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Abstra_cg_}-

Two important types of probing of a turbulent velocity field (T, t)
arethe Eulerian probings defined by d?/dt =7 (v constant) and the Lagran-
gian probing defined by d—f/dt = U(%,t). In the case of fully developed iso-
tropic and homogeneous turbulence, explicit expressions in terms of the
energy spectrum are derived for the autocorrelation coefficients and power
spectra obtained by Eulerian and L.agrangian probing. The derivations,
which are here given in detail, are based on a statistical representation of
the turbulent velocity field using the results of the equilibrium theory of
turbulence. The Tailor hypothesis is verified in the limit of high probing
velocities. The Hay-Pasquill conjecture relating the Lagrangian and Eu-
lerian power spectra is obtained as an approximation to the transformation
equations. Application of the resulis to the theory of turbulent diffusion is

indicated,
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1. Introduction

In the statistical theory of turbulence two different types of velocity
correlations with respect fo time are of particular interest. They are re-
lated to two well-known alternative ways of probing the fluctuating part of
the velocity field of the turbulent fluid as a function of time. An Fulerian
velocity correlation is obtained by probing in a point which is fixed in a
given frame of reference while the Lagrangian velocity correlation is ob-
tained by probing in a point which moves with the fluid particles. 1In the
case of homogeneous and stationary turbulence a particular frame of refer-
ence distinguishes itself by being the one in which the average velocity of
the fluid is zero; we shall call it the fixed frame of reference. The velocity
of the fluid at a point T and a time t in the fixed frame of reference consti-
tutes the fluctuating part of the turbulent velocity field at this point and time,
and will be denoted by (T, t).

An important application of Lagrangian velocity correlations to the
problem of turbulent diffusion was made by Taylor (ref. 1) in deriving the
relation (1.1) below. This relation describes the diffusion in the fixed
frame of reference of a particle moving with the local velocity of the turbu-
lent fluid. The relation gives the time dependence of the mean square par-
ticle displacement in the x-direction X2, in terms of the variance x2 = u?,
of the fluctuating part of the velocity in this direction and a double integral
over the Lagrangian autocorrelation coefficient RL(r). The relation has the

form

t t!
(1) = 2u2f dt'f dv R (1), (1.1)
O O

In the derivation of (1.1), homogeneous and stationary turbulence is

assumed, and RL(T) is defined through the equation

2R (5) = K() K(+7) (1.2)

where the averagings are to be carried out as ensemble averagings over
Lagrangian probings, i.e. x{t) and x(t+ 7 ) are the velocities of the same
particle at two different times. Because of the stationariness the average

is independent of t, and one may furithermore assume, as it is often done,



that under proper ergodic conditions the averaging might as well be carried
out over time for a single realization of the system. In fact, on the assump-
tion of spatial homogeneity, the sample averaging might also be carried out
as a space averaging over the initial positions of the particles which are
followed in time. The ergodic problems connected with the comparison of
results obtained by different averaging procedures are beyond the scope of
the present investigation, and we shall use whatever procedure is most
convenient.

Experimentally, it is in most cases simpler to measure velocity
correlations by Eulerian probing, since it only requires measurement of
the fluid velocities as functions of time in fixed points of some convenient
frame of reference, Thus it is usually simple to measure the Eulerian

autocorrelation coefficient RE( 1) defined by

? RE(T) = u(t) u(t+7) , (1.3)

where the averagings are carried out over Eulerian probings, i.e. u(t) and
u{t + v ) are the fluctuating parts of the fluid velocities at times tand t+7
respectively, measured at a point fixed in a convenient frame of reference,
However, since the frame of reference which is convenient to use for the
measurement may not necessarily be the fixed frame of reference men-
tioned above, this definition is ambiguous, and RE(':) generally depends on
the average speed of the fluid relative to the frame of reference used for
the measurement.

Thus considerable theoretical and practical interest is attached to
the problem of investigating the relations between the different Eulerian
autocorrelations and the ILagrangian one. The present investigation at-
tempts to clarify this problem, using a model which seems most suitable
in the limiting case of fully developed turbulence., This case represents
an asymptotic situation which is often realized to a fair approximation under
natural conditions where the distribution of the fluctuating part of the ve-
locity is Gaussian, and where one may assume that the velocity at a par-
ticular point in space is the result of a great many largely independent and
randomly occurring disturbances. In dealing with these disturbances in
the model it has not been necessary to specify their physical origin in detail.
However, for many purposes they may be thought of as the velocity fields
of randomly distributed eddies or as the velocity contributions from all the

vorticity-containing volume elements ‘n the fluid. One particular advantage



of the present model is that it makes it possible to obtain apparently real-
istic explicit functional relationships between certain of the most commonly
used Eulerian and Lagrangian averages.

Although no basic theoretical derivation has hitherto been given of
the relation between the Eulerian and Lagrangian correlations, a conjecture
supported to some extent by empirical evidence has been put forward by
Hay and Pasquill (ref, 2). This conjecture is formulated in terms of
Taylor's one-dimensional normalized power spectrum (ref. 3), which is
simply the cosine transform of the aulocorrelation coefficient and may be
defined by

oo}
P(w) =%f dv R(1) cos et . (1.4)

[¢]

Thus to each type of autocorrelation coefficient there corresponds a power
spectrum. The relation postulated by Hay and Pasquill linking the Eulerian
and Lagrangian power spectra is a simple scaling of the frequencies as

given by the equation
P () = B Pp(pe) . (1.5)

Empirical evidence as presented by Gifford (ref. 4) indicates that g should
be chosen in the range 2{ p { 4. We shall see in section 7 below that the
relation (1.5) may be derived as an approximation from more general
functional relations expressing ‘PL and PE in terms of two different inte-
gral transforms of the energy spectum I(k). These more general relations

will also permit an interpretation of the parameter p in terms of the ratio,

v/ V? , between the mean fluid velocity and the root mean square of the
fluetuating part of the velocity field. Furthermore the weli-known and - in
wind tunnel experiments - often used approximate relation between Eulerian

power and energy spectra
P = T B(2) - (L.6)
E v v’ . '

which is occasionally termed Taylor's hypothesis, may be obtained in the
f ona—
limit for v )) \’ ul as an asympiotic form of the more general equation ex-

pressing PE('w) as an integral tranform of E(k).



The relations derived in the present work may be applied directly to
the problem of turbulent diffusion, The so-called Fickian diffusion leads to

the following well-known expression for the mean square displacement r2

in the fixed frame of reference:
T (t) = D -t (1.7)

with D constant. Using the Taylor relation (1.1) and the expression ob-
tained in section 6 below for the Lagrangian autocorrelation coefficient, it

is possible to generalize equation (1. 7) by introducing a time-dependent
diffusion parameter D(t) which may be expressed as an integral transform

of the energy spectrum with a time-dependent kernel. From this expression
for D(t) it may be determined directly under what conditions and in what

time intervals a turbulent velocity field with a given energy spectrum gives
rise to either enhanced or Fickian diffusion. Thus the present model covers
completely the range of Sutton's diffusion formula (ref. 5), giving at the same
time an explicit connection between the diffusion properties and the energy

spectrum.

2. Series Expansions of Autocorrelations

For later use we shall recall two important series expansions of the
autocorrelation coefficients. The first may be derived directly from the
defining equation (1. 3) by performing a Taylor expansion of u{t++1 ). It is
a well-known feature of this series expansion that, owing to the assumed
stationariness of the turbulence, only the even terms survive the averaging

process, and the series expansion may then be written as

) n 1 d™u ,’2n
Rp(v) = 2: (-1 = ( " )ﬂ e (2.1)
n=o u E

A quite similar expansion may of course be obtained for the Lagrangian
autocorrelation coefficient by substituting for u the velocity %(t) obtained by
Lagrangian probing, and changing the averaging procedure correspondingly.
The other expansion is derivable from a Fourier cosine inversion of
equation (1.4) followed by a formal expansion of the cosine, and provided
that all moments of w exist one obtains by performing the integration over

each term separately



[06]
1 —s 2n

Ry(v) = ) (U o™ T (2.2)
n=o

where the averaging is carried out over the Eulerian power spectrum. Al-
so in this case a similar expansion may be obtained for the Lagrangian auto-
correlation coefficient by performing the averaging over the Lagrangian
power spectrum.

The above notions may easily be extended to space correlations and
are in fact conceptually simpler since they involve only averages over
simultaneous velocities, Thus the longitudinal space correlation is defined
by

u? £(E) = u(x) u(x +§ )

, (2. 3)

where the averagings in homogeneous turbulence may be carried out over
space. The corresponding normalized one-dimensional longitudinal spec-
trum is then given by

(o8]
E(k) = % f dE £(£) cos kE (2.4)
(o]

while the two series expansions corresponding to equations (2.1) and (2. 2)
get the analogous forms

o 2 . 0

1 a“u EZn N n Ton t28
He) = ) (1) -) C= ) () k - .(2.5)
b, = GF) ) e

Equating the coefficients of corresponding terms in the two expansions (2.5),
one obtains the relation

(2.6)

which displays the connection between the variance of higher-order space
derivatives of the longitudinal velocity and moments of the longitudinal en-
ergy spectrum. Similar relations may be obtained for the transverse ve-

locity components.



