

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Fault tree and cause consequence analysis for control software validation

Forskningscenter Risø, Roskilde

Publication date:
1982

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Taylor, J. R. (1982). Fault tree and cause consequence analysis for control software validation. (Risø-M; No.
2326).

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Online Research Database In Technology

https://core.ac.uk/display/13791458?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/fault-tree-and-cause-consequence-analysis-for-control-software-validation(55476603-51dd-4692-bfca-143074bab2e6).html

RISØ-M-2326

FAULT TREE AND CAUSE CONSEQUENCE ANALYSIS

FOR CONTROL SOFTWARE VALIDATION

J.R. Taylor

Abstract. A theory underlying application of automatic fault

tree analysis to computer programs is described.

INIS Descriptors: COMPUTER CODES; FAULT TREE ANALYSIS; FAILURE

MODE ANALYSIS.

UDC 681.3.06:519.248

January \'..,6?
Ri.;r Cat. i:' :\;>.\. Jnb^ratory, DK-4000 Roskilde, Denmark

ISBN 87-550-0819-4
ISSN :;<':: ?-C ' . "

Rice ve^.ro 193 2

TABLE OF CONTENTS

Page

INTRODUCTION 5

FAULT TREE ANALYSIS 6

FAULT TREE ANALYSIS FOR SOFTWARE 8

ASSIGNMENT STATEMENT 9

LOOPS AND INDUCTION 10

WHILE STATEMENT 11

FEATURES OF THIS APPROACH 12

TREATMENT OF FUNCTIONS AND SUBROUTINES 13

PROCEDURE CALL 14

WAIT AND SIGNAL STATEMENTS 14

SHARED VARIABLES IN CRITICAL SECTIONS 15

FORK AND JOIN 16

PREDICATE TRANSFORMER RULES FOR STRONGEST POST

CONDITIONS OF x = x^ 17

INTERRUPTS 18

REFERENCES 20

- 5 -

FAULT TREE AND CAUSE CONSEQUENCE ANALYSIS FOR CONTROL SOFTWARE

VALIDATION

Introduction

In many areas of computer application, safety depends on freedom

from software error. Examples a-e elevator control, control of

chemical plants, railway signalling and control, nuclear reactor

safety systems and aircraft landing systems. For systems such as

these it is important to be able either to guarantee freedom

from error, or to be able to reduce the probability of failure

in operations. For example a nuclear reactor shutdown system

should fail at a rate which is typically less than once per 10

program executions.

Path domain testing [1], [2], [3], [4], comes close to satisfy

ing the need for a guarantee of freedom from error. If along

each path through a program a single variable polynomial is com

puted of maximum order n, then n + 1 tests per path will reveal

all computation errors. A similar number of tests of domain

boundaries will detect most control errors, if conditional state

ment predicates involve only single variables. If several

variables are involved in path predicates or in path compu

tations then n tests will not necessarily reveal all errors,

since an actual path predicate or path computation may corre

spond coincidentally to the correct predicate or computation for

all test cases. This will happen if the hypersurfaces for thr.

actual and correct polynomials touch or cut each other at each

test point. The probability of this will generally be very low,

if more than just a î rf test points are chosen at random.

The remaining group of errors undetected by thorough path domain

testing are missing program paths corresponding to special input

data cases. To find these, path domain predicates may be com

pared with formal program specifications [5].

- 6 -

The main advantage of path domain testing, when compared with

proof of program correctness is avoidance of the need for a for

mal specification. It is known that provision of formal specifi

cations is extremely error prone [6]. Additionally, even infor

mal specifications are subject to error, accounting for some

50% of failures in operating software. Systematic testing

overcomes some of these problems, by allowing the programmer to

deal with program performance on a case by case basis.

One way of checking the correctness of test outputs in path

domain testing is to execute the program along with a model of

the plant to be controllr The model is checked to ensure that

its performance in respon.s to computer outputs is satisfactory.

This leads to the arrangement shown in fig. 1. Here the plant

model provides the specification of correct performance.

00HT40L.
IUPVTS

T£ST

COMPUTES
PCANT

not>ec
ACTIO MS

%fi>F£Ty

M O M i TO*?

