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Abstract 

 

Human factors certification criteria are being developed for large civil aircraft.  

The objective is to reduce the incidence of design induced error on the flight deck.  

Many formal error identification techniques currently exist, however none of 

these have been validated for their use in an aviation context.  This paper 

evaluates SHERPA (Systematic Human Error Reduction and Prediction 

Approach) as a means for predicting design induced pilot error.  Since SHERPA 

was developed for predicting human error in the petrochemical and nuclear 

industries, a series of validation studies have suggested that it is amongst the best 

human error prediction tools available.  This study provides some evidence for the 

reliability and validity of SHERPA in a flight deck context and concludes that it 

may form the basis for a successful human error identification tool.  
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1.0 Introduction 

For the past 50 years there has been a general decline in the commercial aircraft 

accident rate, however during the last decade the serious accident rate has 

remained relatively constant at approximately one per million departures [3].  

With the projected increase in the demand for air travel, if this rate remains 

unchanged, by 2015 there will be one major hull loss per week.  As the reliability 

and structural integrity of aircraft has improved the number of accidents directly 

resulting from such failures has reduced dramatically, hence so has the overall 

number of accidents and the accident rate.  However, human reliability has not 

improved to the same degree during this period.  Figures vary slightly but it can 

be estimated that up to 75% of all recent aircraft accidents now have a major 

human factors component.  Human error is now the primary risk to flight safety 

[4].  

The roots of human error are manifold and often have complex 

interrelationships with many aspects of the system of operating a modern airliner.  

However, during the last 10 years ‘design induced’ error has become of particular 

concern to the major airworthiness authorities.  The Captain of a modern 

commercial aircraft is now a manager of flight crew and of complex, highly 

automated aircraft systems.  These systems began to be introduced into airliners 

during the ‘glass cockpit’ revolution of the 1980s.  The high levels of automation 

offered a considerable advance in safety over their ‘clockwork cockpit’ 

forbearers, however new types of error began to emerge on these flight decks.  
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This was exemplified by accidents such as the Nagoya Airbus A300-600, the Cali 

Boeing 757 accident and the Strasbourg A320 accident.  

As a direct result of such accidents, the US Federal Aviation Administration 

(FAA) commissioned an exhaustive study of the pilot-aircraft interface on modern 

flight decks [8].  The report identified many major flight deck design deficiencies 

and shortcomings in the design process.  There were criticisms of the flight deck 

interfaces, identifying problems in many systems, such as pilots’ autoflight mode 

awareness/indication; energy awareness; position/terrain awareness; confusing 

and unclear display symbology and nomenclature; a lack of consistency in FMS 

interfaces and conventions, and poor compatibility between flight deck systems.  

The report also heavily criticised the flight deck design process, identifying a lack 

of human factors expertise on design teams and placing too much emphasis on the 

physical ergonomics of the flight deck, and not enough on the cognitive 

ergonomics.  Fifty-one specific recommendations came out of the report, 

including: 

‘The FAA should require the evaluation of flight deck designs for 

susceptibility to design-induced flightcrew errors and the consequences of those 

errors as part of the type certification process’.  

In July 1999 the US Department of Transportation assigned a task to the 

Aviation Rulemaking Advisory Committee to provide advice and 

recommendations to the FAA administrator to ‘review the existing material in 

FAR/JAR 25 and make recommendations about what regulatory standards and/or 

advisory material should be updated or developed to consistently address design-
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related flight crew performance vulnerabilities and prevention (detection, 

tolerance and recovery) of flight crew error’ [21].  The European Joint 

Airworthiness Authorities (JAA), as a part of the airworthiness regulatory 

harmonisation efforts, also subsequently adopted this task.  The rules and advisory 

material being developed as part of this process will be applied to both the Type 

Certification and Supplemental Type Certification processes for large transport 

aircraft [19, 20].  In the meantime, in 2001 the JAA issued an interim policy 

document [9] that will remain in force until the new harmonised human factors 

regulations encompassed in Part 25 come into force. 