The relation (2. 6) makes it possible to compare the orders of mag-
nitude of the variances of high-order derivatives when one has knowledge of
the spectral shape. In well-developed turbulence this shape has been in-
vestigated both theoretically and experimentally, and the following general
features are well established. Beyond a certain wave number kl a region
is found, often stretching over several decades in k, where the spectrum
may be described by a power law. This region, usually termed the uni-
versal equilibrium range, is dominated by the inertial subrange in which
theoretical considerations show thai the spectrum cbeys the Kolmogoroff
law

E(k) = const, x k™ 2/3 (2.7)
Experimentally this law has gained some support, and in most practical
cases of atmospheric turbulence a power law is found with an exponent be-
tween -1 and -2 (ref. 10). At even higher wave numbers, viscous effects
become dominant, and eventually, beyond a wave number k,, the spectrum
falls off exponentially. Under these circumstances it is po;sible to show

quite generally that for alln)m )¢

n-m 2, .m 2
( d u> ) (d u )
n-m m .2n-mj)  2m
lim 4% dx = lim X K =0.(2.8)
k n 2 — k 2n
1 d u 2 k
=0 n u £~V
2 dx 2

In order to illustrate this relation, which will be exploited in later
sections, we may calculate the ratio in (2. 8) for a rather general spectrum
of the type discussed above. Properly normalized in the limit for kl ¢4 kz

it has the form

.
2 pla + 32;) exp[ -(k/kz)“_j
1 s

E(k) = - —
g p(u)k1 [ 2, at =
i1+ (k/k. )" 2
|t )y
where we shall only be interested in values of a in the interval 0{a{1,
corresponding to powers from -1 to -3 for the k-dependence in the inertial

subrange of the spectrum, This interval includes the Kolmogoroff value



-5/3 corresponding to a = 1/3. The function Ma) = (a-1)! is the usual
gamma function as defined for instance in ref. 6. Evaluation of the even
moments of k over the spectrum (2.9) gives for n )0 the expression

kon o l:p(n_a) r (ot %} /Vn T (a) (kl/kz):ZOL kZZn , from which the moment

ratio €(n, m) may be obtained in the same limit for n)m}) 0:

.___.1 k, 2a
r{n-m-o) f(m-a)plat "3 ), 1
e (= . (2.10)

Vr p (n-a) pla) 2

k.2(n—m) . kzm .

2n

€{n,m}) =

which is consistent with equation (2. 8) above in the indicated range of values
for a. Most experiments suggest values of a somewhat larger than 1/3 and
nearer to 1/2; thus it may usually safely be assumed that the ratio (2. 10)

is very small for n )m )0 in well-developed turbulence. An estimate of the
ratio k; [k, may be obtained in terms of the Reynolds number R, ~ \/.'J‘Z./ vk, .

Using Kolmogoroff's expressions for the energy dissipation rate per unit

mp—

mass, g~ kl (u2)3/2 > k; v 3 , one obtains
k
1 o o -3/4
E; = Rl . (2,11)
~1/2
It is thus seen that the ratio (2.10) vanishes at least as Rll/“ for large

Reynolds numbers and u ym 0.

3. The Statistical Model

In formulating the statistical model to be used in the following we
have been guided mainly by the statistical theory of shot effect noise as
developed by Rice (ref. 7) and to a more modest extent by the dynamic
relations governing fluid motion.

In the theory of shot effect noise it is assumed that a random process
may be described as a sum of randomly distributed disturbances. It is then
possible to express many basic properties of the random process in terms
of integrals over single disturbances and their probability of occurrence.

Since the fluctuating part of any velocily component in a turbulent
velocity field may be considered a random process, a description in terms
of a superposition of a large number of individual disturbances can always
be attempted. The physical nature of ‘he disturbances which compose the

turbulence and which are used in the statistical model to be presented here
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is wide open to discussion. In order to expose more clearly the assump-
tions and approximations underlying the model we shall, however, make use
of a specific physical interpretation of the disturbances constituting the
elements of the statistical model. It should nevertheless be made clear at
this point that other interpretations than the one presented below might be
possible and that the model seems to be sufficiently general to accommodate
more than one physical interpretation.

For an approximately incompressible medium the fluctuating part. of
the velocity field is rotational and can thus in a large space region @ be
written in the form of a volume integral which may be converted into a sum

of line integrals as follows:

'J(F,t)=f R "”‘(I" f ¢ dR"({,R) , (3.1)
Q 47:!1" EI"RI

where d3'1?{ is the volume element, Z) = curl U is the local vorticity and I c
defined by I‘CdR = dSR, is the constant vortex strength of a narrow vortex
tube, ¢. The volume integral in (3. 1) has been decomposed into a sum over
all tubes c, the contribution from each tube being given by a line integral
along the tube. |
A certain amount of persistence in time and space must be required

of the disturbances used in the statistical model. Thus the Helmholtz
theorems suggest that a suitable choice for a disturbance might be the
velocity field accompanying a section of a vortex tube. Let such a section
be characterized by its position in space ﬁi’ its orientation and size Aﬁi
and a constant vortex strength r;; it then contributes to the fluctuating
velocity field by a disturbance of the form
2 - r. AR, x (F-R))

i 4 g

. (3.2)
lr"Ri: 0

In order to introduce the statistical element in the theory we assume
that the fluctuating part of the turbulent velocity field can be written as a

sum

W, t) = £ F.(E-R,, AR.) , (3. 3)
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where the summation must be extended over all disturbances present, each
disturbance representing a few of the many degrees of freedom character-
izing a turbulent velocity field. The assumption of homogeneity is satisfied
by requiring that at any instant the distribution of disturbance positions ﬁi
is random and homogeneous in space. Furthermore isotropy is ensured by
requiring the distribution of orientations Aﬁi to be isotropic in space, and
finally we shall obtain stationariness of the turbulence by requiring the
distributions of vortex strengths I'; and sizes | Aﬁi | to be time-independent.
The equation (3. 3) is incomplete since the time dependence of Ri and
ARi has not yet been stated. Equations giving this dependence may, how-
ever, be obtained by making use of the fact that according fto the Helmholtz
theorems, which contain all the dynamics of inviscid flow, vortex lines are
also material lines. Provided that the terms giving a significant contribu-
tion to (3. 3) are disturbances of a size large compared with the scale kz'1
of viscous dissipation, we may thus use equation (3. 3) itself in order to ob-
tain the equations of motion for a disturbance, i.e. the position ﬁi and the

oriented size Aﬁi of the i'th disturbance must satisfy the equations

R, = x P (R -R,, 0R) (3. 4)
and

- - - - - - - - - -

AR, = i[Fk (R, + o, - R, 6Ry) - FL(®, - Ry, ARk)J . (3.5)

Thus, if the continuous sequence of space points ?(t) in which the fluctuating
part of the velocity field is probed is prescribed in some way as a function
of time, then the three equations (3. 3), (3.4) and (3.5) completely determine
the measured fluctuating velocity T(t).

In this investigation we shall make the further important assumption
that over the times of interest for the probing process one may neglect the
stretching of vortex tubes, i.e. put the right side of equation {3.5) equal to
zero, while keeping the time dependence due to the shift of positions of
disturbances as indicated in equation (3.4). The present interpretation of
the disturbances used in the model thus corresponds to a representation of
the velocity field (T, t) in terms of a superposition of rigid "eddy' velocity
fields, the "eddies'" themselves being subject to a motion determined by the

"eddies'. As mentioned above, one is not

compound effect of all the other
restricted to this special interpretation of the disturbances Fi so long as

they have the properties described in connection with equations (3. 3) and (3. 4).



We shall now make a few remarks concerning the validity of the ap-
procimations inherent in the statistical model as described above, still using
the special physical interpretation of a disturbance. As generally assumed
in the equilibrium theory, the turbulence may be characteriv_gi_by three

quantities, the r.m. s. of the fluctuating part of the velocity 1—17, the scale

of the energy-containing eddies )‘1 ~ k] and the Reynolds number

Rl ~ xl‘\? —L—l_g/u . As remarked at the end of section 2, the scale in which .
viscous effects dominate the motion is approximately given by the expression

Aoy ™ k‘;l ~ )lel"S/l’l". The number of degrees of freedom per unit volume in

the turbulent motion is estimated to be of the order of y ,\?:'3 v Xl"3319/4,
which indicates how the complexity of the motion increases with R,. Since
each of the disturbances only contain a few degrees of freedom, the above
quantity y also gives a rough estimate of the spatial density of disturbances.