Fig. 1« Arrargement for software testing with a model.

Fault tree analysis

Automated fault tree analysis [7.8,9 J makes use of finite state

models of plant components which are very much like predicate

trans-'.Jr.M;r3 used in deriving path predicates. Each component is

described by means of a set of statements, termed mini-fault

trees, or trie form

- 7 -

"if x occurs at the input tc a component, and if the

state of the component is Y then x* will occur at the

output of the component, and the new component state

will be Y'"

In building up a fault tree a "top event" is chosen within a

component, generally some undesired event, such as an explosion

or crash. This event is matched to output events of mini fault

trees for the component, and any matching mini-fault trees are

added to the overall fault tree for the system. If there are

several matching mini-fault trees, they are connected into the

overall fault tree via an OR gate.

Having found an initial match, indicating a "first level" cause

of the top event, in an input, or internal state change event X

within the component, causes of this event are then sought. If

X is an internal state change event, mini fault trees with X as

a resulting event are sought for. If X is an input event, mini

fault trees providing a cause for X are sought in the components

connected to that in which X occurs.

This process is iterated, building up chains of events backwards

in time. The chains branch via an AND gate whenever both an

event X and a state Y are required for an event X* to occur. The

chains branch via an OR gate whenever there are two potential

ways in which an event X occurs (fig. 2). The process of build

ing up an event chain terminates when either a "spontaneous"

event is found (that is one for which no specific further cause

is defined), or a "normal" event or state is found, that is one

which will occur frequently during normal operation of a plant.

The process of building up the fault tree terminates when all

event chains have been terminated with "normal" or "spontaneous

events".

It is necessary to store the state of components as the fault

tre.3 + a biii.it up, since if two chains, 'anded* together, arrive

at the same component (due to a feedback or feed forward loop in

the bystem) tuen the two chains must be checked for compatibil

ity. They may, for example, require that the component fulfil

http://biii.it

- S -

two mutually exclusive conditions at the same time. If such a

condition is detected, then the event chains are rejected.

This building of event chains can be carried out in the forward

direction, in which case the process is known as consequence

analysis I*?]. The two processes may be combined into one pro

cedure, cause consequence analysis, in which the causes and con

sequences of a single "critical event" are sought. Heuristic

rules have been devised for systematic selection of critical

events in plant safety analysis [II].

Fault tree analysis for software

The analogy between state transition functions for hardware com

ponents and predicate transformers can be utilised in building

up fault trees for combined hardware and software systems. In

building up the trees, some unwanted event is identified within

the hardware and event chains are traced which can cause this

event. When a "computer" component is reached, events at the

output registers of the computer will be found. The "causes" of

these are register manipulation statements within the software.

Chains of "events" within the software are ther. sought by tracing

changes in program variables from statement to statement using a

predicate transformer technique, until program inputs are found

which are necessary for the particular event chain. The chains

can then be extended once again to hardware, seeking the poten

tial causes of the program input events found.

The mini fault tree notation can be applied to individual pro

gram statements, allowing a uniform process of hardware/software

fault tree construction. For each statement a set of mini fault

trees is generated according to the schemes shown in fig. 3.

These are a modified form of weakest precondition predicate

transformers used elsewhere in proving program correctness [H].

Tho V-rnts" in Lho nrogram iiiini fault trees are statements of

the form

- 9 -

Assignment statement

at t-1, P(E(x))

1
i

x := E (x)

I
at t P (x)

x is a free variable represent

ing the vector of program vari

able values at different points

in the program.

t is a free variable representing

a pair -"earliest and latest time'.'

IF statement

E is an »pression.

IF B(x) THEN il : SI ELSE 12 z S2

SI and S2 are any statements

including compound statements.

CI and 12 are labels.

at t - l f B(x) ft Q(x)

1

1
at t , PC = 11 & Q(x)

!
SI

I
at t , P(x)

i
IF ~ -

1
1

it t , P(x)

at t - 1 , B(x) ft R(x)

1
1

at t , PC = 12 ft R(x)

1
S2

1
a t t , P(x)

1

PC i s program

counter

Fip. 3. Mini fault trees for basic program statements.

