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Preface 
This report contains the slides of the pres entations at the Aeroelastic Workshop held at 
Risø-DTU for the wind energy industry in Denmark on October 27, 2011. The scientific 
part of the agenda at this workshop was 

• Detailed and reduced models of dynamic mooring system (Anders M. Hansen) 

• Bend-twist coupling investigation in HAWC2 (Taeseong Kim) 

• Q3UIC – A new aerodynamic airfoil tool including rotational effects (Néstor R. 
García) 

• Influence of up-scaling on loads, control and aerodynamic modeling (Helge Aa. 
Madsen) 

• Aerodynamic damping of lateral tower vibrations (Bjarne S. Kallesøe) 

• Open- and closed-loop aeroservoelastic analysis with HAWCStab2 (Morten H. 
Hansen) 

• Design and test of a t hick, flatback, high-lift multi-element airfoil (Frederik 
Zahle)  

The presented results are mainly obtained in the EUDP proje ct “Aeroelastic 
Optimization of MW Wind Turbines (AeroOpt)” funded under contract no. 63011-0190.  
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1 Dynamic mooring systems 



Detailed and reduced models of 
dynamic mooring system
Anders M. Hansen and Bjarne S. Kallesøe



27/10/2011Detailed and reduced models of dynamic mooring system2 Risø DTU, Technical University of Denmark

Outline
• Introduction
• Full dynamic mooring model
• Load implications of using full 

model compared to existing QS 
on floating WT.

• Method to extract reduced ODE 
model.

• What’s in it for You!

From: http://www.statoil.com/en/NewsAndMedia/News/2008/Downloads/StatoilHydro%20Hywind%20English%20presentation.pdf



27/10/2011Detailed and reduced models of dynamic mooring system3 Risø DTU, Technical University of Denmark

Full dynamic model
• Element outline

– Elastic bar, 3 DOFs/node
– External forces from 

• Gravity
• Buoyancy
• Added mass
• Damping (quadratic).

– Non-linear node 
springs/dampers model 
bottom contact.

• Discrete mass/buoyancy element
• Constraints to couple it all 

together
• Implemented in external DLL 

HAWC2 format
• Wave/current forces missing
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Line Animation
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Load implications of using dynamic model 
compared to existing QS on floating WT.

• Compare extreme and fatigue loads for 3 
different model complexities:

– Q-S: Quasi-static model.
– M1:  Dynamic without delta lines.
– M2:  Dynamic with delta lines.

• Normal operation.
• 5 to 23 m/s in 2 m/s steps.

5

Delta lines

Turbine float
M1

M2

•1200 seconds simulations, skip first 300 seconds for transients

•6 different seeds for wind and waves for each wind speed.
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Blade Loads

6

Extreme Fatigue

All loads are normalized with respect to the quasi-static result.



27/10/2011Detailed and reduced models of dynamic mooring system7 Risø DTU, Technical University of Denmark

Tower Loads

7

Extreme Fatigue

All loads are normalized with respect to the quasi-static result.



27/10/2011Detailed and reduced models of dynamic mooring system8 Risø DTU, Technical University of Denmark

Reduction method

• What does it do and how/where can the result be used
– Reduces (and linearises) the full model (with many DOFs) to a set of 

ODEs (with few DOFs), capturing only frequency response up to a 
user specified threshold. The ODEs can be used in, e.g.

• Modal based methods, e.g. HAWCStab2
• Distribution to external parties
• Simulation models, e.g. HAWC2

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-1

-0.5

0

0.5

1
Non-dim displacement of interface point

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-1

-0.5

0

0.5

1
Non-dim force at interface point



27/10/2011Detailed and reduced models of dynamic mooring system9 Risø DTU, Technical University of Denmark
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Input/output relation derived from HAWC2 
simulations

Mooring model in 
HAWC2
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Step 0: Target FRF estimated directly from 
input/output relation.
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Step 1: ID of discrete state space model 
based on input/output relation.
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Step 2: Conversion from discrete state space 
to continous time.
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Step 3: Modal reduction of NOF states AND 
similarity transformation – Final form!
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So, What’s in it for You ! 
• The external mooring system DLL will be included in the HAWC2 

distribution asap. Source code distribution is still an open issue.
• The reduction method (MATLAB m-file) can be forwarded on request –

send an email to anmh@risoe.dtu.dk
• The reduction method is general and can be used for other systems than

mooring systems – component models based on experiments, perhaps!?
• We can offer to make reduced models on commercial basis.

mailto:anmh@risoe.dtu.dk
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A New Beam Element in HAWC2 for 
Investigating Blade Bending-Twist Coupling
Effects

Taeseong Kim



Risø DTU, Technical University of DenmarkRisø DTU, Technical University of Denmark

Introduction
• All of composite blades have anisotropic material properties due to 

different layup angles. 
• It introduces addtional bending-bending and bending-twist couplings.

27-Otc-2011Aeroelastic Workshop2/22
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Couplings

27-Otc-2011Aeroelastic Workshop3/22

• A classical Timoshenko beam model (HAWC2) 
• Geometric couplings

• The offset between elastic axis and shear center
• Sweep blade

Geometric coupling

Structural coupling
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Objective & Method
• Objective

• Developing a new beam element which can consider anisotropic
characteristics

• Implementing a new beam model into HAWC2 
• Investigating an effect of a structural coupling

• Method
• General FEM approach
• 2 nodes element, higher order of the polynomial shape function
• Importing a cross-sectional stiffness and a mass information

Aeroelastic Workshop 27-Otc-20114/22
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New structural format
• New structural format (-st file format) is introduced for HAWC2 analysis

• Old format

• New format

• Where Exx represents the sectional stiffness matrix element

Aeroelastic Workshop 27-Otc-20115/22
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Results (Case 1)
• Case 1: Blasques et al (2011)

• [0°]T Solid square cross section with an arbitrary material

• Purpose: validating whether the new beam model is correctly
implemented into HAWC2 or not

Aeroelastic Workshop 27-Otc-20116/22
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• Results are exactly identical. 

