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Abstract 

Graph theoretical analyses applied to neuroimaging datasets have provided valuable 

insights into the large-scale anatomical organization of the human neocortex. Most of 

these studies were performed with different cortical scales leading to cortical networks 

with different levels of small-world organization. The present study investigates how 

resolution of thickness-based cortical scales impacts on topological properties of human 

anatomical cortical networks. To this end, we designed a novel approach aimed at 

determining the best trade-off between small-world attributes of anatomical cortical 

networks and the number of cortical regions included in the scale. Results revealed that 

schemes comprising 540-599 regions (surface areas spanning between 250-275 mm
2
) at 

sparsities below 10% showed a superior balance between small-world organization and 

the size of the cortical scale employed. Furthermore, we found that the cortical scale 

representing the best trade-off (599 regions) was more resilient to targeted attacks than 

atlas-based schemes (Desikan-Killiany atlas, 66 regions) and, most importantly, it did 

not differ that much from the finest cortical scale tested in the present study (1494 

regions). In summary, our study confirms that topological organization of anatomical 

cortical networks varies with both sparsity and resolution of cortical scale, and it further 

provides a novel methodological framework aimed at identifying cortical schemes that 

maximize small-worldness with the lowest scale resolution possible. 

Keywords: Cortical networks, structural connectivity, cortical scale, small-world 

properties; cortical thickness. 
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1. Introduction 

The repertoire of complex behaviors increases linearly with the number and size of 

cortical fields (Krubitzer, 2007). Enrichment of cortical fields has shown to be critical 

for the emergence of highly efficient anatomical networks in the mammal neocortex 

(Douglas and Martin, 2004). Understanding how specific cortical systems contribute to 

the organization of the entire neocortex will drastically improve our knowledge on 

anatomical basis of higher cognitive functions, and will allow us to forecast to what 

extent local cortical dysfunctions might affect global organization of the cortical mantle. 

Graph theoretical analyses applied to neuroimaging datasets have provided novel 

insights into the topological properties of anatomical brain networks in health (Fan et 

al., 2010; Gong et al., 2009; He et al., 2007) and disease (Shu et al., 2009; Bassett et al., 

2008; He et al., 2008). Schemes derived from small-world architecture have 

demonstrated to grasp the essence of this biological organization (Fair et al., 2009; 

Hagmann et al., 2008). Small-world topology is characterized by a high density of local 

connections together with a scarce number of links between distant regions, leading to 

highly efficient networks with a relatively low wiring cost and optimal adaptability to a 

broad range of circumstances (Travers and Milgram, 1969). 

Recent evidence suggests that topological organization of anatomical brain networks are 

critically affected by a priori atlases (Sanabria-Diaz et al., 2010) or spatial scales 

derived from random nodal parcellation (Zalesky et al., 2010), raising the question of 

whether different scale resolution leads to different levels of small-world properties in 

different experimental scenarios. To approach this issue, we systematically assessed 

here how network resolution influences topological organization of anatomical cortical 



 4 

networks by using interregional correlations in cortical thickness as a measure of 

structural connectivity. 

Anatomical cortical networks have been inferred from different descriptors (volume or 

thickness), and they often rely on pair-wise correlations between regions across 

individuals (Fan et al., 2010; He et al., 2009). This approach, although largely employed 

in small-world studies (e.g., Tian et al., 2010; Wang et al., 2009), inflates correlation 

values from surrounding cortical areas, which, in turn, contribute to shape artifactual 

network topologies. Furthermore, statistical power of network analysis is critically 

influenced by experimental designs integrated by a number of subjects that is smaller 

than the number of dependent variables, the so- n, large p

n, large p

experimental designs are inaccurate and lead to over-fitted statistical models. This 

scenario is common when highly grained scales are being tested with small samples of 

subjects. To overcome this drawback, we applied here for the first time a novel 

shrinkage approach that not only increases the precision rate when controlling for false 

positives, but it also drastically reduces the computation time (Schäfer and Strimmer, 

2005), which is a critical issue when using fine cerebral scales. Results of the present 

study will be discussed within the framework of anatomo-functional organization of the 

neocortical mantle underlying different cortical scales. 

2. Materials and Methods 

2. 1 Subjects 

Thirty cognitively intact elderly volunteers (17 females, mean age: 66.4 ± 5.1 yr; Mini 

Mental State Examination: 28.4 ± 0.2) were recruited from the local community. They 
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provided written informed consent before participating in the study. The Ethical 

Committee for Human Research of the University Pablo de Olavide previously 

approved research protocols, and experiments were conducted according to the 

principles expressed in the Declaration of Helsinki. 

Inclusion criteria were (i) no subjective or objective memory complaints corroborated 

by neuropsychological exploration, (ii) CDR (Global Clinical Dementia Rating) global 

score of 0 (no dementia), and (iii) normal independent function judged clinically and by 

means of a standardized scale for the activities of daily living. None of them reported a 

history of neurological, psychiatric disorders and/or major medical illness.  

2.2 MRI acquisition and pre-processing 

Two high-resolution three-dimensional (3D) T1-weighted magnetization-prepared rapid 

gradient echo (MP-RAGE) images were acquired in the same session on a whole-body 

Philips Intera 1.5T MRI scanner (Philips, The Netherlands). MP-RAGE parameters 

were empirically optimized for gray/white contrast (repetition time = 8.5 ms, echo time 

= 4 ms, flip angle = 8º, matrix dimensions 256 x 192, 184 contiguous sagittal 1.2 mm 

thick slices, time per acquisition = 5.4 min).  

