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A STATISTICAL THEORY ON THE TURBULENT DIFFUSION 

OF GAUSSIAN PUFFS 

T. Mikkelsen, S.E. Larsen and H.L. Pecseli 

Abstract. The relative diffusion of a one-dimensional Gaussian 

cloud of particles is related to a two-particle covariance func

tion Habs^ij»T) = u(Xj,(t) )u(Xi(t-T)-Cjj) in a homogenous and 

stationary field of turbulence. This two-particle covariance 

function expresses the velocityy correlation between one par

ticle (i) which at time t is in the position x^, and another 

particle (j), which at the previous time t-x is displaced the 

fixed distance Cij relative to Xj_(t-T). For Sij = 0, Rabs
 re~ 

duces to the Lagrangian covariance function of a single particle. 

Setting, on the other hand, the time lag T equal to zero, a pure 

Bulerian fixed point covariance function results. 
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1. INTRODUCTION 

The most important property of turbulent fluid motion is maybe 

its ability to disperse fluid particles which were initially 

close together. This is of practical importance for the dis

persal and dilution of pollutants in the environment and is al

so of fundamental importance to the nature cf turbulence. 

The very first theories on eddy diffusion in the atmosphere put 

forward almost simultaneously by 6.1. Taylor (1915) and L.P. 

Richardson (1922) were direct generalisations of the classical 

theory of molecular diffusion. They assumed that the mass effect 

of the eddies was entirely similar, except for a scale differ

ence, to that of the molecules, thus it was suggested that an 

eddy-diffusivity of the order 10"2 to 107 m2 s"1 should replace 

a molecular diffusivity of the order 10~5 m2 s~1 in entirely 

similar differential equations. It became soon clear, however, 

that the difference between the eddy structure of a turbulent 

fluid and the molecular structure of a fluid at rest was more 

than one of scale. The failure of this early theory became evi

dent by the enormous variations found in K, the eddy diffusiv-

ity. Richardson evaluated K for the diffusion of smoke over 

short distances, for the distribution of volcanic ash, and for 

the scatter of small balloons, and found K's varying from 10° 

to 104 m2 s~1. Other estimates varied from 10~2 to 107 m 2 s"1, 
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and in general it was found that K increased rapidly with the 

scale of the phenomenon. The need of an extended theory to ex

press the observed differences led 6.1. Taylor (1921) to formu

late the problem of diffusion by continuous movement. In his 

contribution to the subject, G.I. Taylor extended the theory 

on the problem of the scatter caused by uncorrelated movements 

in a fluid to the case where a correlation exists between the 

motion of a particle at one instant and its motion at some sub

sequent time. By doing so, Taylor solved the problem of relating 

single particle dispersion in homogen* us turbulence to Lag-

rangian statistics of the velocity field. 

The fundamentally different characteristics of two-particle 

statistics, or the statistics of a dispersing cloud of marked 

fluid in a turbulent field were first considered by P.L. Richard

son (1926, 1929) and later by Batchelor (1950) and Brier (1950). 

Richardson (1926) pointed out that relative dispersion is an ac

celerating process in which an initially marked volume of fluid 

is spread at a rate depending upon its size. Richardson summar

ized various atmospheric diffusion data (over the range of 1 km 

to 10 km) and arrived at the "4/3-power law" for the relative, 

or instantaneous, diffusion coefficient Kg defined by 

KR " ° *4/3 <1'1> 

where l is the distance separating two typical marked fluid ele

ments and a is a constant. A list of notation is contained in 

Appendix A. 
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To describe the shape characteristics of a dispersing cloud, 

F.L. Richardson (1926) introduced the distance neighbour func

tion q(*,t) defined by 

m 

q(t,t)-J./ C(i+£',t) C(l',t) di1 (1.2) 
A _«» 

where 

A = / C(t*ft) dl* 

and C(t'rt) is the instantaneous concentration distribution 

along a line *' at time t. The quantity q(£,t) is an even func

tion and its second and fourth moments are simply related to 

those of the concentration curve by 

2 
(1.3) 

v »XT*- -MTV 
2 4 

where o2 and u are the second and fourth moment of C(t') about 

its centre of mass at a given time t. 

Richardson also suggested the differential equation 

iS,»-i- (a tV3 i i ) (1.4) 
3t » \ 3Jt / 

to describe the variable q. This has a solution (G.K. Batchelor, 

1952) 
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«-"- K^X^r) - Æ ) 
V 2 - .2/3, 

(1.5) 
35/2 

9 \3 / 

for the initial condition q(t»0) « Mfi(t) together with the con-

straint / q(t,t) dt = M, where «(t) is the Dirac delta function. 

Note that the formulation by Richardson in Eq. (1.4) implies that 

the spreading of two marked fluid elements depends upon their 

instantaneous random separation I. 

A theoretical interpretation of the empirical relation Eq. (1.1) 

was later given by Obukhov (1941) and Batchelor (1950, 1952) in 

terms of the universal similarity theory of Kolmogoroff. For the 

inertial subrange of high Reynolds number flow, Batchelor de

duced that 

KR = c e
1/3 I4/3 (1.6) 

where c is a constant of order unity and e is the rate of energy 

dissipation. 

The significance of introducing two-particle statistics in the 

relative dispersion problem was recognized by both Brier (1950) 

and Batchelor (1950) who independently demonstrated the involve

ment of the correlation between velocities of two different par

ticles separated in both space and time. This two-particle Lag-

rang ian correlation function is now well known to be fundamental 
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to the relative or cloud dispersion proble« in the saae way »s 

single-particle Lagrangian correlation function is fundamental 

for the fixed frame diffusion problem. Following Batchelor 

(1950), the equation for the aean square separation of an arbi

trary pair of particles is 

d t .— 
--. t*(t) « 2 / {u1(t)-u2(t)}-{u1(T)-u2(T)} dt . (1.7) 

where the subscripts identify the particles, u is the particles 

velocity component along the line t where also the spread t2 is 

measured, and overbars represent an ensemble average over a 

large number of realisations of the turbulent field and t and T 

are two times. 

Eq. (7) contains two types of velocity product. The first, of 

the form U|(t)*U)(t) refers to the same particle at two differ

ent times and thus represents a Lagrangian single particle 

velocity covariance. The second, of the form u-|(t) *U2(T) in

volves one particle at time t and a second at time T and is thus 

a two-particle Lagrangian covariance at different instants. 

An alternative to P.L. Richardson's formula (Eq. (1.4)) to de

scribe the shape characteristics of a dispersing cloud was also 

given by Batchelor (1952), in which the effective diffusivity 

depends upon the statistical quantity l2 rather than upon the 

random instantaneous separation * 
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$ - .(TV" 'J* „.., 
it it* 

The solution satisfying the saw conditions as Eq. (1.5) is here 

1 . »2 
q(t,t) « expt-J.^,), 

(2«!7)1/2 2 I* 

**(t) - (2. at)3 

where the quantity $ denotes an ensemble-average value, taken 

over concentration distributions arising from the release of a 

large number of identical clouds of Barked fluid. 

The fom of the two solutions, Eq. (1.5) and Eq. (1.9), are sig

nificantly different, this large difference allowed Sullivan 

(1971) to test the two hypotheses against each other, using re

latively crude, but repeated observations of dye pluses. His re

sults showed that the average of several instantaneous concen

tration distributions about their centre of mass of gravity were 

approximately Gaussian and the ensemble averaged distance-neigh

bour function to be of approximately Gaussian fom. Thus the 

data were consistent with the theoretical description of Batche-

lor, Eq. (1.9). 

Various attempts to experimentally verify Batchelor's (1950) 

theory on the two particle Lagrangian correlation function, Eq. 

(1.7) (Gifford 1957a,b; 1977), have so far not thrown light on 

the nature of this function, or its effect on relative diaper-
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s ion. Only qualitative agreement is found with Batchelor's iner-

tial range theory for snail tines 

"P" " ̂ o • 2(u,(0)-u2(0))
z*t2 (1-10) 

and for internediate tines 

"i* « c-ct3 (1.11) 

where «<> is the initial separation of the pair of particles and 

c is a constant of order ur-ity. However, various approximate 

foras of the two-particle Lagrangian correlation have been pro

posed (Brier 1950; Batchelor )9S2; Saith and Bay 1961; C.J.P. 

Van Buijtenen 1982). Sawford (1982) compared the nean-square 

separation predictions froa the first three of these and also 

froa an approximation suggested by 6.1. Taylor (see Batchelor 

19S2), in which the two-particle covariance for different in

stants is replaced by a siaple product of a two-particle covari

ance at the same tine and the single particle Lagrangian auto-

covariance function, R^. That is. 

u1(t)»u2(T) « u1(t)-u2(t)-RL(t-T) 

- u1(t)m2(t)ni1(T)Mi1(t)/u' (1.12) 

By comparison with suitably documented observations, Sawford 

found this approximation to be the most appropriate. 
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In the chapter that follows the kinematics of particles involved 

in a relative diffusion process is discussed. In Chapter 3 fol

lows then the derivation of a formula for the growth rate of a 

one-dimensional Gaussian puff (or cloud) of particles. In Chap

ter 4 is finally discussed the implications of the thecry in 

Chapter 3 to various atmospheric dispersion problems. 

Throughout the rest of this report it will be assumed that t * T 

without loss of generality and the theory is restricted to scales 

large compared to the Kolmogorov scale (v^/ejV* (Batchelor 

1950) so that the effects on molecular diffusion may be ignored. 
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2. THEORY 

2.1. Dispersion in a frame of reference attached to 

the centre of gravity 

Consider the release at time t - 0 of a cloud of marked fluid 

into a field of stationary and homogeneous turbulence. Let the 

observed concentration field at subsequent times of the experi

ment be given by C(jc,t). This field is subject to the continuity 

equation, which in integral form reads 

Q = / C(x,t) dx (2.1) 

The quantity Q is the total amount of matter released with the 

puff. The volume integral extends over all space. The quantity 

Q-1 C(£,t) dx_ describes the probability of finding particles in 

the volume element die surrounding the point x_, at time t. The 

first moment of the normalized concentration field Q_1 C(£,t) 

yields the instantaneous position £(t) of the centre of mass of 

the cloud 

c(t) » _L / x C(x,t) dx (2.2) 

Q - -

Like any single "marked" fluid particle, £(t> executes random 

movements as a function of time in a turbulent environment. The 

velocity of the centre of mass position vector, V ^ • dc/dt, 
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follows from a differentiation of Eq. (2.2). By use of the con

tinuity equation, this time in differential form 

ac 
_ = -V.(u C(x,t)) , (2.3) 
3t — ~ 

where £ is the velocity vector of the fluid and v» is the diver

gence operator, use can be made of the fact that lim C(x_,t) - 0, 
IxJ •• 

whereby Eq. (2.2) becomes ~~ 

1 -
Vcntt) = - / u C(x,t) dx (2.4) 

A relative coordinate system y_, attached to the puffs centre of 

mass £, may now be defined by 

2 = x - c (2.5) 

This "moving" frame of reference is exposed to continuous accel

eration by the turbulence and is as such characterized as a non-

inert ial frame of reference. 

The observed concentration field may as well be described in 

this "relative" frame of reference. Clearly, C(^,t) « C(jc-£,t). 

The relative frame description C(y_,t) differs only from the 

"fixed" frame description C(jc,t) in the trivial point of a 

different coordinate origin. However, as will be shown, signifi

cant differences exist between the statistical properties of C 

as observed at a fixed jc and fixed y_, respectively. 
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The ensemble average of the velocity of the centre of mass vec

tor Vcro may be determined from Eq. (2.4). 

