

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Description of a simulation system DYSIM for continuous dynamic processes

Forskningscenter Risø, Roskilde

Publication date:
1981

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Cour Christensen, P. L. (1981). Description of a simulation system DYSIM for continuous dynamic processes.
(Risø-M; No. 2271).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13791482?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/description-of-a-simulation-system-dysim-for-continuous-dynamic-processes(8aeff7c9-49fd-427c-acdd-0c816ea3e92e).html

RISØ-M-2271

DESCRIPTION OF A SIMULATION SYSTEM DYSIM FOR CONTINUOUS

DYNAMIC PROCESSES

P. la Cour Christensen

Abstract« A general purpose simulation system DYSIM for con­

tinuous dynamic processes has been worked out based upon five

years experience with a similar system DYSYS from Kernfor-

schungszentrum Karlsruhe. The new system has been made in

order to improve the performance by excluding unused features

and including new ones, and speed up the computations by a

careful programming of the essential routines for integration

and administration.

INIS-descriptors; COMPUTERIZED SIMULATION? D CODES; DIFFEREN­

TIAL EQUATIONS;FORTRAN; NUCLEAR POWER PLANTS; STEADY-STATE

CONDITIONS; TRANSIENTS

UDC 621.039.5 : 681.3.06

January 1981

Risø National Laboratory, DK 4000 Roskilde, Denmark

ISBN 87-550-0740-6

ISSN 0418-6435

Risø repro 1981

CONTENTS

Page

1. INTRODUCTION 5

2. PROBLEM FORMULATION 7

3. INPUT PILE 9

3.1. *INPT 9

3.2. *INPD 9

3.3. *INCO 10

3.4. *DATA 10

3.5. *CHCK 10

3.6. *TIME 10

3.7. *REPV 11

3.8. *PRNT 11

3.9. *STST 12

3.10. »PLOT 12

3.11. *DELY 12

3.12. *DUMP 12

3.13. *REST 12

3.14. *ENDE 13

4. STEADY-STATE CALCULATION 13

5. TRANSIENT CALCULATION 16

6. PRINTOUT FACILITY 15

7. TIME-DELAY SIMULATION 17

8. DUMP AND RESTART FACILITY 91

9. OTHER FACILITIES i 20

Page

9.1.Program termination 20

9.2.Repetition of integration steps 20

9.3.Activation of special user routines 20

10. EXPLANATION OP AN EXAMPLE 21

- 5 -

1. INTRODUCTION

In 1975 a program DYSYS for simulation of dynamic processes

was bought from the Kernforschungszentrum Karlsruhe (E.G.

Schlechtendahl, 1970). In the past fWe years it has been used

extensively for simulation of nuclear reactors and plant com­

ponents. Several minor modifications have been done to adapt

the program to our computer and our special demands. Major

modifications could not be made due to the structure of the

program, which is very complicated and difficult to work out.

Therefore, it was finally decided to write a completely

new program based upon the experience gained in the work with

DYSYS.

For the many models which have been developed for DYSYS there

has been a major demand that the qld models described by

Fortran subroutine and input datafiles should be usable with

only minor modifications. So the new program, called DYSIM,

has been developed along the same lines as DYSYS. But some

features are not used in DYSIM, and new ones have been

introduced. The accuracy control and steady-state search have

been completely changed and the routines most essential for

the computing time have been programmed carefully in order to

save time at the expense of memory space. The time performance

is improved by a factor 1.4-1.5 for typical examples, and the

program is cut down from about 1900 Fortran lines to about

1000.

- 6 -

The main features are:

- The program is written in Fortran and includes the main

program and a number of subroutines. It takes care of data

input with test and documentation, integration of system

equations, and organisation of outputs. Several administration

procedures are included.

- The problem equations must be formulated in P Fortran subrou­

tine DERIVA, which gives the derivatives for the first order

differential equations.

