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THE COLD NEUTRON SOURCE IN DR 3 

Knud Jensen and J.A. Leth 

Abstract. A description of the cold neutron source in DR 3 is 

given. The moderator of the cold neutron source is supercritical 

hydrogen at about 30°K and 15 bar abs. The necessary cooling capa

city is supplied by two Philips Stirling B20 cryogenerators. The 

hydrogen is circulated between the cryogenerators and the in-pile 

moderator chamber by small fans. The safety of the facility is 

based on the use of triple containment preventing contact between 

hydrogen and air. The triple containment is achieved by enclosing 

the high vacuum system, surrounding the hydrogen system, in a he

lium blanket. 

The achieved spectrum of the thermal neutron flux and the gain 

factor are given as well as the experience from more than 5 years 

of operation. 

Finally some work on extension of the facility to operate two cold 

sources is reported. 
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1. INTRODUCTION 

1.1. Cold Neutrons 

Cold neutrons maybe defined as neutrons having energies below 5 meV, 

corresponding to de Broglie wavelengths longer than 4Å. 

The average kinetic energy of fission neutrons is approximately 

5 MeV. In a thermal reactor these fission neutrons are moderated 

to become thermal neutrons, mainly as a result of elastic scatte

ring reactions with the moderator. The thermal neutron spectrum 

achieved is nearly a Maxwellian distribution corresponding to the 

moderator temperature. The average energy of the thermal neutrons 

is approximately 25 meV. Of the thermal neutrons only 1-2% have 

energies below 5 meVf i.e. are cold neutrons. 

In order to obtain a higher cold neutron flux from an experimental 

hole, a chamber filled with a moderator which can be cooled to low 

temperatures is placed in the hole. For most cold neutron sources 

liquid hydrogen is chosen as moderating material. 

Cold neutrons have longer wavelenghts than thermal neutrons, which 

makes them more suitable for investigations of structures with lar

ge atomic spacings. As examples may be mentioned structures of com

plex chemical combinations and molecules, structures and biochemi- -. 

cal supermolecules, defects in crystals, and magnetic defects in 

magnetics alloys. 

Because of wavelength - longer that 4A - and velocity - below 1000 

m/sec - cold neutron scattering has also proved a most useful me

thod for dynamic investigations. As examples may be mentioned pho-

non life time, ntagnon life times, dynamics of magnetic phase trans

formations, diffusion in liquids, and molecular rotations, which 

because of symmetry characteristics cannot be studied by means of 

conventional methods. 

1.2. General Description 

In principle the cold neutron source in DR 3 consists of a hydrogen 
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filled moderator chamber placed in the horizontal beam hole 7TL«3 

of the reactor, see fig, 1. The moderator chamber and the hydrogen 

pipes are surrounded by a vacuum containment. The vacuum is used 

to insulate the cold parts, and the vacuum containment further acts 

as a second containment in a triple containment system, see 1.3. 

The annulus between the vacuum containment and the liner in the 

beam hole and the rest of the liner, are filled with helium at a 

small positive pressure. 

Hydrogen is used as moderating material and as moderator chamber 

coolant at a pressure of 15 bar abs., which is above the critical 

pressure, see section 2. The hydrogen is circulated between the 

moderator chamber and the cryogenerators by means'of a fan. The mi

nimum moderator temperature is 28 K corresponding to a heat load of 

about 600W at a reactor power of 10JW. 

From an intermediated stage the cryogenerators may provide cooling 

at a nominal temperature of 80 K. This cooling capacity was in the 

beginning used to cool the neutron filters with a flow of cold 

helium circulated by a fan. 

The cryogenerators are connected to the system through a joint box 

which contains fans, temperature sensors, and the cyogenic valves. 

The cryogenerators and the joint box are placed just above the beam 

hole. The moderator chamber and the cooling jacket for the neutron 

filter are connected to the joint box by means of transfer lines. 

The only equipment placed outside the reactor shell, is the hydro

gen buffer and supply system. 

1.3. Safety Philosophy 

Hydrogen alone is completely harmless, and a hazard only occurs, 

when oxygen is present too. The hydrogen/oxygen hazard may occur 

in two ways. Firstly, if some source of ignition is present, the 

elements combine exothermically to form water. Secondly, if oxygen 

from air is irradiated at cryogenic temperatures, ozone is formed 

and nitrogen may form oxides and ozonides of nitrogen which decom

pose explosively and initiate a hydrogen/oxygen reaction. 
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The basic principle for safety of the cold neutron source i DR 3 

is to preclude any possibility, that air may enter either the hy

drogen system or regions of the equipment containing hydrogen, 

especially at cryogenic temperatures and in fields of high radia

tion. 

By adopting the triple-containment philosophy the abovementioned 

basic principle for safety is fulfilled. For the cold neutron sour

ce the triple containment philosophy is used for all hydrogen e-

quipment inside the reactor shell, i.e. all hydrogen equipment is 

contained within a high-vacuum system, which is surrounded by a 

third containment filled with helium. The helium is always at a 

small positive pressure, so that a leak in the helium blanket can 

be detected. 

Thus it is ensured that even in the event of a leak developing 

in the vacuum casing, only helium can enter the vacuum system. 