Thus, if a typical disturbance has a range \, the number of disturb-
ances contributing to the velocity at a given point in space is of the order of
N~ ?\Sp ~ (k/hz)g, which, if A )) \,, implies a large amount of overlap be-
tween disturbances and thus justifies the statistical treatment. Another
reason for wanting the inequality X }) X\, to be satisfied is that under these
circumstances one is justified in disreguarding the effect of viscosity, which
is only important for motion in a scale of the order of Ao

However, one would also like aunother inequality, N )} N, to be
satisfied for the following reason. Since, according to the theory of Kol-
mogoroff and OCbukhov, the r.m.s. of the velocity fluctuations evaluated
over a region of size \ is given by the expression EZZE‘ (}\/kl)l/s Tﬁz,
the validity of the above inequality ensures that the rate of deformation
within a region of size A remains small compared with the mean velocity
of displacement of the region. This would tend to justify the neglecting of
the effeci of stretching of vortex lines,

To see whether the two inequalities may be satisfied simultaneously,
a rough estimate of the size of a typical disturbance may be obtained for the

% -J:Z, from which one obtains,

- - 4
using equation (2.11), the two approximate relations A= MRy 3(L-a)/! and
\ A3 X2R130'/4

number these relations indicate that the two above-mentioned inequalities,

spectrum given in equation (2. 9} by setting A~
. For o in the range 0 {a(1 and for large values of the Reynolds

N D)) Xz, may be satisfied simultaneously.
In the following sections we shall turn to the problem of comparing
averages obtained by Eulerian and Lagrangian probing of the velocity field,

using the statistical model described above.
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4, The Eulerian-Lagrangian Transformation

As a result of the approximations made in section 3 we may write
the equations (3. 3) and (3. 4) in the simplified form

3, 1) =Z F.(7-R) (4.1)
i

R, =Z F (R,
k

where we have suppressed Aﬁi since it does not enter explicitly in the

equations of motion; implicitly, however, it enters in the statistical proper-

ties of Fi‘ In order to determine U as a function of time, the probing path

T(t) must be specified. This specification is clearly different for Eulerian

and Lagrangian probings.

By an Eulerian probing with velocity vV we shall understand a probing
where the point T in which the velocity is measured, is moving with a con-
stant velocity ¥ with respect to the fixed frame of reference, i,e. the aver-
age velocity of the fluid measured in the point T is -v. Thus, with all
quantities expressed in the coordinates of the fixed frame of reference,
the time dependence of T in the Eulerian probing characterized by the con-

stant probing velocity ¥V is given by
T =7 (Fuler). : (4.2)

A special case of the Eulerian probing would be to let T remain constant

in the fixed frame of reference; this would of course correspond to v = 0,
In the Lagrangian probing the point r in which the velocity is meas-

ured moves with the fluid, and the time dependence of T is thus given by

the implicit equation

et}

T = (%, t) (Lagrange) , ‘ (4. 3)
which leads to a considerably more involved motion than equation (4. 2).
By solving the equations one would in each of the two cases get d
as a function of the time t and then in principle be able to calculate the
autocorrelations corresponding to Eulerian and Lagrangian probings

respectively.
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In order to bring forward the essential points without too much com-
plication in notation we shall in this section restrict ourselves to the one-
dimensional problem, postponing to a later section the treatment of the
general three-dimensional case. Furthermore we shall initially treat the

even simpler problem in which the disturbance centres Ri are assumed

fixed in space, thus reducing the equations {4.1) to a single equation

(4. 4)

where the time-independent disturbance position coordinates Xi are assumed
to be randomly distributed with a density p per unit length. The disturbances
Fi represent signals with random shapes, which may, however, be classified
into a possibly infinite number of types with a corresponding time-independent
probability distribution. In order to satisfy the assumption of isotropy it is
sufficient in the one-dimensional case to require that the probability distribu-
tion of shapes is symmetric, i.e. has the property that shapes Fi(x) and
~Fi(x) are equally probable., This also ensures that we are only dealing

with the fluctuating part of the velccity since the assumption implies that

T = 0. In this one-dimensional simplified picture, the Eulerian and Lagran- ‘

gian probings are characterized by the equations

X =v (Euler)
and (4.5)

u(x) {Lagrange)

x

respectively,

Before calculating autocorrelation coefficients corresponding to
Eulerian and L.agrangian probings we shall derive a few useful relations
which are direct consequences cf the simplified statistical model we have
just described. They involve moments over the distribution of the fluctu-
ating part of the velocity and its space derivatives,

A general formula has been proved in the appendix which permits us
to express expectation values of products of u and its space derivatives,

each raised to an arbitrary power P and hence having the general form

n

P
n (@ u/ax™) 7 (4. 6)
m=0



in terms of the disturbance density u and the irreducible mixed moments
involving only an average over a single disturbance and its derivatives, The
is

hand notation may be written (I m |

definition of an irreducible mixrzlad nf:om%nt, which in a space-saving short-
m=0

™

+
n o 4 n .
rgio[mj = <f o mlzo(amFi/axm) TR (4.7)
- 0

where . indicates an averaging over disturbance shapes.
i t=

With this notation the formula derived in the appendix leads to the

expression
n m m\’m
n (d7u/dx™) /p, ! =
m=0
o (0. -, p) .
O : s " ) n .4 3 ee .,
Loy Ty ey oy 3
. m n n
s=0 SO q(no""’“n) m=0 S
=(0,...,0)

which has the form of an expansion in powers of the disturbance density p .
The coefficient to p.s contains products over all integer number sets

(no, ...,n ) satisfying the inequalities 0 €N £ P,..., 0T £ p,. while

the summation should be carried out over all possible differer?;: non-negative

integer solutions for qno, cee,W tO the Diophantine equations (A.16) and

(A.17) subject to the condition (A.19). For large values ofp the dominant

tegrm will be the one containing the highest power ofp, i.e. proportional to

B MaX - The largest value of s is obtained when the non-vanishing q's have
n

the least possible index sum 1§ = Z\J b In the present case of symmetric

m’
m=0
shape distributions the maximum s is obtained when all q's vanish except

those for which n is equal to 2, that is, when only pair correlations appear
in the corresponding term. The pair correlations may be either quadratic
or cross term correlations; in either case the maximum value of s is

Smax - p/2 for a symmetric shape distribution, where p stands for the sum
o

Py Another impertant consequence of the assumption of symmetric

m=o
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shape distribution is that all moments of odd order vanish; this may of course
also be seen from a simple parity argument.
Writing only the dominant term in p, one obtains for the simple mo-

ment w2l from equation (4. 8)

eresm——

w?P/(eny e WP ([0]2/21)n/n! . (4.9)

Substituting in this equation the relation obtained for n =1, ? =u ([ 0] Z>

(which is in this case an exact relation), one obtains

n

W2h e (2n) C?) . (4.10)

2™'nt
Equation (4.10) is characteristic of the moments of a Gaussian distribution
and thus ensures that the model, as expected, yields a Gaussian distribution
for the velocity u in the limit of largey, i.e. a high Reynolds number.
Another important special case of equation (4. 8) is obtained when
one evaluates the variance of the n'th order space derivative of u; in this

case the relation is exact and has the‘form
(@Pu/dx™? = ([n)%y . (4.11)

Combination of this relation with equation (2, 6) yields the following ex-

pression for the moments of the energy spectrum:

K= (% 0 . (4.12)

Insertion of this expression for the moments in the ratio (2.10) yields what

is later seen to be a useful expansion parameter

({n1% (077

With these relations at hand one can easily calculate the Eulerian

€n,m) = (nymy0) . (4.13)

autocorrelation coefficient under the simple assumptions made at the be-
ginning of this section. [t may for instance be done by evaluating the terms
in the expansion (2.1). With a constant probing velocity v and fixed dis-

turbance centres one obtalns
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n_ @ i W n 2
(LYI:}Z . L’\v -.-i/a w o= o 2 (4.14)
at?

Inserting this expression in the expansion (2. 1) and performing the summa-
tion over n, one obtains the following relation between RE{T) and the energy

spectrum E(k}:

dk E(k) cos(vek) . (4.15)

A comparison of the expansion with equation {2.5) yields the following simple
connection between the Eulerian autocorrelation coefficient corresponding to

the constant probing velocity v and the one-dimensional space correlation:

RE,V(T) = f{vr) . (4.16)

This equation is just the Fourier transform of the relation (1.6); thus
Taylor's hypothesis is reproduced as an exact relation in the simplified
case under consideration in this section., From equation (4.16) it is realized
that the different Eulerian autocorrelations scale in a very simple way with
the probing velocity v in this simplified picture. The connection between
two such autocorrelation coefficients belonging to the probing velocities vy
and Vo respectively is given by

Ry v (9 = Rp o (577 (4.17)
the awkward result that for vy =0 the autocorrelation coefficient remains
1 for all times is a consequence of the simplifying assumption that the dis-
turbance centres are fixed in space or, as it is frequently formulated, that
the turbulence pathern is ''frozen'. We shall later see that equation (4.17)
is only valid as an approximation in the case where both vy and v, are large
compared with u? . In fact, equation {4.16) may be interpreted as saying
that in the limit in which one may neglect the motion of the disturbance
centres, i.e. for probing velocities v)) ’—117, averages obtained by Eulerian
probing are equivalent with space averages when properly scaled with the
probing velocity v. As another example of this simple scaling law, the re-
lation between the power spectra obtained by Eulerian probing with different

velocities is given by
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Vo
P (w) = :\7—13

(_—' w) s (4. 18)
E, vy 1 B, v

2 V1

which is of a form similar to the Hay-Pasquill conjecture (1.5). Although

it has not been properly justified here, it has intuitive value to remark that
if vy is chosen as the r.m.s. of u, i.e. vy = w2 , and v, as the average
wind speed, a value of g = Vo /vy would fall within the experimental limits
found in nature in many cases and thus give an indication that the Lagrangian
probing in some respects resemble an Eulerian probing with a velocity
.