- The structure of the model may be altered so differential

equations are changed to algebraic ones and back again at

any time during the calculations.

- The integration routine is a fourth-order Runge-Kutta.

- Steady-state calculations can be performed and the result

stored in a disk file as initial values for the next run.

- During the transient calculation, accuracy control with

stepsize adaption is carried out in a simple and fast manner.

- Output tabulation is specified in the input file and the

selected values are stored intermediately in a disk file,

which may be changed to a permanent file if the data is to

be used to make plots later on.

- Pure time delays can be simulated by use of a separate

function, DELAY, which must be included in the user program

when it is needed.

- 7 -

- A dump and restart facility provides the possibility of

dumping the state of the system in a disk file and in a

later run restart the calculation at that state. This is

useful for test purposes when an error occurs long into a

transient.

2. PROBLEM FORMULATION

The dynamic problem is formulated in a Fortran subroutine

with one parameter, DERIVA (NR), which calculates the

derivatives for all state variables and performs other

calculations of, e.g., algebraic or output variables. DERIVA

communicates with DYSIM by three COMMON fields:

COMMON/INTVAR/T, STV(NDE), ALV(NAE)

COMMON/DERIV/DIF(NDE)

COMMON/DATA/DATEN(NDA)

T is the time variable, STV the time-dependent state variables

and ALV are the algebraic or special output variables. The

sum of NDE and NAE is limited to 400 in the present version.

DIF contains all the time derivatives.

Variables which shift between state and algebraic variables

must be placed in STV and have a derivative in DIF.

DATEN contains all input data given in the input file by the

DATA block.

The parameter NR is the substep number in the Runge-Kutta

routine; it goes from 1 to 4 during a time step. At the program

start an extra call of DERIVA is given with NR=»0 providing the

possibility of making initial calculations of, e.g., constant

parameter values or initial conditions that can be calculated

directly. The derivatives from this first call is not used at

all in DYSIM.

- 8 -

Other special communication possibilities are Mentioned in

Chapter 9.

3. INPUT PILE

The input file is divided in blocks of records each with a

codework in the first record. Some blocks consist of the code­

word alone; in others the codeword is followed by one or more

records with data or a test string.

A codeword always consists of a "^" followed by four characters,

e.g., *INCO; the rest of the record is empty. Some codewords

are obligatory, others are optional.

A data record consist of maximum 72 characters divided in 6

fields of 12 characters each. The data as either integers,

real numbers or text strings may be placed everywhere inside

the 12-character field. The input routine performs a shift to

the right side of the field before the data are interpreted.

The order of blocks is unimportant with the exception that

INCO and CHCH must come before RBFV.

One special record does not have a codework; that is a comment

line with a $ as the first character. A comment record is

normally placed as the first record but may be placed everywhere

between the blocks. The second character, being either a

space or a "-" is used to select a copy of the input file on

the output printer. The copy indicator is initially set per

default, but is reset by the "-".

Remark: if more than one comment record is used, every one

will be used to reset the copy indicator for a "-".

- 9 -

The input file will be read and tested for errors in the sub*

routine INPUT. Error messages are given in clear text. No

guarantee for detection of all errors can be given. If an

error is found the INPUT routine will continue and try to

check the rest of the input file, and the program will be

terminated then.

The following sections explain all codewords and associated

data records.

3.1. »INPT

An obligatory codeword followed by one record with a text

string, where the first character must be a "*". The following

71 characters are used to identify the problem and are printed

as a head for the output tables.

3.2. tINPD

An optional codeword without data. It gives an input

documentation in a clearer form than the copy of the input

file.It may be used to facilitate the search for errors in

the input file.

3.3. »INCO

An obligatory codeword followed by a number of data records.

The first one must have two integers: NDE, that is the number of

the differential equation, and NAE, that is the number of

algebraic variables in COMHON/INTVAR/. Then follows records

with initial values, six per record, as many as NDE indicates,

and written as real numbers.