2.3 Cortical surface reconstruction and cortical thickness estimation 

Both cortical surface reconstruction and estimation of cortical thickness were obtained 

with Freesurfer v4.05 (http://surfer.nmr.mgh.harvard.edu/). Manual editing was used to 

enhance the pial/white matter boundaries and, in turn, to obtain better estimations of 

cortical thickness. The analysis pipeline for cortical reconstruction and thickness 

estimation is summarized in Figure 1A, and extended in the Supplementary material 

(SM1). 
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2.4 Parcellating the neocortex with different resolution scales     

We sought to determine whether the number (or the size) of gray-matter cortical regions 

influenced the emergence of topological properties in cortical networks. To accomplish 

this goal, different cortical scales (see Figure 1B) were established starting from the 

original regions contained in the Desikan-Killiany atlas. This atlas divides the human 

neocortex into 66 standard gyral-based regions in a reliable manner (Desikan et al., 

2006). 

To generate a broad range of cortical scales, a backtracking algorithm was applied on 

the Desikan-Killiany atlas as follows. First, a seed vertex located in the periphery of an 

atlas region is randomly chosen. Second, the nearest vertices to the seed within that 

atlas region are joined until the pre-established size of the new parcel is reached. Third, 

if any of the remaining vertices in the atlas region becomes isolated, the new parcel is 

ruled out and the process starts from the first step using a different seed. This 

backtracking algorithm ensures that emergent cortical parcels are always built over a set 

of connected vertices. To further clarify these steps, a pseudocode of this parcellation 

algorithm can be found in Appendix A. By using this approach, we computed 23 

cortical scales, each one with a different number of cortical regions and area size (Table 

1). All these scales were first computed on the cortical surface of the average subject. 

Nex spatial mismatching 

of a same cortical parcel between subjects. Figure 1B shows examples of two cortical 

scales obtained with our backtracking algorithm (599 and 1494 cortical regions). 

2.5 Building anatomical cortical networks 

2.5.1 Partial correlation matrices 
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Graph theory implicitly assumes that two elements are "anatomically connected" if they 

are significantly correlated (He et al., 2007). However, high correlation values between 

two distant regions are likely affected by neighbour regions, which make estimations of 

network connectivity imprecise. To partially overcome this confounding, anatomical 

networks were built on the basis of partial correlations of interregional gray-matter 

thickness (a schematic representation of this procedure is illustrated in Figure 1C). 

Effects of age, gender, age-gender interaction, and mean overall cortical thickness were 

removed by applying a linear regression analysis across cortical regions.  

In our experimental design, the number of observations (experimental subjects, N=30) 

is smaller than the number of dependent variables (cortical regions, ranging from 66 to 

n, large p

covariance matrix caused by the elevated mean square error values derived from 

overfitted regression models (Peng et al., 2009).  

Two recent studies have introduced alternative approaches to address this drawback 

(Lee et al., 2011; Huang et al., 2010), but neither of them was focused on determining 

small-world properties underlying cerebral networks nor did they use anatomical brain 

descriptors. We employed a newly developed technique based on the Ledoit-Wolf 

lemma to shrink the covariance estimates (Schäfer and Strimmer, 2005; Opgen-Rhein et 

al., 2007). Briefly, the shrinkage process performs a correction of the covariance 

between regions aimed at reducing the mean square error derived from the regression 

analysis. This method not only shows a high precision rate when controlling for false 

positives, but it also reduces the computation time that becomes critical in highly 

grained parcellation scales. Finally, the partial correlation derived from the corrected 

covariance matrix was calculated as: 
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(1) 

where 1

, jiS represents the {i,j}th element of the inverted covariance matrix 1S  computed 

from all possible pairs of cortical regions. 

2.5.2 Testing statistical significance 

t n, large p ental designs because 

they result in statistical distributions with negative degrees of freedom. Instead, Monte 

Carlo permutation tests were used to estimate an approximated distribution derived 

from the shrinkage and partial correlation processes. The thickness value of each 

cortical scale in one particular subject was randomly reassigned to a different subject. 

Random partial correlations were calculated over the permutated thickness values by 

using the same shrinkage procedure employed with the original data. The set of 

resulting random r-values was employed as a reference distribution for statistical 

inference purposes. This approach provided a free distribution without a priori 

assumptions or a model structure fixation. We only performed 8 permutations for each 

cortical scale due to the high computational cost of this process (ranging from 10 

seconds in the coarsest parcellation scheme to 53 days in the finest one, using 

and MATLAB
®
 v. 7.9 under Linux Centos4 X86-64 bits). 

Microarray data analysis exploits gene similarity to pool permutation results before 

testing statistical significance (Friedman et al., 2008). We also benefit from similar 

cortical thickness values to generate a statistical distribution based on r-values derived 

from all pair-wise comparisons for the 8 permutations performed on each cortical scale. 

Thus, p-values were obtained by using the distribution resulting from 2)1(8 nn  r-

values derived from permutated thickness values, where n represents the number of 

1

,

1

,

1

,, / jjiijiji SSSr
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cortical regions. We further incorporated the standard error associated to each p-value 

(perr). In a Monte-Carlo test, when N is large and 'NN , the 95% margin of error of 

the p-value is ')1(96.1 Npp  where p represents the cut-off p-value (pcut-off) derived 

from the permutation test, N denotes the number of total possible permutations, and  

refers to the number of permutations (Manly, 1998). We searched for the r-value with a 

pcut-off = pmax -  with pmax = 0.05 such that the significance level of the r-value is 5% 

or lower. For instance, a cortical scale consisting of 599 regions results in 1.432.808 

permutations and -410  3.6errp  (for pmax = 0.05). Thus, the p-value used in the test is 

pcut-off = 0.04964. False positive correlations due to large-scale testing scenarios were 

corrected by using a FDR plug-in (q-value < 0.1) based on permutation methods (Hastie 

et al., 2001). Significant network connections within a specific cortical scale were 

determined by using the cut-off r-value obtained with Monte Carlo permutation 

methods. Finally, the partial correlation matrix was transformed into a binary 

thresholded matrix to determine topological properties of anatomical networks derived 

from each cortical scale. 

