build gradually from
previous exploration. Such learning procedure is also feasible for abstracting a model and to define and tune
quantisers. The training procedure adopted for semantic classification was detailed in (Caponetti et al., 2011).
Here, N samples are drawn independently from the training data set according to a uniform probability distribution
to define the set γ = {xi, i = 1...N}. A label θ ∈Nz is associated with each sample. After sampling, the training
data consist of a finite sequence of independent pairs (xi,θi), i = 1, . . . ,N for the individual features. The training
probabilities are then quantised and merged and a procedure ensures that the conditional probabilities of the
merged distributions have a manageable low number of levels. A maximisation of the reconstruction performance
was also achieved (Bowman & Azzalini, 1997).

It is possible to use these results to estimate F̂(x|θ = z), where z is the semantic state, for each qualitative
state in Nz. This procedure makes it computationally efficient to sample signals of very complex nature in order to
obtain a very significant data reduction while choosing the classification such that a best possible misclassification
rate is obtained. The performance of this and other classification algorithms was also evaluated in (Caponetti et al.,
2011).

3.6 Supervision of the Semantic State Estimator Module

The use of the a-priori semantic annotated metric map allows us to reduce complexity of operations in the pose
estimation by selecting relevant parts of the map when calculating the likely pose from Eqs. (4) and (5) to make
it faster and more reliable to extract information from relevant parts of the metric localisation.

The output of the stochastic automaton can be readily compared to the a-priori map to identify faults in
either the semantic mapping, localisation, or a-priori map. Ideally, the localisation should be fairly fault-tolerant
considering its own supervisor but this may not be the case (e.g. under multiple sensor faults). Given that a fault
is detected, this information is used to switch off the row and line localiser (to avoid incorrect input to the sensor
fusion module) as well as the mission execution supervisor. The mission execution will then switch off or reduce
services that can negatively affect safe mission behaviour under the knowledge that important system components
are malfunctioning.

4 Supervision of Mission Execution

At the highest level of abstraction the robot should try to complete its given tasks while assuring safe operation.
In the case of faults it will have to work under reduced capabilities but may still be able to finish its mission.

Under normal operation the robot has a set of tasks that it must execute and has a number of services that
define what are allowed actions while trying to complete a specific step of the plan. Planning and tasks to conduct
are defined using abstractions, and command primitives can activate different services.

In the case a fault is detected in the semantic supervisor, the mission execution supervisor will switch to a
reduced set of allowed services it may use. For example, in the case of a dense orchard being detected as a sparse
orchard it is still ok to allow spraying. However, if the a-priori map says we are in the dense orchard and the
sensors say we are in the headland then we are not allowed to spray for safety reasons.

The mission supervisor uses a short term destination pose some 10-15 m ahead along the current pose
to ask the task planner for an obstacle avoidance route to the short term destination pose, if an obstacle is de-
tected. This results in the possible states: With no obstacles: a direct path or no path; with obstacles: an obstacle



avoidance path or no path. The combination of the semantic state and the task specific state determines addi-
tional parameters for the behaviour: maximum speed, obstacle behaviour and whether a particular tool should
be engaged. Route-replanning was done using methods suggested by (Choset et al., 2005). A final set of rules
combines the navigation behaviour and sends the appropriate commands to the real-time drive control layer -
specifying the behaviour for the next 0.5-1m.

The experience is that implementation of the supervisor and action tables as a rule-based supervisory
control, such as reported in (Andersen et al., 2010), is indeed a feasible way to implement supervision. It is
flexible when rules are interpreted and re-compilation can be avoided when rule changes are made. However, the
complexity of this approach is that rules need to alter other rules depending on the context and events, and the
implementation reliability is at risk both during implementation and later, when changes are made. The logics and
the actions to be taken are the same for the rule-based implementation as with an automaton, but it appears easier
to specify, implement and test parallel automata with the tools that are readily available from computer science.
Automata can and should be implemented as data, such that logics can be changed without re-compilation, which
is possible if the state transition and action matrices are data instead of hard-coded statements. The problems of
diagnosis of defects related to specification, software implementation and robot functionality are essential issues
that were discussed in (Chandrababu & Christensen, 2009).

5 Results

The autonomous tractor, the localisation algorithms and supervision were implemented and tested in a cherry tree
orchard. Fig. (12) shows an autonomous passage of the orchard. Colours in the picture are: blue is driven path,
purple is mapped preferred path graph and red lines are the tree rows. Fig. (12) shows a detail of an autonomous
mission in the cherry orchard. The rows with cherry trees are marked in the a-priori map to assist the localisation,
the cherry area is framed by lines, marking the area where cherry treatment is allowed. The actual path follows
the mapped preferred rules, and the semantic state - headland or dense trees - changes the behaviour. In the
headland obstacle avoidance is allowed, and higher speed is allowed. In the dense orchard no obstacle avoidance
manoeuvres are allowed (but pause for an obstacle is allowed), and speed should not exceed treatment speed.

Fig. (13) shows a situation from an autonomous mission in a dense cherry orchard. An obstacle is detected
about 5 m in front of the tractor. The path planner suggests an avoidance path (red curve), but the rules for dense
tree areas requires that obstacles should be avoided by pausing until the obstacle has gone, so the tractor stops
and reduces engine RPM.

6 Conclusions

This chapter discussed the roles of fault-diagnostic technique and semantic mapping as means to achieve robust
or even fault-tolerant performance of an autonomous robot conducting maintenance tasks in an orchard. Defining
an architecture with local supervision in the main modules: metric localisation, semantic state estimation and
mission execution, it was shown how supervision was conducted at each level.

At the metric localisation level, fault-diagnosis was achieved using structural analysis on the mixture of
conventional instruments and a virtual instrument detecting tree rows from feature extraction from LIDAR signals.
Fault-diagnosis was shown to be dependent on the semantic state, since the diagnostic relations would change
according to the environment in the orchard. Automata with rules or algorithmic control actions were shown to
be efficient in handling this problem.
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Figure 12: Part of a mission in the southern part of a cherry orchard. The tree rows are the isolated
red lines, the purple lines are the preferred paths, the blue curved line is the actual path from the
autonomous driven mission, the yellow square marks the extend of the cherry orchard. The background
is from Google Earthr (winter image with rather young trees). Colour legend refer to the pdf version
of this chapter.

Figure 13: Zoom-in on event with obstacle avoidance re-planning. Manoeuvre is, however, avoided
by the supervisor, because the semantic state is dense trees and a halt is instead commanded while the
obstacle is in view. Small green circles are the laser scanner detection of the cherry trees, gray lines
are the mapped row positions of trees.Colours refer to the pdf version of this chapter.

At the semantic mapping level, feature extraction from exogenous instruments (laser range scanner and
stereo vision) was shown to provide information that could estimate a semantic state. A stochastic automaton
was suggested for this level to estimate the semantic state. Training was used to obtain an a priori model of the
statistical distributions one should observe in each semantic state. Quantisation of signal spaces was an essential
ingredient to obtain an efficient implementation.

At the mission execution level, supervision was shown to be essential to avoid consequences of erroneous



pieces of information, originating from artifacts in signals, instrument drop outs or from errors in maps or in
the prior planning. The supervision at this stage was very dependent on the semantic state estimated, as this
determined the feasibility of overall actions to be taken when obstacles were met or in case of unexpected events.
Results from fully autonomous driving through the orchard completed the chapter.

The approach presented is indeed applicable to a wide range of supervision tasks, also beyond the agricul-
tural domain. Semantic mapping for fault diagnosis is on-going research and shows great promise in a variety of
robotic systems.
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