- 10 -

3.4. »DATA

An obligatory codaword followad by a nuaber of data racord«.

Tha first ona aust hav« ona integer, NDAT, that givas tha

nuabar of paraaatars in tha following racords with six par

racord. Thasa paraaatars aay ba aithar intagars or raal

nuabar s; tha input routina i<*antifias tha typa by tha decimal

pariod.If no data ara usad foL tha problem, NOAT is sat to

zaro and no data racords ara writtan. Tha paraaatars ara placad

in COMMON/DATA/ in tha writtan ordar.

3.5. »CHOC

An obligatory codaword followad by ona racord with fiva para­

meters for control of tha intagration writtan as raal nuabers

in tha following ordar:

DTMIN: Minimum value of tha tiaa stap

DT : Initial "

OTHAX: Maximum • • • • •

EPSI : Tha accuracy control paraaatar

TMAX : Maximum valua of trua transient time

3.6. »TIME

An obligatory codaword followad by ona racord with ona nuabar,

TTOT, that givas tha maximum valua of usad computer seconds.

The number may be given either as an intager or a raal numbar.

- 11 -

3.7. yUEFV

Obligatory when EFSI in the CMCK block is greater than zero.

It is followed by a nuaber of records each with two integers

and one real nuaber. The integers give a range of the state

variables for which the real nuaber is used as reference value

in the accuracy control. The block is terainated by a record

with 0 in the first field, when the routine for REFV is entered

the initial values will be inserted in the reference value

array. If all these values are representative no reference

value need be specified and the block can be terainated by the

first record. However, if sone initial values are zero,

reference values greater than zero aust be specified for those

variables.

3.8. »PHUT

An obligatory codeword followed by a nuaber of records. The

first one aust contain one integer MPRI and five real nuebers.

»HPI gives the nuaber of print variables including the tiae.

The five real numbers specify tne following paraaeters:

POTO: Tiae intervals for printout froa tiae 0 to POTl

P0T1

POTl: " " " POTl to P0T2

P0T2

P0T2: " " " • P0T2 and upwards

The following records specify the variables to be printed with

three per record and two fields for each. The first field aust

hold an integer giving the nuaber in COfMON/INTVAK/ and the

second holds a text string with aaxiaua € characters« which

are used as a naae for the variable in the printout table.

- 12 -

3.9. ySTST

An optional codework without data. It specifies a steady state

calculation.

3.10. »PLOT

An optional codeword without data. It will keep the disk file

OUT7 as a permanent file at program termination. OUT7 contains

all the values of the printout variables collected during the

run.They can be used later on by an independent plotter program.

3.11. XDELY

An optional codeword without data. It specifies the use of the

delay simulation routine on the disk file DELAY and establishes

the necessary communication between DYSIM and DELAY.DELAY must

be included in the user's own program.

3.12. »DUMP

An op.ional codeword without dat:. It gives a dump at the

termination time of all variables needed for a later restart.

The disk file DYSIMDUMP is created as a permanent file in any

case, and the file DELAYDUMP is craated if the delay function

is used.

3.13. »REST

An optional codeword without data. It is used to restart a

calculation after a dump. The information in DYSIMDUMP and

DELAYDUMP is loaded as needed.

- 13 -

3.14. »ENDE

An obligatory codeword without data. It indicates the end of

the input file.

4. STEADY-STATE CALCULATION

The steady-state is calculated by iteration using the integra­

tion routine, but with a large negative value for the time

variable and a constant time step DT equal to the maximum

value DTMAX. The calculation starts with the values in the

INCO block. No stability check or accuracy control is used;

so it is the user's responsibility to select a reasonable

value for DTMAX that gives a stable and fast iteration. Experi­

ence with advanced accelerated steady-state convergence in

DYSYS indicates that only a small or no profit is obtained due

to the extra administration.