2.5.3 Adjacency matrix and sparsity 

In graph theoretical analysis, the percentage of nodes connected over the total possible 

connections is known as sparsity. This term is mathematically defined as )1(2 nnK , 

where K represents the total number of edges (connections) and n denotes the number of 

nodes (cortical regions) within the graph. The present study considered a wide range of 

sparsities to reduce bias related to the choice of cortical scale with the best topological 

properties. Thus, we computed a different adjacency matrix with a different sparsity 

level for each threshold used in the partial correlation matrix. 
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1)(nln(n)sparsity

The lowest sparsity boundary at which the network is fully connected can be 

theoretically approximated as follows (Zhu et al., 2010; Bollabas, 1985): 

(2) 

where n denotes the number of nodes (cortical regions). But this theoretical boundary 

raises the question of how high this sparsity should be. To answer this question, we 

searched for the lowest sparsity value (starting at 0 with a resolution of 0.1%) in each 

cortical scale until the graph got fully connected. Network analyses were completed 

with sparsities multiple of 1 until reaching 30. Values beyond 30% were disregarded 

because they provided random graphs in terms of small-world topology, and because 

they showed a high percentage of statistically non-significant connections in most of the 

cortical scales used in the present study. We further evaluated the sparsity value that 

yielded maximum differences in small-world properties when comparing real with 

random cortical networks (optimal sparsity, OS in the following).  

The connectivity distribution of small-world anatomical networks was also analyzed as 

a function of cortical scales. The degree distribution p(k) denotes the fraction of regions 

(nodes) with k connections (edges). To decrease the noise effect, we calculated the 

cumulative degree distribution as 
kk

kpkP
'

)'()( . Typically, the cumulative degree 

distribution of a small-world network is fitted into different categories: scale-free, 

kkP ~)( , exponentially decay kekP ~)( , and truncated power law 

ckk
ekkP 1~)( (Amaral et al., 2010). 

2.6 Determining small-world properties in anatomical cortical networks 

Small-world metrics were computed on the thresholded, binarized matrix of partial 

correlations (illustrated in Figure 1C). Information about local connectivity is provided 
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gg

by the clustering coefficient ( pC ) whereas the efficacy of long distance communication 

is obtained with the path length ( PL ) (Watts and Strogatz, 1998). Small-world 

properties were also described in terms of local (Eloc) and global (Eglob) efficiency of the 

network. Detailed explanation of each of these small-world metrics is found elsewhere 

(Rubinov and Sporns, 2010; Newman, 2003; Latora and Marchiori, 2001). 

Topological properties of a given network may be influenced by intrinsic features of 

that network, such as the number of nodes, number of connections, and degree 

distribution. To counteract these effects, we generated 100 random networks by using 

the rewiring process described by Maslov and Sneppen (2002). This algorithm 

preserves the number of regions, mean degree (mean number of connections 

considering all regions of a given network), and degree distribution (frequency 

distribution of connections considering all regions of a given network) as in the real 

network. Next, small-world properties derived from each metric and cortical scale were 

divided by those obtained with the above-randomized networks. As a result, we obtain a 

normalized clustering coefficient 1randpg CC  and a normalized path length 

1randpg LL  (Watts and Strogatz, 1998), where pC  represents the average 

clustering coefficient of the network, randC  is the average clustering coefficient of the 

randomly rewired networks, pL  denotes the path length of the network, and 

randL indicates the path length of the randomly rewired networks. The two criteria are 

integrated into one metric to determine the small-worldness of a specific network (Watts 

and Strogatz, 1998): 

(3) 
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globloc EEElg

Local and global efficiency descriptors are also normalized and summarized in a scalar 

measure of network efficiency: 

(4) 

The motivation of this metric is to enhance as much as possible the local efficiency 

keeping the global efficiency at maximum, similarly to the conditions expressed in g  

and g . Both metrics,  and lgE , were used to determine small-world properties of each 

cortical scale employed in the present study.  

2.7 Maximizing small-world properties in anatomical cortical networks  

To determine the best trade-off between cortical resolution and small-world properties, 

we searched for the maximum gain in small- lgE (y-

with the minimum number of cortical regions (x-axis) by computing the nearest 

distance to the superior-left corner (x=0, y=1) of the normalized representation (see 

Figure 5). The shortest distance to the corner (dc) for each cortical scale is defined as: 

(5) 

Cortical scales showing maximum gains in small-world properties (i.e., the value of 

and lgE
 
showing the shortest distance to corner, dc) were computed not only for the 

optimal sparsity but also for the next four sparsities whose metric values were closer to 

lgE ) and 

cortical parcellation scheme (see Table 2 and Figure 1D, bottom panel).  

Axes normalization [0-1] resulting from the relationship between the sigma-ratio and 

the number of cortical regions introduces changes in the shortest dc as a consequence of 

the minimum and maximum number of cortical regions considered in the analysis. 

22 )1()( valuemetricnomalizedparcelsofnumbernormalized
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These changes themselves could indeed modify the choice of the cortical scale. To test 

the robustness of our procedure, we computed the shortest dc after sequentially 

eliminating the coarsest and the finest cortical scale. Thus, axes normalization was 

sequentially computed each time with 2n less cortical scales (n ranging from 0 to 8). 

Consequently, dc was calculated for 24, 22, 20, 18, 16, 14, 12, 10 and 8 cortical scales. 

Results from this sequential analysis are shown in Table 2. The cortical scale with the 

most efficient topology was defined as the one showing the most consistent dc. 

2.8 Determining resilience to attacks in different cortical scales  

To investigate variations in nodal features as a function of cortical resolution, the degree 

and betweenness of nodes were computed in each cortical scale. The degree Ki of node i 

refers to the number of connections reaching that specific node, whereas betweenness Bi 

is defined as the number of shortest paths between any two nodes that pass through the 

node i (Freeman, 1977). The normalized betweenness was computed as bi = Bi , 

 denotes the average betweenness of the network (He et al., 2008), and was 

calculated with the MatlabBGL package (http://www.stanford.edu/~dgleich/ 

programs/matlab_bgl/). Network hubs were identified as the cortical regions with high 

degree and high betweenness.  

