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On the Viscosity and Heat Conductivity 
of a Collisionless Plasma in a Magnetic Field 

by 

V. P. Milantiev 

ERRATUM 

To the last sentence of the text on page 2 should be added: 

However, this is only true when the magnetic field lines are straight. In the 
general case our expressions (A. 6) and (A. 7) differ from the formulas of 
Simon and Thompson ((27)), and they reduce exactly to Macmahon's result 
as shown in the appendix. 



March, 196B Ris« Report No. ITS 

On the Viscosity and Heat Conductivity 

of a Collisionless Plasma in a Magnetic Field 

by 

V.P. Milantiev* 

The Danish Atomic Energy Commission 
Research Establishment Riso 

Physics Department 

Abstract 

The viscous stress tensor and the heat flux tensor of a collisionless 
plasma immersed in a strong magnetic field are calculated by Grad's mo
ments method. No contradiction is found between the expressions of the vis
cous stress tensor obtained earlier by A. Macmahon and by A. Simon and 
W. Thompson. It is shown that in the approximation considered the "longi
tudinal" heat flux is absent. 
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A rarefied plasma consisting of electrons and ions i s usually de

scribed by the kinetic equation in the self-consistent field approximation 

(Vlasov plasma). However, many problems of plasma physics can be 

solved by means of the more simple and descriptive hydrodynamic equa

tions. As is known, the hydrodynamic description of ordinary neutral 

gases i s applicable because of the smallness of the molecular free path. 

In a collisionless plasma immersed in a strong magnetic field the 

Larmor radius (more accurately, the cyclotron radius) is an analogue of 

the molecular free path. 

The hydrodynamic equations for a collisionless plaBma immersed 

in a strong magnetic field were first obtained by Chew, Goldberger and Low . 

They are equations of the zero-order approximation with the parameter 

€ • » a n a seem to be equivalent to the equations of ideal magnetohydro-

dynamics. Here, a is a Larmor radius, and L is a characteristic macro-
2) ~ scopic length '. However, for solving many problems of plasma physics 

the Chew-Goldberger-Low zero approximation is inadequate. In such cases 

the effects of the finite Larmor radius (FLR) have to be taken into account* 

These effects are expressed in terms of "magnetic viscosity" and "magnetic 
3-7) heat conductivity in the hydrodynamic equations '. 

The expression for the viscous stress tensor of collisionless plasma 
3) 

with anisotropic pressure was first found by W. B. Thompson '. It has, how
ever, been noticed in the papers refs. 8 and 9 that Thompson's results were 
incorrect. 

A. Simon and W. B. Thompson have later corrected some errors of 

the paper ret. 3 and obtained an expression for the stress tensor which, in 

their opinion, differs from Macmahon's expression in ref. 8. Therefore, 

according to Simon and Thompson, the results of the paper ref. 8 are in

correct. 

To make these distinctions clear, we have performed all the calcu

lations once again in order to find the stress tensor and the heat fluxes in 

a collisionless plasma immersed in a strong magnetic field. Our results 

coincide exactly with Macmahon's. It is also shown that the expressions 

for the stress tensor in the works refs. 15 and 8 are exactly the same. 

It should be noted that there are some differences between the equations 

of the Chew-Goldberger-Low expansion and those of the FLR theory '. 
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We use Grad's method of moments '. This method has been used 
in 13 moments approximation in ref. 11 for investigating transport proces, 
ses in a plasma with collisions. We consider a collisionless plasma with 
anisotropic pressure. For such a plasma the 13 moments approximation 
in general seems to be inapplicable if there are heat fluxes along the mag-

. netic field lines. 
Therefore, if there arc longitudinal heat fluxes, the 20 moments 

approximation ought to be used. 

1. A rarefied plasma is described by the Vlasov equation and Maxwell's 
equations (in standard notation) as 

rot E 

div E 

+ v - of 

. 1 »B 
" c Tf • 

B 4«p , 

+ V »v « V »"S 

rot B — j + - -J,- . 

div 1 - 0 , 

<»> 

' m i e a / f a d ' ' J = £ e a J v " f , d v . 
a a 

Here, "a" refers to particle species and i s to be summed over 
values i and e for ions and electrons. Ga represents the acceleration 
ol all the forces except the ~[v • 3 ] force (for instance, &a • -£- É + I , 
where g is an artificial gravity which approximates the magnetic field 
curvature effects). Prom now on we will omit the subscript "a". 