The calculation will go on until the computing time reaches

the limit set by the TIME block. At termination time the state

variables are written in a permanent disk file FIL12 with the

format 6E12.6. They can then be inserted manually in the input

file in the INCO block as a new set of initial values.

During the program run the state variables will be printed

out every 100 steps. The user must decide nimself, when steady-

state has been reached with a reasonable accuracy.

The steady-state convergence can be accelerated by the user if

some variables can be derived directly or bound to other vari­

ables, e.g. the outlet temperature from a reactor core can be

made use of in calculating the temperature further on in the

cooling loop*

- 14 -

In DERIVA the user can detect a steady-state calculation on a

negative time value.

Steady-state is calculated in the subroutine ICCAL that util­

ises the subroutine RUNGE.

5. TRANSIENT CALCULATION

The transient calculation starts normally at time zero with

the initial conditions in the INCO block. The initial time

step is given in the CHCK block. An accuracy control is carried

out for each time step if EPSI in the CHCK block is greater

than zero. The deviation between the Runge-Kutta step and a

simple Euler step is calculated for each variable and compared

with a reference deviation REF=EPSI*REFV, where REFV is the

reference value. The following actions are taken:

DEV>3*REF: The step is cancelled and the time step is

divided by 1.5

3*REF>DEV>REF: The step is accepted but the next time step

is divided by 1.5

DEV>REF/3: Incrementation of time step is prohibited.

These calculations are made for all state variables until the

first criterion is fulfilled or to the end. The first variable

which fulfills the first or second criterion is marked and a

counter for that variable is incremented by one. If none of

the three criteria are fulfilled for any variable the time

step is multiplied by 1.5 and an incrementation counter is

incremented by one.

At program termination a small list is written below the

output table giving the number of DERIVA calls, the number of

step increments and the number of step decrements for each

variable which caused a decrement.

- 15 -

By every time step change the new step is limited to the range

given by DTMIN and DTMAX in the CHCK block. If the routine

tries to decrease the step below DTMIN when it already is

equal to DTMIN the program is stopped by an announcement of

step size control stop giving the number of the variable that

caused the step decrement.

The deviation between the Runge-Kutta and Euler step gives a

measure of the higher derivatives and is therefore a reasonable

quantity to use for the step size control being both simple

and fast. The more refined and complicated calculation in

DYSYS is more time consuming, and the two procedures give

similar time step reductions for typical problems for power

plant transients.

The procedure developed for DYSIM has a further advantage in

avoiding frequent cancellations of steps followed by step

increments.Only large pertubations of the system give rise to

step cancellations when EPSI is carefully selected (about l.E-3).

Most often the step will be decreased by criterion no. 2 in

due time to avoid violating criterion no. 1.

The transient calculation is done in the subroutine INTEG that

utilizes the subroutine RUNGE.

6. PRINTOUT FACILITY

The variables to be printed in the output table as well as the

time intervals are specified in the PRNT block.

In order to hit the correct printout times DYSIM will adapt

the time step if needed, but the original step is reinserted

so that loss of time with a gradually step increase is

avoided.

- 16 -

Besides the automatically actuacted printout, the user can

demand a printout at the starting time of any step. This is

done with the statement CALL PRINT, which can be given at any

value of the substep number NR.

The variables at time zero are printed as the first line, and

at program termination as the last line.

The maximum value of variables to be printed is 53 plus the

step number which is inserted automatically in the first column.

The data collected during the integration are stored in a

buffer 540 words long giving space for 10 sets of values be­

tween transfer to the disk file OUT7. When a smaller number of

print variables is specified the buffer will be used in an

economic way so more sets can be stored between disk transfer.

Tne collection of data is done in subroutine INTEG which places

all data in file 0UT7 in unformatted form with record length *

540. A set of variables consists of NPRI+1 data, and a record

has 540/(NPRI+1) sets (truncated integer). At program termina­

tion the subroutine OUTPUT is called. It reads OUT7 and ar­

ranges the data in sides and columns for the output printer.