Sin * 4- / <£ C+I3TCr) dx (2.6) 

Primes denote fluctuations, i.e. departures from the ensemble 

mean in an individual realization. The mean product ji'C is 

identified as a local turbulent flux vector. In a homogeneous 

field and provided that the cloud when released is symmetrical 

about the origin, this flux must be antisymmetrical, so that its 

space-integral is zero (Csanady, 1973, p. 86). Thus for symmetri

cally released clouds, for others at least approximately 

Xcm = Q / H C(x,t) dx (2.7) 

In the homogeneous field of consideration, the mean velocity V ^ 

of the diffusing particles will be zero or constant. Without 

loss of generality, the 'fixed' coordinate x_ can be allowed to 

drift with the mean velocity u, i.e. the coordinate £ can be 

chosen so as to make Vcm(t) « £. By assuming this, the zeroth 

and first moments of the cloud, calculated on basis of the en

semble-average over many realizations of the flow, becomes in 

the fixed (x_) and the moving (£) frames, respectively 

Q - / C(x,t) dx « / C(^,t) d^ 
(2.8) 

£ " / 2. £(£'*) d i " / 1 ^Z'fc> d Z " ° 
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Any physically meaningful difference between 'fixed* and 'moving' 

frame ensemble average concentration fields C(x,t) and C(y,t) 

are therefore confined to their second and higher moments. 

The second moment of the concentration distribution in the x_ and 

£ frames are also simply related, by use of the definition of 

the centre of gravity Eq. (2.2), we have for each of the three 

Cartesian coordinate components* 

m 

/ y2 C(y,t) dy 

= / (x-c)(x-c) C(x,t) dx 

as «• 

* / x2 C(x,t) dx + c2 / C(x,t) dx (2.9) 
— a* oo 

-2c / x C(x,t) dx 
— o» 

= / x2 C(x,t) dx - c2 Q . 

*(Where all the variables refer to the same Cartesian coordinate 

component, specific designation of the individual components 

(1,2,3) have been omitted for simplicity). 
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On repeating a given release a large nuaber of tiaes, an ensemble 

average value of Eq. (2.9) aay be obtained. When thus enseable-

averaged, the left hand side of tsq. (2.9) aay be identified as 

the coaponentwise, aean square spread of the cloud, calculated 

in the aoving fraae of refe.ence, y 

y2(t) » _ /^ y2 C(y,t) dy , (2.10) 

and the first tera on the right hand side aay be identified as 

the aean square spread of the particles in the 'fixed* fraae of 

reference, x 

— 1 " 
x2(t) * * / *2 C(x,t) dx (2.11) 

Q — 

The last tera, c*(t) represents the aean square spread of the 

"centre of aass" aoveaent of the puffs, also referred to the 

fixed fraae of reference. 

Eq. (2.9) can now be written as 

x^t) « p(t) + c*(t) (2.12) 

which states that the spread, referred to an absolute fraae of 

reference, of an enseable of clouds which are released it jt * 

0, equals at tiae t > 0 the sua of the relative spread of the 

puff and the spread of the puffs centre of aass aoveaent, re

ferred to the absolute fraae of reference. Clearly, x2 is al

ways greater than either y2 or c2. 
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In the previous section it was mentioned that relative diffu

sion is closely related to the rate at which two arbitrary 

diffusing particles separate (cf. the discussion in connection 

with Eq. (1.7)). To establish a relationship between the mean 

square separation O- of two diffusing particles and the mean 

square distance from the centre of gravity (Eq. (2.10)), let a 

point cloud be released at t = 0 at the origin of a fixed co

ordinate x, being parallel to the line I, and consider the mean 

product 

1/Q2 C(xrt) C(x',t) dxdx' (2.13) 

The quantity Q~1 C(x,t) is the probability that a marked fluid 

will be found at the distance x at successive times t. This is 

also equal to the probability of displacement x in time t for a 

single diffusing particle. The product may be regarded as the 

joint probability of finding marked fluid particles both at x 

and at x', hence it is also equal to the joint probability of 

particle displacements for two diffusing particles x and x', in 

time period t. Denoting the two-particle displacement probabil

ity density by P(x,x',t), such that P(x,x',t) dx'dx is the prob

ability of finding one particle at x, and another at x', we may 

also write 

C(x,t) C(x',t) = Q2 P(x,x»,t) (2.14) 

The second moment of P(x,x',t) with respect to the separation 

vector (x-x') yields the mean square separation i2 of two dif

fusing particles 
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X2 • // (x'-x)2 P(x,x*,t) dx'dx 

= -!_// (x'-x)2 C(x,t) C(x',t) dx'dx 
Q2 

= 2 T^t) - 2 c*(t) (2.15) 

By use of Eq. (2.12) this simply becomes 

I2" = 2 y2(t), (2.16) 

which states that along an arbitrary coordinate direction, the 

mean square separation of two diffusing particles is just twice 

their mean square separation from the centre of mass. 

The probability density P(x,x',t) may also be regarded as speci

fying the probability of an absolute displacement x, and a rela

tive displacement 5 = x'-x of the two particles. Multiplying by 

Q and integrating over all displacement x remains the ensemble 

mean of the distance neighbour function mentioned in the previ

ous paragraph 

q(S,t) - Q / P(x,x\t) dx 

«_Lj C(x,t) C(x+C,t) dx (2.17) 
0 
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The integral over the concentration product can be determined 

for individual realizations and yields a somewhat smoothed 

picture of the distribution of particles within the cloud. As 

suggested by F.L. Richardson (1926), this ensemble average 

neighbour density constitutes a possible description of relative 

diffusion alternative to the mean concentration distribution in 

a moving frame (cf. Eq. (1.2)). 

2.2. Kinematics of particle movements in a moving frame 

Let the velocities of the marked fluid or suspended particles 

referred to the moving frame be y_(vi ,V2,V3) • Prom a differenti

ation of Eq. (2.5) it then follows that 

1 ' H " Xcm (2.18) 

From Eq. (2.8) we have dc[/dt = Vcn, = 0 and, without loss of 

generality, we may assume that II = 0 (by measuring u relative 

to a frame of reference moving with any mean motion of the 

ensemble). 

Then, from Eq. (2.18) it is also clear that the ensemble-aver

aged velocity of a particle, relative to the centre of mass 

coordinate of the cloud is zero. 

v « d£/dt ' 0 (2.19) 

Because the relative velocity and displacement of the diffusing 

particles within the puff are related by the Lagrangian integral 



- 21 -

t 
£ - J v(t') dt' (2.20) 

o "~ 

an analogue Taylor's theorem, using relative velocities, can 

formally be derived. Along individual Cartesian coordinate di

rections, the mean square displacement of the cloud varies as 

å<y*> dy c 

' — = 2<y _1> = 2 / <v('t)v('tM'> dt' (2.21) 
dt dt o 

where v is the component of the Lagrangian velocity vector y_ 

that is parallel to y. 

Two types of averaging are involved here. The overbars indicate 

as previously ensemble averaging over all realizations of the 

turbulent field whereas the brackets < > implies an average 

over all marked fluid or particles in the cloud. It must also 

be emphasized, however, that the relative velocity v(t), in con

trast to the absolute velocity u(t) usually used with Taylor's 

theorem, does not constitute a stationary process. At the begin

ning when an initially small cloud is released, only the smallest 

turbulent eddies contribute tc v(t) and thereby to the growth, 

then increasingly larger ones, until the maximum eddy size is 

reached and exceeded. The velocity covariance <v(t)v(t')> is 

thus not only a function of time lag T « t-t', but depends also 

on the diffusion time t explicitly. 



- 22 -

\ ?no!Hfi-»«l Tj-vjranjian correlation function can formally be intro

duced which is appropriate for the relative velocities of par

ticles within the cluster, Csanady (1970) 

<v(t)v(t-tT> 
r(x,t) = (2.22) 

<v2(t)> 

The qualitative behaviour of this relative velocity correlation 

function is shown in Fig. 1. 

At zero time lag T = 0, r(t,t) has its maximum value of unity. 

As with the Lagrangian correlation functions of absolute vel-

ocifci«3:5 (in homogeneous and isotropic turbulence), r( t,t) prob

ably never becomes negative but remains a monotonicaily decreas

ing function of the time lag T. Formally, r(x, t ) defines a Lag

rangian integral time scale tr(t) appropriate for relative dif

fusion, which can be visualized as the shaded area in Fig. 1 

t 
tr(t) * / r( t,t) dr (2.23) 

o 

The time of release of the cloud is here arbitrarily set equal 

to vsero in the lower limit of the integral. 

This relative Lagrangian time scale is characteristic for the 

avi^vj'i I > .?<:i. y >Vi oT: H! li-«-* ^vrntrL^jtiiiu to i.h»> >ao\re.aent of the 

particles relative to the centeroid of the cloud. These eddies 

are ranging from a size comparable to the size of the cloud 

and down to the smallest length scale of the fluid, i.e. the 
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Kolmogorov scale ( v V « ) 1 ^ . Of these eddies, however, the ones 

of size comparable to the cloud will be the most energetic. This 

is true at least for diffusion in the range where the energy 

spectrum is a decreasing function of the wavenumber. 

In this region the time scale tr(t) must be expected to be 

closely related to th* £ecay time of eddies of size comparable 

to the size of the cloud. A simple estimate of tr(t) is 

(<y2>/<v2>)V2. As the cloud grows, successively larger eddies 

begin to contribute, the larger the eddy, the longer is its 

"aemory" or decay time. It is herefrom qualitatively under

standable that tr, and the mean square relative velocity <v
2> 

as well, must be increasing functions of the diffusion time t. 

Since r(r,t) has the maximum value of unity and is a decreasing 

function for T > 0, an upper bound for the relative time scale 

is given by tr(x) * t. Ultimately, when the cloud becomes so 

big that particles associated with it move independently of 

each other, tr will cease to growth and becomes equal to the 

Lagrang ian time scale of the fluid tL. In this far field limit, 

also <v2> will cease to grow and asymptotically approach the 

variance of the fluid, u2. 

By combining Eq. (2.22) and Eq. (2.23), the second moment of the 

distribution function Bq. (2.21) may now be written as 

t 
<y2> * 2 / <v2(t')> tr(t') dt» (2.24) 

o 

The equation represents a kinematic formulation of the relative 

mean square spread defined in Eq, (2.10). 
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3. TURBULENT DI FPUS ION OF GAUSSIAN PUFFS 

3.1. Relative diffusion equation 

Here will be considered the dispersion of passiv* one-disensional 

clouds or puffs« released froa an instantaneous point source in 

m homogeneous and stationary field of turbulence. The particle 

density distribution function will, in accordance with cn—on 

practice, be assumed to be Gaussian, and the growth of the cloud 

will be calculated in terms of the Gaussian standard deviation a. 

By restricting the cloud dispersion to take place along a single, 

but arbitrarily oriented Cartesian coaponent only, the analysis 

allows for calculating relative diffusion in situations where 

the turbulent field is not necessarily i so topic. This is of 

great practical importance. In the planetary boundary layer of 

the atmosphere, for instance, the turbulent field in the two 

horizontal coaponent directions may, under certain conditions, 

be considered homogeneous and stationary but due to the presence 

of the ground, it is not isotopic on scales where relative dif

fusion of pollutants is of interest. 

Chapter 2 led to a general kinematic formulation of the process 

of the relative diffusion of a cloud in the coordinate system 

moving with the centeroid of the cloud. The starting point will 

here be the differential Equation (2.21) which applies as well 

to the calculation of the growth of a one-dimensional Gaussian 
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puff, the standard deviation of which is denoted by (<y*>)'/* 

•<t) 

1 — L * / <v(t)v(t-t)> dT (3.1) 
2 dt 0 

As before« the particle velocity v(t) * dy(t)/dt and the brackets 

iaplies an average over all the particles in the cloud, which 

here is assumed to have a Gaussian density distribution whereas 

the overbar indicates an enseable averaging over the turbulent 

velocity field in question. The moving fraae velocity co-

variance in Eq. (3.1) may next, by use of Eq. (2.18), be related 

to the fixed fraae particle velocity u and the velocity of the 

centeroid Vca. 

