

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 20, 2017

ejIP: A TCP/IP Stack for Embedded Java

Schoeberl, Martin

Published in:
Proceedings of the 9th International Conference on the Principles and Practice of Programming in Java (PPPJ
2011)

Link to article, DOI:
10.1145/2093157.2093167

Publication date:
2011

Link back to DTU Orbit

Citation (APA):
Schoeberl, M. (2011). ejIP: A TCP/IP Stack for Embedded Java. In Proceedings of the 9th International
Conference on the Principles and Practice of Programming in Java (PPPJ 2011) (pp. 63-69). ACM. DOI:
10.1145/2093157.2093167

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13791943?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1145/2093157.2093167
http://orbit.dtu.dk/en/publications/ejip-a-tcpip-stack-for-embedded-java(69b1b702-1e0d-4d14-8d74-1603ae13f838).html

ejIP: A TCP/IP Stack for Embedded Java

Martin Schoeberl
Department of Informatics and Mathematical Modeling

Technical University of Denmark
masca@imm.dtu.dk

Abstract
To enable Java on resource constraint embedded devices, the whole
system should be implemented in a single programming language
to avoid overheads on language boundaries. However, most of
the functionality that is dedicated to the operating system layer
is usually written in C. In this paper we present the design and
implementation of a network stack written entirely in Java. This
implementation serves as an example how to implement system
functions in a safe language and gives evidence that Java can
be used for operating system related functionality. The described
TCP/IP stack ejIP has already been successfully used in industrial
projects on pure Java embedded systems.

Categories and Subject Descriptors D.4.4 [Operating Systems]:
Communications Management—Network communication

General Terms Network Stack, Real-Time Systems

Keywords Java, Embedded Java, Real-Time Java

1. Introduction
Network connection is an integral part of many embedded systems.
In traditional implementations the network code is part of the op-
erating system (OS) and usually runs in kernel mode. In small em-
bedded systems, with applications implemented in Java, it can be
resource saving to omit the OS and run the Java virtual machine
(JVM) on the bare metal [22]. The JVM becomes the OS. The JVM
already provides some services (e.g., multithreading support) that
are associated with an OS. Furthermore, as Java is a safe language
with runtime checks, the expensive memory protection, which is
part of the OS, can be avoided. With Java, type safety can be used
instead of hardware for memory protection, resulting in a more
lightweight system.

When we allow access to I/O devices from Java, e.g., via hard-
ware objects [19], we can avoid crossing the language boundary be-
tween Java and C in the application. Only the bare JVM itself needs
to be implemented in C or in hardware. Using a single language for
the whole firmware and application stack simplifies development
and testing.

To enable these Java only embedded systems we need to provide
implementations of standard operating system libraries and drivers
in Java. In this paper we describe the contribution of a Java based

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPPJ ’11, August 24–26, 2011, Kongens Lyngby, Denmark.
Copyright c© 2011 ACM 978-1-4503-0935-6. . . $10.00

TCP/IP stack for such a system. The TCP/IP protocols and the
drivers are all written in plain Java.

The classes of ejIP are organized around the TCP/IP protocol
layers. The whole TCP/IP stack and the application logic can run
in a single thread or can be split over several threads. The later
organization is beneficial when executing the application on a chip-
multiprocessor system. ejIP performs its own memory management
of packet buffers and avoids generation of garbage at runtime.
Avoiding garbage collection simplifies reasoning on the real-time
behavior of a program.

As embedded systems are often real-time systems, the archi-
tecture of ejIP is designed to avid blocking operations. Block-
ing read or write operations prohibit worst-case execution time
(WCET) analysis of tasks [25], which is mandatory for hard real-
time systems. On a time-predictable platform (e.g., the Java proces-
sor JOP [18]), the TCP/IP stack ejIP is WCET analyzable. Using a
single language for the whole embedded application enables anal-
ysis of the WCET. Calling a C based TCP/IP implementation via
JNI would defeat such an analysis. There are no WCET analysis
tools available that support mixed language systems.

In this paper we show that networking, which is usually con-
sidered system code written in C, can be implemented in a safer
language like Java. Furthermore, we present an API to the network
stack that is a better fit for embedded real-time systems. By substi-
tuting the stream based, blocking functions by periodic polling for
network activity, the network stack becomes time-predictable and
analyzable.