We may now turn to the less trivial problem of calculating the Lag-
rangian autocorrelation coefficient RL(':) in the same approximation in which
we have just calculated the Eulerian autocorrelation coefficient.

By successive differentiations of the lower one of the two equations
{4.5) with respect to time we may obtain the higher-order time derivatives
for a Lagrangian probing path in terms of higher-order space derivatives.
Differentiating through the space variable x and using the equation which
implicitly defines the Lagrangian probing path, one gets for the first few

derivatives

(&) -2
'EI"E'L dax

(dzx _d%u 2, du)
(ilt2 dxz ax
L
3 3 2 3
(d_g_ﬁ_> =4y e Sy qu 2y (%) u (4.19)
dt L dx dx
x| odtaoa, od% a5, dh (_(_1_1_1_2U2+
4 .z .3 dx 2 \dx
t L dx dx dx

2 2 . 4
d™u 3 du
dx ax

etc,, where the index L indicates that the differentiation with respect to

time is carried out for the Lagrangian path.
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By induction one may obtain the following explicit expression for the
first four terms in the expansion of the n'th derivative with respect to time.

These are the only ones containing space derivatives of the order n - 2 or

higher:
n n n-1
<d 2\ . du n, 5 d "u du n-1
at™ dx™ Bogxh-r oX
L
_2 2 11"2 ot
d""“u d%u n-1 d” "u (du n-2 ‘
Cp Sy &5 v e o, Sy az) W24 L, (4. 20)
dx dx dx
where
B =B, =0, B,=1 dB-nz"n+2f°>~8
o =By =0, 9 and B = or n=
3 3n+3
= ] e = = = 1L _-on Ton -
CO C1 C2 C3 0, C4 4 and Cn 5 forns 5
4 3 2
= - - - . 3n -14n"+33n"-46n+48 .
Do—Dl-Dz—O, D3~lanan- 57 for n> 4.

Squaring equation (4. 20) and taking expeciation values, one obtains

dnxi _ <dnu >Zu2n+ 52 (dn“1u>2 (@)2 Jne2
at™ ax> no\ gl dx
n n-o 2 ‘
‘?'Cn d 11:11 d g d g 2n~1 + (4.21)
dx© ax™ dx

-2 2
d"u a4y (du) 2n-2
2D e e u + ...,
n an d'n-z ax

where, for reasons which will be obvious shortly, only those terms have
been retained in which the two highest derivatives are either both of even
or both of odd order.

All terms in equation (4. 21) are of the type for which we have
previously stated the general expression (4.8), in terms of the disturbance
density p and the irreducible mixed moments involving only averages over
a single disturbance and its derivatives. For instance the first term yields
the following contribution to an expansion in terms of the reciprocal dis-
turbance density g"l ‘
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(Ln]{0]> _J _1_ <[n] [o]?y
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n(n-1) ([0)4:> 4n(n-1) <{n][o] 3)([.1'1][0])

7 P + y +
Tt @Iy
n(n-1) (n-2) <[0]4><[ n][ 0]>2 :J -
] ([n1*X[ ) %y?
(4.22)

L
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r_m,..__
(-

+
Mt

=

e

It should be noted that the leading term, which is proportional to u ™~ 1,
contains only pair correlations while the term which is one power smaller
in y contains also quadruple correlations etc. In the limit for large
Reynolds number only the leading term will survive owing to the large
value of p. But even the 1eadmd term is composae of two subterms the
ratio of which is 2n ([ n][ 0}) / ({n] ) ([ o] )) However, by partial
integrations of the numerator, which contains integrals of the type (4.7 ,,
it is seen that this ratio vanishes for odd n and is of the order 2n €(n, ~2-)
for even n. Thus only one term survives in the limit of large Reynolds
numbers. A similar analysis may be carried through for the second and
following terms in equation {4.21). Like the first term they will give rise
to terms of the order pn+1 containing pair correlations only and terms of
a lower order in p containing higher-order correlations. However, as it
is easily verified, the pair correlation terms will be at least of the order
€(n, m) smaller than the leading term mentioned above and are thus negli-
gible in the limit of large Reynolds numbers. The terms of lower order in
u will also be negligible for the reasons earlier mentioned. Thus the ex-

pansion in ;fl and €{n, m)} leads to an expression of the type
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where o(€) represents terms of at least first order in the small quantities
€(n, m). The last equality is valid in the limit in which the Reynolds number
goes to infinity. In deriving the last expression, use has also been made of
the equality (4.12).

If the above limit is inserted in the Taylor expansion for the Lagran-
gian autocorrelation coefficient analogous to (2.1), the following simple

result is obtained:

- - 2 2
Ri(e) = ) K7 (- IV
n=o
(s8]
f dKE(k) exp( - -}? 2%y . (4. 24)

O

We thus note that in this limit, and neglecting the motion of the disturbance
centres, this one-dimensional model makes it possible to express the
Lagrangian autocorrelation coefficient in terms of an integral transforma-
tion of the one-dimensional energy spectrum with a Gaussian kernel, where-
as the Eulerian autocorrelation coefficient is obtained by performing a

cosine transformation of the energy spectrum as given by (4. 15).



5. Effect of the Motion of Disturbance Centres

In this section we shall return to the full set of equations (4.1), i
cluding the motion of the disturbance centres; we shall, however, still
restrict the considerations to the one-dimensional problem, which may then

be formulated through the equations

+ oo
u(x, t) = Z Fi(x—Xi)
i= -0
and (5.1)
+
X = ZL Fr&i-Xy ),
k=-

the last equation standing for the whole set of equations describing the
motion of the disturbance centres Xi' The velocity field u(x, t) is now time
dependent through the motion of the X 's,

As before, we define the two dlfferen’c ways of probing the velocity
field by the equations

X (Euler)

i
<

and A (5.2)
u(x, t) (Lagrange)

P
i

Taking the variance of the n'th order time derivative of the fluctu-
ating part of the velocity in the Eulerian description, we obtain instead of

equation (4. 14} the equation

n_ .2 _ 5 n . 2 — N2
S T e ™ (22 (5.3)
dt }E - Ix Ax

where only the term which becomes dominant after the averaging process
has been retained. Also the last equation is only valid in the limit of large
Reynolds numbers, where expansions of the type (4. 22) may be used. This
essentially amounts to saying that the dominant term of the variance (5. 3)
may be obtained by treating (anu/axn) as uncorrelated with {v-X . )“n
Furthermore, since the statistical variables Xi and u are 81m11arly distrib-

uted with a Gaussian distribution function in the limit of largep, as may be
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proved by the method described in detail in section 4, one may in a simple

way obtain the value of the average (V-Xi)ZYl = (v-u)?n | using the method
of characteristic functions (ch. f. } described in ref. 7,

The ch.f. corresponding to the Gaussian distribution of u is given by

(plgu-) = exp[inu ] = exp(- %— u2n 2) (5.4)
while the d-function distribution of the constant velocity v has the ch. f.
9, (k) = explixv] = exp(inv) . (5.5)

The ch. f. corresponding to the difference v-u is then given by

m—————

. 1 2 2
mv_u(x) = exp(ixv - 7 U ) . (5.6)

The moments of v-u may now be obtained in the usual way by differentiating

the ch.f. (5.6) with respect tox . Using the property (5. 7) of the generating

function for Hermite polynomials (ref. 6}

= am 2.7
H_(y) =L —% exp(2yz-2) | . (5.7)
3z z=0

one obtains the result

(V_u)Zn = (-1)" (gjl Hop <~"£l:_— ) (5.8)
2u2

Inserting the result (5. 8) in equation (5, 3) together with the expres-
sion (anu/axn)“{ = k%" . 42 derivable from equations (4.11) and (4.12),

one obtains

n .2 —Z.n .
%1 <_._dljll v 20 -1 l%) H2n< L ) , (5. 9)
u dt : , 2u2

which, inserted in the expansion (2. 1) for the Hulerian autocorrelation

coefficient, yields the more general relation



- 24 -

(o)
RE(-;-) = J dk E(k) exp{ - %— —1:2_ kz'r 2) cos(vkt) , {(5.10)
o)

where use has been made of the following relation applying to Hermite

polynomials of even crder:

) U Hy 00 @m)t = exp(e®) - cos(2ya) (5.11)
m=0

This expression for RE(T) contains both the constant probing velocity v and
the variance u2 of the fluctuating part of the velocity as parameters. It has
the expected preoperty of being reduced to the usual cosine transform (4.15)
in the limit for u2 €4 v2. 1In the opposite limit, v2<( ;1_2, it is interesting
to note that one obtains the relation (4, 24) derived in the previous section
for the Lagrangian autocorrelation coefficient when neglecting the motion
of the disturbance centres. |

Turning now to the Lagrangian case, one may analogously write the
variance of the n'th derivative of the fluid particle velocity % with respect

to time in the form

; 2) . (5.12)

(ﬁ%j:’ = 12N /Bnu>
1, 0x

" -X0" - (T

where, as before, only the dominant term has been retained.
The characteristic function for the difference between the two

variables u and Xi which have equal Gaussian distributions is given by

2

= exp(- ?n ) (5.13)

?u-X,
i

and the moment appearing in (5.12) then has the value

2n

T _ .0 o r LT
(u-X.) = {-1) - o = === (u7) . (5.14)
i Lau n q’u~Xi_J =0 n!

