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The Effect of the Finite Ion La rmor Radius on the Kelvin-Helmholtz Instability 

by 

Henning Melchior and M. Popovic' 

The Danish Atomic Energy Commission 

Research Establishment Riso 

Physics Department 

Abstract 

Excitation of the Kelvin-Helmholtz instability has been observed in 

a Q-machine when a sufficiently la rge velocity shear exists between adja­

cent layers of the plasma column. 

In an interpretation of this observation, possible effects of the finite 

ion Larmor radius and the collisional viscosity were neglected. The purpose 

of our study is to remove the first of these simplifications. With the finite 

ion Larmor radius included, the growth ra te of the instability is computed 

for several values of the velocity shear and different e-folding lengths of the 

density profiles. 
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1. Introduction 

The purpose of this paper is to determine the effect of the finite ion 

Larmor radius on the Kelvin-Helmholtz instability in a fully ionized plasma. 

The possible occurrence of the Kel vin-Helmholtz instability in a fully ionized 

plasma immersed in a magnetic field has been treated by N. D'Angelo ' and 
2) later by S. v. Goeler '. The effect of the finite Larmor radius was, however, 

not taken into account, and this paper describes an attempt to do so by the 

method indicated by K. V. Roberts and J. B. Taylor ' and later used by F. !•. 

Chen4*. 

2. Assumptions about the Plasma 

The ratio between the particle pressure and the magnetic pressure 

i s supposed to be extremely small so that changes in the magnetic field due 

to the motion of the plasma can be neglected (low-p approximation). In a 

Cartesian frame of reference the magnetic field i s taken to be oriented a-

long the z-axis in the positive direction. A density gradient i s supposed to 

exist along the x-axis , the unperturbed density distribution being of the 
- -Xx 

form n (x) » n e . The ions stream along the magnetic lines with a 

velocity that i s constant along each line, but different for different l ines. 

This shear in velocity may give rise to the Kelvin-Helmholtz instability. 

3. Equations 

The particle motion i s described by the two-fluid equations, in which 

the effects of the finite Larmor radius i s included via the viscosity s tress 

tensor for the ions. The electron viscosity can be shown to be negligible. 

The macroscopic equations fcr the ions are 

- p i • V • (n i V i ) • 0 (1) 

d V i 
nimi*7T * V * -i* * qni*-i x ? "** *"KTi V V *** ' *2* 

In addition we have an analogous set of equation!} for the electrons, in which, 

however, the viscosity term i s neglected. In the collisionless limit the 

terms of the viscosity s tress tensor are 
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n i K T i 
-n - n • —=•— u 

** w w c i xy 

n = o 
zz 

1 n i K T i 

nKTi 
• n = -n = 2 -=— u xz zx *» . yz 

c i ^ 

(3) 

"V - n = 2 
zy 

n-KT. 
u . xz 

Cl 

U.. a re the components of the divergenceless symmetrical velocity 

gradient tensor, often called the rate-of-shear tensor . The components 

a r e given by 

d v. a v. ' * 
i o y lQZt * 

Ty <HT' 
dv. dv. 

IOX IOZ . 

Uxx = 7<2 

u y y s 7 < 2 

U x y - I < 

dv. 
IOX 

d X 

dv. 

d y 

dv. iqy »io 
•57 

uxz I* "TT" * ~"dT~ ' 

! dv. dv. 
uyz 7TT * I T } • 

dv. 

, dv. d v. 
1# IOZ . IOX 

When we consider a steady equilibrium solution of the type 

v i o x * ° ' vioy * c o n S t " vioz = V ioz{ x ) 

with a constant or vanishing zero-order electric field in the x direction, the 

continuity equation and the y and z components of the momentum equation 

a re automatically satisfied. The x-component of the momentum equation 

imposes the following conditions for the pressure gradient drift velocity v, , 
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v. = -ioy 

i m. 