<v(t)v(t-t)> - <(u(t)^css(t);{u(t-t)-Vcli(t-T)» 

<u(t)u(t-c)> - <u(t)VaR(t-T)> - <u(t-r)Vai(t)> 

• <Vc-(t)VclB(t-T)> (3.2) 

For convenience it is teaporarily feasible to consider the Gaus

sian cloud as aade up of a very large, but finite number N of 

individual particles. In this cese the averaging over the par-
II 

tides in the cloud < > explicitly reads 1/N [ . The subse-

i«1 

quent generalisation back to the continuous particle distribu

tion function is achieved by letting If approch infinitely. A re

duction of the term in Eq. (3.2) follows now fro* the fact that 

in homogeneous and stationary turbulence, Lagrargian auto-co-

variance functions of individual and simultaneously released 
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particles are identical. In the fixed frame, the i'th particle's 

auto-covariance function reads Ui(t)ui(t-T), where the suffix i 

refers to the i'th particle of the cloud. In the moving frame, 

the same particle's auto-covariance function reads vi(t)vi(t-x). 

The terms in Bq. (3.2) thereby becomes 

i N 
<v(t)v(t-T)> - - j vi(t)vi(t-x) = v(tW(fc-T) 

N i=1 

1 N 
<U(t)u(t-T)> - - [ UjttJUitt-T) = U(t)U(t-T) 

N i=1 
(3.3) 

<U(t)Vcm(t-T)> = V^t-T) I j ^ Ui(t) = V ^ l t - T ^ i t ) 

]—tf . 
<U(t-T,Vcm(t)> = Vcn|(t) _ ^ Ui(t-T) = V ^ t J V ^ t - T ) 

The first two of these equations states that the cloud-averaged 

(< >' auto-covariance function, in moving and fixed coordinates 

respectively, equals the auto-covariance function of an indivi-
N 

dual particle. The quantity 1/N I U{ is analogue to the de-
i-1 

finition of the centre of mass velocity in Eq. (2.4). 

By use of this, Eq. (3.2) now takes the simple foirm 
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Since the turbulence is assumed to be stationary, the Lagrangian 

auto-covariance u(t)u(t-x) must be independent of time t. This, 

however, is not the case for the relative velocity covariance, 

nor for the centre of mass velocity covariance function in 

Eq. (3.4). 

Setting T =0, Eq. (3.4) reduces to 

^2 = v 2 ( t ) + vJnJt) , (3.5) 

where the right hand side is explicitly written as functions of 

time in order to emphasize the non-stationarity of the terms. 

The equation states that the velocity variance of a particle or 

a fluid element, measured in the fixed frame of reference u2, 

is partitioned in a complementary manner between the variance 

of the velocity of the centre of mass of the cloud, and the 

variance of velocities relative to this, v2 . The same result is 

easilier derived by ensemble averaging the square of Eq. (2.18) 

and making use of that <v(t)Vcm(t)> is zero in the moving co

ordinate system. 

An analogous Taylor's theorem, expressed in terms of relative 

coordinates and velocities was previously formulated in connec

tion with Eq. (2.21). For diffusion referred to a fixed frame, 

this theorem applies to the spreading of the individual par

ticles dx2/dt (for which it originally was formulated) as well 

as to the position of the clouds centre of mass coordinate, 

dcvdt. Therefore, the following set of equations applies to 
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the spreading along each of the three Cartesian coordinate di

rections 

dx2 t 

o 
7 d T ~ = / Rabs<r>dT • Rabs<T> = u(t)u(t-x) 

dc2 t 

o 
— ̂ - = / R^lt'Odx ; R,^(t,T) = V^B(t)VMB(t-T) (3.6) 2 Q«t _ cm1 * ' ' cm* ' ' cm1 ' cm* ' * ' 

dy2 t 
Tdt" = J Krel* u'" a i' Rrel' _[.-__=/ RrM(t,r)dt; Rr#i1(t,T) = v(t)v(t-x) 

o 

In Eq. (3.6), the Lagrangian covariance functions for the (ab

solute) velocity in the fixed frame xr for the velocity of the 

centre of mass coordinate c, and for the (relative) velocity in 

the moving frame y, have been abbreviated by RaDS 

(t) *>, R c mU,T) 
and Rrei(t,T), respectively. 

By substituting the first of the Eqs. (3.3) into Eq. (3.1), and 

by subsequent use of Eq. (3.6), the following relation is easily 

obtained 

*)TO emphasize independence of the absolute time t, Rabs is 

defined here as a function of the time-lag T, only. 
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±do2 = J L d ^ _ ± d c 2 

2 ar - 2 ar~ 2 ar~ 

When integrated with respect to the time t, this equation be

comes identical to the previous finding in Eq. (2.10). 

In contrast to Eq. (2.10), however, the present equation consti

tutes a fundament on which the appropriate velocity covariance 

functions can be included to give the rate of growth of the 

cloud. A combination of Eq. (3.6) and Eq. (3.7) gives 

TdT- = I {R*bs(T> " *«<*•'>> dT < 3 - 8 > 

This equation, with a2 • -J- T2 (where T2 is the mean square 

separation of the particles) compares with the general formula

tion of the relative diffusion concept originally presented by 

Batchelor (1952) but also with Sawford (1982) (cf. Eq. (3) of 

the latter paper). 

In Eq. (3.8), RaDs(
T) denotes the Lagrangian covariance function 

appropriate for single particle diffusion. In order to be able 

to integrate Eq. (3.8), however, also Remit,T) must be related 

to some fundamental statistical property of the turbulence. An 

attempt to do so is suggested in the following. 
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The centre of mass auto-covariance function is by definition 

given by 

Rcmtt'T) » VcinttJVcroft-T) = <u(t)Xu(t-x)> (3.9) 

As previously discussed, the brackets in Eq. (3.9) symbolizes an 

(instantaneous) average over all the individual particles or 

marked fluid of the cloud. As shown above, this average can be 

performed by use of the instantaneous displacement distribution 

function of the cloud which, when referred to the fixed coordi

nate x, reads Q~1 C(x,t). When multiplied by the (large) number 

N of particles that constitutes the cloud, Q~1 C(x,t) dx denotes 

the (small) number of particles that occupies the position at 

time t between x and x + dx. At two fixed times, t and t-x, the 

velocity of the clouds centeroid as given by Eq. (2.4) therefore 

reads, respectively 

1 " 
Vcm(t) - - / u(x',t)C(x',t) dx' 

Q —» 
(3.10) 

1 • 
Vcm(t-T) - _ J U(x",t-T)C(x",t-T) dx" 

Q -• 

and with these relations, the centre of mass covariance func

tion in Eq. (3.9) becomes 

Rc„,(t,T) -
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It has already been assiwed that the fora of the instantaneous 

displacement distribution function of the cloud Q"1 C(x,t) de-

velopes in a self-similar way as function of time. In accordance 

with general practice, this distribution was taken to be Gaus

sian and thereby normal-distributed around the centeroid c(t) of 

the cloud, with a standard deviation o(t) 

Q"1 C(x,t) « exp{- 4-(x-c(t))2/o2(t)} (3.12) 
JTi o(t) 

Upon inserting this in Eq. (3.11), however, the averaging over 

the turbulent field represented by the overbar still have to ex

tend over the displacement distribution functions because the 

centeroid c(t) moves around in a random manner as a function of 

time. But by use of the substitution x * c+y, the frame of ref

erence can be changed from fixed (x) to moving (y) coordinates. 

In the moving frame, the Gaussian particle density distribution 

function, G0(tj(y,t) becomes 

Go(t)<v't> " Q"1 C<c+y,t) - - — exp{- ̂ -y2/«2^)} 
1 ' /I7 o(t) 

(3.13) 

In addition hereto the following relation 

Q"1 C(x,t) dx « G0(t)(y,t> dy (3.14) 

simply states that the number of particles in a small line ele

ment is not influenced by changing the frame of reference from 

fixed to moving coordinates. 
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The velocity of the centeroid corresponding to Eq. (3.10) now 

becomes, with the moving coordinate y as independent variable 

m 

Vc«(t) * / u(y'+c,t) Go(t)(y',t) dy' (3.15) 

«• 

Vai(t-T) • / u(y"+cft-T) G„(t_T)(y",t-T) dy" 
— • » 

and analogous to Eq. (3.11), the centre of mass covariance func

tion now becomes 

Rc«(t#T) -

<• «• 

/ / u(y,+c,t)u(y"+c,t-T) Go(t)(y',t) Go(t-T) (y"»t-T) dy'dy" 

(3.16) 

As a consequence of the change of frame of reference the stoch

astic variable c is removed from the distribution functions and 

the averaging over the turbulent field therefore now only af

fects the velocity covariance u(y,+c,t)u(y"+c,t-T), as Eq. (3.16) 

(3.16) shows. This covariance function will now be the subject 

to further investigation. It expresses the time-averaged (Eule-

lian) correlation of fluid velocity, measured at the two fixed 

points y* and y" in the moving coordinate system at the two 

times t and t-r, respectively. The situation is shown in Fig. 2. 

With the purpose of relating this fixed point velocity covari

ance to some more fundamental property of the turbulent flow, 

however, the underlaying Lagrangian diffusion process of the 

problem has to be investigated. 
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In Fig. 3 is shown the Lagrangian trajectory y£(t) of a particle 

or marked fluid (i) that at the previous time t-T was in the 

position yi(t-x). in the moving frame of reference, the dis

placement Ay^ = yi(t) - yj(t-T) constitutes a stochastic process, 

having a distribution function G&y. as shown. The quantity Ay? 

equals the i'th particle contributions to the cloud spreads in 

the period of time between t-x and t. The growth of the cloud 

in the time interval between t-x and t is therefore the collec

tive result of the motion of all the particles motion over that 

period of time. Taking the distribution function for the indi

vidual particles, G&y., as identical and independent Gaus-

sians will now be shown to be consistent with the Gaussian dis

tribution function G0(t) assumed for the particle density of 

the cloud. 

That the distribution function G^y. is independent of any 

neighbour particles implies that Ay^Ayj » 0 for i * j. There

fore, the distribution function Gø(t) can be calculated as a 

superposition of the spread from the individual particles. With 

the continuous distribution functions in question, this super

position leads to the integral (Nikkelsen et al. (1982)) 

os 

G 0 ( t ) ( y ) • / QAy^y-yo) G c ( t - T ) ( y o ) ^ y 0 {i.ii) 

With Ga(t) and Ga(t-i) inserted as Gaussian distributions 

having standard deviations equal to ø(t) and ø(t-x), respective-

ly? GAy. can easily be solved by a Fourier transform of the inte

gral equation (3.17) to be another Gaussian having a standard 

deviation squared given by 
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Ay? = o2(t) - o2(t-t) (3.18) 

Instead of a priori assuming that the instantaneous cloud densi

ty distribution Go(t) *s Gaussian, it could alternatively have 

been assumed that the individual particles displacement distri

bution function in the moving frame, G^y., are identical and 

independent Gaussians, with a standard deviation as given by Eq. 

(3.18). From Eq. {3.•7) it then follows that an initial Gaussian-

distributed cloud, with standard deviation o(t-x), would evolve 

Gaussian at all subsequent times with standard deviation o(t). 

It can be claimed that the Gaussiannity of the relative dis

placement process Ay^, together with the relation 

2(t) - o2(t-T) for i = j 

(3.19) 

for i * j 

AyiAyj = 

is the fundamental assumption of the present theory, and that a 

Gaussian cloud results as a consequence hereof. 