According to the moments method of Grad. the distribution function 
i s expanded in Henrnte polynomials as follows: 

m 
Here and in the following, summation over the repeated indexes i s 

assumed. 
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Tbe Hermit* polyaomial tensore 

aatialy the ortho-normaliiation condition* 

(Ja) 

where 

T&j^'2^,,,*^™*''™** (S) 

•}?' s *.. ia the Kronecker symbol; » | 2 , s 6, . 6. . . » », s • 
>J «J ») »jij JXJ2

+ i j j 2 V i 

• I j , 6 
1*2 V i 

t ia the dimenaionleaa peculiar velocity relative to the fluid velocity. 
The firat few Hermite polynomial tenaora are 

(4) 

H(o) 

H«1' 

o(2) 

• 1. 

•h-

• * t « J - V 
fi) . W-WiV* S^* W 

In the following we alao need aome general formulae ': 

, t * »i i i <0 
•*i n " ^ " T i 

(4a) 

* v5 w 
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Here the notation . . . ! _ . . . . shows that the index 1. must be omitted. 
By using equations (3) it can easily be shown that the coefficients 

a', ' , are given by 

H'- 'N n(r.t) J V ' - X N n - ' N 

We observe that the coefficients a / ' . are proportional to combinations 
of moments of the distribution function f(r» v, t). Therefore the calculation 
of a-( ' . i s equivalent to the calculation of the moments of the distribu
tion function. 

Further we choose the function f° as a local Maxwellian distribution 
with anisotropic temperature: 

(*r-i-R*s)i («> 

where c(?, tl * ^ - u( 

Sjr.t) - i J v f d v is 

v - u(r, t) i s the peculiar velocity of plasma particles; 
the flow velocity; 

cfl c t lB • c) ; c, = ~c - c/( ; B S £ ; (6a) 

•„ , 8, are "longitudinal" and "transverse" kinetic temperatures respective
ly. In the isotropic case 0„ =9. . As i s known, the anisotropic Maxwel-

121 lian distribution (6) is inconsistent with the Boltzmann equation '. But such 

a distribution is probably a very good approximation in the collisionless 
plasma. (About the speed of the equalization of the temperatures 6, , 6, 
see, for example ref. 13.) 

In the isotropic case the pressure p i s defined by the formula p * w 
trace F, where F is the pressure (stress) tensor: 

^ » i j , P i j ' m / c i c J f d 7 - ( 7 ) 

So it is possible to define a viscous stress tensor J by the formula 

p y " p' i j * 'a • 



6 . 

provided that trace P • 0 . 

In the anisotropic case 

Pil * • Jciel*«* * P,bibJ * *1 < V bibJ> + *ij • («) 

Then, provided that 

trace a » 0 , 

b i b j V j ' ° • 

p. • W J • 

Pj. - 7 < V b i b j > p i l 

<«•) 

(8b) 

So D -f 2p1 • trace P . "Longitudinal" and "transverse" temperatures 
are defined by the two equations 

a, . & aid 4 - 2L . (8c) 

Let us now introduce the vector of dimensionless peculiar velocity 

*' i f ? {ba " W + i f ? bibi i ci * v« ci ,9) 

and vice versa 

ci • i f ¥ <»u - W+f%r bibji S • V i - (9,) 

so that 

VikV«J " » « • <*» 

By using formulae (5), (3), (4), and (9) one can easily obtain 
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.<»> - 1 8 a« 1 1 « O . 

*y ,-^K+(f?-1,(b^+V^b-i • 
(10) 

•S • i f f i Mij« + ^ - l ) (biMikn + "jMikn + W b„ + 

+ <ff-1>2<bibjMkmn4-bibkMjmn*bAMimn>bmbn + 

Here i,. is the viscous stres« tensor; Miik is the heat flux tensor: 

•o that 

i M i k k ' / c i V f * " « i <""> 

ia the heat flux vector. 
To obtain evolution equation« for the coefficient« a: ' , it is 

convenient to exchange the variable« t,r,v for the variable« t.r.'c • v-u 
in the Vlaaov equation (1): 

af * c l -hi • -Tc^ ITT" + c l -TS^ - Gk - ° W « 1 + ul>b,nj "•• 

(12) 

where 3T " .Å *»**" ! B * r j | i •jc]nl • Levy-Civita symbol. 