The special arrangement of the triple-containment of the cryogene-

rators is described in para. 4.1. 

2. THE SUPERCRITICAL SYSTEM 

As mentioned in para. 1.2. the system is supercritical, i.e. the 

hydrogen pressure - 15 bar abs. - is above critical pressure which 

is about 13 bar abs. 

In the temperature-entropy chart for normal-hydrogen, which is 

shown as fig. 2, it can be seen that hydrogen of 15 bar abs. al

ways would be in a single phase. As the temperature range during 

operation will be 28-40 K, and the pressure is the abovementioned 

15 bar abs., it may be seen from the T-S chart that the density 

will be about 63 g/1-12 g/1. 

The supercritical sylten offers some advantages over other systems, 

as no phase change takes place and as the density of the hydrogen 

may be changed by changing the temperature, which can be used for 

optimizing the neutron gain. 
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All cold neutron sources with hydrogen moderators built until now 

have been based on use of liquid hydrogen. In ref. 1 the supercri

tical system is proposed in the design study of the cold source 

for the Harwell High Flux Beam Reactor. In that study the system 

was proposed to operate in the temperature range 33-38 K, which 

would give a reduced hydrogen density compared with liquid hy

drogen density. This reduction was intentional and based on geo

metrical considerations. 

3. IN-PILE SECTION 

A feature of the system for DR 3 is the possibility of getting 

two cold neutron beams, one from each end of the horizontal beam 

hole 7TL3. 

The in-pile section for the 7TLF-3 end contains the moderator 

chamber and was designed to have a helium cooled neutron filter. 

A beam-plug is placed in the opposite end of the horizontal beam 

hole. The cold neutrons passing through this plug are split into 

two beams, one to a spectrometer at the reactor face, and the oth

er beam is led out to a neutron physics house outside the reactor 

building by means of a neutron guide tube. 

The neutron spectrum emitted from the moderator chamber, contains 

the full thermal spectrum plus the enhanced tail of cold neutrons. 

If cooled neutron filters are used most of the thermal neutrons, 

a proportion of the fast neutrons and many of the gamma rays are 

filtred out, while the cold neutrons are transmitted. This effect 

is caused by a very sharp drop in neutron scattering cross section 

of beryllium, at 80°K o = 6b for En> 6 meV and a = 0.005b for 

E < 6 meV, at 300°K o « 0.5b for E < 6 meV. n n 

This would say that the filters are virtually opaque to thermal 

neutrons, but transparent to cold neutrons. 

At present no internal neutron filters are used as they are not 

necessary from a biological point of view and external filters 

are used when necessary. 



- 9 -

3.1. Plug with Moderator Chamber 

This plug is shown in fig. 3. The moderator chamber, made of alu- -

minium alloy AlMg3, is placed inside the vacuum casing, which is 

made of the same aluminium alloy. The vacuum casing is jointed to 

the shield plug head in order to avoid seals in the radiation field. 

This joint is made with an indium wire seal. The hydrogen pipes are 

run in grooves in the top of the shield plug. Thus it is possible 

to mount the moderator chamber and the pipes as a unit. As the hy

drogen pipes are connected to the transfer line with stainless steel 

couplings, transition joints have been used between the aluminium 

pipes and the stainless steel coupling parts. These joints are of a 

well proven friction welded type and they are placed about 175 mm 

from the couplings. The hydrogen pipes are supported by helical 

springs and the moderator chamber is centred by three spacers in 

the vacuum casing. The moderator and heat transfer circuit is des

cribed in para 4.2. 

The y-heating in the vacuum casing is removed by a flow of D O 

through a coil of omega shaped tube wound around the casing, see 

papa. 4.9. 

The originally used neutron filter insert was cooled by a flow of 

cold helium from the intermediate stages of the cryogenerators, 

see para. 4.5. The helium flow passed around the filter blocks in 

a spiralled groove. This cooling jacket was insulated by a vacuum 

annulus, which was connected to the vacuum in the rest of the plug 

and in the hydrogen transfer line. This vacuum system is named 

Vacuum I, see para. 4.7. The vacuum insulation of the cold helium 

transfer line was separated from the vacuum in the plug by bellows, 

a helium layer, and a further bellows around each of the two pipes. 

At present the neutron filter insert and the helium transfer line 

are removed as argumented above. 

The shield plug tip is cooled by a water flow through a coil in 

the lead shielding. 
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4. OUT-PILE EQUIPMENT 

The layout of the total system is shown in fig. 4. 

The two cryogenerators are placed on the "moveable" deck at reac

tor face 1, just above the beam hole. The cryogenerators are con

nected to the system through the joint box. The cryogenic fans 

and valves are all placed in this box. The moderator chamber is 

connected to the joint box by a transfer line. Earlier the cool

ing jacket for the neutron filters was as well connected to the 

joint box by a transfer line. 

Two separate vacuum pump units are placed underneath the joint 

box. One unit is used to evacuate the plug and the transfer line, 

and the other is used to evacuate the rest of the vacuum insula

tion. In order to protect the vacuum containment against over

pressure in case of a burst on the helium or the hydrogen pipes, 

both the in-pile vacuum and the out-pile vacuum are provided with 

relief valves, which relieve the pressure to the atmosphere out

side the reactor shell through a helium chamber in the relief box. 