Mode New beam element [Hz] HAWC2 [Hz]

1 2.87262×10-3 2.87262×10-3

2 2.87262×10-3 2.87262×10-3

3 1.80466×10-2 1.80466×10-2

4 1.80466×10-2 1.80466×10-2

5 5.09409×10-2 5.09409×10-2

6 5.09409×10-2 5.09409×10-2

Comparisons of the natural frequencies
(Case 1)

Aeroelastic Workshop 27-Otc-20117/22
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Results (Case 2)
• 5MW RWT
• Natural frequency comparisons

• The new data format is obtained from the original structural data.
• E11 = kxGA, E22 = kyGA, E33 = EA, …

• Small discrepancies occur due to data converting process.

Aeroelastic Workshop 27-Otc-20118/22
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Results (Case 3)
• Objective

• To check a load reduction potential with whole turbine configuration
by considering the structural couplings

• 5MW RWT

• Assumptions
• Coupling effects are arbitrarily assigned (No real layup angles)
• Other stiffness values, diagonal terms, are kept its own values while

coupling effects are assigned.
• Same amount of couplings along the blade span
• Only flapwise bending – twist coupling is newly added.
• Nothing changes !! 

• Considered wind speed: 7 m/s

• Wind shear, Turbulence (TI: 0.217), Tower shadow

Aeroelastic Workshop 27-Otc-20119/22
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Results (Case 3)
• Producing bending-twist coupling

• Coupling value

Ref.: Lobitz and Veers, ”Aeroelastic Behavior of Twist-Coupled HAWC Blades,” AIAA-98-0029

• Example
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Results (Case 3)
• Two examples (1st example case)

• α=-0.05: 1 m flapwise bending (toward tower) results in 
approximately 0.3deg twist (toward feather) at the blade tip

• Static analysis with only a blade (cantilevered beam)

10-Otc.-2011Monday Meeting11/22
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Results (Case 3)
• Two examples (2nd example case)

• α=-0.17: 1 m flapwise bending results in approximately 1deg twist 
at the blade tip

10-Otc.-2011Monday Meeting12/22
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Results (Case 3)
• Blade equivalent fatigue loads comparison (flapwise and edgewise fatigue

loads)
• Blue: -0.3deg coupling case
• Red: -1 deg coupling case

Aeroelastic Workshop 27-Otc-201113/22
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Results (Case 3)
• Blade torsional equivalent fatigue load measured from non-pitching axis

and blade maximum tip deflection comparisons
• Blue: -0.3deg coupling case
• Red: -1 deg coupling case

Aeroelastic Workshop 27-Otc-201114/22
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Results (Case 3)
• Mechanical power (mean value) comparisons

• Blue: -0.3deg coupling case
• Red: -1 deg coupling case

Aeroelastic Workshop 27-Otc-201115/22



Risø DTU, Technical University of DenmarkRisø DTU, Technical University of Denmark

Results (Case 4)
• Tuned pre-twist

• Objective: keep the same amount of power production
check load reduction potential

• Linear scaling manner

where new: new pre-twist, PT: given pre-twist, and SF: scaling factor 
(βSF=0.35)

( )new PT PT SFθ θ θ β= + ×

Aeroelastic Workshop 27-Otc-201116/22
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Results (Case 4)
• Tuned pre-twist

Monday Meeting
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Results (Case 4)
• Mechanical power (mean value) comparisons

• Blue: -0.3deg coupling case
• Red: -1 deg coupling case before tuned
• Green: -1 deg coupling case after tuned

Aeroelastic Workshop 27-Otc-201118/22
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Results (Case 4)
• Blade equivalent fatigue loads comparison after pre-twist tuned (flapwise

and edgewise fatigue loads)
• Blue: -0.3deg coupling case
• Red: -1 deg coupling case before tuned
• Green: -1 deg coupling case after tuned

Aeroelastic Workshop 27-Otc-201119/22
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Results (Case 4)
• Blade torsional equivalent fatigue load measured from non-pitching axis

and blade maximum tip deflection comparisons
• Blue: -0.3deg coupling case
• Red: -1 deg coupling case before tuned
• Green: -1 deg coupling case after tuned

Aeroelastic Workshop 27-Otc-201120/22
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Conclusions

21/22

• A new beam element is successfully developed and implemented into
HAWC2.
• The beam element is validated before and after implementation.

• Simple square beam model and 5MW RWT are used for the validations.
• A new structural format is introduced for the new beam model. 

• Bend-Twist coupling parametric studies are performed. 
• 5MW RWT
• A good potential for load reduction is observed. 
• Higher couplings produce the reduction of the bending stiffness in the real 

world.
• Blade re-design process is necessary in order for using bending-twist

coupling blade such as pre-twist along the blade span. 
• The coupling effects may result in improving wind turbine performances

• Increasing the life time of turbine.
• Reduce materials for blade.
• Etc.

Aeroelastic Workshop 27-Otc-2011
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Thank you for your attention

22/22
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Q3UIC – A new aerodynamic airfoil 
tool including rotational effects

Néstor Ramos García
Jens Nørkær Sørensen

Wen Zhong Shen



PRESENTATION LAYOUT

• INTRODUCTION

• VISCOUS-INVISCID INTERACTION

• COMPUTATIONS AND BENCHMARKING
o STEADY 2D.
o UNSTEADY 2D.
o STEADY 2D WITH VG.
o STEADY QUASI3D

• POTENTIAL DOUBLE WAKE SOLVER

• CONCLUSIONS



INTRODUCTION

• Computer resources are getting more
powerful with the years, but it is still
behind our limits to realize an active design
of wind turbine blades using Navier-Stokes
solvers. High cost in computational time.

• Blade Inboard regions are producing more
power than predicted.

• Rotor is producing more power at high
angles of attack due to secondary outward
flow, caused by centrifugal pumping.