"at tine t, predicate P becomes true of the program

variables"

There are three nain differences in the process of building

fault trees fcr hardware and software. Firstly, instead of there

being a simple natch between events and mini fault trees, as for

hardware, the software mini fault trees may match any predicate.

Secondly, the mini fault trees, when matched, must be niodified

by substituting the output predicate into the mini fault tree,

both at the input and output position. Thirdly, it is generally

necessary to simplify the predicates representing input and out

put events in the mini-fault trees. If this simplification re

sults in the predicate FALSE the event chain is abandoned.

Note that the form of fault '.ree for IF and WHILE statements

provides an OR branch for each direction of branching through

the statement. This ensures that all paths through a program

will be treated as different branches of the fault tree. This

has the advantage of ensuring greater understandability, and of

keeping individual predicates relatively simple. It has the dis

advantage of producing very large trees in many cases. For this

reason it h as been found advisable to insist on quite severe

structuring rules for programs to be used with this technique. -

"Separate (possibly parallel) programs should be provided for

each separate control or safety function within a computer sys

tem". This ruin er sures at least that the program paths followed

are relevant to trit anaJysts safety problem. An alternative

formulation of the str ucturing criterion can be applied system

atically. - It" th-:;re ar-3 two program outputs X and Y for which

the values are functions of sets of inputs I(X) and I(Y), then

if r (X) n r(Y; is empty, programs producing outputs X and Y

shoalJ be disjoint.

Loops and induction

With loop.- ir. a program, the size of the fault fees produced

may in-v •. rv '<Ai~ar.. or nay even grow indefinitely. For practical

pur,̂ >scft, tao ru:. .:> r ,1 times the fault tree iterates round a

- 11 -

WILE statement

SI; WEILE B(x) DO S ; S3

SI

I
at t-1, B(x) c P(x)

1

¥
at t-1 B(x> ft P(x)

~ ~ z i —]

WHILE

I
at tf P(x)

1—
S3

SI

I
at t-1, B(x) ft Q(x)

WHILE

I
at t-1, B(x) ft Q(x)

tt
| at t, Q(x) |

- Ik -

program loop must be limitec'.

Induction can be applied to the fault tree to show that no poss

ible program inputs lead to a dangerous event, in the following

way.

1. It is shown that no dangerous output is produced from

any input causing zero iterations round a loop.

2. It is shown that no dangerous outputs are produced from

any input causing one iteration round a loop.

3. It is shown that if no dangerous output has been pro

duced with n iterations around a loop, then no dangerous

output will be produced with n + 1 iterations.

This type of proof is aided by the graphic presentation of the

fault tree. The fault tree branch corresponding to the n + 1

iteration is generally similar in form or is a simple systematic

modification of the form of the branch corresponding to the n

iteration. If the forms can, by logical manipulation, be made

identical apart from the numerical constant n, then the induc

tion proof is completed.

Features of this approach

The main advantage of the approach outline here is that soft

ware testing is integrated into plant functional analysis and

failure analysis. The overall performance of plant and control

system can be investigated.

The problem of finding an unequivocal decision about which pro

gram outputs are "correct", which limits the usefulness of path

domain testing, are solved with this approach by referring to

the 'correct' or 'safe' performance of the plant model.

Problems or specification errors are to a large extent avoided

witn this approach. l>> formal specification of pre gram require-

- 13 -

ments need be made, and the "testing" is independent of the pro

gram specification. The plant component models used are drawn

from a library of standard models which are tested over a long

series of analyses. The models are derived by means of a stan

dardised procedure from physical equations for the components

[4]. in other words the test is very thorough and is independent

of the programming process.

Parallel processing is accounted for by the fault tree method in

a natural way.

The major problems with the fault tree approach to software

validation are the need for inductive proofs for programs with

loops, (these must be provided by the analyst), and the very

large size of fault trees formed. It is doubtful whether any

practical program could be validated as a whole. Rather, it

seems necessary to break down programs hierarchically, into sub

routines or modules.