Following TCP/IP protocols are implemented in ejIP: IP, ICMP,
UDP, and TCP. On top of those protocols ejIP implements TFTP
and contains examples for various TCP/IP applications (e.g., a tiny
web server, a telnet server, a SMTP client,..). For the link layer ejIP
provides implementations for SLIP, PPP, and an Ethernet driver
(including ARP) for the CS8900 chip. ejIP is in use in several
industrial applications.

The paper makes following contributions:

• We describe the design of a fully Java implementation of
TCP/IP for embedded real-time Java.
• The TCP/IP stack demonstrates that OS level code can be im-

plemented in Java.
• The open-source design is a contribution to the development of

Java only embedded systems.

The paper is organized as follows: the next section describes
related work on TCP/IP stacks for embedded systems. Section 3
describes the design goals and the resulting design of ejIP. The
usage and application interface of ejIP differs from socket based
TCP/IP stacks and is described in Section 4. The evaluation in
Section 5 describes use cases of ejIP and Section 6 concludes the
paper.

Ppp
SRSWQ

TcpHandler

UdpHandler

Tcp

Udp

Net
SRSWQ

UdpHandler

Figure 1. An example usage of ejIP with the link layer and upper layers in different threads. The example contains two UDP applications
and one TCP application.

2. Related Work
Most standard TCP/IP stacks are based on the Berkeley TCP/IP im-
plementation included in Berkeley’s Unix [12]. This first Unix im-
plementation that included an implementation of the Internet Pro-
tocol also introduced the BSD socket API for networking, which is
now the de-facto standard API for networking and evolved into the
POSIX socket API [10].

However, this TCP/IP implementation is written for desktop and
server machines and usually to large for embedded systems. There-
fore, several cleanroom implementations of TCP/IP for embedded
systems have been developed. Furthermore, the BSD socket API
needs multi-tasking support and therefore many TCP/IP stacks for
small embedded devices provide a different API, which relies on
polling and event driven applications. With ejIP we follow a simi-
lar approach for the API.

Probably the most successful TCP/IP stack implementations for
embedded devices are lwIP (lightweight IP) and uIP (micro IP) [3].
The main difference between lwIP and uIP is the handling of TCP
retransmissions. While lwIP keeps the packet buffers allocated for
retransmission, applications using uIP have to reproduce the data
on a retransmission. The later approach further saves memory. Both
TCP/IP stacks implement an API that differs from the BSD sockets.
The application contains a main control loop, which checks for
arrived packets and timeouts. Both generate application events.
A programming abstraction called protothreads [6] can simplify
application programming for the event-driven uIP and lwIP stack.
uIP has recently been extended to support IPv6 [7].

Microcontroller companies often provide a TCP/IP stack opti-
mized for their product, e.g., Microchip’s TCP/IP stack includes
its own cooperative multitasking system [15]. Therefore, the user
tasks have to be written in cooperative style and longer jobs have to
be divided into multiple tasks. ejIP can be used in a similar fashion
for a single-threaded runtime, but all operations in ejIP are cor-
rectly synchronized and multithreading is fully supported. An a
chip-multiprocessor, such as the JOP CMP [14], different layers
of the TCP/IP stack can run in multiple threads on multiple proces-
sors.

In order to reduce processing overhead in embedded systems,
the Linux TCP/IP code has been adapted to avoid packet copy-
ing [2]. It has been reported that the processing overhead can be
decreased by up to 63% and the object code size is reduced by
22%. To transfer data between user mode and kernel mode the vir-
tual memory system needs to remap memory pages. With ejIP we
also implement a zero copying TCP/IP stack, but due to the safety
of Java no page remapping is needed.

Wireless sensor network (WSN) devices have extreme resource
constraints. However, even for those small devices IP is now con-
sidered as preferred communication protocol [16]. Using IP in
WSN is an important step towards the ‘Internet of Things’. The
uIP TCP/IP stack was one of the first implementations of TCP/IP

for WSNs [4, 5]. Later implementations of TCP/IP for WSN adapt
the TCP/IP congestion control algorithm to fit better for a network
link with high packet losses [26].

The idea of using a safe language for OS related tasks is ex-
plored in Singularity [9]. Singularity is a research OS based on a
runtime managed language (an extension of C#) to build a soft-
ware platform with the main goal to be dependable. A small HAL
(IoPorts, IoDma, IoIrq, and IoMemory) provides access to PC
hardware. The Singularity OS uses device objects and interrupt
handlers to enable device drivers in C#.

There are not (yet) so many Java only embedded systems avail-
able. Therefore, there are not that many Java implementations of
TCP/IP available. One exception is the runtime library for the Java
processor jamuth [24]. It contains a TCP/IP stack in Java that sup-
ports ARP, ICMP, UDP, and TCP.1 As this TCP/IP stack is a closed
source, commercial implementation, no implementation details are
available.