• Blade-Element Momentum theory is often
used for the design of wind turbines.
Required Input: Lift and Drag force
coefficients.



• A code has been developed during the last three years that can
fit our needs:

– It has to compute accurately steady/unsteady airfoil forces.
– It has to be fast in order to use it as a design method.
– It has to take into account rotational effects. Centrifugal and

Coriolis forces.

INTRODUCTION

• The code uses the already known concept of UNSTEADY VISCOUS-
INVISCID STRONG INTERACTION via transpiration velocity.

• Inviscid flow Unsteady potential flow, panel method.
• Viscous flow Quasi 3-D integral BL equations + Closures.



VISCOUS-INVISCID STRONG INTERACTION

• ASSUMPTION OF AN EQUIVALENT FLOW,
where the effects of real flow can be added.
Transpiration velocity will take into account
the effects of the real flow in the potential
flow solver.

( ) ( )1
0

δeeT u
dx
ddzuu

dx
dv =−= ∫

∞



STEADY VISCOUS 
INVISCID SOLVER
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STEADY  VI, THICKNESS VARIATION

NACA 63‐2xx: 15 %, 18 % and 21 % 
thickness

Re = 3.0x106

NASAs low‐turbulence pressure tunnel.

Abbott and von Doenhoff, 1959.



STEADY  VI, REYNOLDS VARIATION

NACA 4412

N.A.C.A Variable‐Density Wind Tunnel.

Pinkerton, 1938
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UNSTEADY VISCOUS 
INVISCID SOLVER

SINGLE WAKE



• NACA 0015

• Re = 1.5x106

• kA = 0.1

• αm= 13.37˚ A = 7.55˚

University of Glasgow, G.U Aero
Report 9221.

Vorticity formulated NS running
a Spallart Allmaras turbulent
model. J.N. Sørensen and P.J.
Nygreen, Computers & Fluids 30
(2001).

Unsteady Viscous‐Inviscid strong
coupling code.

UNSTEADY VISCOUS COMPUTATIONS, SINGLE WAKE
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VG MODELLING
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VG MODELLING WITH Q3UIC
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Q3D STEADY VISCOUS 
INVISCID SOLVER



• Dimensional variables of interest in rotational study: c, r, Ω , Vw

• In order to proceed with a parametric study of the rotational effects in
a wind turbine blade, two variables are defined:

1. The ratio between the chord length and the radial position,

2. The ratio between the rotational speed an the relative velocity,

Where Ω is the blade angular velocity, Urel is defined typically,

The four dimensional variables of interest are reduced to two
adimensional parameters ls & RO, base for our parametric study.

r
cls=

relU
rRO Ω

=

( )( ) ( )( )22 1'1 wrel VaraU −+Ω+=

QUASI-3D BOUNDARY LAYER EQUATIONS



QUASI-3D BOUNDARY LAYER
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QUASI-3D BOUNDARY LAYER

• Artificial rotor.

• S809 Airfoil.

• Re 1e6.

• R = 10 m.

• Ω = 70 rpm.

• Tip speed ratio,

• QW = 12.20 m/s  λ = 6 

• QW =  8.14 m/s   λ = 9

• QW =  6.11 m/s   λ = 12

wQ
RΩ

=λ

Ω



QUASI-3D BOUNDARY LAYER
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DOUBLE WAKE 
POTENTIAL SOLVER
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‐ ATTACHED BL.
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CONCLUSIONS

• VISCOUS INVISCID SOLVER IMPLEMENTED

– STEADY 2D 
– UNSTEADY 2D
– STEADY 2D VG
– STEADY Q3D

• DOUBLE WAKE POTENTIAL SOLVER IMPLEMENTED

– DEEP STALL CONDITIONS
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The subject

Shear and 
turbulence 
in inflow

Ratio between rotor size and the atmospheric 
boundary layer height and turbulence scales increases  



Risø DTU, Technical University of DenmarkRisø DTU, Technical University of Denmark

Rotational sampling of 
turbulence

3

Do we model the 1p, 
2p etc. 
aerodynamics 
accurately ?

1p, 2p … variations in 
induction not modeled 
in some BEM codes 
used by industry

The BEM model is based on the 
Galuert propeller theory  -
probably not originally 
intended to be used on rotors 
of 100m D or more in 
atmospheric turbulent flow 
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Rotational sampling of 
turbulence

4
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Objectives

Study the influence of up-scaling of rotors 

operating in turbulent inflow on:

the aerodynamic loading characteristics

control aspects

aerodynamic and aeroelastic modeling requirements

Presentation at AED meeting, Monday October 
25, 2010
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Approach

Four turbines with a rotor size of 25m, 50m, 100m and 200m were modeled in 

HAWC2aero (no structural dynamics) based on a direct scaling of the 5MW 

reference wind turbine rotor. The tip speed was kept constant at 60.5 m/s. 

A turbulence box with the dimension of 200m x 200m x 11200m was generated 

with number of points equal to 64 x 64 x 4096 and a wind speed of 8 m/s.

A tower height of 120 m was used for all turbines and no wind shear.

A simulation time of 1300 sec. was used and the first 100 sec. excluded.

Only one wind speed at 8 m/s was simulated at a turbulence intensity of 15%.

No turbine speed and pitch control was used.

Presentation at AED meeting, Monday October 
25, 2010
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Analysis

Rotational sampling of turbulence

Rotor thrust and power

Flapwise blade root moment

Control aspects

Impact on model requirements

Presentation at AED meeting, Monday October 
25, 2010
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Results – rotational sampling

Presentation at AED meeting, Monday October 
25, 2010

8

The rotational sampling of the turbulence concentrates part of the turbulent 
energy on 1p, 2p etc.

The contribution comes from frequencies below 1p due to the spatial 
averaging of the turbulence over the rotor area. 

The effect will thus increase with increasing rotor size and a considerable 
part of the total turbulent input for the 200 m rotor is now on 1p
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Results - thrust

Presentation at AED meeting, Monday October 
25, 2010

9

Spectra of thrust (normalized with their mean value squared) for 
the different rotors. 