The resilience of anatomical cortical networks to targeted attacks was further evaluated 

by removing the hubs one by one in rank order of decreasing degree (this strategy was 

also performed by using a decreasing betweenness criterion), whereas random failures 

were designed by eliminating nodes randomly. This process was then repeated, 

incrementally eliminating 5% of the network nodes. A fraction of the nodes was 

sequentially removed before recalculating the path length and the size of the largest 

connected component denoting the largest proportion of nodes connected to each other. 
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We compared nodal characteristics and network resilience between the cortical scale 

resulting from the application of our procedure and those either based on the Desikan-

Killiany atlas or in the backtraking algorithm used in the present study. 

3. Results 

3.1 Effects of cortical scale and sparsity on small-world properties 

Topological attributes and sparsity for each cortical scale are shown in Table 1. The 

theoretical sparsity defined by formula (2) predicts the lowest bound of a sparsity range 

at which the network becomes fully connected for each cortical scheme. As expected, 

the minimum empirical sparsity was in most cases higher than that provided by the 

theoretical sparsity. Note also the opposite result obtained with 108 cortical regions.  

The optimal sparsity differed between small- lgE ), and it decreased 

with finer cortical scales (Table 1). All interregional correlations were significant at the 

optimal sparsity with the two metrics (p<0.05; FDR corrected). Interestingly, the 

fraction of significant correlations decreased with finer cortical scales, ranging from 

50% in the coarsest scale to 4% in the finest scale, suggesting that the statistical power 

of small-world properties decreases with highly grained scales.  

Previous studies have also examined small-world properties of cerebral networks for a 

broad range of sparsities (e.g., Bassett et al., 2008; Zhu et al., 2010). In line with these 

studies, our results show an exponential decay of network efficiency (  metric) with the 

increase of sparsity (Figure 2A). This relationship was statistically confirmed for all 

cortical scales by applying a linear regression analysis over the natural logarithm of 

these two variables (R
2
 ranged from 0.95 to 1, and p-values from 10

-32
 to 10

-13
 after 

Bonferroni correction; Figure 3A). Note that maximum  values were frequently 
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associated with sparsities lower than or equal to 8 (Figure 2A and Table 1). As 

predicted by the small-world theory, enhancements of network efficiency ( ) were 

mainly due to increased local connectivity ( pC ) rather than to superior ability to transfer 

information at a global level ( PL ) as illustrated in Figures 2B and 2C, respectively. 

Results derived from the  metric might lead to erroneous inferences about the optimal 

sparsity. One may indeed conclude that the optimal sparsity corresponds to the first 

value that fully connects the network. However, this reasoning seems inappropriate 

when measuring the capacity of the network to continue operating properly in the 

presence of a failure (fault-tolerance or robustness) as revealed by Elg, and more 

particularly by Eloc. Accordingly, Elg and Eloc values increased with sparsity up to a 

point and then they decreased rapidly (Figures 2D and 2E, respectively). Given that 

Eglob varied slightly with sparsity (Figure 2F), we assume that the relationship between 

Elg and sparsity in anatomical cortical networks is mainly determined by local rather 

than global topological properties. The quadratic relationship between Elg and sparsity 

was statistically confirmed for all cortical scales by using polynomial linear regression 

analysis (2
nd

 degree) performed over the natural logarithm of these two variables (R
2
 

ranged from 0.81 to 0.99, and p-values from 10
-28

 to 10
-7

 after Bonferroni correction; 

Figure 3B). 

Unlike local properties, global efficiency approximated to the maximum with sparsities 

above 10 for the majority of cortical scales (Figures 2C and 2F). Global efficiency of 

finer cortical scales deviated from 1 (the maximum) more frequently when compared to 

coarser cortical scales at sparsities lower than 8. This suggests that global properties of 

anatomical cortical networks are less comparable with a random-like network at fine-

grained cortical scales (Bassett et al., 2008). The fact that global properties (but not the 
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local ones) impair with finer scales has been recently confirmed by using cerebral 

diffusion tensor images (Zalesky et al., 2010). This finding together with the elevated 

computational costs associated with fine-grained cortical scales adds support against 

using highly parcellated cortical schemes for assessing small-world properties in 

anatomical cortical networks. 

Figure 4 shows, for different cortical scales, the fitting of these functions over the 

cumulative node degree distribution. In every case the best fitting was provided by the 

truncated power law, which reduces the number of cortical hubs with a degree greater 

than the cut-off value (kc). 

3.2 Trade-off between cortical resolution and small-world properties 

We tried to determine the best scenario to maximally preserve small-world properties in 

anatomical cortical networks. To this aim, the nearest distance to the superior-left corner 

(dc) was computed along the normalized axes with two different small-

and Elg). Normalization is required to compare network efficiency across different 

cortical scales, since both coordinate axes (number of regions and sigma ratios) have 

different orders of magnitude and units. To determine whether the weighting introduced 

by the normalization process affected the choice of the cortical scale, axes 

normalization was performed in a varying range of cortical scales, which implicitly 

varies the original weight. Results from this analysis revealed that reducing sequentially 

the range of regions (min-max) did not affect critically the selected cortical scale (see 

Table 2). 41 of 45 estimations obtained with the  metric at the 5 best sparsities suggests 

that the cortical scale comprising 599 regions represents the best trade-off between 

small-worldness and resolution of the cortical scale. The selected cortical scale varied 

slightly for the Elg metric (ranging from 541 to 599 regions) when computed with the 5 
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best sparsities. More specifically, it showed a bimodal distribution comprising 39 of 45 

estimations (571 and 541 peaked 20 and 19 times, respectively). When results derived 

from both metrics were combined, cortical scales resulting from the above mentioned 

trade-off ranged from 541 to 599 regions. No significant differences were found 

between small-world properties obtained with these cortical scales after Bonferroni 

correction, either for  or Elg. However, small-world properties, at least for Elg, were 

significantly higher at the cortical scale of 599 regions when compared with coarser 

scales (p < 0.02 after Bonferroni correction). In the case of the  metric, statistical 

significance was only reached for cortical scales below 198 regions (p < 10
-4

 after 

Bonferroni correction). In summary, our results suggest that 540-600 gray-matter 

regions seems to provide a satisfactory trade-off between small-world properties and the 

number of cortical regions considered in the scale, at least for the population evaluated 

in the present study. 