Compliance with an airworthiness requirement must be established either 

through inspection, demonstration, evaluation, analysis and/or test.  Some form of 

formal error analysis will probably be the most feasible way to evaluate formally 

the pilot interface and demonstrate that the likelihood of ‘design-induced error’ is 

as low as is reasonably practicable.  Formal error analysis is not new, however it 

is a novel approach as a means of demonstrating compliance with a certification 

requirement, and as such faces unique challenges.  Any technique used for a 

formal approval process must be reliable and valid and, for the purposes of 

certification, the method should also be capable of being used by non-human 

factors experts within the certification authorities (e.g. the certification test pilots).  

As a corollary, any formal error prediction technique should also be capable of 

being used by the flight deck design teams to verify that at the early stages of 

design, their flight deck interface is likely to comply with the human factors 

certification requirement.  Furthermore, any error prediction methodology for the 
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flight deck must be designed to encompass the specific demands of the 

environment 

The objective of the work reported here was to assess the sensitivity, predictive 

validity and reliability of one such formal technique, SHERPA (Systematic 

Human Error Reduction and Prediction Approach) [5] to evaluate its suitability 

for application in an aerospace context. This technique was selected on the basis 

of the results of a comparative study of six human error identification techniques 

[10] in which SHERPA achieved the highest overall rankings on a number of 

assessment criteria for its performance (comprehensiveness, accuracy, 

consistency, theoretical validity, usefulness and acceptability), and on the basis of 

a follow-up study which showed that the method also performed well in 

predicting subsequent actual errors [2].  Further empirical studies have shown that 

SHERPA also has acceptable test/re-test reliability [16]. 

There is great caution and scepticism in the aerospace industry concerning 

formal methods that purport to produce a probability of error associated with any 

aspect of crew performance.  Furthermore, Advisory Circular AC25.1309-1A [7] 

also suggests that the reliable quantitative estimation of the probability of crew 

error is not possible.  In this study emphasis is placed upon the identification of 

potential errors using formal methods, not their quantification.  Unless all 

significant errors are identified the probability of error generated by any formal 

technique will be underestimated [9], so the first requirement must be to assess a 

technique’s potential to identify all possible errors resulting from poor human 

factors design.   
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To achieve the objectives described, this study progressed in three stages.  

Firstly, the SHERPA technique was applied to the task of conducting an approach 

and landing in a modern, highly automated, glass cockpit commercial airliner 

(Aircraft X) to produce predictions of the errors likely to occur.  This was done on 

two occasions in order to assess the test/re-test reliability of analysts.  

Secondly (and independently) using a questionnaire, low-level error data were 

collected from flight crew currently flying Aircraft X concerning the errors that 

they had made during the approach and landing flight phase.  A fundamental 

problem when validating formal error identification techniques is obtaining 

ecologically-valid and reliable criterion data [13].   Accidents are very infrequent 

events and investigation reports do not contain sufficient detail to establish the 

design-induced errors that may have contributed to the sequence of events.  

Incident data are much more plentiful, however, these reports contain even fewer 

details about the pilots’ interactions with their equipment.  As a result, a self-

completion questionnaire had to be used for this task.  

Once the above two data collection stages were completed, the final stage was 

to compare the error data with the predictions made by SHERPA, using a signal 

detection paradigm (q.v. references 2, 16) to assess the predictive validity of the 

method.  
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2.0 Systematic Human Error Reduction and Prediction Approach (SHERPA) 

SHERPA [5] (also known as PHEA – Predictive Human Error Analysis [6]) uses 

a Hierarchical Task Analysis (HTA) [1] in conjunction with an error taxonomy to 

identify credible errors associated with a sequence of human activity.  SHERPA is 

from a family of human error identification tools that takes a psychologically-

based approach [11] hence is ideally suited for use on the flight deck, especially 

when it is considered that flight deck design has been criticised for its lack of due 

consideration of cognitive ergonomics [8].  The technique has been used 

successfully in a variety of non-aviation, safety critical situations, for example in 

the handling and transportation of hazardous chemicals [12] and offshore oil and 

gas exploration and exploitation [17].  Non-safety critical applications of 

SHERPA include the analysis of the usability of ticket vending machines [2] and 

of car radio/cassette players [18].   