The hydrogen buffer and supply system is placed outside the reac

tor shell. The standby cooling of the moderator chamber is con

nected to the hydrogen supply system. 

In the following paragraphs a description of the different sys

tems is given. 

4.1. Philips-Stirling Cryogenerators 

The cold neutron source is refrigerated by two Philips-Stirling 

four cylinder, two-stare cryogenerators. This type of cryogenera-

tor contionuously performs a modified Philips-Stirliny cycle, 

which may conveniently be described in terms of four distinct 

phases. 

A quantity of helium gas, at room temperature and high pressure, 

is compressed in the compression space (1) by the upward movement 
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of the working piston (P) see fig. 5. The initial downward move

ment of the displacer (D) then transports most of the compres

sion-heated gas through the water cooler (2), first regenerator 

(Rl) and exchanger (4) to the intermediate expansion space (3). 

At the same time, part of the gas passes through the second re

generator (R2) and top cold-exchanger (6) to the top expansion 

space (5). Thus cooled to two different "working" temperatures, 

the helium in both expansion spaces expands as displacer and 

working piston descend together, and absorbs heat through the 

cold-exchangers (4 and 6). The return of the displacer channels 

the gas back through the regenerators (Rl and R2), where heat 

stored from the compression phase is efficiently taken up again, 

and the helium arrives back in the compression space restored to 

its initial state. In practice, the phases of compression, cool

ing, expansion, and regeneration are merged into a continuous 

cycle. 

Two heat-exchanger coils are brazed to the top- and intermediate 

cold-exchangers on each cylinder. The gas passing through these 

coils is cooled to between approximately 14 and 30°K (H_) and 60 

and 80 K (He). These coils form parts of the two separate, closed 

gas transfer circuits described in the following paragraphs. 

The temperatures of the top cold-exchangers are measured by 

means of germanium resistance thermometres. 

On the top stages of the cylinders heating cables are brazed for 

testing and controlling the cold output of the cryogenerators. 

The cold part of the generator is placed inside a vacuum-chamber. 

This vacuum-chamber is surrounded by a helium blanket, except for 

the 25 mm thick stainless steel bottomplate. The germanium resi

stance thermometer and the heating coil feed-throughs in the bot

tomplate are, however, made in such a way that the helium blanket 

is retained locally. 

The cylinder head feed-throughs in the bottomplate, which are 

sealed with 0-rings, are covered by a local nitrogen blanket at 

1.3 bar abs. as helium would give too much diffusion through the 

O-rings which are needed to allow for the tolerances of the ma

chines . 
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4.2. Hydrogen Moderator and Heat Transfer Circuit 

Hydrogen at 15 bar abs. is circulated between the moderator 

chamber and the top cold-exchangers of the Philips-Stirling 

cryogenerators by one of the two fans, H-Bll or H-B12. Under 

normal operation one of the cryogenerators and one of the fans 

are in operation, originally two operating cryogenerators was 

considered necessary for proper cooling. The other fan is stand

by and the changeover is initiated by a rise in the temperature 

H-TIT 35 of the moderator chamber. The fans are driven by means 

of two separate 200 Hz power supplies, H-Bll on supply 1 and 

H-B12 on supply ?. 

The hydrogen circulation through the cryogenerators may be stop

ped by closing either the valves H-Ve2 or H-Ve4 or both. The 

hydrogen circulation through the fans H-Bll and H-B12 may be 

stopped by closing the valves H-Vel and H-Ve3 respectively. These 

valves and fans are located in the joint box. 

The hydrogen temperature is measured both at the inlet and outlet 

of each generator by sensors H-TI1 to H-TI4, and in the common 

pipes by sensors H-TI9 and H-TIC10. These sensors are germanium 

resistance thermometers. 

4.3, Hydrogen Buffer and Supply System 

The purpose of this system is to keep the hydrogen pressure with

in the operational range during temperature changes and to pro

vide the system with clean hydrogen. 

This system is placed outside the reactor shell in a light alumi

nium house except for the buffer vessel, which is placed in the 

open air. The buffer vessel has a volume of 4.0 m . This volume 

is big enough to prevent the pressure falling below the critical 

pressure and thus prevents the formation of two phase hydrogen. 

Furthermore, pressures above 17 bar abs. are avoided when the 

system is at ambient temperature. The buffer vessel is isolated 

from the system if the pressure H-PAT 30 falls below 14 bar abs. 

by closing the valves H-Ve27 and H-Ve28. 
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An orifice of 4 mm is placed between the buffer and the system 

in order to restrict the hydrogen flow in the event of a failure 

of the hydrogen system. 

The system is filled with high purity hydrogen, i.e. hydrogen 

with a purity better than 99.99%. Even though high purity hydro

gen is used, it is passed through a nitrogen cooled molecular 

sieve filter, before it is fed into the system. 

After the connection of a new gas bottle, the pipes between the 

bottles and the valve H-Ve33 is pumped down to a vacuum better 

than 0.1 Torr by means of the vacuum pump H-Vp5, filled with hy

drogen and blown down again. 