The thrust load input is found on 3p, 6p etc. and the concentrated 
energy is from frequencies below 3p.
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Results – flapwise moment

Presentation at AED meeting, Monday October 
25, 2010

10

Spectra of flapwise moment (normalized with their mean value 
squared) for the different rotors.

The flapwise load input is found on 1p, 2p, 3p etc.  and as for the 
wind speed the concentrated energy is from frequencies below 1p.
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Results – ratio between std.dev. and mean

Presentation at AED meeting, Monday October 
25, 2010
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The ratio (std.dev./mean) denoted intensity is seen to decrease 
for the power and thrust and to some degree also for flapwise
moment, due to the spatial averaging of the instantaneous forces 
over the swept area.



Risø DTU, Technical University of DenmarkRisø DTU, Technical University of Denmark

Results – time trace of thrust

Presentation at AED meeting, Monday October 
25, 2010

12

200m rotor

25m rotor
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Results – rotor power

Presentation at AED meeting, Monday October 
25, 2010
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200m rotor

25m rotor
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Results – flapwise moment

Presentation at AED meeting, Monday October 
25, 2010
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200m rotor

25m rotor
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Loads on upscaled wind turbines
– full aeroelastic simulations from NTUA

1Hz equivalent loads

pitch controller 
parameters not tuned

pitch controller 
parameters tuned

better power 
quality

reduction of tower 
moment with 
increasing size
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Results – control aspects

Presentation at AED meeting, Monday October 
25, 2010
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The influence on control is that a cyclic pitch control system, which 
alleviates 1p loads, will be relatively more efficient for increasing rotor 
size.
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Results – impact on aerodynamic
model requirements

Presentation at AED meeting, Monday October 
25, 2010
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Results – impact on aerodynamic
model requirements

Presentation at AED meeting, Monday October 
25, 2010

18

Impact on loading:  slightly reduced fatt.  loading with 
dynamic induction  -- increased impact for e.g. half wake 
simulations with the Dynamic Wake Meandering model
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Conclusions

Presentation at AED meeting, Monday October 
25, 2010

19

The upscaling of rotors has the influence that a bigger and bigger 
part of the turbulence is concentrated at 1p, 2p and 3p and the energy 
is taken from the spectrum at frequencies below 1p due to the spatial 
averaging effect of the rotor

This means that it becomes more important to simulate more 
accurate the 1p, 2p variations of e.g. induced flow better as a bigger 
part of the total turbulence is centered on the p´s

The quantities such as power and thrust which are integrated values 
over the rotor swept area show a decrease in dynamic content relative 
to the mean value as function of up-scaling due to this filtering effect

Impact on control is that control algorithms directed to reduce 1p 
loads (cyclic pitch) should be better and better for increased rotor size
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THANK YOU

Presentation at AED meeting, Monday October 
25, 2010
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Aerodynamic damping of lateral 
tower vibrations 
Bjarne S. Kallesøe
Niels N. Sørensen
Niels Troldborg
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Outline
• Motivation
• Aerodynamic damping of lateral rotor oscillations
• Aerodynamic damping of lateral tower mode 

2
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Motivation
• First lateral tower mode is excited by waves in some simulations cases 

leading to design giving loads
• Aeroelastic codes are based on BEM
• BEM predicted the aerodynamic damping of the lateral tower mode to be 

very low 
• It has been questioned if BEM gives the correct aerodynamic forces for 

these lateral motions of the rotor 
• In this work the aerodynamic work on lateral harmonic rotor motions 

are computed by both BEM and CFD (full rotor and actuator line)
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Computational setup
• NREL 5 MW Reference turbine
• Pure lateral harmonic motion of the rotor
• 1 m amplitude, 0.3 Hz
• Three different wind speeds: 6 m/s, 12 m/s and 22 m/s
• Computational methods:

• BEM, as implemented in HAWC2 (BEM)
• Full rotor CFD in EllipSys3D (CFD)
• Actuator line in EllipSys3D (AL)

• Integrating the lateral aerodynamic forces from each blade

4
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Lateral aerodynamic forces

5
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Aerodynamic work per cycle

• Large relative differences for 
low wind speeds

• Good agreement for higher 
wind speeds

• Much smaller aerodynamic 
work for low wind speed than 
for high wind speed

• The added mass has no 
influence on the results!
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Relating aerodynamic work to damping
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Aerodynamic damping of pure lateral tower 
mode

8

 6 12 22
0

1

2

3

4

Wind speed [m/s]

D
am

pi
ng

 (
lo

g.
de

cr
em

en
t)

 [%
]

 

 

BEM
BEM + added mass
CFD
AL

 6 12 22
-50

-40

-30

-20

-10

0

Wind speed [m/s]

A
er

od
yn

am
ic

 w
or

k 
[k

J]

 

 

BEM
BEM + added mass
CFD
AL

• The damping at 6 m/s is so small that the relative large difference 
between methods are of no particle interest
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Aerodynamic damping of real lateral tower 
mode
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• Longitudinal component in the lateral tower mode
• Rotation of the rotor has a large contribution to the damping, this 

may be different with a free-free drive train model 
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Conclusion
• Some differences in lateral aerodynamic forces at low wind speeds
• But forces and damping is so low, so differences has no practical 

implications
• All computational method agree well for higher wind speeds, where force 

level is higher
• Aerodynamic damping of lateral tower vibrations are low (1-2 %)

10
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Open- and closed-loop 
aero-servo-elastic analysis with HAWCStab2
Morten Hartvig Hansen and Ivan B. Sønderby

Outline:
• Aero-servo-elastic model in HAWCStab2
• Example: Tuning of collective and cyclic pitch controllers
• Reduced order models from HAWCStab2
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Aeroelastic model
• Nonlinear kinematics based on co-

rotational Timoshenko elements.

• Blade Element Momentum coupled 
with unsteady aerodynamics based 
on Leishman-Beddoes. 