The technique operates by trained analysts making judgements about which 

error modes are credible for each task step based upon this analysis of the work 

activity.  A SHERPA proceeds through six basic steps: 

• Hierarchical Task Analysis: A hierarchical task analysis is conducted for 

the task or scenario under analysis. 

• Task Classification:  Each bottom level task in the HTA is taken in turn 

and classified into one of the five behaviours from the SHERPA behaviour 

taxonomy.   

o Action (e.g. pressing a button or pulling a switch):  Errors in this 
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category are classified into: operation too long/short; operation 

mistimed; operation in wrong direction; operation too little/much; 

misaligned; right direction on wrong object; wrong operation on 

right object; operation omitted; operation incomplete; wrong 

operation on wrong object. 

o Retrieval (e.g. getting information from a screen or manual):  

Errors in this category are classified into: information not obtained; 

wrong information obtained; information retrieval incomplete. 

o Checking (e.g. conducting a procedural check): Errors in this 

category are classified into: check omitted; check incomplete; right 

check on wrong object; wrong check on right object; check 

mistimed; wrong check on wrong object 

o Selection (e.g. choosing one alternative over another): Errors in 

this category are classified into: selection omitted; wrong selection 

made. 

o Information communication (e.g. talking to another party): 

Errors in this category are classified into: information not 

communicated; wrong information communicated; information 

communication incomplete. 

• Human Error Identification: After each task is classified into a 

behaviour, the analyst considers the error modes associated with that 

behaviour.  A credible error is one the analyst judges to be possible.  For 
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example, if the task step is classified as an ‘Action’ the analyst takes the 

associated ‘Action’ error modes and considers whether any are credible for 

that task.  For any credible error types, the analyst describes the nature of 

the error, notes down the associated consequences, highlights whether it is 

recoverable or not and suggests possible remedial measures. 

• Consequence Analysis: The analyst considers the consequences of each 

identified error, which has implications for the criticality of the error. 

• Recovery Analysis: If there is a task step at which the error can be 

recovered this is entered next.  If no recovery step is possible then ‘None’ 

is entered. 

• Tabulation:  The information gained from the SHERPA analysis method is 

converted into a tabular output.  The ordinal probability (P) of an error is 

then categorised as low (hardly ever occurs); medium (has occurred once or 

twice) or high (occurs frequently).  The same process is applied to the 

criticality (C) of the error. 

The main strengths of the SHERPA method are that it provides a structured 

and comprehensive approach to error prediction, gives an exhaustive and detailed 

analysis of potential errors and the error taxonomy prompts the analyst for 

potential errors, however SHERPA is somewhat repetitive and time consuming to 

perform.  
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3.0 SHERPA Analysis 

An HTA of a fully-coupled autoland approach to New Orleans airport undertaken 

in Aircraft X was performed.  This consisted of some 22 subtasks under the main 

headings of setting up for approach, lining up for the runway, and preparing the 

aircraft for landing.  The approach and landing considered was completely normal 

with no non-routine procedures included.  This task analysis formed the basis of 

the following formal error prediction analysis. An extract of this HTA is included 

in figure 1.  