The development of a Java only ecosystem for embedded de-
vices is a chicken-egg problem. Without having all drivers avail-
able in Java source, a C-based OS is needed. Without a true Java
only runtime there is no incentive to develop Java-based file sys-
tems, network stacks, and I/O device drivers. To help to solve this
chicken-egg problem we provide the ejIP network stack in open-
source. A Java port of the YAFFS (Yet Another Flash File System)
file system for NAND Flash is also available in the JOP distribu-
tion.

3. Design
The first version of ejIP has been released around 2003, contain-
ing the basic protocols, but only a stripped down version of TCP
to support a single HTTP request. Since then, ejIP has been ex-
tended with TCP support. The packet communication between the
different layes has been reorganized to take advantage of chip-
multiprocessors by using non-blocking queues. In the following
section only the latest version of ejIP is described.

Figure 1 shows an example configuration of ejIP. The link
layer for PPP communicates with the upper layers via two non-
blocking queues (SRSWQ). Therefore, it can run in its own thread
(or processor). Net dispatches received packets to Udp and Tcp.
Those forward packets to the applications, which implement either
the UdpHandler or the TcpHandler interface. The handlers are
executed within the Net thread. If TCP/IP applications shall run on
their own processor core, the non-blocking queues can be used to
further delegate packet processing from the handlers to application
threads.

1 Private communication with Sascha Uhrig.

3.1 Design Goals
For a resource constraint embedded system we state following
design goals for ejIP:

• Low memory footprint
• Compatible with real-time systems
• Avoid garbage collection

Low memory footprint is the one of the main constraints for
embedded systems. The class files of the whole ejIP make up
104 KB. The largest classes are the link layer driver for PPP and
Ethernet. An application usually includes only one of the link layer
drivers. A compiled and linked application including ejIP and a
simple HTML server needs 76 KB on JOP.

To use a TCP/IP stack in real-time systems two properties have
to be fulfilled: the code needs to be WCET analyzable and the
design needs to fit for the periodic task model of real-time systems.
For the WCET analysis all loop bounds need to be known. For the
periodic task model blocking on a resource shall be avoided.

Garbage collection (GC) is an essential part of the Java lan-
guage. However, in real-time Java GC is usually avoided and the
scoped memory model is used for temporal dynamic storage. In
ejIP all buffers and data structures are allocated at the creation of
the TCP/IP stack objects and no new objects are allocated at run-
time. The buffers for the network data are reused and organized in
a pool.

3.2 Safety-Critical Java
As Java Specification Request 302 (JSR 302) a new standard of
Java for usage in safety-critical systems is proposed. Safety-Critical
Java (SCJ) [8] is an extended subset of the Real-Time Specifica-
tion for Java (RTSJ) [1]. SCJ has tow operation modes: mission
initialization without real-time guarantees and mission execution
where all tasks have to meet deadlines. The real-time tasks are or-
ganized as handlers that are releases periodically by the SCJ sched-
uler. Therefore, a SCJ application has to be organized as periodic
tasks. The API of ejIP, with the polling network interface and han-
dlers for the UDP and TCP packets, fits well into this model of
computation.

SCJ disallows garbage collection. For allocation of temporal
objects RTSJ style scoped memories can be used. However, those
scoped memories are thread private and can not be used for com-
munication between threads. All objects that are shared between
threads have to be allocated at mission initialization time. The pre-
allocation of the packet buffers at application start in ejIP fits well
for SCJ. Packets are managed in a pool and no dynamic data is
allocated at runtime.

3.3 The Components and Communication
The code is organized around the layers of TCP/IP. The main
classes are:

Ejip represents one instance of the TCP/IP stack. An application
can instantiate several independent TCP/IP stacks. At creation
the maximum buffer sizes and the number of buffers can be set.
The pool of free packet buffers is managed by Ejip.

Net creates the objects that implement IP, UDP, and TCP. Net
implements a Runnable that has to be executed periodically.
Within Nets run() method packets are received from the link
layer and distributed to UDP or TCP. ICMP ping requests are
directly handled within Net.

Ip is a passive class that contains utility functions for IP header
generation and reading and writing data into the packet buffer.

Udp handles UDP packets. Applications using UDP have to regis-
ter an UdpHandler with the receiving port number. When Udps
process() method is invoked from Net, the packet is forwarded
to the registered handler. If no handler is registered for the port,
the packet is simply dropped. Udp implements a Runnable and
within run() the handlers’ periodic loop functions are executed.