Multiplying equation (12) by H™' J (I) , integrating over T and 
using formulae (5), (4a) and (4b), we obtain Sifter some calculations 
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da<N> . 
*i • • lw / n u »\ # M I \ \ / * V 1" N , /AW-l) + a „<N-1) W " l i * v »l«"^ 
d i — • ( > r . i N

 + \ v-^-w (*, Vi* "^^ 

13 T*r ^ n r . i N
+ • i i , ' i 1 . . i f . i l i ; -+ V,, 

-K3 -3 ̂ yww v^U-J* 

*(*-<tK-EU 
" v ljVmk - T 3 ^ (Jml> + it a«11-1) 

•jkl 1 km j i r \ m i p . ^ . ^ mi , i j . . ^ . . ^ . . ^ ; . 

(13/ 

Here, the notation . . . . i . . . . . i _ . . . . shows that the indices i„, i_ must yj, ^ j , • r 
be omitted. 

In the isotropic case the left-hand side of the system (13) of course 
coincides with the known expression '. The system (13) is equivalent to a 
Vlasov equation and represents an infinite chain of moment equationa. For 
practical purposes it is necessary to select a method of cutting off this chain. 
By the Orad method it is possible to describe the properties of the system 
by the quantities a; ' . , provided that all the other coefficients 

1 • • * M 

a\ ' , a\ ', are equal to zero. But it does not mean, 
'l'-'M+l 1V1M+2 , .. 
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of course, that all the moments of the order M+l, M+ 2, . . . are equal to 
zero. In the present case, moments of the order M+l, M+2, . . . are 
expressed in terms of moments of the 0 , 1 , . . . . M order. In practice 
one usually restricts oneself by setting M • 3 so that all coefficients 
»" ' c a* ' • . . . ' 0 . In this approximation a system is assumed to be 
described completely by 20 macroscopic quantities (moments) n, u-, 6 , ?•-, 

M..,,. In many cases a more simple description is possible for M - 3 when 
* rd * 

the 3 -order moments M,^ can he expressed in terms of a heat flux vector: 

M i j k - I M j k + l j * i k + % 6 i j ' • <"> 

In this approximation a system is described by 13 moments n, u,e , <r, "q. 
(For a full description of the plasma, the variables of the electromagnetic 
field must of course be added.) In general, however. In our anisotropic 
case the 13-moments approximation is invalid. In this approximation the 
calculated tensor M, -k has the form 

2 c r /P^ 3 / 2 

Mijk " Z iMk+qi ^ + q k VSlAét) "'J (bi V,itlk+bk"ij> 

This contradicts the general relation 

M ^ •= 2 ^ . (Mb) 

It is obvious that (14a) and (14b) coincide only in the absence of longitudinal 
heat flux ( t i q ' t ' O ) . Therefore, if there are longitudinal heat fluxes, 
a Vlasov plasma in a strong magnetic iield can be described by the quantities 

n. IT. a,, v s y (or aj f ) . MJjk (or . W , , £ , * . 

The first few moments of the Vlasov equation may be written 

| | + divnu • 0 , (15) 

m ndT • - ' • P + S + 0 [u-*])mn (16) 
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* Hl B l ' 

(17) 

-gf * -eldiv3+ a j V ø - v p - ^ S -ffl - Id ivq • 

(18) 

. r a (n • . ram ^ rg d . . 

Then, from equation« (13) we obtain 

(2) 



- 1 1 -

""'•ik^kT + « iw a kf , b i • ( 1 9 > 

The equation for aAk' is much more complicated, and we do not 
write it explicitly. To have a full set of equations we need the equation for 
Z. To obtain that it is necessary to use the Maxwell induction equation 

rotdj, + Ef> + i -Jf • 0 . (20) 
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So the first and the third term in (20) are zero-order quantities, and 
the second term is proportional to {. Therefore we obtain in the lowest-
order approximation 

- 1 1 1 • ( ! - » - ) • rotE^ , (21) 

where I is the unit tensor; US is the dyadic (tensor); b * B/B. 
If we introduce the electric drift velocity 

V « c — ± — . (22) 

then 
rot £x • iJBdivv* + V -VB- B-V<f | 

Thus we obtain 

(23) 

dbj fc. »Vt »V 

I T - - vkis; + \ j£ - W * T£ • «"> 
db , 

where it is taken into account that b_ •• > 0 because C • 1. 