• Uniform inflow to give a stationary 
steady state that approximates the 
mean of the periodic steady state.

• Analytical linearization about the 
stationary steady state that 
include the linearized coupling 
terms from the geometrical 
nonlinearities. 
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Linear open-loop aeroelastic equations

= elastic and bearing degrees of freedom
= aerodynamic state variables
= forces due to actuators and wind disturbance

Coupling to 
structural states

Open-loop first order equations
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Closed-loop aero-servo-elastic equations

Closed-loop equations

Additional output matrices

Additional (PID) controller states
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Example: Collective and cyclic pitch controllers

Lead angle, 
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Closed-loop aero-servo-elastic equations

Tuning parameters

Filters and
integrators
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Lead angle from open-loop analysis

NREL 5 MW turbine
28 deg

B
W

 e
d
g
e

FW
 e

d
g
e

To
w

er
 m

o
d
es



2011Aeroelastic Workshop, October 278 Risø DTU, Technical University of Denmark

Open and closed-loop wind shear response
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Aero-servo-elastic modes and damping
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HAWC2 simulations at 17 m/s with NTM
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Cyclic controller induced instability
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Validation of transfer functions with HAWC2
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Validation of low order models

Methods: “mt” = Modal truncation and “br” = Balanced residualization
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Summary
• HAWCStab2 can be used for performing open-loop and closed-loop 

eigenvalue and frequency-domain analysis of three-bladed turbines:

– Controller equations are still hardcoded. A suitable interface is under 
consideration, for example based on DLLs as in HAWC2.

– Full order analyses can be performed both inside or outside 
HAWCStab2 by writing out system matrices for each operation point.

– Reduced order modelling capabilities are currently performed outside 
HAWCStab2. Automated procedures for obtaining models with desired 
details will be implemented in HAWCStab2, or in Matlab scripts. 

• HAWCStab2 is a common tool for both control engineers and mechanical 
engineers:

– It can provide first-principle models for model-based controllers.

– It can explain phenomena observed in load simulations.
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Design and test of a thick, flatback, high-lift multi-element
airfoil

Frederik Zahle, Mac Gaunaa, Christian Bak, Niels N.
Sørensen
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27 October 2011



Introduction
The aim of this work has been to design and test a high lift airfoil for validation
of numerical codes.

Airfoil properties

� Two elements: Main airfoil and a slat.

� 40% thick main element, flatback.

� 30% chord slat.

� Lift coefficient > 3

This presentation

� Numerical optimization method used to design the multi-element airfoil.

� Final design and predicted performance of the multi-element airfoil.

� Wind tunnel setup.

� Preliminary comparisons of numerical results and wind tunnel
measurements.

� Flow visualization.
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Introduction
Why are we interested in high-lift airfoils for the root?

� Madsen et al. showed that the neglection of the rotational effects in
standard BEM formulations could potentially lead to designs with a less
than optimal power production, since the root was not loaded sufficiently.

� Johansen et al. designed a rotor for maximum power production where a
CP of 0.515 was achieved.

� This rotor had significantly higher loading towards the root than
conventional rotors.

� Main drawback: Very large root chords.

� Gaunaa et al. explore the subject of high root loading further and show
that at 20% radius the loading should be approx. 1.7 times that of the
reference rotor used.
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Introduction
Why multi-element airfoils?

Motivation
� One way to achieve high loading is to increase the chord.

� This is not desirable for many reasons: e.g. increased extreme loads,
limitations on transport height, material costs.

� Multi-element airfoils can produce high lift coefficients even with thick
airfoil sections.

� With very high lift coefficients the chord can be reduced even further,
reducing extreme loads.
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Introduction
How to design a multiple element airfoil?

Challenge

� Current in-house airfoil design codes were not adapted to handle
multiple elements.

� Gaunaa et al. used a panel code to optimize the shape of a slatted airfoil.

� Performance subsequently evaluated using 2D CFD.

� Problem: panel code not sufficiently accurate.

� Our choice: Optimization code coupled with the 2D CFD solver
Ellipsys2D.
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Method
Design Method

Optimization
� The optimization method developed for this work was programmed in

Matlab.

� Bounded Nelder-Mead Simplex (fminsearchbnd).

� Ellipsys2D is used to evaluate the cost function.

Cost function
Composed of three factors:

� The function A1 which evaluates the lift-to-drag ratio at the target angle
of attack.

� The function A2, which seeks to maximize the lift coefficient at some
angle of attack, which the optimizer is free to tune.

� A penalty function which forces the optimizer towards achieving the
desired lift coefficient, Cl,target , at the specified target angle of attack,
αtarget .
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Method
Design Method

Cost function

CostFun = −Penalty (A1 + A2) (1)

A1 =
Cl(αtarget)

Cd (αtarget)
·

1
(Cl/Cd )target,ref

· Koptim (2)

A2 =
Cl(α)

Cl,maxref
· (1− Koptim) (3)

Penalty = exp

(
−

(Cl(αtarget)− Cl,target))
2

2σpenalty

)
(4)

Koptim is a factor which biases the cost function towards either the target lift
coefficient or lift-to-drag ratio.

� In this work there is no target angle of attack. Cl was maximized while
ensuring high lift-to-drag ratio at αCl−max -5 deg.

� For each optimization iteration two design evaluations were thus needed.
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Method
Design variables

� Angle of attack,
� Position of slat trailing edge measured as:

� Surface distance along main aerofoil surface from leading edge,
� Normal distance from main aerofoil surface to slat trailing edge.

� Slat angle relative to main aerofoil.

� Slat camber (parabolic curve).

Slat
Normal Distance

angle

Flow angle

Surface Distance

Slat chord
Slat camber
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Method
Design evaluation using EllipSys2D

Mesh generation of multi-elements has been automized using
Bash/fortran/HypGrid2D.

Figure: Typical meshes generated using the automated meshing scripts, left: standard
patched grid, right: overset grid.
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Method
Optimization Flowchart

� Communication between Matlab and EllipSys2D was handled from a
series of Bash scripts that read files written by each code.