The vacuum pump H-Vp5 is also used to evacuate the whole hydrogen 

system before filling. 

The vacuum pump H-Vp 5 is purged with nitrogen when it is stopped. 

If the system pressure exceeds 18.2 bar abs., the pressure-control 

system activates the valve H-Ve24 and if that fails, the relief 

valve H-Ve23 opens at a pressure of 18.8 bar abs. 

The hydrogen is relieved through a chimney through which the 

exhaust from the vacuum pump H-Vp5 is also conducted. 

4.4. Hydrogen Standby Cooling Circuit 

This cooling circuit is started by the control system, whenever 

the reactor is operating and neither of the cryogenerators is in 

operation, to prevent overheating of the moderator chamber and 

pipes in-pile. 

The standby circuit is initiated by the thermocouples H-TIT 13, 

14 and 15 on the moderator chamber. When the standby circuit is 

needed, the control system opens the valve H-Ve25, closes the 

valves H-Ve2 and H-Ve4 and starts the fan H-B15, which operates 

in series with the already parallel operating fans H-B11 and 

H-B12. The fan H-B15 is driven by means of a third 200 Hz power 

supply. 
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4.5. Cooling of the Originally used Neutron Filter 

The helium flow through the intermediate cold-exchangers of the 

cryogenerators was used to cool the neutron filter. The helium 

pressure was 20 bar abs. 

The helium was circulated between the neutron filter and the 

cryogenerators by one of the two fans, He-B13 and Ke-B14. The 

other fans was started if the temparature He-TIT 19 or 20 ex

ceeded 90°K. 

He-Bl3 and He-B14 were driven by the same 200 Hz power supplies 

as the fans H-B11 and H-B12, i.e. He-B13 on supply 1 and He-814 

on supply 2. The helium circulation through the cryogenerators 

could be stopped by closing the valves He-Ve6 or He-Ve8 or both. 

The helium circulation through the fans He-B13 and 4 coald be 

stopped by closing the valves He-Ve5 and He-Ve7 respectively. 

These valves and fans were located in the joint box. 

The helium was circulated between the filter and the cryogenera

tors in a vacuum insulated transfer line (Vacuum III). The he

lium temperature was measured at the inlet and outlet of each 

generator with germanium resistance thermometers, He-TI5-8. 

4.6. Helium Buffer and Supply System 

A common supply system is used for both the originally used neu

tron filter cooling system, the working gas for the cryogenera

tors and for the helium blanket system. Later when the He-cooling 

circuit was removed the He-buffer was also removed, and the He-

supply for blanket and cryogenerators were separated. 

The helium is cleaned by a liquid nitrogen cooled molecular 

sieve filter before it is fed into the system. 

The buffer vessel for the neutron filter cooling system had a 
3 

volume of 0.3 m . This volume was big enough to limit the press
ure variation when the system was cooled down. The helium system 
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was provided with a pressure control system. He-PAT24 gave a 

warning at 19 bar abs. and isolated the buffer vessel at 18 bar 

abs. by closing the valve He-Ve47. He-PAT36 gave a warning at 

22 bar abs. and opened the valve He-Ve49 at 26 bar abs. A 

relief valve He-Ve48 ensured that the pressure could not exceed 

29 bar abs. 

The blanket system, which operates at 1.3 bar abs. is supplied 

through a reducing valve He-Ve54. 

4.7. Vacuum Systems 

As mentioned in para. 1.3. all hydrogen containing equipment in

side the reactor shell are contained within high-vacuum systems. 

For the cold equipment the vacuum also acts as the insulation. 

The vacuum surrounding the moderator chamber, the pipes in the 

in-pile section and the pipes in the hydrogen transfer line com

prise one vacuum system, named Vacuum I, The vacuum in the vacuum 

chambers of the cryogenerators and in the joint box is named Va

cuum II, and the vacuum in the helium transfer line is named Va

cuum III. 

Vacuum I is established by means of the turbo-molecular vacuum 

pump Val-Vp2, backed by the rotary pump Va-Vpl. 

Vacuum II and III are established by means of the turbo-molecular 

vacuum pump VaII-Vp4, backed by the rotary pump VaII-Vp3. 

The vacuum is established before start up of the experiment and 

sealed off by the valves Val-Vel3, VaII-Ve20 and VaIII-Ve21 re

spectively. 

The valves Hel-Ve61 and Val-Ve67 are then opened and helium is 

admitted to the pipe line in order to complete the triple con

tainment. 

During operation, when Vacuum I and II are sealed off, the vacuum 

is kept below 10 Torr by means of ion-pumps, Vp7 on Vacuum I 

and Vp8 on Vacuum II, and cryopumping onto the cold surfaces. 
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The ion-pumps Vp7 and Vp8 have pumping speeds for helium »t 9 1/s 

and 18 1/s respectively. These pumping speeds limit the maximum 

helium leaks to approximately 10~ Torr 1/sec and 2 x 10 Torr 

1/sec in order to keep pressures below 10~ Torr and thereby the 

pump lifetime higher than 2 years. 