Tcp handles, similar to Udp, the TCP packets. TCP applications
have to implement the abstract class TcpHandler and register
it with a port number. A TCP connection is represented by
a TcpConnection. Tcp is also an active class and processes
the TCP timeouts in the run() method. Tcp also invokes the
handlers’ periodic loop functions.

Tftp implements the Trivial File Transfer Protocol (TFTP). TFTP
is a simple stop-and-go file transfer protocol on top of UDP.
Therefore, the implementation is very lightweight. TFTP is
primarily used to program the Flash to update the software in
the field after deployment over the Internet.

At least one link layer object needs to be created. Each link layer
class implements Runnable and run() has to be executed periodi-
cally to poll the receiving hardware. At the link layer following
classes represent different protocols:

CS8900 represents a link interface to the Ethernet with the popular
CS8900 chip. The CS8900 chip contains SRAM for packet
buffering and is used in polling mode by CS8900. The code of
CS8900 has been derived from the Linux driver for the CS8900
chip. For the Ethernet to Internet address translation the class
Arp handles ARP requests and replies.

Slip implements the SLIP protocol and also handles the special
variation of SLIP under Windows. Slip uses a class Serial for
the access to the serial port. This class is device specific and
has to be adapted to the target hardware and runtime system.

Ppp implements the point-to-point protocol (PPP). PPP was used
in the early days of the Internet for modem access. Today
mobile devices connected to the Internet via GSM or GPRS
map the mobile network connection to PPP. This mapping is
a little bit problematic. For example, user identification used
by PPP is only simulated by the modem and connection errors
(such as wrong password) are not detected at this stage, but later
signaled by an unrelated error. Ppp also handles the modem
interface with modem setup, dialing, and modem hangup.

Loopback is a simple loopback device. It moves packets from
the send queue into the receive queue. The main usage of the
loopback interface is for benchmarking of ejIP. ejIP is also part
of JemBench [20], a benchmark for embedded systems.

The active objects exchange packets via non-blocking single
reader/writer queues [11]. In the original version of ejIP the com-
munication between the different components was handled via a
packet pool. This implementation was efficient for single core pro-
cessors. However, on a chip-multiprocessor [14], where real con-
currency is available, this single packet pool became the bottleneck.
Therefore, the single reader/writer queues have been implemented.

3.4 Zero Copy Stack
As Java is a safe language there is no need to distinguish between
user and kernel mode in the TCP/IP stack. Memory access is safe
due to strong typing and runtime checks (e.g., array bound checks).
Therefore, packet data is never copied within ejIP. A packet buffer
is filled on reception by the link layer and the buffer is forwarded
through the layers. A send packet is filled by the application and
forwarded towards the link layer for transmission. Very simple
applications, e.g., ping reply in ICMP, just respond with a packet

new RtThread(NET PRIORITY, NET PERIOD) {
public void run() {

for (;;) {
waitForNextPeriod();
net.run();

}
}

};

Figure 2. Using JOPs real-time thread for the periodic Net loop.

on a received package. Those applications can reuse the received
packet buffer for the reply.

3.5 Single and Multithreaded Usage
Several classes are active classes where a method has to be exe-
cuted periodically. These active functions can be invoked from a
single thread or can be distributed to several threads or processor
cores. The active classes are: the link layer, Net, Udp, and Tcp.

On JOP a simple real-time thread system is available. Each
thread is represented by RtThread and shall implement an infinite
loop within run() with a call to waitForNextRelease() to suspend
the thread. The thread is resumed again after its period. This is
similar to periodic threads in the RTSJ [1]. Figure 2 shows the usage
of an RtThread for the periodic invocation of run().

On a plain Java system this periodic behavior can be simulated
with a call of sleep(). For a single threaded usage of ejIP a sin-
gle loop can be used to invoke all relevant methods. As ejIP uses
polling and handler based distribution of packets, the TCP/IP ap-
plication is automatically included.

3.6 Real-Time Systems
Real-time threads (or tasks) are usually organized as periodic
threads. Each thread has a period and a priority assigned according
the period (or deadline). Fixed priority, preemptive schedulers are
used for task scheduling. To make WCET and schedulability anal-
ysis feasible threads shall not block. The BSD socket based API is
based on blocking calls for read and write operations and therefore
not the first choice for an analyzable real-time system.

