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The Danish Atomic Energy Commission
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Abstract

Excitation of the Kelvin-Helmholtz instability has been observed in
a Q-machine when a sufficiently large velocity shear exists between adja-
cent layers of the plasma column.

In an interpretation of this observation, possible effects of the finite
ion Larmor radius and the collisional viscosity were neglected. The purposc
of our study is to remove the {first of these simplifications. With the finite
ion Larmor radius included, the growth rate of the instability is computed
for several values of the velocity shear and different e-folding lengths of the
density profiles.
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1. Introduction

The purpose of this paper is to determine the effect of the finite ion
Larmor radius on the Kelvin-Helmholtz instability in a fully ionized plasma.
The possible occurrence of the Kelvin-Helmholtz instability in a fully ionized
plasma immersed in a magnetic field has been treated by N. D'Angelo” and
later by S. v. Goelerz). The effect of the finite Larmor radius was, however,
not taken into account, and this paper describes an attempt to do so by the
method indicated by K. V. Roberts and J. B. Taylors) and later used by F. 1.

Chen?).

2. Assumptions about the Plasma

The ratio between the particle pressure and the magnetic pressure
is supposed to be extremely small so that changes in the magnetic field due
to the motion of the plasma can be neglected (low-f approximation)., In a
Cartesiarn frame of reference the magnetic field is taken to be oriented a-
long the z-axis in the positive direction. A density gradient is supposed to
exist along the x-axis, the unperturbed density‘distribution being of the
form n_(x) = n o e ™. The ions stream along the magnetic lines with a
velocity that is constant along each line, but different for different lines.
This shear in velocity may give rise to the Kelvin-Helmholtz instability.

3. Equations

The particle motion is described by the two-fluid equations, in which
the effects of the finite Larmor radius is included via the viscosity stress
tensor for the ions. The electron viscosity can be shown to be negligible.

The macroscopic equations fcr the ions are

on;
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In addition we have an analogous sel of equations for the electrons, in which,
however, the viscosity term is neglected, In the collisionless limit the
terms of the viscosity stress tensor are
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Uij are the components of the divergenceless symmetrical velocity
gradient tensor, often called the rate-of-shear tensor. The componeats

are given by
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When we consider a steady equilibrium solution of the type
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with a constant or vanishing zern-order electric field in the x direction, the
continuity equation and the y and z components of the momentum equation
are automatically satiefied. The x-component of the momentum equation
imposes the following conditions for the pressure gradient drift velocity Vioy
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4. PFirst-orcer Perturbed State

Stability conditions are obtained by analysing the perturbed, linear-
ized macroscopic equations. In order to do su, we perturb the various

quantities from the zero-order state by writing
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where
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With these quantities in the governing macroscopic equations, and with
higher-order terms neglected, one obtains after subtracting the zero-order

equations:
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We assume the sclutions for small-amplitude perturbations to he nf

the form
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With a zero-order density distribution
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By assuming that the velocities are weak functions of x, and by making use
of the equations (3), (4), (5), (8), {9), and (10), we can transform equations
(6) and (7) to
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where g * o - kyvioy - kzvioz ,




All terms on the righi-hand side of the momentum equations come
from the anisotropic pressure tensor and are due to the effect of the finite
Larmor radius.

This sysiem of four equations with five unknowns is completed by the
z-component of the momentum equation for electrons. To obtain this equa-
tion, we will change q into -q, @ . into -@ c.2 into c2 and n; into n_ in

’ a T oTel ce’ 1 e’ "1 e
the corresponding ion equation. The terms which account for the finite
Larmor radius effect are neglected. Since charge neutrality is preserved,

m
this equation, in the limit _m_e' -~ 0 and for equal *emperatures Ti = Te , is
reduced to !
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This gives the relation between perturbed density and potential. I[f the

perturbation in the potential does not depend on x, the ratio nl/no will be
. -AX

constant, i.e. f(x) = e .

The following dimensionless quantities were introduced for

convenience:
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Here ¢ is the frequency in the {rame of the ions measured in units
of ion cyclotron frequency while A is the non-dimensional shear in velocity.
Converting equations (11) into a non-dimensional form and eliminating
the perturbation in the potential throug’ (12), we obtain
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The condition that the determinant of this set of equations vanish gives the
dispersion relation. By some algebraic transformations the determinant

is brought intc a form where the fourth-order algebraic equation becomes
equivalent to an eigenvalue problem for the magnitude

9 = (w- kyvio_y - kzvioz)/“’ci'

5. Computations and Results

The eigenvalue problem has been solved numerically on the IEM
70S0 computer at the North European University Computing Center at
Lynghy. In these computations the complex mairix was transformed to
upper Hessenberg form by a modified version of the algorithim given by
Dennis J. Muellers), connected with the QR-transformation procedure
given by Axel Ruhes).

For each of the values of A (the non-dimensional shear in velocity),
which was varied in 20 steps from 0 to U, 40, the dispersion relation was
solved for 20 different values of k, the numerical value of the propagation
vector, Kk was varied from an initial value of 10'4 to 1 in the following way:

= Kk

1
kn = K1 exp(-gln 10) .

This expression connects the actual value kn with the value kn-l used in
the previous step. For a specific value of A, 20 different solutions of the
dispersion relation are obtained (corresponding to the different values of k).
Out of these solutions the one with the largeat positive value of the imagi-
nary part of the frequency is chosen since it will be the most unstable one,
In fig. 1 the values of the imaginary part of the frequency are
plotted against A, the non-dimensional shear. In these calculations,
Ae;fe i = 0,08, Curves for differen’ values of a = kyci/g ci are shown,



It is seen that the growth rale of the instability increases as a is varied

from 0. 084 to a maximum of abouvt 0. 75. After this point, the growth rate

decreases for a further increase ‘n a. It may also be seen that in the case

¢

of large growth rates the oiisel ol the Insiability occurs for small values of
the shear A (see fig. 3).

The curves in fig. 2 show the imaginary part of the frequency for
different values of A. It is seen tha! an increase in A has a siabilizing ef-
fect. In fig. 3 a comparison is presented between results of calculations
performed with and without the finite i..rmor radius terms. In general,
these terms will have a siabilizing effect, but as curve Il shows, there may
be unstable solutions with the finite LLarmor radius taken into account where
calculations without it give no instability at all.

In fig. 4 the dependence of the real part of the frequency on the
magnitude of the propagation vecior is shown. It is seen that the frecuency
increases with increasing kyci/“’ci' and that it is higher with the finite
Larmor radius taken into account than without.

It i8 our intention later to verify experimentally the above results
on the Q-machine at Risd. The results obtained in the present calculations
support what has been found earlier by N. D'Angelol) and S. v. Goelerz. So
it is not imperative to include the finite Larmor radius effect in the descrip-
tion of the Kelvin-Helmholtz instability experiment in a Q-machine, We
feel, however, that through these calculations one obtains a more accurate

description of the Kelvin-Helmholtz instability in a fully ionized plasma.
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