Vacuum I and II is monitored by triple Pirani gauges in each va

cuum PIT1-3 and PIT8-10. These gauges give a warning in a 1-out-

of-3 connection at 5 x 10 Torr, and change from the cryogenera-

tors to the standby cooling in a 2-out-of-3 connection at 5 x 10 

Torr (see section 5). Three switches on each of the vacuum sy

stems I and II, PT4-6 and PT11-14 trip the reactor in a 2-out-of-

3 connection at 0.2 bar abs. and depressurises the hydrogen pipe 

lines after isolating the buffer volume. 

The vacuum is divided in two separate systems, chiefly to fa

cilitate finding a possible leak, but it has also the advantage 

that it is only necessary to break Vacuum II to service the cryo-

generators and the components in the joint box. Both vacuums 
-2 —6 are provided with a Penning gauge (10 - 10 Torr) P17 and 

PI14. These gauges are used to measure the operational vacuum 

in the two systems together with the total pressure facilities 

of the ion pumos. 

The ion pumps Vp7 and Vp8 are automatically switched off at 

1 x lO-4 Torr. 

Both Vacuum I and II are protected against overpressure by the 

relief valves Val-Vel4 and VaII-Vel5. These relief valves blow 

to a helium volume - Helium III - which is provided with two 

relief valves in parallel, Ve62a and 62b. In this way the triple 

containment philosophy is also kept around the relief valves 

Val-Vel4 and VaII-Vel5. 

Vacuum III is monitored by two Pirani gauges, PIA15 and 16/ and 

provided with a relief valve, Ve66. 
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If the ion-pump Vall-Vp 8 can not keep Vacuum II below 10 Torr 

the turbo-molecular vacuum pump Vall-Vp 4, hacked by the rotary 

pump Vall-Vp 3, may be started as long as the vacuum can be kept 
-2 

below 5x10 Torr at which level the valve VaII-Ve 20 will be 

closed by Vall-PIT 8, 9, 10 in a 2-out-of-3 connection. (See 

section 5.) 

4.8. Helium Blanket Systems 

As the safety philosophy is based on the triple-containment 

principle, all pipe lines and equipment containing hydrogen in

side the reactor shell are contained within a vacuum contain

ment, which again is surrounded by a helium blanket. 

For the same reasons as mentioned in para. 4.7, namely leak 

finding and the necessity only to break a part of the system 

when components are serviced, the helium blanket is divided in 
two systems connected by the valve Hel-Ve59, which is open during 

operation. Helium I covers Vacuum I and Helium II covers Vacuum 

II. The Helium is always at a small positive pressure, say 1.3 

bar abs., so the helium pressure will decrease if there is a 

leak in the helium containment. A decrease gives a warning in 

a l-out-of-3 connection at 1.2 bar abs., and trips the reactor 

in a 2-out-of-3 connection at 1.1 bar abs. followed by a depres-

surisation of the hydrogen system. The three pressure switches 

on Helium I, HeI-PAT20 to 22, are common for the two helium sy

stems, as the two systems are connected during operation. Each 

of the systems is provided with a manometer HeI-PI19 and Hell-

PI23. 

Hel is protected against overpressure by the relief valve Hel-

Ve58 which blows at 1.35 bar abs. 

The helium blanket around the relief valves Val-Vel4 and Vall-

VelS on the vacuum systems is a separate system, Helium III, 

connected to Helium I by the valve Hel-Ve60, which is closed 

during operation. Helium III is provided with three pressure 

switches HeIII-PAT26-28 and a manometer, HeIII-PI25. 
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The helium blanket systems are connected to the common heliun sup

ply system through a reducing valve He-Ve54 adjusted to 1.33 bar 

abs. 

4.9. D.O-Cooling of Vacuum Case 

The Y-heat from the aluminium vacuum case must be removed to 

maintain strength. 

The vacuum case is cooled by a flow of D-J in a coil of omega 

shaped tube wound around the vacuum case. 

D_0 rather than H„0 is used since this will not depress fluxes 

to the same extent. Ref. 2 mentions that the flux depression 

with H O would be 13% worse than with D_0. 

In order to avoid a special D.O circuit, with all the complexity 

that would add to the system, the vacuum case is cooled by a flow 

of D_0 from the reactor circuit. 

The cooling coil is connected between the level and ion exchange 

circuit of the reactor and the storage vessel 1V3/2. 

The D.O flow (100 1/h) and temperature are measured, D.O-FI1, 

TI30 and 31. 

The plug for the other end of the beam hole, 7TLA*3 is provided 

with a D_0 leak detector D.O-TIA32 near the bottom of the liner 

to give a warning if D00 should leak into the liner (Hel). 

5. SAFETY ASSESSMENT 

The safety philosophy is based on triple containment which was 

explained in para. 1.3. By adopting this philosophy both the po

tential explosion hazard arising from irradiated solid air, and 

the more conventional hydrogen/oxygen explosion hazard, when a 

source of ignition is present, are precluded. 
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If one of the triple containments is lost the intrumentation au

tomatically trips the reactor and depressurises the hydrogen sy

stem. 