INSERT FIGURE 1 ABOUT HERE 

Eight graduate engineering participants aged between 22 and 55 years took part 

in this study.  All participants were trained in the SHERPA methodology.  The 

training comprised an introduction to the key stages in the method and a 

demonstration of the approach using a non-aviation example, using an in-car task 

(see reference [18]).  Participants were then required to apply the method to 

another non-aviation task (described in reference [16]) under the guidance of the 

instructors.  The purpose of this was to ensure that they had understood the 

workings of the SHERPA method.  A debriefing followed, where participants 

could share their understanding with each other.  When the instructors were 

satisfied that the training was completed, the main task was introduced.  This 

required participants to make predictions of the errors that pilots could make in 

the autoland task.   
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To make their error predictions, participants were given an HTA of the 

autoland task developed by the authors; a demonstration of performing an 

autoland using Microsoft™ flight simulator; the SHERPA error taxonomy; and 

colour photographs of Aircraft X’s Flight Control Unit, flap levers, landing gear 

lever, speed brake, primary flight displays, and an overview of the flight deck.  An 

example of the nature of the errors predicted by SHERPA for one task step in the 

HTA is provided in table 1. 

INSERT TABLE 1 ABOUT HERE 

Participants were required to make predictions of the pilot errors on two 

separate occasions, separated by a period of four weeks.  This enabled intra-

analyst reliability statistics to be computed.  The predictions made were compared 

with error data reported by pilots using autoland (as described in the following 

section).  This enabled SHERPA’s validity coefficient to be computed. 

 

4.0 Collection of Error Data  

From the approach and landing HTA for Aircraft X a list was compiled of all the 

possible errors that could be made during the landing phase of flight using the 

Flight Control Unit (FCU) as the main controlling interface.  A few additional 

systems were also included such as the speed brake and flaps.  An additional list 

of possible errors was developed from observations made during a series of 

orientation flights on Aircraft X and comments from further interviews with type 
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rated pilots.  These data were used to develop a design induced error questionnaire 

specific to Aircraft X.  

The objective of the questionnaire was to survey pilots to obtain a 

comprehensive picture of the low-level errors they knew had ever been made on 

the flight deck while flying a fully-coupled autoland approach and landing in the 

particular type of aircraft. To achieve this, respondents were not only asked if they 

had ever made the error themselves but also if they knew of a fellow pilot who 

had made the same error.  A simple ‘yes/no’ response format was used.  As it was 

highly probable that the list of questions was not exhaustive, space was provided 

to report additional errors or for further comments to be given. 

Following an initial pilot administration of the instrument to a small sample of 

senior pilots to check for major errors and to refine the wording of the survey 

items further, the final questionnaire was sent to pilots flying Aircraft X in three 

UK Airlines.  

The final instrument contained 70 questions specifically concerned with the 

flight deck interface.  The survey was divided into 13 subsections, with items 

regarding speed brake setting (7 questions); flap selection (10 questions); 

lowering landing gear (1 question); airspeed (11 questions); checking ALT is 

engaged (1 question); altitude (8 questions); changing headings (4 questions); 

checking HDG is engaged (1 question); engaging the approach system (4 

questions); checking APPR is engaged (1 question); tracking the localiser (7 

questions); tracking the glideslope (2 questions); and other miscellaneous items  

(13 questions). 
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After the return of the questionnaires, a number of additional interviews were 

conducted to clarify the additional comments received on many of the survey 

instruments.  

 

5. 0 Error Data Results 

5.1 Sample  

Forty-six completed questionnaires were returned in time for analysis.  Of the 46 

respondents the majority were Captains (45.7%).  First Officers provided a further 

37% of the sample with the remainder being either Training Captains (13.3%) or 

they failed to state their position (two respondents).  The number of total flying 

hours ranged from less than 2,000 hours to over 16,000 with a mean of 6,832 

hours and a standard deviation of 4,524 hours.  With regard to type specific 

experience this ranged from less than 1,000 hours to over 5,000 hours.  The mean 

time on type was 1,185 hours with a standard deviation of 1,360 hours).  

 

5.2 Survey Results 

A total of 57 different types of error were reported, either as responses to the 

structured survey items or in the additional comments section of the questionnaire.  