The variable names specified in the PRNT block are used as

headings.

When the program stops, 0UT7 will be purged unless PLOT is

specified. In that case the file is extended with one record

which contains the integer NPRI+1 followed by two arrays. The

first one with the variable names is 54 words long independent

of NPRI. The second one with the problem identification from

the INPT block is 12 words long.

- 17 -

7. TIME-DELAY SIMULATION

A function DELAY has been developed for simulation of time

delays as found in a flow through a tube with a uniform vel­

ocity, which may change, but without sign shift. The function

is not included in DYSYS, so it must be included in the user

source file when it shall be used. The separation is done to

save core memory when DSLAY is unused, as it has a relative

large data buffer.

Taking the above-mentioned example of a tube with given inlet

temperature TI(t), velocity v(t) and tube length L, the outlet

temperature TO(t)=TI(t-x) is found in the following way:

- Introduce an extra state variable

r* .
X * /v dt, X - v, X(0) = 0

- Find the time delay x by the statement TAU=TRNSTM('TAU',X,X-L),

where the first parameter is an identifier of that call, the

second is the new value of the position X, and the last one

is the delayed value of X to look for in a buffer. The value

returned for TAU is not in terms of seconds, but in units of

buffer positions, i.e. time steps, with linear interpolation

between buffer values.

- Find the delayed temperature by the statement

TODEADTMCTOUT',TI,TAU), where TOUT is an identifier and

TI is the new inlet temperature. TO is found by linear

interpolation between buffer values.

Using TAU in units of buffer positions means that every time-

delay must be found by separate call of TRNSTM. If TAU were

calculated in seconds other delays with fixed relations to

TAU could be calculated by algebraic equations.

- 18 -

The method used here will often require some extra call of

TRNSTM and extra buffer space, but the single calls of both

TRNSTM and DEADTM are considerably faster. With simulations

carried out on our Burroughs 6700 computer saving computer

time is more important than saving core space.

For each function call characterized by an identifier an

input and an output buffer is used each 360 words long. When

the input buffers are full they are transferred to the disk

file DYSIMDELAY, where the output routine can find the data

when not present in any of the two buffers. By program termi­

nation DYSIMDELAY will be purged.

The actual insertion of new values in the buffers is made by a

call from DYSIM after each accepted time step. It means that

only the last one for NR=4 is stored.

Separate actions are taken when the function is called by the

first call of DBRIVA. The identifiers are inserted in a name

buffer for use at later calls. Coinciding identifiers are not

allowed and will cause the program to stop with an error message.

And use of identifiers not used in the first call will have

the same effect.

Adoption of buffer length in order to save core space or to

get space for more function calls is easily done by alteration

of array dimensions as explained in comments in the head of

DELAY. The present version has space for 20 function calls.

- 19 -

8. DUMP AND RESTART FACILITY

When an error occurs long into a calculation it may be diffi­

cult to find the cause if the calculation has to be started at

time zero for every test run. Therefore a dump and restart

facility has been developed so the user can run the problem

once to near the point where the error occurs, and dump the

state of the problem for later restart.

When the dump is actuated the content of the two COMMON fields

INTVAR and DERIV is stored in the file DYSIMDUMP, which is

made permanent. If DELAY is used, the file DYSIMDELAY is ex­

tended with some records in which the content of the delay

buffers and relevant pointers are stored; the file name is

changed to DELAYDUMP, and the file is made permanent. An an­

nouncement with the time for dump is given just after the

output tables.

When a restart is activated the data stored in DYSIMDUMP and

DELAYDUMP is used to reestablish the problem state prior to

the dump, and the integration continues from there.

The two disk files remains permanent so the restart can be

repeated.They must be removed manually when no longer used.

9. OTHER FACILITIES

9.1. Program termination

The calculation may be terminated by the user at the end of

any integration step by the statement CALL TERM. For special

purposes, e.g. search for errors, a more abrupt stop can be

made by the statements CALL NSTOP; RETURN. It results in an

immediate integration stop regardless of the substep number NR

and gives a special messages after the output table.

