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Deep-probe Biosensing Using Metal-clad Waveguides

Nina Skivesen, Robert Horvath, Henrik C. Pedersen.

Department of Optics and Plasma Research, Risø National Laboratory, DK-4000
Roskilde, Denmark,

nina.skivesen@risoe.dk

Peak-type operation of metal-clad waveguide sensors provides a probing depth into
the sample volume of infinity, unlike conventional waveguide sensors, probing depth
~200 nm. Thus, the deep-probe sensor is applicable for detection of micron-sized
biological objects.

A typical optical waveguide sensor is based upon monitoring the resonance angle at
which light is coupled into the waveguide. Hence, the in-coupled light intensity versus
illumination angle gives rise to a peak-type sensorgram. As opposed to this, the metal-
clad waveguide is used in reflection mode, see Fig. 1, just as the well-known surface-
plasmon resonance biosensor. Hence, in this case the sensorgram typically consists of
a dip in reflectance versus illumination angle, giving rise to a dip-type sensorgram,
see Fig 2.

What is common for all these conventional biosensor techniques is that the resonance
angles of the sensorgrams are quite far from the cut-off angle at the film-sample
interface, which is the main reason for the limited probing depth. If, however, an
ultra-thin layer of high-loss metal (large imaginary part of the permittivity) is used as
a metal cladding, the sensorgram changes completely to a peak-type, in which the
peak angle is exactly identical to the critical angle at the film-sample interface, see
Fig 3. This causes the probing depth of the evanescent field to increase to infinity.
Moreover, the sensitivity increases to unity, which is also approximately 5 times
larger than for ordinary waveguide sensors [Ref 1]. The high probing depth for metal-
clad waveguides operated in peak-type mode widens the field of application to cover
detection of micron-scale biological objects including bacteria and whole cells.

Thus, metal-clad waveguide sensors facilitates two different operation modes
depending on the metal used, dip-type and peak-type operation which are optimal for
different sensing purposes such as refractive index measurements, detection of
micron-scale objects or to measure thin adlayers on the sensor surface. The work to be
presented will focus on application of both types of metal-clad waveguide sensors for
specific detection purposes and will also include experimental results with various
metal-clad waveguide configurations.
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Fig.1: Metal-clad
waveguide sensor

configuration

Fig.2: Dip-type sensorgrams of
a conventional metal-clad

waveguide configuration: glass,
50 nm gold, 300 nm SiO2 and

samples nC = 1.33 & nC = 1.36.

Fig.3: Peak-type metal-clad
sensorgrams for a 5 nm

titanium-clad waveguide, ε = -
3.9 + i12.2: Glass, 5 nm Ti,

250 nm SiO2 and samples nC =
1.33 & nC = 1.36.
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