2. Now it is possible to find explicit expressions for the viscous stress 
tensor i and the heat flux tensor M. Let us consider a,., M,.. as being 
proportional to fc Then in the left-hand side of equations for i and M it is 
sufficient to use only the zero-order terms (see eq. (19)). Therefore, by 
using equations (17), (18) and (24) one can easily obtain 

[ • • <fHc-)jw. % <$-) ^ 5 f • •> 3> 

" • l«M iff • "ju-gV,. 1«S) 
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This equation defines the components of the tensor r because of (10): 

'{1
2,*rJv(f-1)(v1K*Vik)ba|-

Further, in the approximation considered it is possible to assume 

As follows from (25), in the local co-ordinate system with the z-axis 

along the magnetic field lines, the components of the « tensor are 

P / « u du x 

*xx"-*yy" * AV*?*-**)' 
p / * u eu . 

xy yx 

»u 
* - i }n _ i t 12n - n \ 

xz zx 

au au 
yz zy 

(26) 

' z z - ° -

This result is exactly the same as Macmahon's '" '. A. Simon and 
Thompson state in their work ' that the components <r , o ^ . <r 

are correct, but Simon and Thompson disagree with Macmahon's results 
for , a , 
follows: 

W. B. Thompson state in their work ' that the components a , ff^ v 

ion's results 
for r x z and * , and they give their formulae for these components as 

yz 

•h i » . l 4 T * i l B - - l | * t o . - " i ) t w ' w j . 
(27) 

At first sight these formulae seem to differ from (26). But if one reduces 
formulae (27) by using equation (24), one can easily convince oneself that 
expressions (26) and (27) coincide exactly (in the given local co-ordinate 
system). So, actually, there i s not any difference between the results of 
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Macmahon and those of Simon and Thompson. We note that the calculated 
viscous stress tensor * automatically gives an expression for the coef-

P 1 2 
licient of the "magnetic viscosity" * « <*-• » -T Qa , where a is the Lar-
mor radius of charged particles. It can easily be shown that, unlike the 
uaual "collision" viscosity ', the "magnetic viscosity" is not connected with 
a dissipation of energy. To find the components of the tensor M.,. one can obtain the first-

(31 *** 
order equation tor *\J from (13): 

+ ft(l-^)2'mfb1bj^+2bibk^+2bjbk^ + 

1 i f / • • • • • • \ 
+ fj H-m(bibk-SSj+ "Vkl£ * bibj*£ ) * 

i r d e , 9Bi , e . i 

* ~l*£vv*>+ r^a-W+ ^ < V bibj> J * 
• Qb ( . a<3) + . a<3) + a a (3) ) -o b l t c iml amjk * *jml "mik * *kml amij ' 

(28) 
In the local co-ordinate system with the z-axis along the magnetic 

field lines the tensor M... has the components, as follows from (28) and (10): 
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3fJ. **J. 
M l l i = " TS5 T T 

M2ll * IX TT 

M122 

M222 

M233 

ae 
_ * = 
az 

P ae 
me ey 

m tx 

P ae. 
mB az 

ae 

si •« 

(29) 
P, »9, 

M133 " ' SSSy-

The components M , , , * M „ 2 and M«,„remain undetermined (as 
in Macmahon's work '). But these components define a longitudinal heat 
flux vector 

5 < E b<B'q) - £ J 0 . 0, M 3 1 1 + M 3 2 2 + M 3 3 3 | . 

It is naturally assumed that the vector a is determined by the gradients 
ae ae ae ae 
-»—• , -r£ . However, in accordance with (29), - j - ^ = - y ^ = 0. Thus 
we see that in the frame considered longitudinal heat fluxes must be absent: 
q * 0. This means that the 13 moments theory can be used in the aniso
tropic case also (in the approximation considered). 