The requirement that any two particles disperse uncorrelated in 

the moving frame (i.e. Ay^Ayj * 0 for i * j, no matter how „lose 

they are, appears to be rather restrictive in a realistic tur

bulent field. Where the cloud consists of a very large number of 

particles, however, in which case a continuum description of the 

turbulence applies, the requirement corresponding to Ay^tyj » 0 

for i * j is 

ir(t) « o(t) (3.20) 
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Here, *r is the relative integral length scale of the tur

bulence, which in terms of the relative velocity v can be de

fined as 

tr(t) = v
2(t)_1 / v(y,t)v(y+S,t) d£ (3.21) 

o 

Even though the inequality £r << o imposes strong limitations 

on the turbulent field, it is not as restrictive as the corre

sponding two-particle requirement, especially not when the cloud 

becomes large. With this picture of the relative diffusion 

process in mind, it is now possible to continue the investiga

tion of the velocity covariance u(y',t)u(y" ,t-t) in Eq. (3.16). 

In close analogy to the turbulent spreading of contaminant par

ticles, also the turbulent field itself can be considered as 

consisting of a very large, but numerable number M of small 

fluid elements or fluid particles. 

Suppose that the i'th of these fluid particles is in the position 

Yi * y* at the time t. The i'th particle Lagrangian velocity 

u(Yi(t)) will then equal the Eulerian velocity u(y',t) in this 

point and at that time. Equivalently, if the j'th fluid particle 

at time t-t is in the position yj * y", its Lagrangian velocity 

equals the Eulerian velocity of that point, u(y-j(t-T)) * 

u(y",t-t). 
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Now consider the situation in Fig. 4 which shows the trajec

tories of a pair of fluid particles (i) and (j), the separation 

of which at time t-t is given by Cij, both in the fixed (x) and 

in the moving (y) frame as well 

Sij(t-T) - Xi(t-T) - Xj(t-T) 

- yi(t-0 + c(t-r) - (yj(t-t) + c(t-t)) 

- Yi(t-r) - yj(t-x) (3.22) 

Suppose one knew the conditional joint probability distribution 

S(yi(t) = y'lyi(t-r) = yj(t-t) + ^ t yj(t-T) = y") for finding 

the fluid particle (i) in the position y' at time t and the 

fluid particle (j) in the position y" at time t-t, with the con

dition that the separation of the two particles, at time t-r, 

is given by the fixed distance Cij(t-i) * yi(t-r) - yj(t-t). 

The contribution from this particle pair (i) and (j) to the 

total covariance u(y*ft)u(y",t-T) could then be calculated as 

S(yi(t) - y'lyi(t-T) * yj(t-t) + qj(t-T), yj(t-x) - y") 

* u(yi(t)"fyi(t-T) - yj(t-t) + Sij(t-T))u(yj(t-T) 

where the ensemble-averaged covariance function of the two par

ticles velocity 
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u(yi(t)|yi(t-T) = yj(t-,x) + qj(t-T))u(yj(t-T) 

= u(yi(t))u(yi(t-T) - Cij(t-T)) (3.23) 

also is subject to the condition that the particle pair separa

tion, at time t-x, equals the fixed distance Ŝ -s. 

The moving frame fixed point covariance function u(y',t)u(y",t-T) 

can then in principle be obtained as the sum of pair contribu

tions from all possible values of the separation Cij of the 

fluid. This leads to the summation over all values of (i) and 

(J): 

u(y',t)u(y",t-x) = 

M M 
I 1 S(yi(t)=y'|yi(t-T) = yj(t-T) + r,ij(t-T),yj(t-T)=y") 
i j 

x u(yi(t))u(yi(t-T)-Cij(t-T)) (3.24) 

In this equation, the velocity u of a fluid particle is not in

fluenced by a change of reference from moving to fixed coordi

nates. In the fixed coordinate (x), the two particle covariance 

function in Eg. (3.23) and Eq. (3.24) therefore also reads 

u(y1
,(t)Ju(yl(t-Tjl«lj(t-

,T)) - u(xi(t))u(xi(t-x)-5ij(t-T)) 

(3.25) 

with the condition that xi(t-x) - xj(t-x) + qj(t-T). As Pig. 

5a shows, Eq. (3.25) expresses the correlation between the vel

ocity of a fluid particle (i) at time t in the arbitrary posi-
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tion xir and the velocity at time t-t of the fluid particle (j) 

that is displaced the distance Sij(t-T) relative to x^t-x). 

Alternatively, by referring the fixed distance Ki-j separating 

the two particles to time t as shown in Fig. 5b, rather than to 

time t-x, the covariance function between the two particles al

ternatively reads u(xj(t-t))u(Xj(t)+£ij(t)), where now x^ = 

XJ(t)+Cij(t). In the stationary and homogeneous turbulent field 

of consideration, these two alternative definitions must be 

identical, since the situation in Fig. 5b follows immediately 

from a time reversal of the situation in Fig. 5a. Moreover, 

these covariance functions will be independent of both the fluid 

particles absolute position x, as well as of the absolute time t. 

This leaves a function of the time lag T and the separation Z^A 

only, which will be denoted as 

RabsUij'*) " u(xi(t))u(xi(t-T)-qj(t-T)) 

= u(xj(t-T))u(xj(t) + (-ij(t)) (3.26) 

Setting ?ij = 0 reduces this two-particle covariance to the 

Lagrangian auto-covariance function of a single particle: 

Rabs(°'T) s Rabs(T)' w n e r e Rabs^T' w a s defined in Eq. (3.6). 

On the other hand, by setting T = 0, a pure Eulerian space-

covariance results, for which the fixed separation distance 5ij 

is along the same direction as the velocity component u. 

With both ?ij and T set equal to zero, the two-particle covari

ance function yields the total energy u2 of the turbulence. 
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*abs(tij'T) defines, with Cjj • O, a fixed frame Lag rang i an 

integral tine scale of the turbulence through 

*L * < « V / «abs(O.T) dT (3.27) 
o 

Also* a (fixed frane) Eulerian integral length scale for the 

turbulence can be defined through 

»B - f u V 1 / «abs(Cij»0) dCåj (3.28) 
o 

The two-particle coveriance function R a o <(CJJ»T) resenbles 

somehow the two-particle Lagrangian covariance u1(t)u2<T) dis

cussed introductionally in connection with Bq. (1.7). But where 

this covariance is conditioned for two fluid particles, which 

at the tine of release is located at the source position, the 

covariance in Bq. (3.26) is conditional with respect to a fixed 

particle separation Cjj but at an arbitrary tine, t-T. 

It reaains to investigate the joint probability distribution 

S(yi(t) « y' lyi(t-T) « yj(t-T) + Cij(t-T), yj(t-t) « y-) in Eq. 

(3.24) for finding the i'th fluid particle at y' at tine t, and 

the j'th fluid particle at y" at tine t-T, with the condition 

that yi(t-T) « yj(t-T)-f5jj(t-T). He can do so with the assump

tion about the behind-laying diffusion process, namely that the 

individual fluid particles in the relative frane follow identi

cal and independent Gaussian statistics. On this basis, the 

probability that the i'th of a total of H fluid particles will 

be in the position y', with the condition that it at the previous 
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time t-t was in the position yjjt-x) = yj(t-x) + Si j (t-x), is 

simply given by 1/M GAy. (y'-yi(t-x)), with GAy. given by Eq. 

(3.17) and Eq. (3.18). Independent hereof, the probability for 

finding the j'th fluid particle in tl.3 position y" at time t-x 

simply is 1/M. 

For the turbulent field considered, the following relations 

therefore applies 

S(yA(t) = y'!yi(t-x) = yj(t-x) + £ij, y-j(t-x) = y") 

- VM 2 GAyi<y'-yi(t-T)) 

" 1/M2 GAy.fy'-tyjtt-xJ + qj)) 

= 1/M2 GAy.(y'-y--Cij) (3.29) 

By substituting this, together with the two-particle covariance 

function in Eq. (3.26), the following expression is obtained for 

the fixed point velocity covariance in Eq. (3.24) 

u(y',t)u(y",t-x) = 

MM 
I I 1/M2 GAyi(y'-y"-Cij) Rabs(Éij'

T> <3-3°> 

Ir the linear extension of a fluid particle is denoted by d, 

and if the number of fluid particles between x£(t-x) »nd 
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Xj(t-t) is denoted by n = i-j, the particle pair separation can 

be written as Cij = dn. 

Further, it is legal to calculate the double sum in Eq. (3.30) 

as a sum over all possible values of i and j where the differ

ence n = i-j is fixed, followed by a sum over all n, viz. 

u(y',t)u(y-,t-T) = 

M 
I I 1/M2 GAy.(y'-y"-dn) Rabs(dn,x) (3.31) 

n=-M i=n+j Jl 

Both GAy, and RaDS
 are decreasing functions of their argument 

dn. Therefore, by going to the limit for very large M, corre

sponding to an extension of the turbulent field to infinity on 

both sides of the diffusing cloud, only the differences for 

which n « M will contribute to the double sum in Eq. (3.31). 

With n fixed at a value much smaller than M, the sum over i = 

n+j approximately equals M times the argument in Eq. (3.31) and 

only the sum over the differences n remains 

u(y',t)u(y",t-T) = 

M 
I 1/M GAy.(y'-y"-dn) Rabs(dn,x) (3.32) 

n»-M * 
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Finally, by considering the extension of the individual fluid 

particles small relative to the Kolmogorov scale of the tur

bulence, the pair separation Cij = dn can be considered a con

tinuous independent variable 5, and in its equivalent integral 

form, Eq. (3.32) becomes 

u(y'rt)u(y",t-T) * 

/ GAy.(y'-y"-5) Rabs(S'
T> d* <3-33> 

— o» 1 

With this result it is now possible to calculate the centre of 

mass covariance function in Eq. (3.16). With the standard devia

tion of GAy as given in Eq. (3.18), the following integral has 

to be evaluated 

Remits) -

CO 

/ J / R a b s ( S r T ) G A y . ( y ' - y " - g G a ( t ) ( y ' , t ) Go( t _ T ) (y", t -T)dy'dy"d £ 
— 00 1 

(3.34) 

By keeping 5 fixed, the remaining two integrals is simply a 

(double) convolution of two Gaussian distribution functions. 

The result hereof is another Gaussian with standard deviation 

equal to the square rod of the sum of the individual variances: 

{(o2(t)-o2(t-T)) + o2(t) + oz(t-T) }V2 « /2~o(t). Thereby, the 

final expression for the centre of mass covariance function be

comes 
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^W*'*) = 

r 1 f 1 Z* 1 
/ Rabs(*'T) -7= e x p 1 ~ 7 ^ f 

2/T alt) l 4 o2(t)J 

?2 , 
åt (3.35) 2/T a(t) l 4 o2(t)-

When an initially small puff is released, a is much smaller than 

lg whereby Renter t) ~ Rabs(u'T)* T n i s implies that the centre of 

mass covariance function, and thereby the centre of mass spread, 

equals that of a single particle in this limit. 

In the other limit, when o has grown to a size much bigger than 

the length scale £g, R ^ t t , ^ becomes small compared to Rabs(
T)* 

This implies that the centre of mass dispersion c2 becomes 

negligible in this far field limit, and that the relative dif

fusion (o2) is entirely dominated by single particle diffusion 

(x"1). 