The organization of ejIP into periodic tasks fits well for real-
time Java systems, such as the RTSJ [1] or SCJ [8]. All parts of ejIP
are organized as periodic, polling tasks. No blocking can occur. The
code contains only bounded loops and is WCET analyzable. We
have used ejIP as an example to test the WCET analysis tool for
JOP [21].

4. Application Program Interface and Usage
ejIP provides its own API for network programming instead of
using the standard Java, socket based network API. The reasons
for this are twofold: (1) the handler based API of ejIP uses less
resources and can even be used without any threading support of
the JVM; (2) avoiding blocking read or write operations enables
usage of ejIP in real-time systems.

An UDP or TCP application has to implement a handler class.
The handler contains a method that is invoked on a packet receive.
Furthermore, each handler contains a method that is periodically
invoked for any time related processing.

Figure 3 shows the abstract class of a TCP handler that an
application needs to implement. The TcpHandler class contains
also the reference to the object that represents the TCP connection.
Two different methods are invoked with the receiving packet as
parameter: established() when a new connection is established and
request() on a received packet otherwise. Both methods return

public abstract class TcpHandler implements Runnable {

/∗∗
∗ The connection we are handling
∗/

protected TcpConnection connection;

/∗∗
∗ Connection is established. Transfer can start.
∗/

public abstract Packet established(Packet p);

/∗∗
∗ handle one request on the registered port.
∗/
public abstract Packet request(Packet p);

/∗∗
∗ Close connection
∗/

public abstract boolean finished();

/∗∗
∗ Application logic that gets invoked periodically
∗/

public void run() {
}

}

Figure 3. The TCP handler interface

a packet to be sent back. The application can reuse the packet
buffer of the received packet for the reply. On a connection close
the method finished() is invoked. The run() method is invoked
periodically and can be overwritten by the TCP application to
perform time related functions. Within the run() methods new TCP
packets can be generated and enqueued for transmission.

4.1 Usage Example
As a usage example Figure 4 shows a very simplified Telnet de-
mon. It listens on port 23 for a connection and understands one
command: hello. On connection establishment a greeting message
is sent back. The received packet is just reused and the greeting
message is set with a utility function of Ip. Within request() de-
pending on the input message (the command hello is recognized)
either the Hello message or an empty TCP package is sent back.
This example also shows usage of ejIP in a single thread. Within
an infinite loop in main() the link layer and the network stack are
invoked.

5. Evaluation
The best proof of the usefulness of a software package is usage in
real applications. The TCP/IP stack ejIP is part of the distribution
of JOP and in use in several industrial applications [17]. In the
following section we describe some projects that we are aware of
that use ejIP.

5.1 The SCADA Device TeleAlarm
TeleAlarm (TAL) is a typical remote terminal unit of a supervisory
control and data acquisition (SCADA) system. It is used by the
Lower Austria’s energy provider EVN (electricity, gas, and heating)
to monitor the distribution plant and to remotely control gas valves.
The TAL contains several EMC protected digital input and output

public class Telnetd extends TcpHandler {

static Net net;
static LinkLayer ipLink;
StringBuffer sb = new StringBuffer();
StringBuffer cmd = new StringBuffer();

public static void main(String[] args) {
Ejip ejip = new Ejip();
net = new Net(ejip);
int[] eth = {0x00, 0xe0, 0x98, 0x33, 0xb0, 0xf8};
int ip = Ejip.makeIp(192, 168, 0, 123);
ipLink = new CS8900(ejip, eth, ip);
net.getTcp().addHandler(23, new Telnetd());

for (;;) {
ipLink.run();
net.run();

}
}

public Packet request(Packet p) {

StringBuffer hello =
new StringBuffer(”Hello from JOP\r\n”);

Ip.getData(p, Tcp.DATA, sb);
StringBuffer resp = null;
if (sb.length()!=0) {

for (int i=0; i<sb.length(); ++i) {
char ch = sb.charAt(i);
if (ch!=’\n’ && ch!=’\r’) {

cmd.append(ch);
} else {

String s = cmd.toString();
if (s.equals(”hello”)) {

resp = hello;
}
cmd.setLength(0);

}
}

}
if (resp!=null) {

Ip.setData(p, Tcp.DATA, resp);
} else {

p.len = Tcp.DATA<<2;
}
return p;

}

public Packet established(Packet p) {
Ip.setData(p, Tcp.DATA, ”Welcome to JOP\r\n”);
return p;

}

public boolean finished() {
return false;

}
}

Figure 4. Implementation of a minimal Telnetd example with the
TcpHandler

ports, two 20 mA input ports, Ethernet connection, and a serial in-
terface. Furthermore, the device performs loading of a rechargeable
battery to survive power down failures. On power down, an impor-
tant event for a energy provider, an alarm is sent.