� Matlab ran in the background, outputting for each optimization step a file
containing the coordinates of the slat as well as the required angle of
attack.

� EllipSys was executed in parallel for maximum speed, and subsequently
returned values of Cl and Cd for the given configuration.

� Optimization was converged in approximately 100 optimization
iterations, i.e. 200 EllipSys2D evaluations. ≈ 10 hours on 19 CPUs.

AOA

Matlab:
fminsearchbnd
CostFun

Bash scriptairfoil
shape

File I/O

File I/O

mpirun

grid.X2D
grid.T2D

HypGrid
Generate mesh

EllipSys2D
Evaluate design

grid.force

Cl, Cd

10 of 42 Frederik Zahle et al.
Risø DTU

Design and test of a thick, flatback, high-lift multi-element airfoil
Aeroelastic Workshop



Results
Flaback Airfoil
The present study is based on the FFA-W3-360 aerofoil which was modified
in the following manner:

� Increased thickness from 36% chord to 40% chord,

� Opening of trailing edge from 3.6% chord to 5.6% chord.
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Results
Flaback Airfoil Performance

-0.2
 0

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 0  5  10  15  20  25

C
l [

-]

Incidence [deg.]

Ell turb
Ell TI=0.05%

Ell TI=0.1%
Ell TI=0.2%
Ell TI=0.3%  0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0.02  0.04  0.06  0.08  0.1

C
l [

-]

Cd [-]

Ell turb
Ell TI=0.05%
Ell TI=0.1%
Ell TI=0.2%
Ell TI=0.3%

12 of 42 Frederik Zahle et al.
Risø DTU

Design and test of a thick, flatback, high-lift multi-element airfoil
Aeroelastic Workshop



Results
Slat Optimization

� Chosen slat baseline airfoil: FFA-W3-360.
� Chord length relative to main airfoil: 30%.
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Results
Slat Optimization

� Four optimizations with different values of koptim were carried out.
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Results
Slat Optimization - final design
Koptim=0.25 optimization yielded the best overall results.
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Results
Predicted Slat Performance

2D lift coefficielt and lift to drag ratio as function of incidence for fully turbulent
and transitional boundary layers.
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Results
Predicted Slat Performance
Parameter study

� Using the optimized slat shape a parameter study was carried out to
determine the performance of the slat within the grid shown below.

� For each grid position the slat angle was optimized to minimize the cost
function.

� 42 × 60 = 2520 EllipSys2D simulations.

� All carried out using a coarser grid than for the actual optimization (grid
level 2).
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Results
Predicted Slat Performance

Contours of maximum lift coefficient.
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Results
Predicted Slat Performance

Contours of L/D at αClmax .
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Results
Predicted Slat Performance

Contours of lift coefficient at αClmax -5 deg.
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Results
Predicted Slat Performance

Contours of L/D at αClmax -5 deg.
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Results
Predicted Slat Performance
Contours of velocity magnitude over the isolated main airfoil at 16 deg. AOA.
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Results
What makes the slat work so well?

� Best performance of the slat was found to be in the region where the
flow acceleration over the suction side of the main airfoil was greatest.

� The flow disturbance at the slat TE results in a camber effect or
modification of the local kutta condition, increasing the obtainable lift.

� The low pressure at the slat TE reduces the needed pressure recovery
of the flow over the slat, allowing for much greater suction peaks than on
conventional airfoils.

� The suction peak on the main airfoil is completely removed, requiring
only a small pressure recovery for the flow on the main element.

� The airfoil can thus maintain attached flow up to much greater angles of
attack due to these effects and hence produce very high lift.

� The positioning of the slat can thus be narrowed down considerably by
studying the flow over the isolated main airfoil.
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Results
Wind Tunnel Setup
Test setup designed by LM Wind Power.

� The slat was hinged at it’s leading edge.
� Could be moved within limits of a grid with 8×8 holes with 10 mm

spacing.

� Slat angle β could be changed steplessly.
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Results
Wind Tunnel Experiment Plan

Parameter study

� Another parameter study was carried out to determine the performance
of the slat within the test setup grid.

� For each grid position the slat angle was optimized to minimize the cost
function.

� 81 × 60 = 4860 EllipSys2D simulations.

� All carried out using a coarser grid than for the actual optimization (grid
level 2).
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Results
Wind Tunnel Experiment Plan

Parameter study
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Results
Wind Tunnel Experiment Plan

x

y

-0.25 -0.2 -0.15 -0.1 -0.05

-0.05

0

0.05

0.1

OptimVar
-0.5
-0.55
-0.6
-0.65
-0.7
-0.75
-0.8
-0.85
-0.9
-0.95
-1

7A

5E

1C

3H

7F

20 of 42 Frederik Zahle et al.
Risø DTU

Design and test of a thick, flatback, high-lift multi-element airfoil
Aeroelastic Workshop



Wind Tunnel Results
Wind Tunnel Experiment Plan

A comprehensive test plan

� The wind tunnel campaign was split into two parts:

� Flatback airfoil:

� Clean, four Reynolds numbers: 1, 2, 3 and 4×106,

� Roughness, Vortex generators, Gurney flaps.

� Slatted airfoil:

� Clean, four Reynolds numbers: 1, 2, 3 and 4×106,

� Seven slat positions,

� Slat angle variations at five positions,

� Roughness, Vortex generators, Gurney flaps at slat one position.

� Flow visualization using wool tufts.
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Wind Tunnel Results
Data

Preliminary data!

� The data from the experiment presented here are preliminary and not
corrected for tunnel effects.

� Only selected data will be shown.

� Profile geometries as well as all data will be published and available to
the public.
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Wind Tunnel Results
Isolated flatback airfoil
Measurement sources - lift coefficient

� To measure the lift either the airfoil pressure (AP), the load cell (LC) or
the wall pressure (WP) was used.