2 c. 
— 

i 

and 
ci m i 

(5) 

1 

where 

4. F i r s t - o r d e r Per turbed State 

Stability conditions are obtained by analysing the perturbed, linear­

ized macroscopic equations. In order to do so, we perturb the various 

quantities from the ze ro -o rde r s ta te by writing 

n i * n i o + n i l • v i = v io + v i l * • * * o + *1 ' 

where 

n i l « n i o • e t c -

With these quantities in the governing macroscopic equations, and with 

higher-order terms neglected, one obtains after subtracting the z e ro -o rde r 

equations: 

dn. , 
TT4-+ n. v • v., + v. . • ^ n . + v . • ' n . . * 0 (3) 
d t IO -xl - i l lo - lo i l v ' 

d v ' l 
n i o m i - f r + m i u i o Y i i ' * Y i o

+ m i n i o ?io ' v ? i l + K T V n i l + 

(7) 

qn i o V f , + q n i i ^ o - q n i i v . o x B - q n i o v . 1 x B + V - ^ 0 ^ . 0 ^ - 0. 

We assume the .solutions for small-ampli tude perturbations to bo nf 

the form 

i( k v + k z - u t) 
n i l " n i l f <*> e r 

i < y + v - - t ) (8) 
v i l * Vil<*> e 

i f k ^ + k z - w t) 
f, • f , (x ) e • 
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With a zero-order density distribution 

" t o « * S io e"VX <9> 

we have 

a ( " i l \ _ 1 °"l + x. - i l . (10) 
n. 

10 lO lO 

By assuming that the velocities are weak functions of x. and by making use 

of the equations (3). (4), (5), (8), (9), and (10), we can transform equations 

(6) and (7) to 

- i Q - i l + ik V.,. + ik.V.- - *V... = O 
n. y i l y z i l z i l x 

IO 

M i lx *ci l ly i dx n m ; T x 

2 
^ r « i , 2 

( i i ) 

w 
CI 

c 2 -

- i wUy+ i y / ^ U ikyA , 1 + «civilx= ^ [4^yViiy 

1 , 2 , , , , 2 , , . .. "il Vioz 
? k y V i l x + k z V i l x + l k z 5 - - T - i - J 

xiz ax . i x z i n i o z m i « c i j_ y* i i : 

•ivk V + k k V + ik - i i *OT 

where fi • « - k y v i o y - k ^ . ^ # 
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All te rms on the right-hand side of the momentum equations come 

from the anisotropic pressure tensor and a r e due to the effect of the finite 

Larmor radius. 

This system of four equations with five unknowns is completed by the 

z-component of the momentum equation for electrons. To obtain this equa-
2 2 

tion, we will change q into -q, • . into -it< , c. into c and n. into n in 

the corresponding ion equation. The terms which account for the finite 

Larmor radius effect a r e neglected. Since charge neutrality is preserved, 
m 

this equation, in the limit •* 0 and for equal temperatures T. = T , is 
reduced to 1 

e * U , = 1 (12) 
n. e i 

This gives the relation between perturbed density and potential. If the 

perturbation in the potential does not depend on x, the ratio n . /n will be 

constant, i. e. f(x) = e" x . 

The following dimensionkss quantities were introduced for 

convenience: 

A 

a 

+ 

V# 

* 

' 

= 

^ i « p i 

Vi 

*" 

w- k v. 
y ioy 

V 
c 

i 

u 

c. 

b = k p. 

- k v. 
Z l O Z 

1 

c 

(13) 

k - r - if • • ! 

Here + i s the frequency in the frame of the ions measured in units 

of ion cyclotron frequency while A is the non-dimensional shear in velocity. 

Converting equations (11) into a non-dimensional form and eliminating 

the perturbation in the potential througl (12), we obtain 
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(14) 

- A V i l x + i a V + i b V * U z . i * ! i i = o 
J n. 