Making the usual substitutions, one obtains for the Lagrangian auto-

correlation the expression
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Qo
Ry () = | dk B exp(- wlke) (5. 15)
O

which only dev_ii’ces from the earlier derived expression (4. 24) by having
2:1-2- instead of u? ., This is thus the only effect of including the motion of
the disturbance centres in the Lagrangian description,

An interesting aspect of the probing problem is connected with the
application of weather balloons, where the motion of the probe is neither a
translation with constant velocity v nor can be considered a Lagrangian
probing since, owing to the finite size of the balloon, it may not be subject
to the small-scale motion in the atmosphere. However, if the motion of
the balloon in the fixed coordinate system is assumed to be random with a

Gaussian distribution with dispersion u< a trivial extension of the argu-

B’
ments leading to equation (5.15}) gives the relation between the energy
spectrum, E(k), and the measured autocorrelation, which we may call

RB(o:), where B stands for ballocon. The relation is

o0 i Z
i vt ug o g

Rp(1) = j dk E(k) exp( - ——s S (5.16)
) o]

All the expressions derived in this section are restricted to the one-
dimensional problem. In the following section the treatment will be ex-

tended to the three-dimensional case.

6. Extension to Three Dimensions

In order to extend our treatment of the Eulerian-Lagrangian trans-
formation problem to the more realistic three-dimensional problem we
shall for a moment return to Taylor's diffusion formula (1.1). Similar
relations may be written for the two other space dimensions and in iso-
tropic turbulence RL(T) will be identically the same function in all three

equations. Adding the three equations, we obtain

«t -tl .
2 2 7 , .
7E(t) = o J atr f @t R (1) (6.1)
O Q

where RL(':) is d2fired by equation (1. 2) or the equivalent aquation (%, 2):
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(F) R (1) = T(0) - Flr) (6. 2)

where the averaging is carried out over the scalar product of the velocities

of the same particle at two instants separated by a time interval t . We

may also recall that the velocity variance is given by (_'r.' )2 =72 = u2 where
u = jﬁ'! now dennies the size of the fluctuating part of the three-dimensional
velocity vector,

When considering the Eulerian autocorrelation coefficient RE(T),
which we want to compare with RL(T), we must define it in a way analogous
to (6. 2) as

- Ry(t) = WO - (1) (6. 3)

where the averaging is carried out cver a probing path characterized by the
‘ . - —
equation r = v,
If we split the scalar product (6. 3} into its three components,
choosing a coordinate system where V is paraliel to one of the axes, we
may write the autocorrelation coefficient as the following combination of

longitudinal and transverse autocorrelations:

1 2 '
Ry(t) = R () + 2R, (3) , (6.4)

if
where in the simple case in which the motion of the disturbance centres is
neglected, i.e. for large velocities v, the functions R, and R, are related
to the conventional longitudinal and transverse space correlations coef-
ficients f and g (as defined for instance in ref. 11) by the simple scaling

equations
R” () = f(vr) and RJ(T) = g(vt) . (6.5)

By performing a Taylor expansion of (6. 3) and assuming stationari-
ness, we obtain the three-dimensional analogue of equation (2.1)

© R—

n 1/ d%\° 2m (6. 6
R.(1) = (-1)" ~—— ..__...) ey
" g‘éo -1:’17 ar” o
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and we shall as before be concerned with the evaluation of the variance of
a'™/dt" appearing in (6. 6).
Starting with the simple case of Eulerian averages, where the

motion of the disturbance centres may be neglected, we obtain the relation

%n_r%) - @9 = Y REIRE (6.7)
t
E , |

where @ is a unit vector in the direction of ¥V and @ -7 is the differential
operator in the € direction. Squaring and taking averages, we obtain the

result

— —5 . PN

1 (d u) - yon 1 [(3 I )nﬁ—i = g2n L (-9.-—) , (6.8)
=7 \at®/p —3 2
u u u

[

jud f=

where, in evaluating the scalar product, the x-axis of the coordinate system
has been chosen parallel to €; the value of the average is, however, of

course independent of this particular choice. The scalar quantity

- ._.1: . - . . . . A . .
(anu/axn) , which obviously is an intrinsic property of the velocity field
and thus is independent of the probing velocity ¥, may be obtained in terms

of moments of a scalar wave number k over a suitably defined energy

spectrum E(k). Choosing E(k) as

E(k) = %E" (k) + %E‘L (k) (6. 9)

[

where E” and EJ1 are the one-dimensional normalized energy spectra,

one has
o
E" (k) = % j dr f(r) cos kr and
o
W
E:l(k) = % f dr g(r) cos kr . (6.10)
o

Applying these definitions, one obtains

00

n 2
<'§“lﬁ> = o Jp dk B K = o - k0 (6.11)
X

O
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as a convenient short-hand expression for the scalar invariant considered.
Substituting in the expansion (6.6), we obtain the equation relating the en-
ergy spectrum to the Eulerian autocorrelation for fast probing, i.e. for
v2 >> uz,

. Q0
R (x) =f dk (k) cos(vek) . (6.12)
o]

This autocorrelation has the same simple scaling properties (4.17) as the
one-dimensional analogue considered in section 4.

We may now turn to the three-dimensional Lagrangian probing,
neglecting the motion of the disturbance centres. The Taylor expansion

of (6. 2) leads to the problem of evaluating the variance of the derivatives

Ns
(£2) = @9)@9) ... @D - @0 DT . (6.19)
dt g
) L

where the symbolic scalar operator o °‘3)n should be understood as
equivalent to letting the operator (1 -7 ) operate n consecutive times in
the way indicated in (6.13). From the analysis of section 4 leading fo
equation (4.23) we know what the effect is of representing U as the sum
+ o
W= ) RE-R) | (6.14)

i= - o

of a very large number of overlapping randomly distributed disturbances
of the type ?i(?-ﬁi). What was learned from the expansion in (4.23) is

that the dominant term of the variance of an expression like (6.13) may

be obtained in the limit of large Reynolds numbers by letting all the dif-
ferential operators operate on the last U only, neglecting the T dependence
of the others, and furthermore in the same limit by considering the scalar
operator (G +F )" as statistically independent of the last U on which it

operates. In symbolic form these steps may be expressed by

;ﬁ[zn-t(g'ﬁ)l‘uj : - (6. 15)
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where e is a unit vector, the direction of which is now independent of the

direction of u. We thus obtain the relation corresponding to (6. 8) above

Ty 2 o N \ 2 9
= (57), = W7 5 (Bg) - wTe e o
dt™ /7, ox :

I may be observed that in the present limit the only difference between the

Eulerian and the Lagrangian average is that whereas the first is proportional

S ——————

to vzn, the second is proportional to fﬁi 2n , and the evaluation of the Lagran-
gian autocorrelation is thus reduced to the problem of evaluating moments

of the size of the random velocity u, which is known to have components

distributed according to a Gaussian with variance n'? = % uZ, where u'

s

denotes the root mean square of any single velocity component.

The evaluation of u2n = {ﬁl 2n is easily performed when one
remembers that the size of a three-dimensional vector is distributed ac-
cording to a Maxwell distribution when each of iis components has a
Gaussian distribution. The distribution of u is thus given by the normalized
Maxwell distribution function

7 Wl a u? 7
P(u) = E X expL— 5 '2—& s (6.17)
u u

which leads to the values

2n _ (2nt1)! u'2n

6.18
Znnl ( )

for the moments under consideration.