We further assessed changes in network efficiency for the five best sparsities obtained 

for each cortical scale (Figure 5). Results derived from the Elg metric (Figure 5B) were 

more stable across cortical scales when compared with those obtained with the  metric 

(Figure 5A). This analysis also revealed that differences in network efficiency decreased 

across cortical scales with larger deviations from the optimal sparsity, suggesting a loss 

of sensibility to detect topological changes with less favourable sparsities. 

3.3 Measuring network robustness in different anatomical cortical scales  

Nodal characteristics and network resilience were also compared between the selected 

cortical scale (599 regions) and other representative schemes (Desikan-Killiany atlas 66, 

108 and 1494 regions) for a sparsity of 8% (the lowest sparsity value common to the 

four selected scales). Table 3 shows the anatomical location of the top 7 hubs whose 
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degree and betweenness were 1.5 standard deviations over the mean. Figure 6 illustrates 

the largest connected component (Figure 6A and 6B, upper row) and the path length 

(Figure 6A and 6B, bottom row) for each one of these three cortical scales (solid line) 

compared with that derived from the selected cortical scale providing the best trade-off 

(dashed line), as a function of the fraction of nodes removed in random and targeted 

attacks. The latter cortical scale was more resilient to targeted attacks than that derived 

from either the Desikan-Killiany atlas (66 regions) or the cortical scheme with 108 

regions. More specifically, a substantial reduction of the largest component was found 

after removing 40% of the top hubs in the network derived from the Desikan-Killiany 

atlas. It was required to eliminate 65% of top hubs to get ~24% reduction of the largest 

component in the cortical scale comprising 108 regions. Both the selected cortical scale 

(599 regions) and the finest one included in the present study (1494 regions) showed 

similar resilience to targeted attacks (Figure 6A). Only the atlas-based parcellation 

showed vulnerability to random attacks with the largest component. Targeted attacks 

further resulted in increased path length before fragmentation of both the atlas-based 

network and the cortical network comprising 108 regions (Figure 6B). The path length 

increased threefold when 60% of nodes were removed from the network of 108 regions, 

and it increased twofold when targeted attacks were restricted to 35% of nodes in the 

atlas-based network. It is worth noting the robustness to targeted attack of the selected 

cortical scale (599 regions) compared with the one derived from the Desikan-Killiany 

atlas and from the cortical scale of 108 regions. Similar results were obtained when 

cortical hubs were ranked by betweenness instead of considering their node degree. 

Resilience to random and targeted attack of the selected cortical scale was similar to that 

resulting from the finest cortical scale employed in this study (Figure 6, right column). 
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4. Discussion 

Graph theory has borrowed the conservation laws formulated by Ramon y Cajal (1909-

1911) to shed light on how cortical networks remain highly efficient with a low wiring 

cost. In agreement with these principles of neuronal organization, large-scale cortical 

networks have shown a small-world organization characterized by cohesive 

neighbourhoods and short path-lengths between remote regions. Although cortical 

networks represent the anatomical substrate of most of the cognitive processes in 

mammals, few studies to date have described the topological organization of human 

anatomical cortical networks by using neuroimaging techniques (Fan et al., 2010; Gong 

et al., 2009; He et al., 2007). Recent evidence support the notion that the topology of 

anatomical cerebral networks varies considerably as a function of the scale resolution 

employed (Zalesky et al., 2010; Sanabria-Diaz et al., 2010). The present work adds 

support to that hypothesis, and it further provides a novel methodological framework to 

identify cortical scales showing the best trade-off between small-world properties and 

cortical resolution by using thickness measurements as a measure of anatomical 

connectivity. 

We found that highly grained cortical scales showed enhanced local connectivity (as 

revealed by the clustering coefficient), local efficiency (showed by the Eloc metric), and 

small-worldness (provided by  and Elg metrics) together with a lower vulnerability to 

targeted attacks. In agreement with previous reports (Zalesky et al., 2010), we further 

found increased path length and decreased global efficiency with finer cortical scales. 

Contrary to the approach followed by Zalesky and colleagues (2010), the trade-off 

between cortical scales and small-world properties was reached by keeping constant the 

sparsity. 
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Our results suggest that determining the best trade-off between the resolution of the 

cortical scale and the level of small-worldness in anatomical cortical networks requires 

from assessing a broad range of sparsity values (e.g., Supekar et al., 2009). We indeed 

found that the optimal sparsity not only varied with the cortical scale but also with the 

small-world metric employed. Contrary to previous studies that evaluated network 

topology at sparsities above 12% (Bassett et al., 2008; Liu et al., 2008; Lynall et al., 

2010; Sanabria-Diaz et al., 2010), our results highlight the importance of including 

lower sparsity values in large-scale network analysis. First, because the lowest sparsity 

at which the network becomes fully connected and the optimal sparsity for the  metric 

are identical. And, secondly, because the optimal sparsity for the Elg metric was below 

8% with most of the cortical scales considered in the present study. Taken collectively, 

our findings add support to previous studies that also reported increased small-world 

properties with low sparsity values (Bassett et al., 2008; Lv et al., 2010; Zhu et al., 

2010). 