- 20 -

9.2. Repetetion of integration step

The integration step in progress can be immediately interrupted

and repeated with a smaller one (divided by 1.5) by the state­

ments CALL REPET; RETURN regardless of the value of the substep

number NR. The step decrease may be repeated several times,

e.g. in order to hit a certain value for one of the state

variables. At the first normal step after CALL REPET the

original value of the time step will be reinserted. A permanent

step decrease cannot be called open by the user.

9.3. Activation of special user routines

Special user routines can be activated by the statement CALL

RECAL, v/hen the integration step in progress has been accepted;

it may be given by any value of the substep number NR. It

results in execution of the statement CALL DYNAMS in DYSIM.

DYNAMS must be the name of a user subroutine or an entry point

without parameters.

Just before the program stops with a termination message DYSIM

gives a CALL YOUT. YOUT must be supplied by the user in all

programs as a subroutine or entry point without parameters.

It can be used, e.g. to give a more detailed description of

the system state at termination time than obtained by the

output table.

10. EXPLANATION OP AN EXAMPLE

A listing of a small test example with input file is given on

page 25 and the output print on page 26-28.

DELAYTEST is the user's program file. Four state variables and

two output variables are used. XI and X2 are water inlet tempera-

- 21 -

tures to two tubes, Yl and Y2 are water particle positions

relative to time zero used for time delay simulation, and Zl

and Z2 are the tube outlet temperatures. The inlet temperature

derivatives XlP and X2P, the water velocities YlP and Y2P, and

the tube lengths are given by the input data D(l)-D(6), respec­

tively. Lines 160-190 shows the time delay function calls

needed to find Zl and Z2. Lines 220-250 shows that DYNAMS and

YOUT are defined as empty routines not being used. The file

DELAY is included by line 270. DYSIM is bound by the compiler

statements in line 30-50.

IN5D is the input file.

The INPT block gives a text string as identification of the

problem.

The INCO block defines the number of differential and algebraic

variables as 4 and 2, and the initial values as 0 for all

state variables.

The DATA block has 6 data that specifies: XI and X2 increases

with constant rates equal to 1 and 0.5 °C/sec, the water

flows with constant velocities equal to 1 and 0.5 m/sec, and

the tube lengths are 2 m for each. So the time delays becomes

2 and 4 sec respectively.

The CHCK block gives the initial time step equal to the maximum

time step * 0.1 sec, and £PSI*0, so no accuracy control will

be performed. The maximum transient time is 40 sec.

The TINE block gives the maximum computer time as 60 sec.

The PRNT block asks for 7 print variables beginning with time

intervals of 0.2 sec, increasing to 1 sec at T>10 sec, and

continuing at 1 sec for T>20 sec. The variable numbers and

names are given in line 250-270. Note that the time is called

by no. 0.

- 22 -

The DELY codeword specifies the use of the delay function.

The DUMP codeword specifies a dump at program termination

(here at T=40 sec).

The output print shows first the copy of the input file. No

special input documentation is asked for. The result of the

calculation is shown on the pages marked PAGE 1/1 and PAGE 2/1

with the variables in columns as specified by PRNT. If more

than 10 columns were specified extra pages would be printed

marked as PAGE 1/2 and PAGE 2/2, and so on. Below the tables

each side has information about the spent computer time corre­

sponding to the last step at that page.