Given that a proof of freedom from program error is carried

through using a fault tree approach, one might ask whether any

errors can remain in the program. Such weak points must arise

due to some common error in both the programming and plant mod

elling process. Three obvious sources are errors in the physical

description of the plant (plant flow sheet), errors in the plant

construction so that i does not accord with plant design, and

common misconceptions, shared by the programmer and the plant

model builder, about the way the plant works.

Treatment of functions and subroutines

Given the need for a hierarchical decomposition of the analysis

task, a question arises, 'how?'. One approach is to analyse

functions and subroutines separately, and to incorporate these

direcr..Lj into ;no program descriptions.

One way oi. doo-ng this is to evaluate the function which a sub

routine computes and to make use of the functional description

- 14 -

Procedure

| a

1

L f .

CALL

a t t

cal l

Q (P (x))

1
P (x)

1
Q (x) J

Note: It is necessary to

evaluate the function

calculated by P. See fig. 4

WAIT and SIGNAL statements

at t' Q(x)

at t Q(x)

at t S-"ON
- I

V
WAIT S

I

f < t

J
Note: other semantics

for WAIT are possible

in which processing pro

ceeds if S is ON.

at t S-OFF

lat t, R(x)l
1

STGNAL S
-J

| at t, R W

Note: No sharing of

variables is assumed

here - each program has

its own variables.

at t S-ON

- 15 -

Shared variables in critical sections

SI ; CRITICAL SECTION I WITH V DO S ; S3

\ r •
11

\ at f , Q(x)] I at t V+FREE1
' • J < a—i—c:

r
at t, Q(x)

1*' ,< t J

1
at t V+OCCUPIED T\

SI

_ l _
a t t , Q(x)

—izz

I a t t , Q (x))

1
S

^

a t t , V IS FREE

1

| a t t , V-»-OCCUPIED-E|

1
[a t t R(x?

a t t , R (x)|

1
S3

S2
a t t v i s OCCUPIED-a

1 1 '

1
a t t V-+FREE

n~n

- 16 -

FORK and JOIN

S i FORK SI ; S2 JOIN ; S3

S

I

at f Rl(x) & R2(x)

at tl, Rl(x)

SI

f = MIN(t1|t2)

1
[at t2, R2(x)

S2

SI

at t , R(x)

S2

1
at t , R(x)

- 17 -

of the subroutine in building up the fault tree. A mini fault

tree for procedure calls without side effects is shown in fig.

3. The function calculated by a procedure can be found by conse

quence analysis/symbolic execution, applying the rules shown in

fig. 4. These work by finding the value of the program variable

vector after execution of a program statement, as a function of

the program var'able vector prior to execution of the statement.

Rules for finding these functions for individual statements are

then applied iteratively.

Predicate transformer rules for strongest post conditions of

x = = X
o

x = F (xQ)

1
x := B(x)

l

x = E(F(xQ))

(x = F(x o)

IF B(X) THEN S= ELSE S2

X = IF B(F(XQ)) & SPC(Sl,F(xQ)) ELSE SPC (S2>F (xQ))

X = F(xo)l

T
WHILE B(x) DO S

I

X = IF B F(xo) THEN F (xQ)

ELSEIF B F(xQ) & B (SPC (K,F (XQ))) THEN SPC(S,F(x))

ELSEIF B F(x.) & B(SPC(S,F(XQ))) & B (SPC(S,SPC(S,F (x))))

THEN SPC(S,SPC(S,F(X)))

ELSEIF

Interrupts

Three kinds of interrupts can be distinguished

- SiGNALS in which one process waits for an interrupt

from another before restarting

- EXCEPTIONS in which a program halts for some error re

covery action in case some exceptional con

dition is met

- ATTENTIONS in which a running program is halted by another

process, and is either STOPped, MODIFIEd, or

SUSPENDed awaiting a further RESUME command.

The first of these can be treated in the same way as WAIT and

SIGNAL described earlier.

EXCEPTIONS can be treated readily in mini-fault trees by attach

ing an additional predicate to each tree as follows.