� Good agreement up to 5 deg. AOA (except for LC offset).
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Wind Tunnel Results
Isolated flatback airfoil
Measurement sources - drag coefficient

� To measure the drag either the airfoil pressure (AP), the load cell (LC) or
the wake rake (WR) was used.

� Drag behaves as expected for AOA < 5 deg.: CD−AP < CD−WR

� For AOA > 5 deg. AP and LC drag increase drastically.
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Wind Tunnel Results
Isolated flatback airfoil
Comparison to EllipSys2D

� Variation of TI in EllipSys2D simulations: low TI simulations agree well
with experiment for AOA < 5 deg.

� For AOA > 5 deg. TI>0.2% apper to be in better agreement.
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Wind Tunnel Results
Isolated flatback airfoil
Comparison to EllipSys2D

� Variation of TI in EllipSys2D simulations: low TI simulations agree well
with experiment for AOA < 5 deg.

� For AOA > 5 deg. TI>0.2% apper to be in better agreement.
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Wind Tunnel Results
Isolated flatback airfoil

Variation of Reynolds number - Experimental results only
� Increasing Re reduces Cl−max .
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Wind Tunnel Results
Isolated flatback airfoil

Roughness
� Roughness tape was mounted at various chordwise positions.
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Wind Tunnel Results
Isolated flatback airfoil

Devices
� The flatback airfoil was tested with vortex generators and Gurney flaps.
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Wind Tunnel Results
Flatback with slat airfoil
Reference position 5E

� Variation of TI in EllipSys2D simulations: Lift coefficient vs angle of
attack at the reference position 5E with reference β=-29.35 deg.

� All simulations show on the following slides were carried out with
TI=0.2%.
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Wind Tunnel Results
Flatback with slat airfoil
Reference position 5E
Position 5E with reference β=-29.35 deg. showing contributions from main,
slat and total.
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Wind Tunnel Results
Flatback with slat airfoil
Reference position 5E
Position 5E with reference β=-29.35 deg. showing contributions from main,
slat and total.
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Wind Tunnel Results
Flatback with slat airfoil
Reference position 5E
Position 5E with reference β=-29.35 deg. showing contributions from main,
slat and total.
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Wind Tunnel Results
Flatback with slat airfoil
Reference position 5E
Position 5E with reference β=-29.35 deg. showing contributions from main,
slat and total.
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Wind Tunnel Results
Flatback with slat airfoil
Reference position 5E
Position 5E with reference β=-29.35 deg. showing contributions from main,
slat and total.
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Wind Tunnel Results
Flatback with slat airfoil
Reference position 5E
Position 5E with reference β=-29.35 deg. showing contributions from main,
slat and total.
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Wind Tunnel Results
Flatback with slat airfoil
Position 7F
Position 7F with reference β=-34.2 deg. showing contributions from main,
slat and total.
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Wind Tunnel Results
Flatback with slat airfoil
Position 7F
Position 7F with reference β=-34.2 deg. showing contributions from main,
slat and total.
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Wind Tunnel Results
Flatback with slat airfoil
Position 7F
Position 7F with reference β=-34.2 deg. showing contributions from main,
slat and total.
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Wind Tunnel Results
Flatback with slat airfoil
Position 7A
Position 7A with reference β=-29.4 deg. showing contributions from main,
slat and total.
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Wind Tunnel Results
Flatback with slat airfoil
Position 7A
Position 7A with reference β=-29.4 deg. showing contributions from main,
slat and total.

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

x/c [-]

−0.20
−0.15
−0.10
−0.05
0.00
0.05
0.10
0.15
0.20
0.25

y
/c

[-
]

Pos = 7A, β = -29.4 deg.

x

y

-0.25 -0.2 -0.15 -0.1 -0.05

-0.05

0

0.05

0.1

OptimVar
-0.5
-0.55
-0.6
-0.65
-0.7
-0.75
-0.8
-0.85
-0.9
-0.95
-1

7A

5E

1C

3H

7F

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

x/c [-]

−2

−1

0

1

2

3

4

5

6

-C
p
[-
]

Pos = 7A, β = -29.4 deg., AOA = 12 deg.

EllipSys2D

Experiment

31 of 42 Frederik Zahle et al.
Risø DTU

Design and test of a thick, flatback, high-lift multi-element airfoil
Aeroelastic Workshop



Wind Tunnel Results
Flatback with slat airfoil
Position 7A
Position 7A with reference β=-29.4 deg. showing contributions from main,
slat and total.

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

x/c [-]

−0.20
−0.15
−0.10
−0.05
0.00
0.05
0.10
0.15
0.20
0.25

y
/c

[-
]

Pos = 7A, β = -29.4 deg.

x

y

-0.25 -0.2 -0.15 -0.1 -0.05

-0.05

0

0.05

0.1

OptimVar
-0.5
-0.55
-0.6
-0.65
-0.7
-0.75
-0.8
-0.85
-0.9
-0.95
-1

7A

5E

1C

3H

7F

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

x/c [-]

−2

0

2

4

6

8

10

-C
p
[-
]

Pos = 7A, β = -29.4 deg., AOA = 22 deg.

EllipSys2D

Experiment

31 of 42 Frederik Zahle et al.
Risø DTU

Design and test of a thick, flatback, high-lift multi-element airfoil
Aeroelastic Workshop



Wind Tunnel Results
Flatback with slat airfoil
Position 1C
Position 1C with reference β=-23.7 deg. showing contributions from main,
slat and total.
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Wind Tunnel Results
Flatback with slat airfoil
Position 1C
Position 1C with reference β=-23.7 deg. showing contributions from main,
slat and total.
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Wind Tunnel Results
Flatback with slat airfoil
Position 1C
Position 1C with reference β=-23.7 deg. showing contributions from main,
slat and total.
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Wind Tunnel Results
Flatback with slat airfoil
Position 3H
Position 3H with reference β=-29.4 deg. showing contributions from main,
slat and total.
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Wind Tunnel Results
Flatback with slat airfoil
Position 3H
Position 3H with reference β=-29.4 deg. showing contributions from main,
slat and total.
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Wind Tunnel Results
Flatback with slat airfoil
Position 3H
Position 3H with reference β=-29.4 deg. showing contributions from main,
slat and total.
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Wind Tunnel Results
Flatback with slat airfoil
Position 5E changing the slat angle β.