DELAVTEST.
SRESET LIST
SRESET FREE
SSET LIBRARY
SSET AUTOBIND
SHOST IS OajECT/DYSIN

SUBROUTINE DERIVA(NR)
COMMON /INTVAR/ T/X1/X2sY1sY2/Z1/Z2
COMMON /DERIV/ X1P/X2P/Y1P/Y2P
COMMON /DATA/ D U)

C
X1P»D(1>
X2P=0(2>
Y1P*D<3>
Y2P=0(A)
T A U l s T R N S T M C T A U T ^ Y l / Y I - D C S))
Z1=DEAOTM< ,{>EL1,,X1,TAU1)
TAU2*TRNSTM('TAy2,ftY2/Y2-0<6>)
Z2*DEADTM<»DEL2T#X2/TAU2>
RETURN

C N

ENTRY OVNAMS
RETURN
ENTRY YOUT
RETURN
END

SINCLUOE »DELAY«

CREATIONS 80/12/19/

IN50.
S DATA FILE FOR DELAYTEST.
*INPT
* TEST OF DELAY SIMULATION
MNCO

2
0.

CREATION: 80/12/19/

4
0.
*DATA

1.
*PRNT

6
*DELV
»DUMP
*ENDE

.5

.1

.2
TIMI

il

0.

1.

.1

0.

. s
0.

r li

2.0

40.

20.

2.0

li

- 24 -

oooooooooogoegooooooo

« - X » *

o • •
• o o

Ol V IM«MW»

• O ^-J

• s • • •» o
• - © o ^ •
Iff l-»
Ul • -

O < • IA »- Al»«t Ol

ih O

« 9-
^ ^ W t O < * Ml ^
4M.MIW tm Wl S Z
0 * » - X < X r M ar H I S

> O) ^ 0 « «

- 25 -

sta *mmm

II11 |il i i 11 "T
rtWMavw««

tipdsui!Htø'iirøltf:n.tø':
uumnam.

3SBSSS5S
W » I » < > I » » > « » ' < I I • •fc»w«m < » . » i < i »i« » i • . • • rm — tm**^*m*

S 3 5 •••««•»*»•«* • • • • i «

M a H p w ^ i » « * < i «pi . p p p i

H » » W | 1PI »<P » » » • • I I P I I 1 P P « • « « • • » • • » • ! .
l » » » p » ' » » P » H l > W I » » H | l » • m i W p m • » ! > w»1>«^piw^jrWpT>p. i ip>Ppi l»

• » » »JOPpP——, P P W P ^ N f .

iWé. »»>>»>»^«pp»g»niw»*»i»»>»<»«»w^o»w^^»t<p>u''ii.'ii' i t^tno'vr^mfmm^

"'' liiliiiiilF
»>PP*WWI*HW«WHW* I • « ••»»•—»—o« wniiiiiilg—»!•>#*

P * > M

•> «p>»«p»*«»j»pj»»*>»a»'*»^>«<>p«»^«»»'^»»»p»»wp><>>«i»»» w w » n n f c « i » ^ »
^ *W«PV*>«pp«p>lP«ppi«JptMMpapMmaM«a«MPa*»»jM»#(f55

- 26 -

• • • • • • • + . + • + • ».
ni ua laitu I*MM u* *u y* • MM IIM *!**•"• r*-*1 låMuumtuiu* u i h m n i n n i å i n n u m u»
N o o o n o r t o o o o n n c o o o o n n o o o o a o o o o n o o

o o o o n n o o o o o o o o o n f i o c x M o o o o n o o o o o
noor>ooooooooooowKi>ftc»w»o"flO«ACMAOiftoi '»o

^ UfVMUfttHMUMUW* I »*«É*«**IW Mltlfk* tMttftU WIHtll UJtit IUUIIÉ1 IMtWUHW Uf

o o o o o o o o c e n o o o o w M o o a H o o o n n o o o
o o o o c l o o o f j o o o o o o o n o o p o o o o o c o r n o o

< ~ * * * * ^ * * ^ ^^«»^A|«SMMAIAlAtfWNMWt»AI AtfV*inif\M*tlVA*V Al
o o n o o n o o o o o o o p o o o o a o o r i o o Q o M o o o