Inserting the Lagrangian average (6. 16) into the expansion for the
Lagrangian autocorrelation coefficient and using the above result (6.18),
one obtains the following functional relation between the energy spectrum
E(k) and the Lagrangian autocorrelation coefficient, in which disturbance

centre motion has been neglected:

QO
RL(T) = f dk E(k) eXp L_ %u'?,_cukz l (1”1‘172121{2)
: -
0]
2
ac 9 ) % -
f ak B9 | - 2 7 © - (6.19)
L gz

o) z=ultk
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This expression is the three-dimensional analogue of equation (4.24). It is
worth noting that, in contrast to the one-dimensional case, the function with
which the energy spectrum should be folded in the three-dimensional case is
not positive definite. Thus it is possible to obtain negative autocorrelations
even for Lagrangian probing., This happens for instance if for theoretical
reasons a d-function spectrum is considered. However, the Lagrangian
autocorrelation is always strongly damped with time even in this very special
case, which corresponds to an extremely regular pattern of motion, as is
apparent from the corresponding periodicity of the Eulerian autocorrelation.
We may now approach the slightly more complex problem of taking
the motion of the disturbance cenires into account also in the three-dimen-
sional case. Using exactly the same kind of arguments as those leading to
the equation (6.16), one obtains for the Lagrangian and Eulerian expansion

coefficients the approximate expressions

Il 5 -
= (5F) =E g -G, (6. 20)
u2 dt L .
and
n-. 2
1 g’f?’) e k2n, f{;_ﬁ‘Zn )
;‘i dt" /E

where ﬁl and 'ﬁz are two independent random velocities which in the La-
grangian probing have the same Gaussian distribution for each of their
components, while ¥ and U are the constant probing velocity and the random
velocity of the fluid, respectively. Thus also this problem is reduced to
the evaluation of moments of the size of relative velocities with known
probability distributions for the two component velocities. This problem
has been treated in another context by one of the authors (ref. 3} for the
case of vecters the components of which are either constant or have a
Gaussian distribution,

The result for the double-Gaussian case is that the moments are

given by the expression

2n - - 21 (Co+130 8 2N
Iul uzf S

Uyg = {w,” + ouyy o, (6.22)

ol
2 nt

which in the case of equal distribution= for ﬁ’l and 32 is reduced to the

expression (6.18) with u' replaced by Y2u'. Thus the Lagrangian auto-
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correlation in the case where the motion of the disturbance centres is in-
cluded has the form (6, 19) with the above substitution of 2 u' for u'.

One may, however, easily generalize the result to the case where
the probe 1s moving with a random velocity the components of which have
a Gaussian distribution differen: from that of the velocity of the fluid
particles. This will for instance be the case when the probing is done with
a balloon moving with a random velocity "EB which is obtained as some
average of the velncitv of the 1luid over a volume of the size of the balloon
and which is larger than the average volume of the disturbances contrib-
uting most of the fluctuating velocity U of the fluid particles. The corre-
sponding autocorrelation iunction may then be obiained by inserting the
expression (6. 22) with uj = ufB and uh, = u' into the coefficient (6. 20).
The autocorrelation will then be related to the energy spectrum E(k) through

the equation

w .l
Rplr) = f dk E(k) 1 (6. 23)

r
L dz” _.l 1 2 2 .
I} 7z = ufB + u'tk

It is instructive to consider iwo exireme cases of this equation, one corre-
sponding to a very small "balloon  and the other to a very large one. The
small balloon will faithfully follow the motion of the surrounding fluid, and
u:'B may then be put equal to u', In this limit the aufocorrelation is of course
reduced to the above-mentioned Lagrangian form., At the other extreme
corresponding to a very large "'balloon', the velocity HB will be zero, and
consequently we shall have u:'B = 0. This limit actually corresponds to the
special case of Eulerian probing where the probing velocity Vv is zero. The
autocorrelation function obtained in this limit happens to be identical with
{6.19), which was the Lagrangian autocorrelation without motion of disturb-
ance centres,

Turning finally to the case of Eulerian probing with arbitrary
velocity V, the inclusion of the motion of disturbance centres requires the
evaluation of moments of the quantity W-ﬁ] in equation (6. 21). The fact

G, -u,] 20 and the form of

that we know the expression for the moments [ul U]

the Maxwell distribution function for [uli makes it possible to obtain the

b 2]"1 : : 1 :
value of the moments ]V—ﬁ] by an inverse Laplace transformation (see

ref. 8). The following result is obtained:
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P ntl ' 2
-8 %% = (- 5) Li —\-'%-—‘1- Hy 4 (i=——) Ju'“’n (6. 24)
V2
where H2n+1 are the Hermite polynomials obeying the equation
@
2m+1 2y .

Z ('1)mH2m+1 (y)z /(2m+ 1)t = exp(z”) sin (2yz) (6,25)
m=0

This equation, which generates the Hermite polynomials of odd order, may
actually be used to sum the Taylor expansion of the Eulerian autocorrelation
function, and after some trivial mathematical manipulation the following
relation is obtained between the energy spectrum E(k) and the Eulerian
autocorrelation coefficient characterized by the constant probing velocity v
and the r.m. s. of the fluctuating velocity u':

& 2.2 2

RE(t) = f dk E(k) exp( - Ej—-—%——l-{—-—-) cos{vtk) -
, .

Ya't k) sin(vek) | = (6. 26)
v i

Nt | 2 -
HV;— f dk E(k) { Bgz—[: exp(- -%2-) sin(g;- z)j%
o}

z=u'tk

As expected, this equation is reduced to the earlier derived equations
(6.12) and (6.19) in the limits v )} u' and v {{ u', respectively.

We have now carried through the programme of relating the energy
spectrum E(k) in isotropic, homogeneous, well-developed turbulence to
the different types of autocorrelation coefficients which may be obtained
either by the Lagrangian probing, i.e. following a certain fluid particle
in time, or by a ""bolloon' probing with specified random Gaussian motion,
or finally by a Fulerian probing specified by the value of the constant
probing velocity v. In the last section we shall investigate the relation
between the energy spectrum E(k} and the power spectra P(w) obtained by
the different probing methods mentioned above. Finally, we shall discuss
how the Hay-Pasquill conjecture may be derived from the above relations

as an approximation, and how the Sutton theory for turbulent diffusion is

related to this theory.
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7. Applications and Discussion

Having derived in the previous section the autocorrelation coefficients
for the various ways of probing the velocity field, we are now in a position
to relate the corresponding power spectra P(w) which would be measured in
these probings to the energy spectrum characterizing the turbulence. The
relations are obtained by substitution of the respective autocorrelation coef-
ficients in the general formula (1.4). In this way one obtains Lagrangian;
"balloon'' and Eulerian power specira in terms of integral transforms of the
energy spectrum E(k), using kernel functions characteristic of the way of
probing.

In the case of Lagrangian and "balloon' probing the autocorrelation

coefficient (6. 23) is used, yielding the expression

a0
_ 1 TdR gy e w
Pu) = 4 | S B®) K () (7.1)
e]

where w is the frequency and U' is defined according to whether the probing

is Lagrangian or '"balloon' as

U = yZu (Lagrangian) (7. 2)
or
U= Jup' + w?  (balloon)

while KL(Z) is the normalized Lagrangian kernel function

2 .
KL(Z) = V’ﬂz 22 exp( - 5-2—-) . (7.3)

This function has a "universal' shape, which is shown in fig. 1, This would
be the shape of the power spectrum in the extreme and unrealistic case in
which the energy spectrum contained only one wave number ko' i.e, in
which E(k) =% (k—ko). Thus in these types of probing a particular wave
number will never be associated with a single frequency, but rather with

a frequency band with an average frequency and standard deviation given by
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LAGRANGIAN KERNEL  FUNCTION

0.6 S
| L: U2 2uy?

/ B: U’ g +y?
0.4 \
t—207U'k—

§0.2

w/Uk
l

0.0
0 / 2 3 4

w/Uk -

Fig. 1. The normalized Lagrangian kernel function -KL is shown as a
function of o U'k. Mean value and standard deviation of w are given by
o/U'k =Y 8/x % 1.60 and ¢/U'k = 0.67. Case L corresponds to Lagran-
gian probing. Case B corresponds to probing with a "balloon'" moving

with a random velocity G, with components distributed according to a

B
Gaussian with rms ué.
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- \’ 8 o .
w =y 5 U'ko 2 1,60 U‘ko

and (754)
= _2 .

o = w0 -~ -O.GIU'kO .

The general expression for the n‘th-order moment of v is

. n+ 2
n _ RO s | 2 n+ 3
w = (U ko) —V—-E—— 2 I‘(——Z-—‘) . (7.5)

Since most of the energy spectra occurring in nature have a rather
smooth shape ranging over several decades in the wave number, the La-
grangian kernel may for many practical purposes be approximated by a
d-function yielding a one to one connection between the frequency and the
wave number. It is then natural to choose the upper relation (7. 4) to give
this connecticu. In this approximation one obtains the following rough but
simple relation between the Lagrangian power spectrum and the energy

spectrum:

v L on( ). .5

In the case of Eulerian probing one proceeds in an analogous way by
substituting the Eulerian autocorrelation coefficient (6. 26) in the relation
(1.4), obtaining the Eulerian powef spectrum in the form

€0
1 dk . w v \
Polw) = = j & Bk K ( , , (7.7)
E v k E\VEK " Y5 )

o

where the normalized Fulerian kernel function is given b:
y

, - -
Kpe) = T o) @0 | cew| e’ L. e
It is seen that this kernel contains a parameter which in (7. 7) has the value
y=v/ V2 u'. The shape of the kernel thus depends on the ratio between the
probing velocity and the r.m.s. of the random part of the velocity. In fig. 2
the Eulerian kernel function is given for the three values 0.1, 1 and 10 of
the parameter y = vV 2 u'. In the limit of small probing velocities (v {{ u')
the shape is similar to the one obtained for the Lagrangian kernel. This

corresponds to the fact that in this limit Eulerian probing and '"balloon"
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Fig. 2. Examples of normalized Eulerian kernel functions Ke for various

ratios of the probing velocity v to the rms u' of a single component of the

fluctuating part of the velocity field.
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probing with u§B = 0 are identical. In the opposite limit (v)) u') one also
obtains a simple result since the kernel function then degenerates toa -
function yielding the following simple one to one correspondence between

wave numbers and frequencies:

w~ vk . (7.9)