� 2D CFD predicts best performance for β=-29.35 deg.
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Wind Tunnel Results
Flatback with slat airfoil
Position 5E changing the slat angle β.

� 2D CFD predicts best performance for β=-29.35 deg.

� Experimental results show an increasing maximum lift coefficient for
decreasing β.
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Wind Tunnel Results
Flatback with slat airfoil
Position 5E changing the slat angle β.

� 2D CFD predicts best performance for β=-29.35 deg.

� Experimental results show an increasing maximum lift coefficient for
decreasing β.
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Wind Tunnel Results
Flatback with slat airfoil
2D Tunnel Effects

� 2D simulations were carried out using a wind tunnel setup with
symmetry conditions on top and bottom walls.

� 2D simulations with same airfoil grids but with outer mesh boundaries
placed 30c away from airfoil made for comparison.
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Wind Tunnel Results
Flatback with slat airfoil
2D Tunnel Effects

� Lift coefficient increases in a tunnel configurations.

� Drag coefficient is largely unchanged.

� 2D tunnel effects cannot explain the discrepancies seen between
simulations and measurements.
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Wind Tunnel Results
Flow Visualization
3D surface flow

� Flow visualization using tufts revealed 3D effects caused by wall effects
even at low AOA.

� Below picture is from AOA=22 deg.
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Wind Tunnel Results
Flow Visualization
3D surface flow

� 3D CFD simulations by Niels N. Sørensen on an FB-3500-1750 flatback
airfoil show similar trends when comparing simulations with and without
walls.

� Below picture is from AOA=19 deg.

38 of 42 Frederik Zahle et al.
Risø DTU

Design and test of a thick, flatback, high-lift multi-element airfoil
Aeroelastic Workshop



Wind Tunnel Results
Flow Visualization
3D surface flow

� 3D CFD simulations by Niels N. Sørensen on an FB-3500-1750 flatback
airfoil show similar trends when comparing simulations with and without
walls.

� Below picture is from AOA=19 deg.

38 of 42 Frederik Zahle et al.
Risø DTU

Design and test of a thick, flatback, high-lift multi-element airfoil
Aeroelastic Workshop



Wind Tunnel Results
Flow Visualization
3D surface flow

� 3D CFD simulations by Niels N. Sørensen on an FB-3500-1750 flatback
airfoil show similar trends when comparing simulations with and without
walls.

� Below picture is from AOA=19 deg.

38 of 42 Frederik Zahle et al.
Risø DTU

Design and test of a thick, flatback, high-lift multi-element airfoil
Aeroelastic Workshop



Wind Tunnel Results
Flow Visualization

Wind Tunnel Condensation Trails

� Running the wind tunnel at 100 m/s (Re = 4e6) resulted in condensation
trails forming on the suction surface of the slat and main element.

� The very low pressure coefficients (Cp=-9) resulted in the vapour
condensation threshold being reached.
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Wind Tunnel Results
Flow Visualization

High angle of attack flow re-attachment

� Using wool tufts to visualize the surface flow patterns we observed that
the flow seemingly did not separate on the mail airfoil even for angles of
attack up to 50 deg.

� We knew the flow was stalled, but why did it appear to be attached?

<animation: not included>
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Wind Tunnel Results
Flow Visualization

2D CFD particle tracking simulation

� A 2D CFD simulation was carried out at 40 deg. incidence with particles
seeded upstream of the airfoil.

� In the animation it is clearly seen that particles remain attached to the
surface of the main airfoil.

<animation: http://www.youtube.com/watch?v=3oal5Mohq9g>
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Conclusions
Conclusions

Optimization method for multi-element airfoils
� Method has been implemented to optimize the shape of a multi-element

airfoil.

� Mesh generation has shown to be very robust.

� On a cluster, optimization with 5 design variables required approx. 10
hrs.
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Conclusions
Conclusions

Optimization method for multi-element airfoils

Design of a high lift, thick, flatback, multi-element airfoil

� A 40% flatback and 30% slat airfoil was designed that was predicted to
have a Cl−max =3.4.

� Less roughness sensitivity than flatback airfoil alone.

� Extensive parameter study carried out to map the performance of the
slat at different positions.

41 of 42 Frederik Zahle et al.
Risø DTU

Design and test of a thick, flatback, high-lift multi-element airfoil
Aeroelastic Workshop



Conclusions
Conclusions

Optimization method for multi-element airfoils

Design of a high lift, thick, flatback, multi-element airfoil

Wind Tunnel Campaign

� The multi-element airfoil was tested in the LM Wind Power wind tunnel.

� Comprehensive test matrix, data still being processed.

� Generally good agreement for lift (AP) and drag (WR).

� Comparison of AP and WP revealed what is believed to be severe 3D
effects.

� Flow visualization confirmed this.

� The AP drag and WR drag were in very poor agreement.
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Conclusions
Future Work

EUDP application in collaboration with Siemens and LM

� WP1: Design and validation of new thick airfoils.

� WP2: Identification of 2D/3D thick airfoil data.

� WP3: Identification of the standstill problem using aeroelastic 3D CFD.

� WP4: Identification of the importance of elastic couplings in the
aeroelatic behaviour of wind turbine blades
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Conclusions
Future Work

EUDP application in collaboration with Siemens and LM

� WP1: Design and validation of new thick airfoils.

� WP2: Identification of 2D/3D thick airfoil data.

� WP3: Identification of the standstill problem using aeroelastic 3D CFD.

� WP4: Identification of the importance of elastic couplings in the
aeroelatic behaviour of wind turbine blades

Thank you for listening :-)
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