The communication between the TAL and the main supervisory
control system is performed with a proprietary protocol. On a value
change TAL sends the new data to the central system. Furthermore,
the remote units are polled by the central system at a regular base.

The TAL itself also sends the actual state regularly. TAL can com-
municate via Internet/Ethernet, a modem, and via SMS to a mobile
phone. The IP based version of the proprietary SCADA protocol
uses UDP for communication. A simple web server displays the
status of the digital and analog inputs. For safety and security rea-
son there is no connection between the control network and the
office network or the Internet.

The whole system is written in Java and uses JOP as execution
platform. The UDP based communication and the web server uses
an early version of ejIP.

5.2 Support for Single Track Railway Control
Another application of ejIP is in a communication device to support
single-track lines of the Austrian Railways (ÖBB). The system
helps the superintendent at the railway station to keep track of all
trains on the track. He can submit commands to the engine drivers
of the individual trains. Furthermore, the device checks the current
position of the train and generates an alarm when the train enters a
track segment without a clearance.

At the central station all track segments are administered and
controlled. When a train enters a non-allowed segment all trains
nearby are warned automatically. This warning generates an alarm
at the locomotive and the engine driver has to perform an emer-
gency stop.

Figure 5 gives an overview of the system. The display and
command terminal at the railway station is connected to the Intranet
of the railway company. On the right side of the figure a picture of
the terminal that is connected to the Internet via GPRS and to a GPS
receiver is shown. Each locomotive that enters the track is equipped
with either one or two of those terminals.

The current position of the train is measured with GPS and the
current track segment is calculated. The number of this segment
is regularly sent to the central station. To increase the accuracy of
the position, differential GPS correction data is transmitted to the
terminal. The differential GPS data is generated by a ground base
reference located at the central station.

The exchange of positions, commands, and alarm messages is
performed via a public mobile phone network (via GPRS). The
connection is secured via a virtual private network that is routed
by the mobile network provider to the railway company’s Intranet.
The application protocol is command/response and uses UDP/IP
as transport layer. Both systems (the central server and the termi-
nal) can initiate a command. The system that sends the command
is responsible for retries when no response arrives. The deadline
for the communication of important messages is in the range of
several seconds. After several non-successful retries the operator is
informed about the communication error. He is then in charge to
perform the necessary actions.

Besides the application specific protocol based on UDP, a TFTP
server is implemented in the terminal. It is used to update the track
data for the position detection and to upload a new version of the
software. The flexibility of the FPGA and an Internet connection to
the embedded system allows upgrading the software and even the
processor in the field.

5.3 A Gyrotron Controller
Michel and Sachtleben at the Max-Planck-Institut für Plasma-
physik developed a Gyrotron controller based on JOP [13]. The
Gyroton controller is used within the Wendelstein 7-X project, a re-
search project on controlled nuclear fusion reaction. The Gyrotron
controller implements time-critical control functions in hardware
in an FPGA. The same FPGA also contains the soft-core processor
JOP, which reads and writes parameters for the hardware controller.
The values are received via an Ethernet connection. The whole ap-
plication is written in Java and ejIP is used for the network stack.

Traffic Display and Command

Superintendent

Railway Intranet

Mobile Network

GPRS Internet GPS

GPRS Modem

Terminal

Figure 5. Communication in the support system for single-track railway control for the Austrian railway company

5.4 Lessions Learned
The three described projects show applications from very differ-
ent domains that use and rely on ejIP to handle the communication.
Two aspects are common to all systems: soft real-time requirements
can be better achieved via UDP and update of the embedded soft-
ware is possible with TFTP.

The unusual polling model, instead of a stream based interface,
of ejIP fits quite well for this kind of embedded applications. The
ejIP interface was actually designed as a result of the embedded
applications. Furthermore, the polling (non-blocking) interface to
ejIP enables TCP/IP in single threaded environment. Therefore,
very small JVMs, which support only a single thread of control,
can use ejIP.