P(E(x))

~ T —
x := E(x)

EXEP(x) & P(E(x)) v EXEP(x)
I

x := E(x) unless EXCEP(x)

(P(x)
i

For STOP type interrupts the modification is as follows

a t

L,

t-

U

4.

\
S

1

P(x)

= *

at t-1 P(x)
p.

INTERRUPT RErSflNS

(a t t Q (x) |

- 19 -

For MODIFY interrupt (in which processing resumes after modi

fication) the transformation is

at t -1 P(x)

1
o

j a t t - 1 P(x)

1
INTERRUPT

REMAINS OFF
1 . , 1

S }

»
| a t t Q(x)|

y
I

V>
|at t Q(x)j

at t - l P ' (x) INTERRUPT
•* ON

1 . . »

^ y

P(x) = W?(S,Q(x)) P'(x) = WP(S,WP(F,Q(x)) where F is the func

tion computed by the interrupt routine.

For SUSPEND interrupts the modification is as follows

(at t-1 P(x)|

[at t Q(x)'

at t-1 P(x)

—c=
} — I

INTERRUPTS
REMAIN OFF

Z3

*

at t'P(x)

\at t Q(x)(

I at *• RESUME1
. I '

y

- 20 -

References

1. J.C. Kuang, An Approach tc Program Testing, ACM Comcuting

Surveys, Vol. 7, No. J, September 1975.

2. L.J. White and E.T. Cohen, A Domain Strategy for Computer

Program Testing, IEEE Trans. Software Eng., Vol. SE6.

No. 3, May 1960.

3. W.E. Howden, Methodology -~^r the Generation cf Program Test

Data, IEEE Trans. Comp., Vol. C-24, May 197S.

4. J.R. Taylor and S. Bologna, Validation of Safety Related

Software, IAEA Specialist Meeting on Computerised Con

trol and Safety Systems in Nuclear Power Plants, Pitts

burgh, 1977.

5. S. Bologr.a et al., Deriving Test Data from Specifications,

Report RT/ING(78)3, CNEN, Italy, 1978.

Goode.ioug and S.L. Gerhardt. Towards a Theory of Test

Data Selection, IEEE Trans, on Software Engineering,

Vol. SE-1, No. 2, June 1975.

Taylor, Sequential Effects in Failure Mode Analysis.

In Reliability and Fauxt Tree Analysis, Ed. Barlow,

Fussel and Sinj»apurwal la, SIAM, 1975.

8. E. Hoiic and J.R. Taylor, Experience with Algorithms for

Automatic Failure Analysis, in Nuclear Systems Reli-

abiiity, J.B. ruosel and G.R. Burdidi, SIAM, 1977.

3. J.R. Taylor, */. Algorithm for Fault Tree Construction,

to he published in IEEE Trans. Reliability.

10. D.S. iJieif.cn, 1:^ Cause-^nsequence Method as a Basis for

'juantitativ A.-cider.t Analysis, Report Risø-M-1374.

kisc .\'a:. i <-r, a i Laboratory, 1971.

11. J.R. Taylor, A Background to Risk Analysis, Vol. 1 to 4,

list ;.Hfi.,r»ai Laboratory, 1979.

6. J.B.

7. J.R.

Risø National Laboratory 21 - Risø-M-[2326

(O

ro
CM

•

i

Ti t le and author(s)

F a u l t Tree and Cause Consequence Ana ly s i s

f o r Con t ro l Software V a l i d a t i o n

J . R . Tay lor

pages + tables + i l lus t ra t ions

Date January 1982

Department or group

E l e c t r o n i c s

Group's own registrat ion
number(s)

R- l -82

Abstract

A t h e o r y u n d e r l y i n g a p p l i c a t i o n of au tomat ic

f a u l t t r e e a n a l y s i s to computer programs i s

d e s c r i b e d .

Copies to

Available on request from Risø Library, Risø National
I,A.si^^j (7:-^ Bibliotek), Forsøgsanlæg Risø),
LX-4H00 Roskilde, Dinjn irk
TtLi?i,hono: 101) 17 i: 12, ext. 2262. Telex: 43116