When the centre of mass covariance function Eq. (3.35) is in

serted in Eq. (3.8), an implicit formula for the growth of a 

Gaussian pufl results 

1 da 2 *• r 

"/ Rabs(*'T>-~ exP(_T-| ) d4 d 

— 2/7 alt) V 4 o2(t)' > 

(3.36) 
52 
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In the previous chapter (Eq. (2.24)), the cloud spread was ex

pressed in terms of a mean square relative velocity v2(t) and 

a relative Lagrangian time scale tr(t), as 

1 d o 2 "•; 

l-jr—= v2(t)-tr(t) (3.37) 
2. at 

From Eq. (3.35) with T =0, and from Eq. (3.4), the mean square 

relative velocity can now be identified as 

v2(t) = Rabs(0,0) - / Rabs(C,0) _-J exp(--L-i W 
2/T o(t) v 4 o2(t)' 

(3.38) 

Equivalently, the relative correlation function r(t,t) defined 

in Eq. (2.22), explicitly becomes 

r(t,T) = (v2(t)) {Rabs(°»
T) 

" / Rabs<*'T> - r r «XP [ ' \ A W (3'39) 

— 2/T o(t) V 4 o2(t)/ J 

With this correlation function given, the relative time scale 

tr(t) is easily obtained by an integration of r(t,x) with re

spect to T, as defined in Eq. (2.23). 



- 45 -

3.2. Spectral formulation of relative diffusion 

It is possible to introduce a spectral representation of the 

two-particle covariance function Rabs^»
T) defined in Eq. (3.26). 

The spectrum S(k,»), where k is wavenumber and w is frequency is 

defined through the Pourier transform 

1 • • 
S(k,*) = / | R a b sU,T) exp(-i(k?+«r)) d£du> (3.40) 

In Appendix B is shown that the single-particle Lagrangian spec

trum SL(w), which is obtained by setting S =0, is related to 

S(k,w) througn 

u2 SL(w) » / S(k,«*) dk (3.41) 

and also that the (fixed point) Eulerian spectrum Sg(k), which 

results by setting T = 0, is related through 

u2 Sp(k) = / S(k,u) du (3.42) 

The inverse Pourier transform corresponding to Eq. (3.40) is de

fined as 

m m 

Rabs(*'T> m / / S(k,») exp(i(k5+*T)) dkdw , (3.43) 
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It is herefro« seen that the single-particle Lagrangian covari-

ance function Rabs(°»
T) c a n D e represented as 

Rabs<°'T> " / J S(kfu») exp(iux) dkdu 

(3.44) 

= / SL(u) exp(iuT) dm 

Nith these definitions, the growth rate of the cloud in Eq. 

(3.36) new becomes 

. da2 t f - -
1 — — = / i / / S(k,«) exp(io.T) dadk 
2 dt 0 i _«. _«• 

1 
(3.45) 

- I f I S(k,«) exp(i(kC+o>T)) 

expf-j. ) dodkdcldx 
v T o2(t) ' J 

2/7 o(t) 

The integration over C of the second term on the right hand side 

is an inverse Fourier transform of the Gaussian distribution, 

i.e. 

1 / 1 *2 \ / _ _ exp (-4-— Jexp(ik5) dC 

-• 2/iT o(t) v 4 o2{t)' 

» expf - k 2 o2(t) \ 

(3.46) 

By use of this in Eq. (3.45), the following equation results 

for growth of a Gaussian cloud, expressed in terms of the spec

trum S(k,u>) of the turbulence 
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do2 t 

2 dt 0 _«, _« 
(3.47) 

1 d ° ' = / / / S(k,u>)(l - exp(- k2o2(t)) 

x exp(iux) dtodkdr 

By specifying S(k,u>), this equation can, numerically at least, 

be solved for do/dt as a function of time t, and thereby also, 

upon a further integration over time from zero to t, for the 

cloud size o(t). 

In Eq. (3.36) and in Eq. (3.45) as well, the term in the par

enthesis { } equals the relative velocity covariance from Eq. 

(3.6) v(t)v(t-i). Analoguous to the procedure used to arrive at 

Eq. (3.38), it is found by setting T = 0 that the mean square 

relative velocity, in the spectral representation, can be ex

pressed as 

» O P 

v2(t) « / / S(u),k)(l - exp(-k2o2(t))j dudk 

« / u2 SE(k)M - exp(-k2o2(t))J dk 

(3.48) 

This shows the important result that the mean square relative 

velocity of the expanding cloud is entirely related to the 

Eulerian space spectrum Sg.(k). 

The relative correlation function, Eq. (3.39) correspondingly 

becomes, in terms of the spectrum S(k,u>) 
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r(t,x) = 

-1 - -
S(u>,k)h - exp(- k2o2(t))]exp(i«T) d 

(3.49) 

- 1 • • / v 

v2(t) / / S(u>,k)M - exp(- k2o2(t)))exp(i«T) dudk 

The relative time scale tr(t) is as before obtainable from an 

integration with respect to T, as defined in Eg. (2.23). 

The equation for growth, Bq. (3.47), will next be considered in 

the limit where the cloud size o is large compared to the length 

scale 1 of the turbulence. Then, for all relevant values of k, 

the quantity 1 - exp(- o2k2) = 1 and by use of Eq. (3.41), 

there results in this limit 

1 = / / ST(o») .exp(i«T) dadt (3.50) 
2 dt 0 _• L 

Integrating twice with respect to time yields 

a2(t) = t2 / SL(«) - — d » (3.51) 

This is simply 6.1. Taylor's formula for single particle diffu

sion. It is seen, not surprisingly, that the different behaviour 

of the spread of a cloud, when compared with that of a single 

particle, is closely related to the spatial correlation of the 

turbulence. 

In the limit where also the time t is large compared to the time 

scale tL, Eq. (3.51) reduces to the usual far field limit o2 

« 2u2tLt, appropriate for single particle dispersion. 
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3.3. Approximative solutions to the relative diffusion equation 

Here will first be investigated the implications of an approxi

mation similar to that suggested by G.I. Taylor, see Bq. (1.12). 

Suppose that the two-particle covariance function in Eq. (3.26) 

can be replaced by a simple product of a fixed point Eulerian 

correlation function at time t: Pg( C) = u(x,t)u(x+€,t)/u2 

and a single-particle Lagrangian auto-correlation function 

i»L< T> * u(xi(t))u(xi(t-T))/u2# in which case 

Rabs<*»T> * »^ *B<*> »L<T> (3.52) f 
i 

| 

Even though Sawford (1982) found this type of approximation to 

be the best appropriate in his comparison, this approximation 

cannot in general be valid, and it is unlikely that it is par

ticularly good except perhaps when T is small compared to tL. 

The Fourier transform in Bq. (3.20) consequently gives, with 

this approximation, 

S(k,») - Z* SE(k) SL(.) (3.53) 

where 

sE<k> " 4 — / pE<*> »»PC-ik« <>€ (3.54) 

and 

SL(«») « 4 - / P L ( T ) exp(- i -T) dt (3.55) 
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When Eq. (3.53) is substituted into Eq. (3.47) an subsequent in

tegration over M results in 

2 dt 
/ P L <

T ) { U 2 / SE(k) [l-exp(-k
2o2(t)) ] dkjdt (3.56) 

However, as before, the tern in the parenthesis { } equals the 

•ean square relative velocity v2(t)f cf. Eq. (3.48). The remain

ing integral over t is, when comparison is made with Eq. (3.37), 

identified as the relative Lagrangian time scale tr(t). 

Consequently, based on the approximation in Eq. (3.52), the fol

lowing set of equations for the growth of a Gaussian cloud re

sults 

da2 
1 ^ - - v2(t)-tr(t) (3.57) 

where 

v2(t) « u2 / S-(k)[l-exp(-k2o2) ] dk (3.58) 'E 

and 

t 
tr(t) - / P L(T) dx (3.59) 

o 

A consequence of the "factorization" of Rabs(€'T) into Eulerian 

and Lagrangian correlation functions is that the relative time 

scale becomes identical to the time scale appropriate for single-

particle diffusion. The mean square relative velocity, however, 
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is here, as well as under more general conditions (Eq. (3.48)), 

found to be related exclusively to the Bulerian properties of 

the turbulence. 

One question that remains to be investigated is to what extent 

the estimate of the relative time scale in Eq. (3.59) applies 

to common turbulence. 

Starting with the limit for large times where t >> tL, the rela

tive time scale tr(t) in Eq. (3.59) becomes equal to tL as it 

properly should, when the particles move independently of each 

other. In the small time limit, on the other hand, the approxi

mative solution to Eq. (3.59) yields 

tr(t) = t for t << tL (3.60) 

since pL( "0
 s 1 for small time lags. It can be examined to 

what extent this limiting value is consistent with the more gen

eral solution, Eq. (3.47), viz. 

1 ' I f ! S(k,u>) ( 1-exp(-k2(j2(t)) J exp(iuT) dwdkd 
2 dt O —OD —OB \ ' O — • 

(3.61) 

An integration over the time lag T here gives 

4 ff! - t f f 8(k,») 8in^t)(l-exp(-k2o2(t))) dodk 
2 at _«. -» ut \ / 

(3.62) 
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But when the time t is sufficiently small, the sine function 

sin(<»t)/<Dt remains close to unity for all values of the angular 

frequency u>, where S(k,o>) contributes to the integral, see 

Fig. 3. Therefore, applicable in the small time limit the fol

lowing approximation must apply 

" sin(wt) " —z 
I S(k,oi) dw = / S(k,u>) du = u 2 SE(k) (3.63) 
-oo W t _ « , 

With this approximation, Bq. (3.62) becomes in the limit for 

t « tL 

, 2 • 
1 -JL = t u2 / Sp(k) 1-exp(-k2o2(t)) dk 
2 dt 1» E 

(3.64) 

= t»v*(t) 

It is seen that also the small limit value for tr(t) from Eq. 

(3.60) is consistent with the general solution in Eq. (3.47). 

For values of t in the interval between the near and the far 

field limits, the degree of approximation associated with tr(t) 

when estimated from Eq. (3.59), depends on the statistical de

pendence between the two variables u and k. If <•> and k are to

tally independent of each other, then is S( w,k) « u 2 Sg(k)Si,(«»), 

and consequently is the correlation uk » f ~ „ f~m wk S(u,k)dudk 

equal to zero. On the other hand, zero correlation between u 

and k is in a particular turbulent field is only a necessary, 

and not a sufficient condition for independency, and thereby 

also for the applicability of Eq. (3.59). 
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There are situations, however« where it is not necessary to be 

concerned about the general applicability of Bq. (3.59). This is 

when the cloud growth is dominated entirely by the Bulerian 

properties of the turbulence« which is the case when the func

tion v2(t) plays an all dominant role for the spread in a rela

tively short period of tis* after the release at t * 0. In that 

case tr(r) s t ( « tL) is a reasonably good approximation 

for the relative tis« scale and the growth of the cloud can be 

calculated simply on the basis of Bq. (3.§4). 

3.4. Spreading of Gaussian puffs related to Eulerian power 

law spectra 

Nhen considering diffusion times that are small relative to the 

Lagrangian integral time scale of the turbulence tL, it was shown 

above that the growth of the Gaussian puff is determined by the 

simple set of equations 

i <*°2 ""; 
j ^ - - v2(t)-tr(t) (3.65) 

v2(t) « u^ / SB(k) ( 1-exp(- k
2©2^))) dk 

tr(t) « t , for t « tL • 

In the limit for small times« only the Eulerian properties of 

the turbulence (through the wavenumber spectrum Sg(k) therefore 

comes into play. The set of equations (3.65) will now be inves

tigated analytically by assuming that the Eulerian wavenumber 
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spectrum is given as a power law SE(k) = 6kPf where 6 is a con

stant of dimension m^ 1 +P). Spectra characterized by p ̂  -1 

results in divegence of the otherwise normalized integral 

•C« S(k)dk = 1. Such powers can consequently be included in the 

analysis only as subranges of limited extension. A power law 

representation of the Eulerian wavenumber spectrum SE(k) is al

so of relevance only over limited ranges of wavenumbers. For in

stance, at very small wavenumbers (k ~ 0), the theoretical spec

trum tends to be flat (p = 0), and approaches asymptotically the 

amplitude level - t/n. 

For cases where the power p is within the interval: -3 < p < -1r 

the second of the set of equations (3.65) can be integrated by 

parts to give 

^(t, =-^Tr(E^).-(p-n , f o r - 3 < P < - , 

(3.66) 

where r denotes the gamma function. 