For brevity, in table 1 only the data from the survey items where more than two 

respondents reported a particular error are presented.  In table 2, the column  ‘ME’ 

contains the frequency data where the respondent has made the error in question 

themselves; the column labelled ‘OTHER’ contains the data which indicates that 
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they have seen someone else make the error or that they are aware of someone 

who has. 

INSERT TABLE 2 ABOUT HERE 

 

5.3 Predictive Validity and Reliability of SHERPA for Predicting Pilot Error 

Overall, the analysts using SHERPA predicted 56 errors.  These predictions were 

compared with error data collected in the survey of pilots.  This enabled validity 

statistics to be computed using a signal detection paradigm [14].  This approach 

provides a useful framework for testing the power of formal human error 

identification methods [2, 16].  In addition to comparing correct predictions of 

error with actual errors (hits) it identifies type I analytical errors (a miss: when the 

error analyst predicts the error will not occur and it does) and type II analytical 

errors (a false alarm: when the error analyst predicts that there will be an error and 

there is not).  The results of this analysis are presented in table 3. 

INSERT TABLE 3 ABOUT HERE 

The overall hit rate was very high.  Of the 57 errors reported by flight crew, 52 

were predicted by one or more of the analysts.  Four errors were predicted which 

were not yet reported by any of the pilots surveyed.  The validity coefficient, 

expressed as a mean of the ‘hit’ and ‘false alarm’ rates was circa 0.6.  This value 

is toward the lower end of being acceptable.  However, if the error predictions 

across the participants are pooled, the validity statistic rises to circa 0.9, which is 

exceptionally high. 
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The test/re-test reliability of analysts between the first and second applications 

of the SHERPA methodology (assessed using Pearson’s r) was circa 0.7.  This 

value is moderate, but it should be noted that this was the first time the 

participants had applied the SHERPA and they were not experts in either human 

factors or from the aerospace industry. 

The complete results for all analysts (Hits, False Alarms, Misses, Correct 

Rejections and Sensitivity calculations) are included in table 4.  The formula for 

calculation of the Sensitivity Index is included at equation 1.  

INSERT TABLE 4 ABOUT HERE 

INSERT EQUATION 1 ABOUT HERE 

 

6.0 Discussion 

The identification of errors made on the flight deck committed as a result of poor 

design is difficult.  In many cases, even in accident and incident reports, there is a 

paucity of data on the low-level errors made that may have contributed to the 

accident sequence.  As a result of the scarcity of these data the validation of 

formal error prediction methods in this context is problematic.     

The questionnaire survey conducted in this study does, however, suggest that 

design-induced errors are an everyday issue for the pilots of modern airliners.  

Pilots who responded to the survey reported that between them, 57 errors related 

to the design of the pilot interface occurred in just the approach and landing phase 

of flight.  Simply because many of these errors do not appear in accident and 
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incident reports does not make them unimportant issues.  At best, these aspects of 

flight deck design that encourage error represent a daily source of frustration for 

pilots, as they have to remain vigilant to their own mistakes which they then need 

to correct.  At worst, it is possible that the types of errors identified may be 

significant factors in accidents and incidents.  It is simply too difficult, however, 

to link them to the accident sequence with any degree of certainty.  

Many of the potential errors that were identified in the SHERPA analysis were 

the types of errors that most pilots were aware of and have simply had to accept 

on the flight deck during everyday operations.  It is hoped that the development of 

human factors certification standards will help to ensure that many of the design 

induced errors identified are eradicated in future aircraft.  The initial results using 

SHERPA for this type of task are promising.  Whilst more studies are needed to 

investigate more flight tasks in different phases of flight, the current study shows 

that novice analysts were able to acquire the approach with relative ease and reach 

an acceptable level of performance within a relatively short period of time, which 

supports the results of previous studies [16].  This is essential given the nature of 

how, and by whom, the technique may be applied in both the flight deck design 

and certification context.  