The only reasons for vacuum deteriorations are either helium leaks 

or hydrogen leaks. Neither presents a hazard, but as neither hy

drogen nor helium will cryopump, the vacuum deterioarates and the 

thermal insulation is not sufficient at a pressure of about 5 x 

10 Torr. The pressure in the two vacuum systems is monitored 

by triple Pirani gauges in each system, giving a warning in a 1-
—3 

out-of-3 connection at 5 x 10 Torr and change from the cryogene-

rators to the standby cooling in a 2-out-of-3 connection at 5 x 

10 Torr. Three pressure switches in each vacuum trip the reactor 

in a 2-out-of-3 connection at 0.3 bar abs. and depressurises the 

hydrogen system. 

During normal operation Vacuum II can alternatively be pumped by 

the turbo-molecular vacuum pump VaII-Vp4 (70 1/sec), backed by 

the rotary pump Vali-Vp3, if the ion-pump VaII-Vp8 can not keep 

Vacuum II below 10~6 Torr. As the valve VaII-Ve20 will be closed 
-2 

at 5 x 10 Torr by PIT 8, 9, 10 in a 2-out-of-3 connection the 

maximum continuous release of hydrogen to the DR 3 containment 

will be o*0.5 mg/sec, which will cause no hazard. A sudden release 

of hydrogen in Vacuum II will as well cause a closing of the valve 

VaII-Ve20 but as the closing time is about 2-3 seconds some hy

drogen may be released to the containment through the vacuum pumps. 

The release from a double-ended pipe fracture would give a calcu

lated release in the order of ~3.6g corresponding to ̂ 13 1/sec. 

before the valve VaII-Ve20 is closed. 

Experimental releases of helium in the order of<vl33 1/sec (8Nm 

in total) have given no concentration above 0.9% (vol.).The above-

mentioned release of hydrogen in the order of^»13 1/sec should 

therefore not exceed the ignition limit of 4% except at the re

lease point which is above normal working level. 
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If the helium pressure in the blanket system decreases, there 

will be no hazards as long as the pressure is above ambient. Three 

pressure switches in common for Helium I and II and three pressure 

switches on Helium III, is giving a warning in a l-out-of-3 con

nection at 1.2 bar abs. and trip of the reactor in a 2-out-of-3 

connection at 1.1 bar abs. followed by a depressurising of the 

hydrogen system. 

If nitrogen, from the local nitrogen blanket around the cylinder 

head feed-throughs in the bottomplates of the cryogenerators, is 

leaking into Vacuun II there will be no hazards.The nitrogen will 

cryopump and therefore cause no pressure increase. A leakage of 

0,2g - to Vacuum II and/or to the surrroundings - will give a 

warning at 1.2 bar abs. in the nitrogen system. 

The pressure in the vacuum systems in the event of failures on 

the hydrogen system has been calculated. The maximum credible 

accident in Vacuum I is a total fracture of the moderator chamber. 

Under conservative assumptions the maximum pressure in the vacuum 
2 casing is calculated to 4.5 kp/cm abs. Even if one of the relief 

valves (HeIII-Ve62a or 62b) fail simultaneously and the heat trans

fer is assumed to be a factor of 3 higher, the pressure will not 
2 

exceed 14.5 kp/cm abs. This pressure will not cause any damage 

to the vacuum system (Val). 

The maximum credible accident in Vacuum II Is a fracture of a 

hydrogen tube. It has been calculated that the vacuum contain

ment will remain intact in this event. 

A failure of the helium cooling jacket round the filter will not 

be as serious as a hydrogen failure since the heat transfer con

ditions cause a smaller expansion of the gas. 

When the cold source is filled with hydrogen the crane must not 

be allowed to carry any load above the area occupied by the equip

ment . 
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6. MEASUREMENTS OF THE NEUTRON FLUX FROM THE COLO SOURCE 

Just shortly after start up of the cold neutron source the spec

trum of the neutron flux was determined (ref.3.). 

Figure 6 shows the ratio of the flux observed at the sample for 

the 28K H_-source and the flux observed previously for the «*»350K 

water source. The measurements were performed under otherwise 

identical circumstances except for changes caused by the refueling 

of the reactor. Such variations are normally less than 10%. The 

ratio represents the true gain produced by the installation of 

the cold source. It is remarkable that the gain at 5 meV is more 

than an order of magnitude and that there is a gain of more than 

two in the frequently used energy range around 15 meVj the gain 

is 1 around 20 meV. 

The cold source is operated in the supercritical region at a pres

sure of approx. 15 bar atm. This means that the effective thick

ness of the source changes quickly with the source temperature. 

The corresponding effect on the flux at the sample is shown on 
Fig. 7. It is obvious that the effect is quite small for temepera-

tures less that 40K, which means that the spectrum is comfortably 

independent of the operation of the cold source. 

The actual spectrum in absolute units is shown in Fig. 8 for the 

1. order component. The comparison with the water scatterer spec

trum shows that the energy of the flux maximum has been shifted 

considerably towards lower energies. This means that the higher 

order contamination is a much smaller problem in beams from the 

cold source. To illustrate this effect we have determined the ratio 

of second to first order monitor counts in a fission monitor in 

the monochromatic beam, shown in Fig 9. This ration passes 1 around 

15 meV for a normal thermal neutron beam. 