For cases where p = -3, an analytical solution to the equation 

for v2 does not seem possible. Therefore an approximation of the 

high pass filter (1-exp(- -̂- k2o2(t))) by Heaviside's step 

function, has been introduced* 

•This corresponds to a "top hat" rather than a Gaussian cloud. 
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H(0) = 

O for k < 1/o 

1 for k ^ 1/o 

(3.67) 

Hereafter, the relative velocity variance simply becomes 

v*(t) = - i i ! L a-(P+1> , for P < -3 
(P+D 

(3.68) 

The differential equation for a(t) in Eq. (3.65) is now readily 

solved. 

The following basically different solutions are found, all of 

which are applicable only in the limit t << t̂ > 

i) for -3 < p < -1 

o(t) = {ct2 + <d/q>q 

ii) for p « -3 

o(t) = 0O exp(£ «u
2t2) (3.69) 

iii) for p < -3 

o(t) = {C t2 + oy<i}<i 

Here, q * 1/(3+p), <? - -u26(3+p)/(1+p) and c = <5 T((p+3)/2). 

oQ is the initial size of the cloud, i.e. ø(t » 0). In order 

that the solution iii) for p < -3 applies, it must in addition 

be required that t < tmax, where tmax - ( o0
/q/|c"l) ̂ 2 . The 
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limit t = tmax, however, is never reached with finite size 

clouds. 

The behaviour of o(t) in the phase of spread, where the initial 

puff size o0 is an important parameter, can also be deduced 

from Eq. (3.65) by substituting Eqs. (3.66) for v2(0) with o = oQ. 

For t << (OQ/V 2(0) }^/^f a second-order expansion r.f the 

initial spread reads 

o2(t) = o* + v*(0) «t2 (3.70) 

In form this equation is similar to Eq. (1.10), and is thus in 

accordance with the result of Batchelor's similarity theorem in 

the near field limit. 

Within the time interval described by Batchelor as "intermedi

ate", i.e. when viscosity and the initial puff size are no longer 

of dominating importance, but before the integral time scale tL 

becomes an important scaling parameter, the first of the Equa

tions (3.69) yields 

o(t) = c<J t2/(3+p) (3.71) 

where the constraints are: -3 < p < -1 and {oJ/v^O)}1/2 << tL. 

In the following chapter the implications to atmospheric disper

sion of the set of Equations (3.65) and their solutions Eq. 

(3.69) will be discussed. 
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4. APPLICATION TO ATMOSPHERIC DISPERSION 

4.1. Relative diffusion within the inertial, subrange 

Turbulence in the inertial subrange of the atmospheric boundary 

layer is often represented in terms of Eulerian wavenumber spec

tra in the non-normalized form 

u^ SE(k) = o e
2/3 k~5/3 (4.1) 

Here, a is a constant of order unity and e being the rate of ! 

dissipation of energy. Setting 8 = a e2/3/u2 and p = -5/3, Eq. 

(3.71) for the growth of a cloud becomes 

o2(t) = (2 n-J) a) 3/ 2 c t3 (4.2) 

applicable for "intermediate" times only as defined in Eq. (3.71). 

When compared with Eq. (1.11), this result is also found to be 

in agreement with Batchelor's inertial subrange theory on rela

tive diffusion. 

For the case of homogeneous and isotropic turbulence, Tennekes 

and Lumley (1972) suggest the value of the constant a »-§5- * 1.5 * 

0.246 for the wavenumber spectrum SB(k) in question. (It should 

be emphasized that the proper one-dimensional spectrum to be 

used here is the so-called longitudinal spectrum, and not the 

corresponding transverse spectrum, see Tennekes and Lumley (1972) 
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p. 251 for precise definitions). This is because the velocity u 

is parallel to the particle separation K in Eq. (3.26). 

For inertial subrange isotropic and homogeneous turbulence, the 

prediction for the spread of a Gaussian puff therefore becomes 

o2(t) = (1.34 x 2 x_9_ x 1.5)3/2 e t3 (4.3) 
55 

= .534 t3 

where the dissipation rate e for later comparison has been re

placed by u2/tL« 

Independently, F.B. Smith (1968) and F. Gifford (1981) have de

rived corresponding formulas for the instantaneous spread of a 

plume at small times t << tj, 

o2 = | e t3 (4.4) 

Their numerical coefficient is slightly larger than the coef

ficient found in Eq. (4.3). Their models, however, describe the 

spread of individually released particles, the velocity of which 

in the fixed frame is governed by a Langevin equation with a 

specified initial velocity, common to all the particles released. 

Their model result (Eq. 4.4) thus describes the ensemble aver

aged spread of conditionally released single particle diffusion 

rather than a real two-particle or relative diffusion process. 

Further, their model result is a consequence of an assumed Lag-

rangian exponential correlation function, the Fourier transform 

of which, when expressed in Eulerian terms, becomes 
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u2 SE(Jc) = , (4.5) 
B w 1+( ikp 

This Spectrum is representative for a k~V3 law only in a rather 

limited wavenumber interval in the neighbourhood of (kt)2 = 5. In 

this casev Eq. (4.5) can be approximated by 

5 5 / 6 
u 2 SE(k) = u 2 t " 2 / 3 k" 5 / 3 ( 4 .6 ) 

6* 

Setting o * 55/6/6* = 0.203 the here derived relative diffusion 

model, Eq. (4.3), yields a result which compares with an exponen

tial correlation function 

o2 = 0.401 e t3 (4.7) 

In this case also, a notably smaller coefficient is found com

pared to the conditional single-particle result of Eq. (4.4). 

When two particles simultaneously are deployed from a source 

with negligible (but non-zero) initial separation, both of them 

are immersed into one and the same coherent eddy structure. 

Their motion will thus remain to be coherent over a longer pe

riod of time than will be the case with single released par

ticles, immersed into individual eddy structures and correlated 

through a common initial velocity only. Being more correlated, 

the two simultaneously released particles will not diffuse as 

rapid as the independently released particles. This constitutes 

a posible explanation for the somewhat different c efficients 

found in Eqs. (4.4) and (4.7). 
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4.2. Relative diffusion within the enstrophy inertial suranqe 

Two-dimensional turbulence theory has attracted wide-spread in

terest among meteorologists following the work of Kraichnan 

(1967) and others. The theoretical studies of Kraichnan of two-

dimensional turbulence have shown that a source of energy and 

enstrophy (half-squared vorticity) isolated at wavenumber k^ 

leads to a wavenumber spectrum with a discontinuity at k^. For 

k < k^ energy is cascaded to lower wavenumbers and SE(k) « e
2/3 

k~5/3 an<j £0r fc > jCi# enstrophy is cascaded to larger wavenum

bers and SE(k) « n
2'3 k~3, where n is the enstrophy cascade 

rate. In the latter range, the characteristic time scale Tc is 

n~''3. In contrast to eddy time scales in three-dimensional 

turbulence, this two-dimensional time scale, characteristic for 

the small eddies in two-dimensional flow, is independent of the 

scale of motion. In the atmosphere, Tc is typically ~ 1 day. 

Several authors have provided evidence for the existence of the 

k"3 law in large scale atmospheric spectra down to scales ~ 100 

km (see, for instance, K.S. Gage (1979) for a recent summary). 

By dimensional analysis, J.T. Lin (1972) obtained an exponential 

power law for relative diffusion in the enstrophy cascade range, 

by postulating that the relative diffusivity depends on the 

local mean square relative distance T7 and the enstrophy cascade 

rate n. By dimensional analysis 
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| ^ ! = Y nV3 l2
 (4.8) 

= %l exp(2t/Tc) , for t » Tc 

where y is an order of unity dimensional coefficient and I* 

the initial separation of two diffusing particles. Since, in 

Lin's dimensional analysis, Tc is considered a relevant time 

scale, it is implicitly assumed that t » Tc in Eq. (4.8). 

On the other hand, in the limit where the diffusion time t is 

small relative to Tc, t itself must be a proper scaling param

eter for the relative time scale, i.e. tr « t (as also can be 

seen from Eq. (2.23)). The mean square relative velocity v2 

scales then with the mean square separation and the fixed time 

Tc, so the bigger the separation, the bigger is also the rela

tive variance,^. Based upon the relative diffusivity v2»tr, 

dimensional analysis now gives 

, dT2 T 2 

c 

(4.9) 

T 7 = *2 exp(t2/T|) , for t « Tc 

In the more familiar case of single-particle diffusion, charac

terized by an integral time scale t\, and a constant variance u2, 

dimensional analysis also yields two basically different solu

tions for the spread x2, analogous to Eqs. (4.8) and (4.9). When 
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t >> tL, the rate of growth 1/2 dx
2/dt is proportional to the 

(absolute) diffusivity u2»tL whereas, when t << tL, it is pro

portional to u2«t. This gives rise to the two well-known sub

ranges for the spread of a single particle: x2 « t and x2 « t*f 

respectively. 

By comparing the solution Eq. (3.69) for p = -3 with the dimen

sional analysis, Eq. (4.9) it is found that the two solutions 

are consistent in that they have identical forms and that both 

of them applies to times that are small relative to the time 

scale of the turbulence. 

In order to be able to compare the here suggested turbulent dif

fusion model with the dimensional result, Eq. (4.8), the time 

scale tr(t) in Eq. (3.65) is now set equal to Tc corresponding 

to the limit where t >> Tc. Integrating the first of the equa

tions (3.65) with v2(t) as given by Eq. (3.68) for p = -3 re

sults in 

o(t) = a0 exp(t/Tc) for t >> Tc (4.10) 

This is consistent with the result of J.T. Lin's (1972) dimen

sional analysis for relative diffusion in the enstrophy cascade 

subrange. Eq. (4.10) applies to situations where the diffusion 

time t is large compared to the turbulent time scale Tc. At 

the same time, the puff si?*, o, must be small compared to the 

length scale % of the turbulence. 
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Pigure 7 shows a summary of the four different regimes of dif

fusion predicted with a k~3 power law. The spectrin is assumed 

to be constant {« k°) for k < 1/t. Note that the asymptotical 

values of o(t) equals that of single-particle diffusion, when 

9 > t. This example emphasizes the importance of distinguish

ing between length and time scales« when dealing with relative 

diffusion. 

4.3. Relative diffusion within the troposphere 

A schematic one-dimensional wavenumber spectrum has in Pig. 8 

been composed from the literature, showing the different sub

ranges previously discussed. The diffusion of an initially small 

Gaussian cloud starts in the 3-dimensional isotropic inertial 

subrange and growths from here into the reverse energy cascading 

k-5/3 

inertial range of two-dimensional turbulence. By associ

ating a sink rather than a source for enstrophy and energy at 

the 1000-km scale shown, the empirical data composed in Pig. 8 

becomes consistent with the theory of Kraichnan (1967) previ

ously discussed. After reaching a size a ~ 10* m, the cloud 

growth into the k~3 enstrophy cascade subrange and ultimatively, 

on the 107 m scale, the spectrum is assumed to level off. 

By choosing the mean small scale energy dissipation rate as 

small as 1-2 10"* m2 s~3 the spectrum becomes almost a straight 

line over the interface between two- and trree-dimensional tur

bulence. This occurs because the universal constant for the two-

dimensional upscale transport spectrum, <*II is much larger than 
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for the three-dimensional decay spectrum aj. For the one-di

mensional, longitudinal spectrum shown is chosen: aj = 0.25, 

aIX = 2.2 and c = 0.8 10"
3 m2 s"3. At k = 2ir/1000 m"1 , u2S£(k) 

= 10 m3 s~2 and the rate of energy injection at T ~ 1000 m is 

u2 dSE/dt • 3.1 10~
5 m2 s~3. With the sink at t= 106 m, also 

the time scale T c = n"
1'3 can be determined to be of the order 

-17 hours. The energy of the spectrum in the -5/3, the -3 and 

the flat part is 3* m2 s~2, 99 w m2 s~2 and 200 * m2 s~2, respect

ively and the corresponding length scale S(o)/n = 340 km. 