The main rationale of this work was to establish a satisfactory trade-off between small-

world attributes derived from anatomical cortical networks and the number/size of gray-

matter regions included in the cortical scale. Overall, our results suggest that the best 

topological trade-off can be determined in anatomical cortical networks by using a 

number of gray-matter regions ranging between 540 and 599, which correspond to areas 

spanning between 250 and 275 mm
2
, respectively. We have further confirmed that our 

approach is independent of (i) the number of cortical scales included in the analysis; (ii) 

how far the sparsity deviates from the optimal one; and (iii) the metric employed to 

describe small-worldness. In addition, the cortical scale selected (599 regions) was more 

resilient to targeted attacks when compared with coarser cortical scales derived from 

either the Desikan-Killiany atlas or random criteria (108 cortical regions). In particular, 
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we found that the cortical scale resulting from the trade-off analysis only became fully 

disconnected when 95% of top-hubs were removed; whereas a targeted attack on 45% 

and 65% of hubs was enough to disconnect both the Desikan-Killiany and the cortical 

network comprising 108 regions, respectively. But, most importantly, the cortical scale 

selected showed similar resilience than the finest one (1494 regions) used in the present 

study. 

Our procedure works well with concave functions (derived from the relationship 

relationship fits to linear or exponential (convex) functions. An exponential growth of 

small-world properties with the cortical scale results in similar distance to corner (dc) 

for both the coarsest and finest scale, which would impede the use of this selection 

criterion. On the other hand, criteria derived from a linear function would select the 

average between the coarsest and finest cortical scale as the best one, which might not 

coincide with the best trade-off between small-world properties and cortical resolution. 

In addition, both types of functions (linear and exponential) mathematically fail to 

define an optimal point and therefore they would be highly dependent on the first and 

last cortical scales employed in the study. In line with our results, Zalesky et al. (2010) 

cerebral tractography, pointing to this behaviour as a universal property of anatomical 

cerebral networks. 

In the present study, criteria considered to determine the trade-off between small-world 

properties and resolution of the cortical scale were based exclusively on topological 

properties of the underlying anatomical network. However, these criteria might not be 

adequate in those studies motivated by a priori or neurobiological hypotheses. 

Summarizing, the choice of a specific cortical scale may not apply to all experimental 
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settings. It will strongly depend on the nature of the study (exploratory versus 

hypothesis-driven) and on the underlying hypothesis (topological versus biological). We 

speculate that cerebral scenarios maximizing small-world properties should enhance the 

identification of changes in topological features caused by brain dysfunction or lesions, 

but this hypothesis needs to be experimentally supported with further experiments.   

Anatomical networks based on brain atlases are primarily modeling integrity of the 

callosal system connecting both cerebral hemispheres as well as the fascicles connecting 

the lobes of one hemisphere with each other (fiber length ranging from 30 to 100 mm), 

but they largely neglect the U-fiber system that connects cortical gray matter (fiber 

length ranging from 3 to 30 mm, average length of 15 mm) (Schüz and Braitenberg, 

2002). Our approach allows us to model the cortical topology preserving relatively 

constant the fiber length included in each cortical module. In order to model the neural 

organization intrinsic to the U-fiber system, we assumed that (i) the upper limit of the 

axon length is 30 mm, (ii) these fibers approximately follow a rectilinear path, and (iii) 

cortical regions have a circular shape (as a result of the parcellation procedure used in 

the present study). Following these conditions, the region size required to characterize 

the U-fiber system must be smaller than 707 mm
2
, meaning that the cortical scale 

should contain about 200 gray-matter regions. Therefore, we speculate that the U-fiber 

system may be responsible for the drastic increase of the local efficiency associated 

with highly grained cortical scales, including those revealing a superior balance between 

small-world properties and the resolution of the cortical scale (spanning between 540 

and 600 gray-matter regions). 

The present study poses some limitations that should be noted: (i) we infer anatomical 

connectivity from a linear regression model applied to cortical thickness measurements. 

This approach implicitly assumes anatomical relationships between cortical regions (He 
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et al., 2007) rather than anatomical connections between them. Although the nature of 

this anatomical correlation is poorly understood, previous studies have found 

correlations between different cortical descriptors (thickness or volume) and trophic 

influence between regions (Ferrer et al., 1995), genetic (Thompson et al., 2001) and 

environmental factors (Mechelli et al., 2005); (ii) topological features of anatomical 

cortical networks were obtained from the entire population by using regression analysis 

impeding to draw conclusions from individual subjects (scheme used in fMRI and 

EEG/MEG studies, see Hayasaka et al., 2010; Stam et al., 2009). This issue becomes 

especially problematic in clinical settings; (iii) the choice of the best sparsity neglects 

the bias introduced by lower connection densities; (iv) significant connections 

comprising our anatomical cortical networks were obtained from binary graphs. 

Weighted graphs could have alternatively been used although they seem more 

appropriate to establish functional connectivity patterns (Guye et al., 2010); (iv) 

topological properties of cortical scales finer than 1494 cortical regions were not 

explored in this study due to excessively longer computation time; and (v) criteria to 

select the cortical scale resulting from the trade-off between small-world properties and 

cortical resolution were exclusively based on topological considerations instead of on 

biological organization of the human neocortex. As a consequence, hypothesis-driven 

studies might not benefit from the choice of a cortical scale since it could enter in 

conflict with the neurobiological hypothesis under study. 

 

5. Conclusions 

The present work systematically assesses the impact of the cortical scale on the small-

world properties derived from anatomical cortical networks. More importantly, we 
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provided a novel framework to establish an effective trade-off between small-world 

attributes of anatomical cortical networks and number/size of gray-matter regions. 