The conclusion from these measurements of the cold source perfor

mance is the following: The cold source beams are ideally suited 

for a large fraction of the current inelastic neutron scattering 

studies. The tremendous gain at the lowest energies have made a 

range of high resolution experiments practical, and it has made 

the DR 3 reactor comparable to a high flux reactor as a neutron 

source in this range. 
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7. EXPERIENCE OF OPERATION 

7.1. Normal Operation of the Cold Source 

The operation of the cold source closely follows the operation of 

the reactor because of the necessity to cool the moderator cham

ber during reactor operation. 

The reactor is operating 23 days at a time followed by a 5 days 

shut down. 

The cold source is started and cooled down some hours before the 

reactor is started and stopped and warmed up some hours after the 

reactor is shut down. The warm up takes approximately 12 hours. 

This close connection to the reactor operation have the great dis

advantage, that all major repair and maintenance is restricted 

to 4 days in each reactor shut down, where the work load on the 

reactor crew - who also operate the cold source - is already high. 

This also means, that the reliability of the cold source is of 

major concern. 

Every 4 hours all important operating parameters, such as tempera

tures, pressures etc, are logged and compared to nominal operating 

values in order to be able to make proper corrections before any 

break down or automatic shut down of the cold source. 

Further any repair or maintenance operation to be made during 

shut down is carefully planned at least a week before shut down. 

7.2. Achieved Operating Parameters of the Cold Source 

The obtained neutron gain has been discussed in section 6. 

The spectrometer counting time for a specific number of counts 

has been measured in dependance of the hydrogen temperature, H-TIO, 

at a neutron energy of 4.6 and 5 meV. The result was, that below 

36.5 K the counting time was constant. Above 36.5 K the counting 

time is increasing after an S- curve. At 38 K the counting time 

is increased with 45%, at 40 K with 86% and at 45 K with 152%. 
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Philips recommends the working gas presssure in the cryogenerators 

not to exceed 29 bar. In order to achieve a better lifetime espe

cially of the regenerators the working gas pressure is kept at 23-

24 bar. 

In table 1 is shown typical achieved operating parameters. 

Table 1, typical operating parameters 

Hydrogen 
temperature 
H-TIO [Kl 

Working gas 
pressure 
[bar] 

Hydrogen 
pressure 
[bar] 

Presssure 
Vac I 
[m bar] 

Pressure 
Vac I I 
[m bar] 

Temperature 
of He-c irc . 
[K] 

2 cryogener 
a 

26-28 

. operating 
b 

32-33 

1 cryogener 
a 

35-36 

. operating 

b 

38-40 

23-24 

15-16 

10" 6 -10" 8 

i<f6-icf8 

60-70 

• 

a. Recently regenerated or new regenerators. 

b. Oil contaminated regenerators before regeneration (still in 

acceptable condition). 

It is seen, that it is possible to operate the cold source with 

only minor losses in neutron flux until shortly before regenera

tion is needed with only one cryogenerator operating. As this gives 

considerable savings in costs and manpower this has been done as 

the main mode of operation. 
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7.3. Cold He-Loop 

At the time of start of operation of the cold source the He-cooled 

bismuth filter was installed. As filters were not necessary from a 

biological point of view the filters and the cold helium loop have 

later been removed. 

7.4. Regenerators 

During operation both the phosphor-bronce gauze regenerators of the 

high temperature stages and the leadball regenerators of the low 

temperature stages of the cryogenerators are contaminated with oil, 

which reduces the efficiency of the regenerators. It is therefore 

necessary regularly to clean the regenerators from oil in order to 

maintain a good cooling capacity of the cryogenerators. 

Originally cleaning intervals of 4000 hours was agreed with Philips, 

but in practice it has not been possible to exceed 3000 hours. Nor

mally the regenerators are cleaned every 2500 hours. 

The cleaning is performed with petroleum ether, and it is control

led, that the regenerators regain their original weight after 

cleaning. 

Due to the necessary disassembly, reassembly and testing the re

generation is the most tin"? consuming of a number of maintenance 

works to be carried out. 

An unexpected and expensive experience achieved is, that the life

time of the lead regenerators is only approximately 7000 hours. 

These regenerators are very expensive (Approx. 20.000 Dkr/piece 

cv6300 DM/piece) ,and the shift to new regenerators is very time 

consuming. 
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7.5. Major Problems of Operation 

Problems with regenerators have already been discussed in section 

7.4. 

A number of other problems with the cryogenerators have occured. 

Both cryogenerators have been completely overhauled including 

insert of new principal bearings. 

Several repairs of the crank shaft feed-through oil seal have 

been necessary. 

Cleaning of displacers at the same time as the regenerators have 

prooved necessary. 

Leaks on the cryogenerator vacuum casing has caused trouble, and 

the casing has been modified. 

Problems with the oilpump in one cryogenerator have occured. 

Problems have occured by net observing operation instructions con

cerning cleaning of working gas for the cryogenerators. The supply 

system for blanket gas and working gas has therefore been partly 

separated together with the removal of the cold He-system. 