5.4.1 Retransmission in UDP instead of using TCP
The transport layer, TCP in the case of the Internet, usually pro-
vides reliable communication. However, the timeouts in TCP are
way longer than the communication deadlines within control sys-
tems. The approach in all three presented projects is to use a
datagram-oriented protocol and to perform the timeout and retrans-
mission at the application level. To simplify the timeout handling a
simple command and response pattern is used. One partner sends
a command and expects the response within a specific time bound.
The command initiator is responsible for retransmission after the
timeout. The response partner just needs to reply to the command
and does not need to remember the state of the communication.
After several timeouts the communication error is handled by an
upper layer.

5.4.2 Software Update
Correction of implementation bugs during development can be very
costly when physical access to the embedded system is necessary
for a software update. Furthermore, a system is usually never really
finished. When the system is in use, the customer often finds new
ways to enhance the system and requests additional features.

Therefore, an important feature of a networked embedded sys-
tem is a software and parameter update in the field. The described
projects use the Internet protocol for communication and therefore
TFTP is a natural choice. TFTP is a very simple protocol that can be

implemented within about 100 lines of code. It is applicable even
in very small and resource constraint embedded devices.

It has to be mentioned that no advanced process is implemented
to update the software during runtime [23]. In the railway appli-
cation, the new software version is downloaded in the background
and stored in a NAND Flash. On the next start of the device the
software is copied from the NAND Flash to the regular Flash and
the device reboots with the new software. The background down-
load is implemented to avoid long startup times of the device when
a new software version is available.

6. Conclusion
In this paper we presented a small TCP/IP stack, named ejIP, for
embedded Java. It is implemented in Java and represents an exam-
ple of using Java for tasks that are usually implemented within an
operating system. Our overall goal is to implement a Java runtime
system that does not need an operations system and can therefore be
implemented in a single language – Java. Furthermore, ejIP is op-
timized for minimum resource consumption and usage in real-time
systems. An example application with a small web server consumes
76 KB for the runtime system. The handler based application inter-
face enables non-blocking execution of the TCP/IP stack, which is
essential for real-time tasks.

A. Source Access
The source of ejIP is open-source released under the BSD license
(similar to the original BSD Unix source on which most TCP/IP
implementations are based on). The source is part of the JOP
distribution. Download information can be found at http://www.
jopwiki.com/Download. The Java source of ejIP is located under
java/target/src/common/ejip.

Acknowledgments
I would like to thank Wolfgang Puffitsch for enhancing the TCP
part of ejIP.

References
[1] Greg Bollella, James Gosling, Benjamin Brosgol, Peter Dibble, Steve

Furr, and Mark Turnbull. The Real-Time Specification for Java. Java

Series. Addison-Wesley, June 2000.

[2] Mei-Ling Chiang and Yun-Chen Li. LyraNET: A zero-copy TCP/IP
protocol stack for embedded systems. 2006.

[3] Adam Dunkels. Full tcp/ip for 8-bit architectures. In MobiSys ’03:
Proceedings of the 1st international conference on Mobile systems,
applications and services, pages 85–98, New York, NY, USA, 2003.
ACM Press.

[4] Adam Dunkels, Juan Alonso, and Thiemo Voigt. Making TCP/IP
viable for wireless sensor. Technical report, November 18 2003.

[5] Adam Dunkels, Juan Alonso, Thiemo Voigt, Hartmut Ritter, and
Jochen H. Schiller. Connecting wireless sensornets with TCP/IP net-
works. In Peter Langendörfer, Mingyan Liu, Ibrahim Matta, and Vas-
silios Tsaoussidis, editors, WWIC, volume 2957 of Lecture Notes in
Computer Science, pages 143–152. Springer, 2004.

[6] Adam Dunkels, Oliver Schmidt, Thiemo Voigt, and Muneeb Ali.
Protothreads: simplifying event-driven programming of memory-
constrained embedded systems. In Proceedings of the 4th interna-
tional conference on Embedded networked sensor systems, SenSys
’06, pages 29–42, New York, NY, USA, 2006. ACM.

[7] Mathilde Durvy, Julien Abeillé, Patrick Wetterwald, Colin O’Flynn,
Blake Leverett, Eric Gnoske, Michael Vidales, Geoff Mulligan, Nico-
las Tsiftes, Niclas Finne, and Adam Dunkels. Making sensor networks
IPv6 ready. In Tarek F. Abdelzaher, Margaret Martonosi, and Adam
Wolisz, editors, SenSys, pages 421–422. ACM, 2008.

[8] Thomas Henties, James J. Hunt, Doug Locke, Kelvin Nilsen, Martin
Schoeberl, and Jan Vitek. Java for safety-critical applications. In
2nd International Workshop on the Certification of Safety-Critical
Software Controlled Systems (SafeCert 2009), York, United Kingdom,
Mar. 2009.