Now let us introduce two vectors (in dyadic notation): 

q* = * M : b b - "longitudinal" heat flux, and 

"q1 = -j M : (I - b b) - "transverse" heat flux. 

Their transverse parts have the components 

£ "• 7 i M m + M122 i M211 + M222 i ° | ' 

*l * 7 | M 133 » "233 ; ° J • 

By means of formulae (29) we obtain 
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(31) 

Exactly the same results fallow from the general formulae of Mac-
mahon ' in the case where the distribution function is a product: f (c) * 
f l <ci> f2 <c*> • 
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We want here to give a more detailed and general proof that the re
sults cf Macmahon and those of Simon - Thompson are the same. 

According to Macmahon ' the "magnetic viscous" stress tensor of 
a collisionleBS plasma has the following components (in dyadic notation): 

"22 * - '33 - - \ <Vs + V 2 » : f") • 

'23* 'zi'TtGfi - Vs> : ( ^ ' 
(A.l) 

*12 " 2 1 * " i I Pj. <V3> : <**> + <2P» " Pi> <«3*1> : P">} • 

'l3 " 'SI " i i \ W : **> + <2P. " P* > <?2*1> = <**>)• 

liere e, s ^. c,. e, are unit vectors forming a right-handed orthogonal 
system, (ab) : (vfl) = a ^ -Jj- \ • 

In the local co-ordinate system with t = (0,0,1), e2 * (1,0,0) and 
%3 « (0,1,0) eqs. (A. 1) are reduced to eq. (26). 

From eq. (19) one obtains in first-order approximation 

1 de , de i/p / p \ J 

• i ^ V W é -* ^ -'if (if "O *b^ " 

• ° < « i k i 4 i , + «Jki«to,)b
1 • 

By using eqs. (17) and (18) in zero-order approximation and the 
definition (10) one gets 
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/ ifp" ^ 9u. au. 

p i - p
M d 

(A.3) 

"i *» 

' TJ [<«ikl'kj + «jkl°ki>blH ' f ^ - 1 ) <«iklbj+ «jklbi>blbm'mkj-

These are the equations from which the components of the tensor 3 must be 
determined. 

By calculating the scalar product of (A. 3) and the dyadic e„ e^ w e 

find 

2(e2e2) : (t7u) + (Bt) : fru) - v - u = 

• "iT <e21e2J«lklbl "I« + e 2 i e 2 J ^ l b l ^ i > = 

= T (e3ke2j«kj + e3ke2i<ki> = T e 3 e 2 : ° = pi "32 -

where we have taken into account the relations 

«2 • E - 0. 1* = 1, . . ^ b j = - [ e 2 - - S ] k • e. 

A 
As e , l , + ej?j + BB » I, we finally obtain 

"32 ' h <*2?2 • V 3 > : ""> " ( A - 4 ) 

In the same way, by multiplication by 

e 2 e 3 . e2 ex s e2B and SgSj s e3B , we get 

p 
°33 ' °M '-f^th * e3S2J : <*°> • < A - 5 ' 
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' i s * i i l <B52> :p"»+ P , « ^ ' : ^ * ( P . - ft> ' 2 ' ar i • <A-6> 

'12 * " ff { Pi ff«3>: *^) + P.^): <**> + fP." P*>"*3 • of I • 'A" 7> 

Here » . 5 f e» : S by definition; o, B " 1, 2, 3. ap o p ^ A 
As tTr a, * 0, and bo" : <r = ITJ J » 0, we obtain from (A. 5) 

p 
'33 * - °22 ° & < V a + *3*2> : <v3) • ( A"8 ) 

Thus the components ir,., a-,- in (A. 4), (A. 8) are exactly the same 
as those in Macmahon's result (A.1). The components » j , , <r12 in (A. 6), 
(A. 7) are identical with those of Simon - Thompson ' in the local co-ordinate 
system. By substituting Maxwell's induction equation (24) in (A. 6) we obtain 

'13 ' Z { P i <
6 5 2 ) : ( , r t l , + P « ^ ' : P" '* (p»- P i X ^ ) : « ^ ) | -(A.9) 

As in the zero-order approximation the electric drift velocity V ~ u, 
we see that (A. 9) does not differ from Macmahon's result (A. 1). 