By calculating o(t) in the -5/3 subranges on basis of Eq. (4.3), 

the clouds travel time t will exceed the enstrophy integral time 

scale T c already at the ~ 10 m scale. Eq. (4.10), applicable 

for t >> Tc, is hence the appropriate formula, rather than Eq. 

(4.9), for determination of the asymptotical form of o(t) in 

the -3 enstrophy cascade subrange. 

Based on the formulas, Eq. (3.57)-(3.59), and on the spectrum in 

Fig. 8, not only the asymptotical form, but also the inter-re

gional growth of the Gaussian cloud can be determined on basis 

of the spectrum in Fig. 8. However, the Eulerian wavenumber 

spectrum does not give information on the Lagrangian correlation 

coefficient PL(T) and therefore neither on the relative time 

scale tr in Eq. (3.59). For this reason, the following simple 

model for tr is proposed for use here 

*L 
tr(t) « (4.10) 

1+tL/t 
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The quantity t-^ is here the parameter value of the integral time 

scale appropriate for large scale dispersion (Gifford, 1982). 

The suggested function has the appropriate asymptotical forms, 

i.e. tr » t for t << t^ and tr = tjj for t >> tL as discussed 

previously in connection with Eq. (3.59) and Eq. (3.60). The 

condition tr £ t is also fulfilled by Eq. (4.10). In addition, 

as long as tr(t) is chosen as a smooth and monotonically in

creasing function of time, its specific form influences only 

the growth marginally. 

By use of the following set of substitutions 

32 = a2/a2 where a2 = u2t? 
(4.11) 

t = t/tL ; tr = tr/tL = t/(t+1) , 

Eq. (3.59) can now be written in the following non-dimensional 

form, appropriate for numerical integration 

1 J ~ 2 » 

= tr(t) / SE(k) (1 - exp(-k
252a2)) dk (4.12) 

2 at -» 

A single "universal" curve for 3(t) is not obtainable from this 

non-linear integro-differential equation. However, solutions can 

be found as a function of the single parameter a * u 2 ^ . 

In Pig. 9 is shown solutions to Eq. (4.12) where u2 and Sglk) 

corresponds to Pig. 8 and for various values of the integral 

scale tj> Por all cases shown, the initial puff size o(0) was 

taken to be 1 metre. 
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For travel times t that are smaller than, say, 30 sec, the nume

rical solution of o(t) follows the near field limit of Eq. 

(3.69i) and for "intermediate" times when tL > 10
5 s, the spread 

o(t) continuous to follow the prediction in Eq. (4.2) (o = 

0.0123 t3/2) as long as up to t = 104 s. Still for high 

values of t^, the cloud then enters the exponential growth 

regime and first when t >> tL and o > 10
4 km the far field 

limit (o2 • t) is ultimatively reached. 

Values of tL smaller than ~ 10 say significantly alter the gen

eral behaviour of the growth with time as shown. For t^ as small 

as ~ 100 s, even not the "intermediate" 3/2-region exists. In 

the literature values of tL ranges from 500 to 2*10
5 s (Gifford, 

1982). A simple, but very crude estimate based on Pasquill's 3-

method is: tL - 3£/(u
2)''. Taking 0 = 4 and * and u2 from 

Fig. 8, tL = 4»340»10
3/30 = 45 »103 s. When comparison is made 

with the empirical curve in Fig. 9 of horizontal atmospheric 

diffusion data, taken from Hage et al. (1967), this value of 

tL seems rather high. A time scale of the order ~ 1 hour (3600 s) 

fits better to the empirical data. At small wavenumbers, the 

spectral values in Fig. 8, and thereby also the energy u2 and 

the length scale I of the hypothetical spectrum, are maybe un-

realisticly high, and smaller values hereof would result in 

better agreement with the empirical curve, when tL is calculated 

by the Pasquill 3-method. 

Before any final conclusion on the relative diffusion theory is 

drawn from the study here, however, it should be emphasized that 
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the aodel Bq. (4.12) used for the computation of o(t) "n Pig. 9 

is a rather simplified version of the sore general theory, Eq. 

(3.36). In suaaary, the simplifications involved here are that 

the two-particle covariance function R^bstC»t) has been written 

as a product U 2P L(T)» E(t). The integral. Eg« (3.59), of P L(T) 

has then been Modelled by Eg. (4.10), whereas P£(C) is specified 

through the inverse Fourier transform of Sg(k) in Pig. 8. 

Pigure 9 finally shows the single-particle diffusion coefficient, 

(U2)1/2.t^ corresponding to the case where tL * • and an in

finite averaging tiae. As discussed for instance by Mikkelsen 

and Troen (1981), this coefficient represents an upper liait 

for o in the far field liait. This condition is in Pig. 9 seen 

to be fulfilled whereas the corresponding value in the relative 

diffusion study by Sheih (1980) was exceeded by a factor of 3. 
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5. DISCUSSION 

Derivation of analytical solutions for the turbulent spreading 

of a cloud, in terms of the two-particle covariance function 

(Eq.- (3.26)), or in terms of its corresponding spectrum (Eq. 

(3.47)), were made possible by assuming a non-fluctuating Gaus

sian particle distribution function. Inclusion of concentration 

fluctuations C* in the analysis, so that C - C + C and C'2 > 0 

would inevitably have introduced terms in the analysis of the 

form (in Eq. (3.11) and onward) 

uU^tJuU-^t-Tjc'tx^tJc'U-^t-T) (5.1) 

together with third order covariances of the variates u and c' 

as well. Therefore, it is expected that the number as well as 

the quality of the assumptions required by conventionally 

modelling such terms (using eddy diffusivities) probably would 

have introduced at least as much uncertainty, if not even more, 

as is introduced here by setting C = 0 . 

There does not seem to exist much reported observation of the 

mean square of the fluctuations in concentration C*2 in clouds, 

but experimental evidence for steady plumes (summarized on pp. 

236-242 of Csanady (1973)) suggests that the distribution of 

C 2 is self-similar and that their ratio to the square of the 

mean concentration C 2/C^ has a value at the centre which varies 

significantly from experiment to experiment (but typically some-
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what less than 0.5) and then increases outwards, reaching values 

of order - 10 at the outer edge of the instantaneous plume. 

Chatwin and Sullivan (1979) considered the mean square of the 

fluctuation in concentration C'2 and the ratio C,2/C2. The main 

theme of their paper is the way in which C, C 2 and C,2/C2 vary 

in space and with time. In terms of the fluid velocity vector y_ 

relative to the moving origin £ of a cloud, the EulerJan mass 

balance over a stationary volume elements reads 

3C 
+ V.(Cv) = < v2c (5.2) 

3t -

Here V« and V2 a r e the divergence and the Lapacian operators in 

the moving frame, respectively, and < is the molecular diffusiv-

ity. The instantaneous concentration of the cloud can be written 

in terrc of its ensemble means on fluctuations as follows 

C(y,t) = C(y,t) + C'(y,t) , c1" = 0 (5.3) 

For the relative velocity in the moving frame, it follows from 

Eq. (2.19) that~v~= 0, so 

v = v'(y,t), T 7 = 0 (5.4) 

Substitution of Eq. (5.3) and Eq. (5.4) into Eq. (5.2) leads in 

the normal way to the following equations for C and C : 
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IS + V.(v'C') = K 72 r (5.5) 

and 

, + V.(v'C + v'C - 7*^) = te V2 C' (5.6) 
3t - _ _ 

The equation for C'2 is obtained from Eq. (5.6) by multiplying 

by 2C'f assuming incompressibility (V-v̂  = 0) and taking the 

ensemble mean. After rearranging, it becomes 

3C • 2 
= - 2 v'C VC 

3t -

+ V»( K 7 C' 2 - v'C 2) 

- 2 K (7 C 1 ) ' (5.7) 

The first term on the right hand side is conventionally described 

as the production of C 2 (by feeding from the distrib .ion of C 

through the mechanism described by the term in Eq. (5.5) involv

ing v/C*. The divergence term in Eq. (5.6) has zero integral 

over all space and, using conventional language, represents the 

transfer of C'2 from place to place. The last term on the right 

hand side of Eq. (5.6) constitutes a drain for C'2 and can be 

associated with a dissipation rate of the quantity C'2. Resem

blance of Eg. (5.6) with the equation for turbulent kinetic en

ergy is evident, only is an advection term (\r»v C,z) missing as 
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a consequence of that reference is made to the moving coordinate 

system, in which"V*= 0. 

Immediately after the deployment of, say a Gaussian cloud, the 

concentration distribution C(x,t) resembles that of the initial 

distribution C(x,0), and since C2 = C2 + C'2, the ratio C,2/C2 

• 0 in this limit for small t. In the limit for large times, on 

the other hand, Chatwin and Sullivan shows that, as a consequence 

almost entirely of molecular diffusion (present through the dis

sipation rate in Eq. (5.6)), the magnitude of C and C 2 decay 

to zero in a way which depends on the details of the fine scale 

structure of the velocity field. This is probably one reason why 

experimental measurement of diffusion of gases and heat show 

that C'2 remains of the same order as C2 as plume or clouds de

velop. 

Disregarding for a while the molecular diffusivity < in Eq. 

(5.5), it is seen that the statistical theory derived in Chap

ter 3 is inconsistent with the Eulerian fluid description, when 

C and thereby V-tv'C) = 0. Therefore, the statistical theory 

leading to Eq. (3.36) becomes consistent with the fluid descrip

tion only, when a time-dependent eddy diffusivity 1/2 do2/dt 

is used to model the flux term v'C « 1/2 do2/dt VC. 

In order to experimentally verify the derived formula for rela

tive diffusion (Eq. (3.36)), the two-particle covariance func

tion Rabs(£'
T)' o r *ts corresponding spectrum function S(k,a>), 

has to be estimated from the turbulent field in question. This 
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is especially so when the travel time t is of the same order of 

magnitude as the integral time scale t̂ > From a practical point 

of view, however, this is rather inconvenient, because reliable 

Lagrangian statistics of a flow-field are difficult, if not im

possible to obtain. Hay and Pasquill (1959) proposed a working 

approximation to circumvent this difficulty by assuming that the 

the Bulerian and Lagrangian auto-covariance functions are similar 

in shape, and that the ratio of the Lagrangian to the Eulerian 

time scale 8 is the only parameter to be determined. 

Setting 5 = 0 , this simple hypothesis may be written in the 

present notation as 

Rabs(°'0T> - Rabs(0'T> (5.8) 

where Rabs refers to an Eulerian (fixed point) auto-covariance 

function. 

It will be proposed here that this simple hypothesis applies to 

the more general situation as well, where the displacement £ is 

different from zero, i.e. 

Rabs(5fBT) » R a b s(5,T) 

As also argued by Hay and Pasquill (1959), the assumption on 

precise similarity between the Lagrangian and Eulerian auto-

covariance functions is unlixeiv to produce substantial errors 

as long as the similarity in shapes are roughly satisfied. 
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The relation between the spectrum function S(k,u) and its cor

responding, entirely Bulerian spectrum function, (S(k,u) is 

simply obtained by substitution of T = 3t in Eq. (3.40). Thereby 

S(k,u) = 8 S(k,0u>) (5.10) 

This shows that the shape of the spectrum function S(k,u>) and the 

entirely Eulerian spectrum function S(k,u>) also is found to 

be similar. In close analogy with Hay and Pasquill's working ap

proximation, Eq. (5.10) implies that the value of the spectrum 

function S, at a fixed value of k and at the frequency «, is 

equal to the Eulerian spectrum function S at wavenumber k, and 

at frequency Bu>. 