Although we showed that anatomical cortical networks comprised by nodes of 250 mm
2
 

and sparsities below 8% reveal enhanced manifestations of the small-world architecture, 

the use of this cortical scale will critically depend on the nature of the study 

(exploratory versus hypothesis-driven) and on the underlying hypothesis (topological 

versus biological). Thus, if one is mainly interested in modelling the anatomical 

connectivity governed by the long-range fibre system, coarser scales may be more 

appropriate to grasp the network topology of structural networks. But if the focus of 

interest is the U-fibre system connecting neuronal populations within the same cortical 

module, then finer cortical scales should be considered. 
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Appendix A 

Pseudocode of the parcellation algorithm 

 

consider i as one atlas region fully uncovered 

while i region is not fully covered   

create a new empty parcel  

add to the new parcel a random seed vertex belonged to the uncovered i region  

 

add to the parcel the nearest uncovered vertex  

end while 

if still remain uncovered vertices of the atlas region and they are not connected 

undo the new parcel 

else 

establish the new parcel as covered area  

end if 

end while 

end for 
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Figure legends 

Figure 1. Schematic representation of the analysis pipeline to determine the best trade-

off between the level of small-worldness and the resolution of the scale in anatomical 

cortical networks. A. Cortical thickness estimation. Individual cortical thickness maps 

were obtained from previously segmented T1-MR images. These thickness maps were 

averaged to create the template on which different cortical scales were determined. B. 

Obtaining cortical scales. Cortical scales used in the current study were originally 

derived from the Desikan-Killiany atlas (Desikan et al., 2006). This panel also depicts 

cortical scales comprising 599 and 1494 regions. C. Building cortical networks. Partial 

correlations of interregional thickness across subjects were computed for each cortical 

scale (adjacency matrices), and then they were binarized by using different sparsities 

(binarized matrices). Results of binarized matrices were displayed on the pial surface 

showing the anatomical cortical network for a given sparsity (right column). D. 

Enhancing network properties. Top panel illustrates results obtained with two small-

world metrics ( and Elg) calculated over a wide range of sparsities (1-30%) for the 24 

cortical scales used in the present study. Bottom panel displays small-world properties 

for all cortical scales derived from the five best sparsities. Yellow circles correspond to 

the cortical scale resulting from the best trade-off between small-world properties and 

resolution of the cortical scale (599 regions) obtained with the method based on the 

shortest distance to corner (dc). 

 

Figure 2. Small-world properties as a function of sparsity for each cortical scale. Warm 

colors correspond to highly-grained cortical scales whereas cool colors refer to coarser 

cortical scales. Color-filled circles in each scale establishes the boundary between 

significant and non-significant sparsities (p<0.05 FDR-corrected). A. Changes in the 
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metric as a function of sparsity for every cortical scale. B. Clustering coefficient 

(normalized with 100 random networks), this ratio Cp/Crand shows similar shape as the 

value because local properties are prevalent in small-world networks. C. Variations in 

the path length (Lp) as a function of sparsity for each cortical scale. Note that although 

most values are close to 1 (following the Watt and Strogatz's criterion), the finer the 

cortical scale the higher the Lp for lower sparsities. D. Results obtained with the Elg 

metric, an alternative metric to , also suggest an increase of small-world properties 

with finer cortical scales. E. The local efficiency index (Eloc), as with Cp, enhances local 

connectivity in finer cortical scales and sparser networks. F. Note that global efficiency 

(Eglob) is slightly decreased in finer cortical scales. 

 

Figure 3. Relationships between small-world properties and sparsity. A.  shows a 

linear fit over the sparsity. B. Elg as a function of sparsity was fitted using a 2
nd

 degree 

polynomial. Results obtained suggest significant relationships between the two small-

world metrics and sparsity. 

 

Figure 4. Degree distribution of cortical scales comprising 66, 108, 599, and 1494 

regions. Thin solid lines represent the best fit using a scale-free ( kkP ~)( ) 

distribution, dashed lines refer to the exponential law ( kekP ~)( ), and thicker solid 

lines represent the fit to truncated power law ( ckk
ekkP 1~)( ). The best matching was 

provided by a truncated power law distribution for the four cortical scales, as reported in 

previous neuroimaging small-world studies (Gong et al., 2009; Liao et al., 2010). CD = 

cumulative distribution. 
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Figure 5. Small-world properties as a function of the range of cortical regions for the 

five best sparsities. The thicker solid line represents the best possible value of  (A) and 

Elg (B) regardless of sparsity. Remaining lines correspond to ranked sparsity values 

(optimal sparsity (OS), OS-1, OS-2, OS-3 and OS-4). The shortest distance to corner 

(dc) shows the cortical scale nearest to the left-superior corner in the normalized axis. 

The dc criteria points to 599 cortical regions as the best trade-off between cortical the 

level of small-worldness and the scale resolution in the five cases considered for . The 

best trade-off ranged between 541 and 571 cortical regions determined by Elg (for the 

sake of clarity, only dc corresponding to the first optimal sparsity was represented).  

 

Figure 6. Determining resilience of anatomical cortical networks to random and 

targeted attack. Solid lines represent the robustness of cortical scales comprising 66, 

108 and 1494 regions, and dashed lines correspond to the cortical scale resulting from 

the best trade-off between small-world properties and cortical resolution (599 regions). 

Network resilience to random and targeted attack was always computed for a sparsity of 

8% A. Network resilience to progressive elimination of top hubs within the cortical 

network. Plots in the top panel show the size of the largest component. Deviation from 

the diagonal indicates that the cortical network was segregated into various components. 

Plots in the bottom panel indicate that although the cortical network maintains a unique 

component after removing the first nodes, an increase of its average path length is 

maintained. Differences become more evident when the selected cortical scale was 

compared with coarser cortical scales. B. Resilience of cortical networks after a random 

elimination of nodes. Both the largest component (top panel) and the path length 

(bottom panel) suggest that the improvement in robustness observed in finer cortical 

scales is weaker in random than in targeted attack. 



Table 1. Small-world properties across different cortical scales. 