This relation, which corresponds to the so-called Taylor hypothesis, con-
nects the Eulerian power spectrum and the energy spectrum by the simple

scaling law
~ 1 &
Ppl) 5 B() . (7.10)

The general trend of the Eulerian kernel functions is indicated in fig. 3,
where the average frequency » and the standard deviation ¢ corresponding
to a particular wave number k are plotted in dimensionless units as func-
tions of the parameter V/V'_Q u'. For completeness the general expression

for the n'th moment of w corresponding to the wave number k is given below:

— 2 ..
+2 '
2n 4ut”

{D—n-2['%]"D~n—2[‘%j§ ’ (7.11)

where D is the parabolic cylinder function of negative order defined by

(see ref, 6)

D (2= y3 L (-2 & 2 Bete(2o) ). (712
cm-1(2) © mr P ) R | e Bl )

It is quite clear from fig. 3 how the transformation relation (7. 9) so
frequently used for instance in wind tunnel experiments becomes a good
approximation for v)) u' and actually for many purposes may be sufficient
for v a few times larger than u' if a not too detailed knowledge of the en-
ergy spectrum E(k) is needed.

It is now also obvious how the relation (1.5) conjectured by Hay and
Pasquill may be obtained as a first rough approximation in the case of
rather smooth energy spectra E(k). By elimination of the energy spectrum,
using the relations (7.86) and (7.10), one obtains the following asymptotic

relation between the two types of power specira:
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Fig. 3. Mean value and standard deviation of w in units of vk as functions

of the parameter v/ {2 u' for the normalized Eulerian kernel function K_..
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P () = p Ppfo) | (7.13)

where

p- I X (7.14)

in the limit where v))u' . The relation obviously breaks down when v
becomes of the same magnitude as u' since, as mentioned above, Eulerian
o=
B~ 0
Thus a lower limit for p is obtained by comparing the Lagrangian power

probing with a velocity v {{ u' corresponds to ''balloon' probing with u

spectrum with this particular type of "balloon' spectrum. The comparison
yields the value

B - 1 (7.15)

V2
in the limit where v(( u' .

It is of interest to apply this theory to the phenomenon of turbulent
diffusion. In order to investigate the contribution of a narrow wave number
range of the energy spectrum E(k) to the diffusion process one may insert
in the Taylor relation (1.1) the Lagrangian autocorrelation coeifficient
corresponding to an energy spectrum of the singular shape E(k) = b(k—ko).
After performance of the double integration over time the following variance
is obtained for the displacement r'along any one of the three independent

space directions:
2 1 2,2.2,
rto(t) = —3 l:l - exp(u'"k>t%) | . (7.18)
ke o’ |

Thus the probability distribution for finding a displacement r in a pre-
scribed direction converges toward a limiting distribution with the variance
k(';z in a time which is large compared with the period ¥ = (u'ko)"l. At
times small compared with T, the standard deviation r' grows with time
approximately as u't.

The spectra occurring in natural turbulence usually have a smooth
shape, and the diffusion observed is the co-operative effect of all parts of
the spectrum. However, the above consideration shows how the high wave
number part of the spectrum is gradually rendered inactive as the diffusion

proceeds while only that part of the spectrum which has wave numbers
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k ((u't)—}L is important for further diffusion. It is this progressive reduction
of the part of the energy spectrum which is active in the diffusion process
which results for a wide class of spectra in the well-known Fick law of
turbulent diffusion. In order to illustrate this statement one may consider
some very simple spectra for which the calculation may be carried out in
terms of elementary functions.

Let us first consider a normalized spectrum

(k) = 22 exp(- \k?) (7.17)

\fn

characterized by just one parameter \. The resulting expression for the

variance with its asymptotic values for small and large values of t is
u‘2t2 for t{{ —)-\-,-

2 _ .2 w? 21/2 7~ u
2= o [(1+-—2-’c) Sk . (7.18)
A : : A

2u'zt for t)) =

Since this spectrum is generally associated with the last stages of decaying
turbulence, where one cannot expect the approiimations underlying the

present statistical theory te apply, one might also consider a slightly more
realistic spectrum which has a qualitative resemblance to the ones expected

in fully developed turbulence. This is true of the normalized spectrum
E(k) = 2 ——-—):-57 , (7.19)
o1+ 2\%k

which yields the following approximate expression for the variance of the

displacement after a time t:

S s win w??  for t(( 2
u ~
L x]iu’ti - g \ ) (7. 20)
u'it for t>> -G-i— .

Thus, appart from numerical constants, the same general behaviour is
obtained. ‘

For more general spectral shapes the following expression may be
obtained by substitution of the general expression for the Lagrangian auto-

correlation coefficient in the relation (1.1):

r2(t) = D) - t , (7.21)
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where the time-dependent diffusion parameter is given by an integral trans-

formation of the energy spectrum E(k) through

QO
D(t) = u' & Bk) T(wik) (7. 22)

0

in which the kernel function T has the explicit universal form

1- e—zz
T(z) = 222 . (7.23)

For many practical purposes and in order to get an intuitive understanding
of the turbulent diffusion mechanism, the kernel function T may be approxi-
mated by the somewhat simpler function

T(z) (7.24)

o |1nz |
This form and the fact that the effective part of the energy spectrum usually
ranges over several decades in the wave number k suggest that a trans-
formation should be made to a logarithmic scale in the wave number. If
this is done by introduction of the parameter s = - lnk in the expression
(7.22), one obtains for D(t) the expression
w
D) = w f ds E(e™%) T (e

- QO

-s+1n{u't) )

In fig. 4 the function T and a simple arbitirary energy spectrum E
have been drawn on a logarithmic wave number scale. The instantaneous
value of the diffusion parameter D is then obtained by integration of the
product of the two functions over the entire range of s. The time de-
pendence of D comes about as the kernel function T advances without change
of shape toward larger wave numbers with an abscissa proportional to Int.
In the initial stages this gives rise to enhanced diffusion by making the

"overlap'

integral in D proportional to t. At later times, when passing
into the region where E(k) is flat, D(t) becomes almost constant, and
Fickian diffusion is obtained. This behaviour thus covers the range of
Sutton's diffusion formula relating it directly to the shape of the energy
spectrum, It must, however, be remembered that the present theory is

restricted to the case of isotropic turbulence and thus gives rise to isoiropic
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Fig. 4, Diagram showing the functions used for the determination of the
time-dependent diffusion parameter D(t) = u! ds E(k)T(u'tk) with

-
k = exp(-s). The function T moves without change of shape toward larger

s values with a speed proportional to Int., The transformation s'=s-In )‘e

is introduced for scaling purposes. The dashed lines correspond to the
approximation (7. 24). |
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diffusion. Furthermore it is inherent in the approximations made that fully

developed turbulence is presupposed over the wave number range considered .

since the statistical assumptions imply a large amount of overlap of the
disturbances. Thus, in situations where the components of the random part
of the velocity field have a non-Gaussian distribution, the application of the
present theory would be expected to have a limited validity or might even be
misleading. Further applications and extensions of the present theory to

special cases of turbulent diffusion are discussed by one of us in ref, 9.
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Appendix

In this appendix we shall extend and generalize some of the theorems,
proved by Rice (ref. 7), about random processes of the shot effect type.

Let us consider a random process which may be expressed as a sum
ax) = ) FilaeX)) (A.1)

where each term Fi represents a disturbance statistically independent of
the others with a random shape and a random position Xi‘ More precisely,
this means that the shapes of the disturbances may be classified into a pos-
sibly infinite number of types for which there exists a known probability
distribution. The random distribution of the positions Xi is characterized
by a density p so that, within any interval X which is large compared with
the range of a single disturbance, the number N of disturbances occurring
in this interval is distributed according to a Poisson distribution with a
mean value N = pX, while the position Xi of each of these N signals will
have the probability dx/X of occurring in the subinterval dx within X,
Taking derivatives with respect to x in equation (A.1), one obviously

obtains the random processes
+
My L e mFi
= Z (m=0,1,...,n) , (A. 2)

dx 3 xm

i= -

of which (A. 1) is nothing but the special case m = 0,
Our aim is to calculate expectation values of products of u and its
derivatives, each raised to arbitrary powers Py hence having the general

form

n

dmu Pm
I (= , | , (A.3)
m=o

and to express them in terms of the irreducible mixed moments of a single

disturbance and its derivatives,
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+ 00 n alrnFi o
< f dx 1 (=) , (A 4)
Yo m=0 gx i

where ( >i indicates an averaging over the disturbance shapes.