Miu<m>tUHuu»uniim<iuiiwmnw>Minnm«mM)>iinnMum/«uiuiiniiw
V JO O O n O O O C O O P f l O O O O O O O O O O O O O O O O O O

f3«r»o«rto»AOw>o v>oo V*»*SK\»O#»V«# ̂ r vwt-o or**. «O«X» » o

oonooooof tooooooooooooooooooooon

i - o o o o o o o o r > c » ? o o o o o o o o o o o o o c o o o o o n
o o o o o o ^ o e o o o o o o o o o o o o o o n o o o o o o o
O O O Q O O O O O C O O O C O O O O O O O C O O O O O O O O O

#- -^^^^^^^r»n«A*fWWA*AJ#VA*MA»AfAfA*A*AjA;} |UA'rVA«fV
0 0 0 « 1 0 0 t X 3 0 0 0 0 0 0 0 C (H l (3 0 f 3 0 0 f H 3 0 0 0 0 0 0
• » • * • • * • • • • • • • • • • • »•» + + + * * • « - * • + •

Knooononoronoooooooooooooooor.- in nonaooooooorooooooooooooooooooo

SSJfSf A»AjA4M«AJ#UA»*\MMAtf'_ NJV^MVAlAWUfNMUAWWAMUAWUAJfUrU
n o n o r i a t i o o o o o o o o u n o o o o c o o o o n o o o o

^WWflWHtUflWUflMV^WUMtMWUflAlUIWfltftWIMttllWIåflWIUtWIwlMUMWW

x c p c o e o c o o o o o r o o o o n n e o o f o o r t n o o c o

n n o n o r m r i o o r » > r i - j o o n c o * ? o c o n o o n o o o o

^tAfAfAfAJAf«*r*
o o o c o n r K V j f M n o o o o e o c i n o o o o o « o r t o n o
• • • • • • • • * • • • • • • # • • * • * • • • * * * • • • •

•U If I W W I U V l V WIU* UlUf UMM Ilt tt»t»f WWtUI** tf fU*«M U# MittrUHlflilUMM ta»
x e o n o o n o o o o o o o o o o o o o o o o p o o o o n o i j o o
O O O O C O O O C ' O
** h n o o r t o o w i n o o o o o o o n n o o e o o i o o o o o o o

V &UIMfttllVlr#WltlM«tMWHHÉlMfttfUIIVtÉlllfllflWIWUHlfMf«MllfUflWUWflU
•« woooooroooooeooooneoooonfjooooooo
j ^OCH woooonoooooonoooonoooooooono
•W W O C W O O O O O O r j O O O O O O C J O O l J O O O O O Q t JOOO

w^w»o«—vn^y* « » w f f Q ^ w ^ ^ t w ot^ < » p f i

- 27 -

REFERENCES

SCHLECHTENDAHL, E.G. (July 1970). DYSYS - A Dynamic System

Simulator for Continuous and Discrete Changes of State,

Institut fiir Reaktorentwiklung, Karlsruhe, KFK 1209.

Risø National Laboratory RiSØ-M- 1 2271 1

Title and author(s)

Descr ipt ion of a s imulat ion system DYSIM for
continuous dynamic proces se s

P. la Cour Christensen

Group's own registration
number(s)

27 pages + tables + illustrations

Date January 1981

Department or group

Dept- of Reactor
Technology

Abstract Copies to

A general purpose s imulat ion system DYSIM for

continuous dynamic proces se s has been worked out

upon f i v e years experience with a s i m i l a r system

DYSYS from Kernforschungszentrum Karlsruhe. The

new system has been made in order to improve the

performance by excluding unused features and

including new ones , and speed up the computations

by a c a r e f u l programming of the e s s e n t i a l rout ines

for i n t e g r a t i o n and admin i s t ra t ion .

Available on request from Risø Library, Risø National
Laboratory (Risø Bibliotek), Forsøgsanlag Risø),
DK-4000 Roskilde, Denmark
Telephone: (03) 37 12 12, ext. 2262. Telex: 43116