# areas 
Area 

(mm
2
) 

Minimum 

theoretical 

sparsity >> 

Minimum 

empirical 

sparsity 

Maximum 

significant 

sparsity 

Optimal 

sparsity  

(Max. ) 

Optimal 

sparsity  

(Max. Elg) 

66 variable 6.45 7.13 50 8.01 (2.38) 13 (1.23) 

108 1600 4.38 4.10 47 4.10 (4.09) 11 (1.37) 

136 1200 3.64 5.73 45 5.73 (3.03) 12 (1.48) 

157 1000 3.24 4.74 45  4.74 (3.31) 12 (1.53) 

198 800 2.68 4.27 42 4.27 (3.54) 10 (1.60) 

229 660 2.38 4.72 40 5.00 (3.41) 7 (1.65) 

347 431 1.69 3.74 33 4.00 (3.84) 7 (1.85) 

376 400 1.58 2.85 31 3.00 (4.58) 8 (1.89) 

496 300 1.25 2.88 25 2.88 (4.60) 7 (2.03) 

541 275 1.17 2.55 23 2.55 (5.30) 6 (2.08) 

571 262 1.11 2.04 22 2.04 (6.27) 6 (2.11) 

599 250 1.07 1.70 21 1.69 (7.14) 6 (2.12) 

625 240 1.03 1.78 20 1.78 (6.25) 6 (2.13) 

644 231 1.01 2.03 20 2.03 (5.99) 6 (2.17) 

676 222 0.97 1.52 18 1.52 (7.60) 6 (2.18) 

808 185 0.83 2.46 15 2.46 (5.32) 5 (2.26) 

849 177 0.8 2.46 14 2.46 (5.39) 5 (2.30) 

879 170 0.77 1.36 13 1.36 (7.94) 5 (2.35) 

951 157 0.72 1.44 11 1.44 (7.85) 5 (2.39) 

990 151 0.7 1.53 11 1.53 (7.49) 5 (2.44) 

1031 145 0.67 2.12 10 2.12 (6.12) 5 (2.46) 

1243 120 0.57 1.36 7 1.36 (8.16) 4 (2.58) 

1357 110 0.53 1.28 5 1.28 (8.82) 4 (2.65) 

1494 100 0.49 1.19 4 1.19 (9.14) 4 (2.70) 

Note that the atlas-based cortical scale (66 regions) is based on the Desikan-Killiany atlas (Desikan et 

al., 2006).  

 

8. Table1



Table 2.  Testing the robustness of the procedure to establish the trade-off between small-world 

properties and cortical resolution.  

Range of  

cortical 

scales 

OS  OS-1  OS-2  OS-3  OS-4  

  Elg  Elg  Elg  Elg  Elg 

           
66  1494 599 571 599 541 599 571 599 571 599 541 

           
108  1357 599 571 599 541 599 541 599 571 599 541 

           
136  1243 599 541 599 541 599 541 376 541 376 541 

           
157  1031 599 541 599 541 599 541 599 541 376 541 

           
198  990 599 541 599 541 599 541 599 571 376 541 

           
229  951 599 571 599 571 599 571 599 571 599 571 

           
347  879 599 571 599 571 599 571 599 571 599 571 

           
376  849 599 644 599 644 599 644 599 571 599 571 

           
496  808 599 599 599 625 599 571 599 571 599 571 

OS, optimal sparsity; OS-n, n
th
 sparsity value closer to the optimal sparsity. 

 

8. Table2



Tabla 3. Anatomical location of top hubs in four representative cortical scales. 

# Cortical areas Cortical hubs 

66         

Atlas location 

L. 

Mid. 

Front. 

BA 11 

L. 

Parahip. 

BA 36 

L. 

Cingulat. 

BA 24 

L. 

Sup. 

Temp. 

BA 22 

   

Degree (Betw.) 8 (2.6) 8 (2.3) 8 (2.2) 8 (2.1)    

108         

Atlas location 

R. 

Cuneus 

BA 17 

L. 

Mid. 

Occip. 

BA 19 

L. 

Mid. 

Front. 

BA 11,46 

R. 

Precent. 

BA 4 

L. 

Cuneus 

BA 17 

  

Degree (Betw.) 13 (2.6) 13 (2.5) 
13 (2.2) 

13 (2) 13 (2.1) 13 (1.9)   

599 (optimal)        

Atlas location 

R. 

Inf. 

Occipit. 

BA 18 

L. 

Sup. 

Front. 

BA 8 

L. 

Inf. 

Occipit. 

BA 19 

L. 

Postcent. 

BA 2 

L. 

Inf. 

Front. 

BA 47 

R. 

Inf. 

Front. 

BA 10 

L. 

Sup. 

Temp. 

BA 39 

Degree (Betw.) 67 (1.9) 67 (1.9) 67 (1.9) 65 (1.9) 66 (1.9) 65 (1.8) 61 (1.8) 

1494        

Atlas location 

R. 

Postcent. 

BA 43 

R. 

Mid. 

Front. 

BA 10 

R. 

Precun. 

BA 7 

L. 

Inf. 

Pariet. 

BA 40 

L. 

Mid. 

Front. 

BA 8,10 

  

Degree (Betw.) 
161(1.9) 

 

153 (1.8) 

155 (1.8) 

153 (1.7) 

157 (1.8) 

 

161 (1.7) 

157 (1.7) 

158 (1.7) 

162 (1.7) 

152 (1.7) 
  

Abbreviations: Betw, Betweeness; L, Left; R, Right; Sup, Superior; Mid, Middle; Inf, Inferior; 

Front, Frontal; Parahippocamp, Parahippocampal; Cingulat, Cingulated; Temp, Temporal; 

Occipit, Occipital; Precent, Precentral; Postcent, Postcentral; Paracent, Paracentral; Precun, 

Precuneus; Pariet, Parietal; BA, Brodmann area.  

8. Table3
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