An alternative to direct measurements of the covariance function 

Rabs(£'T)' namely Taylor's suggestion Eq. (1.2), has already 

been analysed in Section 3.3. 

In their study, Smith and Hay (1961) consider the growth of a 

Gaussian cloud in a three-dimensional, isotropic field of tur

bulence. However, the covariance function Rabs(^»
T) here appears 

as an entire Eulerian covariance function P B(£+UT) as a con

sequence of the following simplifying assumptions: 1) The cloud 

is assumed to expand "Quasi-stationary", whereby the relative 

velocity covariance function Rrei(t,x) - Rrel(
 f ) ' being a func

tion of the time lag, T, only. 2) The Lagrangian and the Eule

rian covarianre functions, Rrex(
T) an<3 Rrei(

T)» respectively, 

are assumed to be similar in shape, the ratio of the respective 

time scales being 3. 
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In a recent study, van Buijtenen (1982) proposes two methods to 

express the mixed space-time covariance function RaDs(?»
 r) a s a 

function of an Eulerian space covariance function and a time co-

variance function: one is based on a statistical consideration 

and one on basis of physical analogy with mixed longitudinal and 

lateral space correlations. The statistical approach seems to be 

the more general and useful; the second formula, however, is 

simpler and can be useful in specific cases. 

The above-mentioned methods, all designed to circumvent the dif

ficulty associated with a direct measurement of Rabs(€r
T) from 

the turbulent field in question, seems though to have in common 

that they suffer from experimental verification. 
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6. CONCLUSIONS 

By assuming Gaussian particle distribution functions, a statisti

cal theory for the turbulent spread of a one-dimensional cloud 

in homogeneous and stationary have been proposed in terms of a 

two-particle covariance function Rabs(£'
T)' c** E<3* (3.36). A 

simple working approximation, Bq. (5.9) is suggested for the 

determination of this covariance function in terms of entirely 

Eulerian fields. 

Applicable for diffusion times that are small compared to the 

integral time scale of the turbulence, simple expressions for 

the growth of the puff's standard deviation a(t) have been de

rived by assuming that the wavenumber spectrum, corresponding 

to the Eulerian space covariance is a power law SkP. 

For the inertial subrange in atmospheric turbulence, where p = 

-5/3, the predictions (Eq. (3.69) of the cloud growth is found 

to be consistent with Batchelor's (1950) similarity theory, both 

at "small" and at "intermediate" times. In addition to the re

sult of similarity theory, also the constant of proportionality 

between o2 and et3 have been calculated to 0.534, see Eq. (4.2). 

For the case of inertial range two-dimensional turbulence, 

where p * -3, the theory predicts exponential growth in agree

ment with dimensional analysis by Lin (1972). 
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ion 

ensemble average over all realizations 

of turbjlent field 

average over particles in cluster = 

N 
1/H I 

i=l 

deviation fro* cluster Mean 

vector quantity of magnitude a 

centre of Mass position of the cloud, 

and origin for the Moving frame co

ordinate, y 

concentration distribution function of 

cloud 

linear extension of a fluid particle 

Gaussian particle distribution function 
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H Heavyside's step function 

i (as suffix) designation of individual 

particles (x|) or fluid element (dxi) 

in the cloud 

k wavenumber (* 2*/x where X is wave

length 

i* eddy diffusivity for relative dif

fusion 

eddy diffusivity for absolute dif

fusion 

distance separating two typical 

Marked fluid elements 

l£ Eulerian integral length scale 

H number of fluid particles in the 

turbulent field 

II number of tracer particles in a cloud 

n difference in particle number i-j 
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p exponent in power function kP 

P(x',x",t) two-particle displacement probability 

density, see Eq. (2.14) 

q distance neighbour function, see 

Eq. (1.2) 

Q total amount of matter released with 

a cloud 

r relative velocity correlation function, 

see Eq. (2.22) 

Rabs(T) Lagrangian auto-covariance function, 

u(t)u(t-t) 

RaDS'C,T) two-particle velocity covariance func-

see Eq. (3.36). (Note that Rabs(°'
T) = 

Rabs(T> 

Rcm(t'T) centre of mass covariance function, 

see Eq. (3.6) 

Rrei(t,T) relative velocity covariance function, 

see Eq. (3.6) (Note Rrel(t,T) • tr»v
2(t)) 

S(k,uj) spectrum function corresponding to co-

variance Rabs( 5'
T) 
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spectrum function corresponding to 

PEK) 

spectrum function corresponding to 

PL(T) 

time, with origin at moment of release 

of cloud 

fixed frame (Eulerian) integral time 

scale 

fixed frame (Lagrangian) integral time 

scale 

Lagrangian integral time scale appro

priate for relative difusion, see Eq. 

(2.23) 

time scale n" ' in the enstrophy 

inertial subrange 

velocity component referred to fixed 

frame (x) 

velocity component referred to moving 

frame (y) 
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Vpp, centre of mass velocity component 

dc/dt 

x fixed or absolute frame coordinate 

y moving or relative frame coordinate 

a ("U^L) 1/ 2, see Eq. (4.11) 

8 ratio between Lagrangian and Eulerian 

integral time scales, viz. t^/tg 

6 coefficient to power law SE(k) = 6k? 

with dimension m(1+P) 

T(p) gamma function /£ xP~' e~x dx 

c rate of dissipation of energy 

n enstrophy cascade rate 

K molecular diffusivity 

M fourth moment of the concentration 

distribution about the centre of mass 

v kinematic viscosity 
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Cij(t) separation of two particles i,j at 

fixed time, see Eq. (3.22) 

p£(K) Eulerian correlation coefficient 

Rabs<S'°>/u2 

PL(T) Lagrangian correlation coefficient 

Rabs^'*)/^ 7 

o standard deviation of the particle 

positions about the centre of the 

Gaussian puffs 

oQ initial puff size o(t = 0) 

T tine lag, see Pig. 1 

u) angular frequency (= 2» x cycles per 

unit time) 
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APPENDIX B 

Spectral definitions 

This appendix justifies some of the spectral relations used in 

the body of the report. 

The spectrum of the two-particle, mixed Lagrangian-i .erian co-

variance function Rabs(£'
T) *s defined through the Fourier 

transform pair 

1 

(2*)2 -• -« 
S(k,w) =_—,_ / / Rabs(5,x) exp(-i(k5+u)T)) dCdx (B.I) 

Rabs(5,x) - / / S(k,u>) exp<i(kS+»T) dkda> (B.2) 

By definition, Raos(0,0) • n", so from Eq. (B.2) with (C, T) = 

(0,0) we have 

I J S(kr«) dkdw * u
2 (B.3) 

— OD — O P 

For the case where 5 = 0 , which corresponds to an entirely Lag-

rangian (single particle) correlation function PI,( T) * 

u(x,t) u(x,t-t)/u2, we also define the Fourier transform pair 
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1 " 
SL(w) * _ _ / P L ( T ) e x p ( - i u x ) dx (B.4) 

2 * — a» 

?t,(T) = / SL<W) exp( iur ) du (B.5) 

Since P L ( 0 ) = 1 , we have from Eq. (B.5) 

<• 
/ S L ( « ) du = 1 
— m 

Analogously, for the case where x = 0, which corresponds to an 

entirely Eulerian two-point correlation function pE(£) -

u(x,t) u(x+C,t)/u^ we define the Fourier transform pair 

1 " 
SB(k) = ~- / P E(C) exp(-ikC) dC (B.6) 

2 * _«» 

PE(5) » / SE(k) exp(ik5) dk (B.7) 
— CB 

Since PE(0) = 1, we have from Eq. (B.7) 

/ SE(k) dk = 1 (B.8) 
—•• 

By noting that Rabs(0,T) - PL(T)»U 2, we get from Eq. (B.2), 

by setting 5 * 0 

u2 PL(T) - / / S(k,u) exp(iux) dkdu> (B.9) 
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A comparison with Eq. (B.4) now shows the relation 

u^ SL(«) = / S(k,«) dk (B.10) 
— < • 

Analogously, by noting that Rabs(£»°)
 = pgi C)*u2, we get from 

Eq. (B.2) with T = 0, and Eq. (B.7) the relation 

Z* SE(k) = / S(kr«) d» 
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FIGURE LEGENDS 

Fig. 1. Qualitative behaviour of relative velocity correlation 

r(r,t) for given t. The shaded area visualizes the relative in

tegral tine scale tr(t). 

Fig. 2. The motion of a Gaussian cloud G in the fixed frame of 

reference x as a function of time t. The centre of mass coor

dinate of the cloud c defines the origin of the moving frame y, 

relative to which the clouds dispersion in terms of the standard 

deviation o is defined. Also shown are the two fixed points in 

the moving frame, y' and y", on which the covariance function 

u(y'+c,t)u(y"+c,t-T) depends. 

Fig. 3. The moving frame trajectory y^ of a narked fluid 

particle (i) that at time t-t holds the position y^tt-T). 

The quantity Aŷ  = y^(t)-y^(t-t) as well as it« distribution 

function GA V. is shown at time t. 
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Fig. 4. The trajectory of an arbitrary fluid particle (j), 

which at time t-x is in the position y-j(t-x) and another 

particle (i), which at the same time holds a position dis

played the distance Sij relative to (j). Note that Cij 

denotes the separation of the two particles in both the 

moving and the fixed frames: Cjj = yi(t-x)-yj(t-x) = 

Xi(t-T)-Xj(t-x). Otherwise as in Fig. 3. 

Fig. 5. The two-particle covariance function defined in 

Bq. (3.26). a) Referring the fixed particle separation Cij 

to time t-t: u(x^(t) )u(Xi(t-x)-£ij(t-x)). b) Referring 

S4j to time t: u(Xj(t-x))u(Xj(t)+Cij(t)). In homogeneous 

and stationar turbulence, these two definitions are identical. 

Fig. 6. Iso-contour plot of a hypothetical spectrum S(k,w). Its 

maximum value is at (k,u) - (0,0) from where the function mono-

ton ically decreases through the levels I, II and III. The cut

off frequency associated with the low-pass filter sin(wt)/u»t is 

schematically drawn as the vertical line at &» = t_1. Correspond

ingly, the high-pass filter (1-exp(-k2o2)) essentially cuts 

away wavenumbers that are smaller than o"1. The shaded area 

therefore represents the part of the spectrum S(k,u) that es

sentially contributes to the integral over k and u> in Eq. (3.44), 

Fig. 7. Tne four regimes divided by the length scale t and 

time scale tL in a time-space plot of relative diffusion, 

based on a powar law spectrum Sg(k) that is proportional to 

k"3 for k > 1/*, and of constant amplitude for k < 1/t. 
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Pig« 8« Summation of relative diffusion o(t) of an initially 

small Gaussian cloud in relation to a schematic wavenumber 

spectrin composed fro« the literature by R.S. Gage, 1979, 

D.K. Lilly and B.L. Petersen, 1983, and D.K. Lilly, 1983. 

See text for description. 

Pig. 9. Plot of cloud size, o, for various values of the 

Lagrangian integral time scale tg, vs. travel time t, according 

to Eq. (4.12) and the energy spectrum of Pig. 8. The dotted 

curve, see Hage et al. (1967), illustrates an empirical curve 

of horizontal atmospheric diffusion data over the entire at

mospheric range. The maximum single particle diffusion co

efficient, (u2)''*t, corresponding to the case where tL » «, 

is shown as the topmost dashed-dotted line (see also Nikkei-

sen and Troen (1981)). 
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Batchelor's (1950) inertial subrange theory. Correspondingly, 

for the enstrophy cascade subrange in two-diaensional turbulence, 
2 2 2 

for which case p * -3, the theory yields • (t) * o~ exp(ct ), 

where o^ denotes the initial size of the cloud, o 