The validity coefficient for the non-pooled analyst data at first seems a little 

disappointing however this is unlikely to be a major problem within a certification 

programme.  Firstly, Analyst skills improve with familiarity with the technique 

[16].  A previous study has shown that there is very little change over time in the 

frequency of ‘hits’ and ‘misses’ however, the frequency of ‘false alarms’ falls 
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over time and consequently, the frequency of correct rejections increases.  In the 

present study a slightly different pattern of results was noted.  There was a trend 

for ‘hits’ to increase at the second attempt but ‘misses’ to decrease.  In contrast to 

the previously reported study, though, one of the consequences of an increased 

‘hit’ rate was also a moderate increase in ‘false alarms’ (see table 4).  However, it 

is argued that in a safety critical industry, an increase in the ‘false alarm’ rate is 

perfectly acceptable if it is accompanied by a concomitant increase in the ‘hit’ 

rate, as the latter is what really matters.  Secondly, it is unlikely that any aspect of 

certification will be accepted on the basis of a single analyst.  It has also been 

shown that the error identification rate goes up when multiple analysts are used as 

in this case. 

The results indicate that existing human error identification techniques 

developed for use in other domains (e.g. Nuclear Power) can be applied with 

some success in an aviation context. This study suggests that SHERPA seems 

particularly well suited in this respect. Furthermore, empirical evidence from 

comparisons of SHERPA with other formal human error prediction techniques 

[15] strongly suggests that SHERPA is the best of the currently available human 

error prediction techniques.  SHERPA’s error taxonomy is well suited to the tasks 

carried out by a civil aircraft pilot, with ‘actions’ and ‘checks’ being the most 

prominent tasks involved. It is suggested that with suitable development and 

validation, SHERPA (or a SHERPA-like approach) may be used in the future to 

predict design-induced error for certification purposes. 

 



Predicting Design-Induced Error 
 

 18

Acknowledgements 

The authors wish to acknowledge that this research was made possible through 

funding from the UK Department of Trade and Industry as part of the European 

EUREKA! Programme.  Our thanks go to Gillian Richards and John Brumwell, at 

the DTI and Richard Harrison (now at QinetiQ) who have provided invaluable 

support to this research effort.  We are most grateful to our European colleagues 

in the programme, Sidney Dekker from Linköping University, Sweden and 

Thomas Waldmann of the University of Limerick, Ireland for their help and 

advice.  Our thanks also go to Air2000, British Midland and JMC airlines in 

allowing us access to their pilots and to the pilots for taking the time to complete 

the questionnaire. 

 

References 

[1] Annett, J., Duncan, K.D, Stammers, R.B., Gray, M.J. Task Analysis. 

Training Information No.6. HMSO, London, 1971. 

[2] Baber, C., Stanton, N.A. Human error identification techniques applied to 

public technology: predictions compared with observed use, Applied 

Ergonomics 27 (1996) 119-131. 

[3] Boeing Commercial Airplanes Group.  Statistical Summary of Commercial 

Jet Airplane Accidents: Worldwide Operations 1959-1999.  Boeing, Seattle 

WA, 2000.  



Predicting Design-Induced Error 
 

 19

[4] Civil Aviation Authority.  Global Fatal Accident Review 1980-96 (CAP 

681).  Civil Aviation Authority, London, 1998.  

[5] Embrey, D.E. SHERPA: A systematic human error reduction and prediction 

approach.  Paper presented at the International Meeting on Advances in 

Nuclear Power Systems, Knoxville, Tennessee, 1986.  

[6] Embrey, D.E. Quantitative and Qualitative Prediction of Human Error in 

Safety Assessments. Institute of Chemical Engineers Symposium Series, 

130 (1993) 329-50 

[7] Federal Aviation Administration. Advisory Circular: System Design and 

Analysis (AC 25.1309-1A).  Federal Aviation Administration, Washington 

DC, 1988.  

[8] Federal Aviation Administration.  Report on the Interfaces between 

Flightcrews and Modern Flight Deck Systems.  Federal Aviation 

Administration, Washington DC, 1996. 