2 2° 
( i ^ | - - i * i ) V l l x + ( ^ + b 2 - l ) \ » i l v * a b V * i l 2 " O 

2 n., 
( l - ^ . _ b ^ V i l x + ( i ^ - i + i ) V » i l y + ( i b A + 2 i a ) - i i = O 

l o 

" i l 
(A-ab )V* n + i b A V » u +(iaA - i* .) V» u + (2ib + iaA) — = 0. 

lo 

The condition that the determinant of this set of equations vanish gives the 

dispersion relation. By some algebraic transformations the determinant 

is brought into a form where the fourth-order algebraic equation becomes 

equivalent to an eigenvalue problem for the magnitude 

V = ( u- k v. - k v- )/u! 
y ioy z IOZ " ci 

5. Computations and Results 

The eigenvalue problem has been solved numerically on the IEM 

70S0 computer at the North European University Computing Center at 

Lyngby. In these computations the complex mat r ix was t ransformed to 

upper Hessenberg form by a modified version of the algorithm given by 

Dennis J . Mueller , connected with the QR-trans formation procedure 

given by Axel Ruhe . 

Fo r each of the values of A (the non-dimensional shear in velocity), 

which was varied in 20 s teps from 0 to 0.40, the dispersion relation was 

solved for 20 different values of k, the numerical value of the propagation 
_4 

vector, k was varied from an initial value of 10 to 1 in the following way: 

k n * k n - l e * P ( i ? l n l 0 ) 

This expression connects the actual value k with the value k . used in 

the previous s tep. Fo r a specific value of A, 20 different solutions of the 

dispersion relation a r e obtained (corresponding to the different values of k). 

Out of these solutions the one with the la rges t positive value of the imagi­

nary part of the frequency i s chosen since it will be the most unstable one. 

In fig. 1 the values of the imaginary par t of the frequency a r e 

plotted against A, the non-dimensional shea r . In these calculations, 

\ c . /w . * 0.09, Curve« for different values of a * k c . /« . a r e shown. 
X CX j X CX 
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It is seen that the growth rate oJ the instability increases as a is varied 

from 0. 084 to a maximum of about 0. 75. After this point, the growth ra te 

decreases for a further increase :.n a. It may also be seen that in the case 

of large growth rates the onset '.'•' the instability occurs for small values of 

the shear A (see fig. 3). 

The curves in fig. 2 show the imaginary part of the frequency for 

different values of A. It is seen that an increase in A has a stabilizing ef­

fect. In fig. 3 a comparison is presented between results of calculations 

performed with and without the finite 1.armor radius te rms . In general, 

these terms will have a stabilizing effect, but as curve II shows, there may 

be unstable solutions with the finite Larmor radius taken into account where 

calculations without it give no instability at all. 

In fig. 4 the dependence of the real part of the frequency on the 

magnitude of the propagation vector is shown. It is seen that the freouency 

increases with increasing k c./u ., and that it is higher with the finite 
& y i' ci ° 

Larmor radius taken into account than without. 

It i s our intention later to verify experimentally the above results 

on the Q-machine at RisC. The results obtained in the present calculations 
I) 9 

support what h i s been found ear l ier by N D'Angelo ' and S. v. Goeler". So 

it is not imperative to include the finite Larmor radius effect in the descr ip­

tion of the Kelvin-Helmholtz instability experiment in a Q-machine. We 

feel, however, that through these calculations one obtains a more accurate 

description of the Kelvin-Helmholtz instability in a fully ionized plasma. 
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Fig. 1. Growth-rate for the instability as a function of the shear in 
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Fig. 3. The curves show the growth-rate of the instability for different 

values of a * k p. and A = \ p . computed with and without taking the 

finite Larmor radius effect into account. For the curves I a - 0. 084 

and A a 0. 09 For curve II a = 0. 084 and A 

Li a = 0. 84 and A » 0 09 

0. 5. For the curves 
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