Of other problems could be mentioned: 

Insert of new ball bearings in the fast running hydrogen- (and 

earlier also helium) blowers has been necessary very often due 

to the infavorable operating conditions. This work requires care-

full alignment of the blower shaft. 

Leaks from H - or He-pipes to the vacuum system have occured now 

and then, but much more frequently there have been problems with 

leaks from the He-blanket to the vacuum system. Such leaks are 

troublesome because it takes time - even with a He-mass spectro

meter-detector - to locate and repair them, and there is only 4 

days to do the job in the shut down period. It has therefore 

often been necessary to pump continuously on Vac II with the 
turbc-ntolecular pump VaII-Vp4 during normal operation. 
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Though a lot of operational problems have occured it has never

theless been possible to keep a very high availability for the 

cold source as seen in table 2. 

Table 2. Availability for Cold Source during Reactor Operation 

Year 

1975 

1976 
t 

1977 

1978 

cryogen. 
no. 1 

91 

67 

100 

100 

availability % 

cryogen. 
no. 2 

91 

75 

85 

86 

cryogen. 
no. 1 
or 2 

100 

83 

100 

100 

cryogen. 
no. 1 
and 2 

82 

58 

85 

86 

acceptable 
neutron 
flux 
obtained 

100 j 

83 i 

92 ; 

85 | 

7.6. Manpower and Expences for Maintenance and Repair 

At normal operation the annual operating expences are approximate

ly as follows: 

New regenerators, 

Other spare parts for cryogenerators, 

Electricity, 

Other, 

75000 D.kr/year 

10000 D.kr/year 

65000 D.kr/year 

10000 D.kr/year 

Total annual expences, 160000 D.kr/year 

Annual Manpower at Normal Operation: 

Cleaning of regenerators snd displacers, 32 man days/year 

Shift to new regenerators, 13 man days/year 

Other maintenance, 120 man days/year 

Total annual manpower, 165 man days/year 
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Two things should be pointed out 1; when the cold source and the 

cryogenerators get older the manpower and the expences are expec

ted to increase considerable, 2) major special events, e.g. com

plete overhaul of cryogenerators, are not included above. 

After some more years annual expences and manpower of 200000 D.kr/ 

year and 200 man days/year therefore seem to be realistic esti

mates . 

Due to the relatively high annual expences and manpower and the 

expected increasing problems by maintaining the cryogenerators, 

(this cryogenerator model is no longer manufactured) installation 

of a new turbo-cooling system in some years is under consideration. 

8. EXTENSION OF FACILITY 

8.1. Possibilities for Extension to Two Cold Sources 

As discussed in section 7.2. the cooling capacity for the existing 

cold source is so large, that normally only one of the two cryo

generators are operating. 

As one additional cold source cooled by the same cooling system 

would only increase the needed cooling capacity with approximately 

60%, there would be more that enough cooling capacity for opera

ting two cold sources with two cryogenerators. 

8.2. Lay Out for Potential Two Cold Source System 

The lay out for a potential two cold source system is shown in 

figur 10. 

The inpile part for the second cold source is placed in the hori

zontal experimental hole 7TLA1 at the same reactorface as the first 

cold source. 

During normal operation the hydrogen flow will go from the joint 

box to a new hydrogenliner, where it separates into two parallel 
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flows - one to each cold source - and are united again after leav

ing the inpile parts and returns to the joint box and the cryogene

rators. 

In case of break down or repair of one of the cryogenerators the 

cooling capacity is too low for two cold sources with the remain

ing cryogenerator. By placing the valves H-Vel05, H-Vell5 and 116 

in the right positions, it should be possible to cool the existing 

cold source as today from the remaining cryogenerator, ånd at the 

same time cool the new cold source to below 100°C by an external 

loop via the blowers H-B15 and 6 and a water cooler. This exter

nal cooling .is provided via a new hydroqen liner. 

As before the inpile parts of the two cold sources can be stand

by cooled. 

In the diagram it is seen, that the cold He-loop is removed, and 

that the supply of blanket-He and working gas-He is to some ex

tent separated in order to ease the daily work with the systems. 

8.3. Status and Prospects 

The status is: 

The cold He loop is removed and the inpile part of the cold source 

modified appropriately. The He supply to blanket and cryogenerators 

are separated. Two new hydrogen liners are manufactured and instal

led. The inpile part of a potential cold source no. 2 is manufac

tured, see figur 11. Necessary electric work and installation of 

additional instrumentation has been performed. 

The remaining things to be done in achieving two operating cold 

sources are modification of the valves H-Vell5 and 116 and install

ation of the inpile part for cold source no. 2. 

Decision whether a second cold source should be installed has been 

postponed at least to the autumn 1981. This have several reasons: 
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- Some technical difficulties have appeared. These are however 

partly solved now. 

- The manpower and costs by keeping two cryogenerators in pro

per operation is causing increasing worry. This should there

fore be investigated closely until autumn 1981. 

- The need of the Physics Department for a second cold source 

has to be reviewed. 

- Installation of a new turbocooling system instead of the 

cryogenerators has to be investigated together with the 

possibility to buy a new cryogenerator and build a cryoge-

nerator test stand. 
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