[9] Joint Airworthiness Authorities.  Human Factors Aspects of Flight Deck 

Design: Interim Policy Paper INT/POL/25/14.  Joint Airworthiness 

Authorities, Hoofdorp, 2001.  

[10] Kirwan, B.  Human Reliability Assessment, in, J.R. Wilson and E.N. Corlett 

(Eds), Evaluation of Human Work.  London, Taylor and Francis, 1990, pp. 

706-754. 



Predicting Design-Induced Error 
 

 20

[11] Kirwan, B.  Human error identification in human reliability assessment. Part 

2: detailed comparison of techniques, Applied Ergonomics, 23 (1992) 371-

381. 

[12] Kirwan, B. A Guide to Practical Human Reliability Assessment. London, 

Taylor and Francis, 1994.  

[13] Kirwan, B. Validation of three Human Reliability Quantification 

Techniques – THERP, HEART and JHEDI: Part I- Technique Descriptions 

and Validation Issues, Applied Ergonomics 27 (1996) 359-374. 

[14] Macmillan, N.A., Creelman, C.D.  Signal Detection Theory: a user’s guide.  

Cambridge: Cambridge University Press, 1991. 

[15] Salmon, P.M., Stanton, N.A., Young, M.S., Harris, D., Demagalski, J.M., 

Marshall, A., Waldmann, T., Dekker, S.  Predicting Design Induced Pilot 

Error: A comparison of SHERPA, Human Error HAZOP, HEIST and HET, 

a newly developed aviation specific HEI method, in, D. Harris, V. Duffy, 

M. Smith and C. Stephanidis (Eds.), Human Centred Computing.  Mahwah, 

NJ.  Lawrence Erlbaum Associates, 2003, pp. 567-571.   

[16] Stanton, N.A., Stevenage, S.V. Learning to predict human error: issues of 

reliability, validity and acceptability, Ergonomics 41 (1998) 1737-1756. 

[17] Stanton, N.A., Wilson, J.A. Human Factors: Step Change Improvements in 

Effectiveness and Safety, Drilling Contractor, Jan/Feb (2000) 36-41.   

[18] Stanton, N.A., Young, M.S. A Guide to Methodology in Ergonomics: 

Designing for Human Use, London, Taylor and Francis, 1999. 



Predicting Design-Induced Error 
 

 21

[19] UK Civil Aviation Authority.  Joint Airworthiness Requirements, (JAR 25 – 

Large Aeroplanes).  Civil Aviation Authority, London, 1978. 

[20] US Department Of Transportation.  Federal Aviation Regulations, (Part 25 – 

Airworthiness Standards).  Revised January 1, 2003. US Department Of 

Transportation, Washington, DC, 1974.  

[21] US Department of Transportation.  Aviation Rulemaking Advisory 

Committee; Transport Airplane and Engine: Notice of new task assignment 

for the Aviation Rulemaking Advisory Committee (ARAC).  Federal 

Register, Vol. 64, No. 140, July 22 1999. 



Predicting Design-Induced Error 
 

 22

Table 1 
 

Extract of SHERPA analysis.   In the following extract, error mode A3 is an 

operation in the wrong direction; error mode A6 is an operation in the 

correct direction but on the wrong object.  Estimates (low, medium or high) 

of the probability of occurrence and criticality of the error are given in 

columns labelled P and C, respectively. 

 
Task 
Step 

Error 
mode 

Description Consequence Recovery P C Remedial measures 

3.2.2 A3 Pilot turns the 
Speed/MACH 
selector knob 
the wrong way 

The wrong airspeed 
is entered and the 
plane speeds up 
instead of slowing 
down 
 

3.2.1 M M - Clearer control 
labeling 
- Auditory signal 
informing 
increase/decrease 

3.2.2 A6 The pilot dials 
in the desired 
airspeed using 
the wrong 
control knob 
i.e. the heading 
knob 

Before capture, the 
auto-pilot will 
attempt to switch 
course to the speed 
value entered 
causing the plane to 
leave the glideslope 
 