[9] Galen Hunt, James R. Larus, Martin Abadi, Mark Aiken, Paul Barham,
Manuel Fahndrich, Chris Hawblitzel, Orion Hodson, Steven Levi,
Nick Murphy, Bjarne Steensgaard, David Tarditi, Ted Wobber, and
Brian D. Zill. An overview of the singularity project. Technical Report
MSR-TR-2005-135, Microsoft Research (MSR), October 2005.

[10] IEEE. IEEE Std 1003.1-2001 Standard for Information Technology —
Portable Operating System Interface (POSIX) System Interfaces, Issue
6. IEEE, 2001.

[11] Leslie Lamport. Specifying concurrent program modules. ACM Trans.
Program. Lang. Syst., 5(2):190–222, 1983.

[12] Marshall Kirk McKusick, Keith Bostic, Michael J. Karels, and John S.
Quarterman. The Design and Implementation of the 4.4BSD Operating
System. Addison-Wesley, 1996.

[13] Georg Michel and Jürgen Sachtleben. An integrated gyrotron con-
troller. Fusion Engineering and Design, In Press, Corrected Proof:–,
2011.

[14] Christof Pitter and Martin Schoeberl. A real-time Java chip-
multiprocessor. ACM Trans. Embed. Comput. Syst., 10(1):9:1–34,
2010.

[15] Nilesh Rajbharti. Microchip TCP/IP stack. Application Note AN833,
2002.

[16] Joel J. P. C. Rodrigues and Paulo A. C. S. Neves. A survey on IP-based
wireless sensor network solutions. Int. J. Communication Systems,
23(8):963–981, 2010.

[17] Martin Schoeberl. Application experiences with a real-time Java
processor. In Proceedings of the 17th IFAC World Congress, pages
9320–9325, Seoul, Korea, July 2008.

[18] Martin Schoeberl. A Java processor architecture for embedded real-
time systems. Journal of Systems Architecture, 54/1–2:265–286, 2008.

[19] Martin Schoeberl, Stephan Korsholm, Tomas Kalibera, and Anders P.
Ravn. A hardware abstraction layer in Java. ACM Trans. Embed.
Comput. Syst., accepted 2009, 2011.

[20] Martin Schoeberl, Thomas B. Preusser, and Sascha Uhrig. The em-
bedded Java benchmark suite JemBench. In Proceedings of the 8th
International Workshop on Java Technologies for Real-Time and Em-
bedded Systems (JTRES 2010), pages 120–127, New York, NY, USA,
August 2010. ACM.

[21] Martin Schoeberl, Wolfgang Puffitsch, Rasmus Ulslev Pedersen, and
Benedikt Huber. Worst-case execution time analysis for a Java proces-
sor. Software: Practice and Experience, 40/6:507–542, 2010.

[22] Doug Simon, Cristina Cifuentes, Dave Cleal, John Daniels, and Derek
White. Java on the bare metal of wireless sensor devices: the squawk
Java virtual machine. In Proceedings of the 2nd international con-
ference on Virtual execution environments (VEE 2006), pages 78–88,
New York, NY, USA, 2006. ACM Press.

[23] Suriya Subramanian, Michael W. Hicks, and Kathryn S. McKinley.
Dynamic software updates: a vm-centric approach. In Michael Hind
and Amer Diwan, editors, PLDI, pages 1–12. ACM, 2009.

[24] Sascha Uhrig and Jörg Wiese. jamuth: an IP processor core for em-
bedded Java real-time systems. In Proceedings of the 5th Interna-
tional Workshop on Java Technologies for Real-time and Embedded
Systems (JTRES 2007), pages 230–237, New York, NY, USA, 2007.
ACM Press.

[25] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Hol-
sti, Stephan Thesing, David Whalley, Guillem Bernat, Christian Fer-
dinand, Reinhold Heckmann, Tulika Mitra, Frank Mueller, Isabelle
Puaut, Peter Puschner, Jan Staschulat, and Per Stenström. The worst-
case execution time problem – overview of methods and survey of
tools. Trans. on Embedded Computing Sys., 7(3):1–53, 2008.

[26] In-Su Yoon, Sang-Hwa Chung, and Jeong-Soo Kim. Implementation
of lightweight TCP/IP for small, wireless embedded systems. In Irfan
Awan, Muhammad Younas, Takahiro Hara, and Arjan Durresi, editors,
AINA, pages 965–970. IEEE Computer Society, 2009.