To establish this relation we shall use the method of characteristic
functions (ch. £.).

In order to be able to neglect end effects, we shall perform all
averages over an interval X which is long compared with the range of the.
disturbances. Furthermore, we shall first treat the special case where
u=uy (x) has just one disturbance Fi in the interval X, In this case the

joint ch, f. for uy and its derivatives up to and including the n'th is given

by
S R
@, (n % ) = exp| i X L=
12 s o2 p ‘m yTom B
X
m=o
, +X/2 ‘ Tn amFl
(X- f dX, exp [i %y - m.l>1 . (A.5)
-X/2 m=o0 *

If it is assumed, as done in section 3 above, that the probability
distribution of shapes has the special property that shapes Fi(x) and —Fi(}:)
are equally probable, the ch. f. (A.5) will be real valued and an even func-

tion in all LI
Recalling that moments of u; and its derivatives may be obtained

by differentiation of the ch. f., we obtain

n dmul nm ) +X/2 n amFi m
1o—)  t(x [ T )
m=o * -X/2 m=o ‘
(A.6)

n . -

109 |
[“ T %y L L. L.
m=o0 o o " tn T

Under the above special assumption about the syrametry of the shay

distribution we immediately see that the moment (A. 6) vanishes if
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ifn-= Z L. is an odd integer. This result will be used later, but is not

essential for the following considerations, which also apply to more general
shape probability distributions.
In the case where exactly N disturbances appear in the interval X,

the nt+1 random processes we consider have the form

N . Z i m=0,1,....n) (A.7)

in the interval under consideration.
We may now construct the corresponding joint ch, f. in the usual

way and obtain

am

F.N 07
i =3 N
axm> -j 1 (A. 8)

R R
‘I’N(“o""’“rl):eXp![_i Z L (Z

m=o i=1

since all N disturbances are assumed statisticélly independent,
In the general case the number of disturbances N appearing in the
interval X is assumed to be distributed according to a Poisson distribution

of the form

P (N) = p(- N (A. 9
- N7 )

with N =p X, Thus we obtain the joint ch.f, corresponding to the random
processes defined in (A. 2) by forming the expectation value of {A. 8) with
the distribution (A, 9):

oo}
®lngseeesny) = P_(N) &y = ex "N(@l—l)J : (A.10)
4+ N '

In principle we have now solved the problem of evaluating moments
of the type given in (A. 3) since they may be obtained by differentiation of &
through the relation
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ndmp
o

o m noog o, m
) { n {(+—) @l . (A.11)
m=o dx™ m=o * % m i = ,,., = =0

In order to obtain the dominant terms of these moments for large
values of y we shall, however, expand the ch., f. ¢ given by (A.10) in terms
of N = pX since this is the only quantity containing u. The large interval X
used for the purpose of averaging must of course eventually disappear from
our equations since it was chosen arbitrarily.

Expanding the exponential function in equation (A.10), we obtain

L s (e,-1)°
d = Z N ——-—-——-—-—-S! . (A'lz)
S=0

The diiferentiations indicated in {(A.11) may then be performed separately
on each term of the expansion (A.12), For that purpose we shall, however,
need an extension of Leibnitz! rule for the differentiation of a product of
two variables, to the case of a product of s variables.

Let yl(uo, .. .,un), cees ys("o' ..
tions of the n+1 variables LDV e On application of the multinominal

n
theorem instead of the binominal, Leibnitz' formula for the derivatives of

. ,un) be a set of s different func-

a product of two functions is easily generalized to the case of s functions,
yielding for the po'th derivative with respect to L

1 5 Po s s 1 o,k
= () Oy = Z [ o - &) y s (A.13)
Pot My =1 K L L1 Tkt ¥ k|
£

k o,k” o

k=1 uo, k Po

where the summation is to be exiended over all different sets
S

("o, ERRRTLN &) which satisfy the relation kfl ™, k = Po - By repeated
differentiation with respect to the other variables, the following generalized

expression is obtained:
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[ n 1 pm : ] - = S n 1 ﬂm K T
! """r('g'——) [:II y‘l—: Z zn[n (L) ™%y %
m=o0 Pm* ®*m __! k=1 K ) k=1L m=0 ™m, K 0% k_J
k§' ’tm, k Pm
o (A.14)
m=o,...,n

Since we shall only need derivatives of powers of a single dependent variable

2

we identify all the functions Vi in (A. 14) by a single function y(uo, cees “ﬁ)'

Simple combinatorial reasoning then leads to the following specialized
version of equation (A. 14):

. i__pm"‘:”;f.] .
[mgo pmi (anm) _H_S‘.

_ (Pgs «++sPp)

(©,...,0) (A.15)

The summation should be extended over all possible different non-negative
integer solutions to the Diophantine equations (A.16) and (A.17)

(Pgs + 25 Py)
q, = s (A.16)

= q q =p_(m=0,1,...,n) . (A.17)
Z m go,...,um,...,nn m

(0,...,0)

The product over(ﬂo, cen, nn)in (A.15) and the corresponding sums in (A, 16)
and (A, 17) are understood to run over all different sets (no, oo, nn) with

the only restriction that o = m, € P form=20,1,...,n.
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In order to calculate the mixed moments (A. 3) we may now insert
the expansion (A.12) for the joint ch. f. into the expression (A.11). On
application of the relation (A.15), derived above, to each term in the ex-

pansion, the following equation is obtained after a slight rearrangement:

p Qo ( )
n m_ “m S8 (e P,evee,D
1 d u \ (et 2 ey 1
Bt L)) T T T
m=o m° dx <= sl q(“o”'f’”n)- SRR I
(0,...,0)
q
n 1 13 T — Torete®n
B el [ (a.18)
m=o 'm m e =
 =...5K_=0
o n

here the summation marked ""sol g"

tions to equations (A.16) and (A.17).
From equation (A.18) and the conditions (A.16) and (A.17) it is

possible to derive the consequences listed below,

is again to be performed over all solu-

(i) Since dil—l is equal to zero for R TR T K TO, only such solu-
tions to equations (A.16) and (A.17) for which we have

q =0 for n_=... = m_=o0 (A.19)

can give non-zero contributions to the sum over "sol ¢" in (A,18). This
means that we may add the condition (A.19) to the restricting equations on
the q's without affecting the right side of equation (A.18).

(ii) The sum over s in equation {(A.18) is a finite sum since we may
establish an upper bound for the values of s which will give non-zero con-
tributions to the sum over solutions to the restricting equations. This may
be seen by summing the n+1 equations (A.17); with the help of (A.16) and
(A.19) one obtains



o} (1:0, ,nn)= m=0
(0,...,0)
| (A. 20)
(p,, IRy p,)
2, _qxo’ » Fn " °

The validity of the inequality is realized by observing that because of the
restriction (A.19) there is no contribution to the last sum from the term

; thus the preceding sum is term by term larger than or equal
n
to the last. Thereforep= I pm is an upper bound for the exponent of
m=o
highest order s in the expansion (A.18).
max

90,0,...,0

(iii) If the shape distribution is symmetric, as des%ribed above in

connection with equation (A.8), all terms for which n= I L is an
m=o
odd integer vanish, and we may thus under this assumption for the distrib-

ution of shapes impose a further condition on the g's without changing the

value of the right side of {A.18). This condition is

Ay = 0 for mn= n__ odd . (A. 21)

Application of this condition together with the first equality in (A. 20) leads
n
to the conclusion that all moments (A. 3) for which p = 2 P is an odd
m=o ’
integer will vanish. Thus the symmetry assumption eliminates all mixed

moments of odd order, as might also be proved in a more direct way by a
simple parity argument.
(iv) In general the largest values of s are obtaiz&ed when the non-

vanishing g's have the least possible index sum n= 3 o Since the
m=o
conditions (A.19) and (A. 21) exclude the possibility of non-vanishing q's

for n equal to 0 and 1, the largest s in the case of symmetric shape distrib-
utions is obtained when all ¢'s vanish except when n is equal to 2, that is,

when according to the relation (A. 6) only pair correlations appear in the
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corresponding term. As seen from (A.6), the pair correlations may be

either quadratic or cross term according to whether the q's are of the type
or . Under these cir-

qO,...,O,z,O,...,O qO,...,0,1,0,...,0,1,0,,..,0

cumstances the maximum value of s as determined from the inequality

(A. 20) is S max - p/2.

Finally, we shall rewrite equation (A.18) in the form (A. 22), thus
introducing the irreducible mixed moments (A. 4), by applying equation
(A.6). Elimination of the dummy range X is accomplished partly by cancel-
lation and partly by extension of the integration limits to infinity; this ex-
tension is justified since X was chosen large compared with the range of the

disturbances considered.

s
n m Pp pax o Pgreeeupy)
1 d u _ S \ 1
I g6 = Z b Z I — x
m=o m’ dx = N TP S
s=0 solq(,go,_”,nn)- o 5T

(A.22)

This equation has the form we set out to find since it gives an explicit ex-
pansion of the mixed moments of u and its derivatives in terms of the
disturbance density p with coefficients containing only the irreducible

mixed moments (A. 4).
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