Immediate M H - Improved control 
labeling 
- Improved separation 
of controls 
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Table 2 
 

Percentage of pilots reporting having made (or knowing about) common 

design induced errors during the approach and landing phase while 

performing an autoland in Aircraft X 

 
ITEM ME OTHER

Speed Brake   
Moved the flap lever instead of the speed brake lever when 
intended to apply the speed brake 

0% 6.5% 

Flaps    
Checked the flap position and misread it 4.3% 4.3% 
Moved the flap lever further or not as far as intended 17.4% 6.5% 
Landing Gear    
Omitted to put the landing gear down until reminded 19.6% 37.0% 
Airspeed   
Initially, dialled in an incorrect airspeed on the Flight Control 
Unit by turning the knob in the wrong direction 

39.1% 37.0% 

Having entered the desired airspeed, pushed or pulled the switch 
in the opposite way to the one that you wanted 

26.1% 26.1% 

Adjusted the heading knob instead of the speed knob 78.3% 65.2% 
Altitude   
Entered the wrong altitude on the Flight Control Unit and 
activated it 

15.2% 17.4% 

Entered an incorrect altitude because the 100/1000 feet knob 
wasn’t clicked over 

26.1% 28.3% 

Believed you were descending in flight path angle and found 
that you were in fact in Vertical speed mode or vice versa. 

8.7% 13.0% 

Failed to check ALT (Altitude) mode was active 8.7% 6.5% 
Heading   
Entered a heading on the Flight Control Unit and failed to 
activate it at the inappropriate time 

34.8% 34.8% 

Failed to check HDG (Heading) mode was active 23.9% 19.6% 
Approach System   
Tried to engage APPR (Approach) mode too late so that it failed 
to capture 

28.3% 30.4% 

Pressed the wrong button when intending to engage APPR such 
as EXPED (Expedite) 

6.5% 8.7% 

Failed to check APPR was active 28.3% 30.4% 
Localiser   
Incorrectly adjusted heading knob to regain localiser and 
activated the change 

4.3% 4.3% 
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Table 2 (continued) 
 

Percentage of pilots reporting having made (or knowing about) common 

design induced errors during the approach and landing phase while 

performing an autoland in Aircraft X 

 
 

ITEM ME OTHER
Glideslope   
Failed to monitor the glide slope and found that the aircraft had 
not intercepted it 

39.1% 52.2% 

Other   
Had an incorrect barometric air pressure set 45.7% 45.7% 
Set an altitude ‘out of the way’ and then out of habit pulled the 
altitude knob 

15.2% 32.6% 
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Table 3 
 

Performance of SHERPA in predicting pilot error during approach and 

landing using pooled error data 

 
 

  ERROR OBSERVED? 
  Yes No 

 

 
ERROR 

Yes Hits 
52 

False Alarms 
4 

PREDICTED? No Misses 
5 

Correct Rejections 
179 
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Table 4 
 

Hits, False Alarms, Misses and Correct Rejections and  

SIs for time 1 and time 2 

 

 Time 1 Time 2 

Sub Hits FA Misses CR SI Hits FA Misses CR SI 

1 71 66 32 203 0.72 51 43 53 226 0.67 

2 54 38 50 231 0.69 62 45 42 224 0.71 

3 52 38 52 231 0.68 44 27 60 242 0.66 

4 62 76 42 193 0.66 98 116 6 153 0.76 

5 48 44 116 285 0.58 60 76 44 193 0.65 

6 68 42 36 227 0.75 74 51 30 218 0.76 

7 83 86 21 183 0.74 80 83 24 186 0.73 

8 38 29 66 240 0.63 71 42 33 227 0.76 

 Mean SI 0.68 Mean SI 0.71 
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Formula 1 
 

Sensitivity Index formula 
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Figure 1 

Extract of HTA for landing aircraft (including an extract of plans) upon 

which error predictions were made 

 

 

 


