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Abstract

Two important types of probing of a tur:bulent velocity field Tr1?, t}
are the Eulerian probings definecl b,v d?/dt = ? (i constanti and the Lagran*
gian probing defined by ri?/At = i l i?, t). In the case of fully devel.oped iso-
tropic and homogeneou.s tu"rbulence, explicit expressicns in terms of the
energy spectrurn are cier"ived for ihe autocorrelation coefficients ancl porver

spectra obtaineC by .tr,-u1e::ien anrJ i,agrangian probing" The derivations,

which are here given in detai l ,  are based on a stai j "st ical  representat ion of
the turbulent velacit;r f i .eld using the resulis of the equihbrium iheory of
turbulence. The 'f a.i lor hypothesis is verif j .eC in the l imj.t of ir igh pr"obing
velocit ie,s. The l{ay-Fasquil l  conj ecture relating ihe Lagrangian and tu-
l-erian pcwer spectra is obtaineci es an approxirnati lr:r to the transformatian

ecuations" Application of the resuli;s to the theory c;f turbulent r1iffusion is
indicaterl.
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Introd,uction

In the statistical theor}r of turbnlence tr,vo different types of velocity

correlations with respect to i ime are oll particular interest. They are l ie-

lated to tlvo well-k:nown alternative lvays of probing the fluctuating part of

the velocity field of the turbulent fluid as a function of time. An Eulerian

velociQr correlation is obtained by probing in a point which is fixed in a
girren frame of reference while the Lagrangian velocity correl.ation is ob-

tained loy probing in a point which moves with the fluid particles, In the

case of homogeneous and stationary turbulence a particular frame of refer-

ence distinguishes itself l :y being the one in which th.e average velocity of

the fiuid is zera; we shall call i t  the fixed frame of reference, The velocity

of the fluid at a poirrt ? and a 1:j.rne t in the fixed frar:re of reference consti-

tutes the fluctuating part of the turbulent rrelocii"y field at this point ancl time,

and will be denoted by iaEV , t1.

An important apphcatj.i:n of Lagr angi-an r,.elocjty correlations to the
problem of turbuLent diffusion was rnade try 'Iaylor 

{ref . 1} in deriving the

relation (1. L) below. This relatlon descrihes the diffusion in the fixed

frame of refei 'ence of a particle maving'lvith the local velocity of the turbu-

lent f luid. Tbe relation gives the time clependence of the mean so.uare ggr-
ticle displacement in the x-clirection x', - i-n terms of the varianc e *2 = LrZ,

of the fluctuating part ';f the velocit)' in this direction and a clouble integral

over the Lagrangian autccorrelation coefficient 11, (r), fhe relation has the

form

t
rx-(t) = Ztt" I,

r'|

t l

I

d t r  J  d t R , ( r ) .
I L
o

( 1  .  1 )

In the

assumed, and

derivation of (1" 1), hornogeneous and stationary turbulence

R"(r) is defined through the equation

1S

F n"t") =
" ( t )  

x ( t  + r  i (1 .2 )

where the averagings are to be ca.rriecl our as ensemble averagings over

Lagrangian probings, i. e" 
" 

{t i  and x {t + r ) are the velocit ies of the saln,e,

particle at two different t irnes, Because of the stationariness the average

is independent of t, and one rrla.;r furrhermore assum_e, &s it is often d,one,
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that under proper ergodic conditions the averaging rnight as well be carried

out over t ime for a single realization of t]:re systern. In fact, on the assunlp-

tion of spatial homogeneity, the sample avereging might also be carried or-ri

as a space averaging over the init ial posit ions of the particles which are

followed in t ime. The ergodic problerrrs connected with the comparison of

results obtained by different averaging procedures are beyond the scope of

the present investigation, and i,ve shall use whatever procedure is most

conveni ent.

Experimentally, i t is in most c.rses simpler to measure velocity

correlations by Eulerj.an probing, since it only requires rneasurement of

the fluid vel.ocities as functions of time in fixed points of some convenient

frame of reference. Thus it is usually simple to rneasure the Eulerian

autocorrelation coefficient R=,( t) defined by

7 nu(t) = u ( t )  u ( t+ t ; ( 1 .  3 )

where the averagings are carried out over tulerial ' l  probings, i. e, u(t) and

u{t + t ) are the fluctuating parts of the fiuid veJocit i.es at t imes t and t * t

respectrvely, measured at a point f ixed in a convenieni; frarne of reference.

However, since the frarne of reference rvhich is convenient to use for the

measrtrement may not necessa.ri l") 'be the l ixeci f::arne of reference men-

tioned al:ov'e, this defin.i'tion is ambiguou,s, and Il,rtti generally depends oI1

the average speeil of thc.fluid rei-ative to the frame r:f reference useci fo::

the measurement.

Thus consideral: ie theoretical and practical interest is attached to

the problern of in",restigating tl're relaiions hetvreen the different Eulerian

autocorrelations and the J-,agrangian one. The present investigation at-

tempts to clarif;r this problern, usiirg a model which seems most suiiable

in the limiting case of full-;r' cler,'elopeo turbulen.ce, This case l:epresents

an asymptotic situation vrhich is c;fien realized to a fair approximation under

natur"al conditions where"the dist:: ihuti ' :n cf the fluctuating part of the ve-

locity is Gaussian, and lvhere cne ma)'assunle that the velocity at a par-

ticular point in space is the resil l t  of a great meny largely independent and

randomly occurring dist.urbances. In deal1ng with these disturbances in

the model it has not been nece,ssarJr to specify their physical origin in detail,

However, for many purposes ihey rl:.ay be ttrougiit of as the velocitY fields

of randomly distrihuted ecld.ies or ris the velor:ity ccntr:ibutions frorr a-l.L the

vorticity-containing volume elements :n the fluirJ. One particular advantage
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of t lre present model is that it makes it possible to obtain apparently real-

istic explicit functional relatior:ships betr,veen certain of the rnost commonly

used Eulerian and Lagrangian averages.

Although no basic theoretical derivation has hitherto been given of

the relation between the Eulerian and Lagr;rngian correlations, a conjecture

supported to some extent by empirical evidence has been put forward by

Hay and Pasquil l  (ref. 2]. This conjecture is formulated in terms of

Taylorts one-dimensionai normal ized power spectrum (ref .  3),  which is

sirnply the cosine transforrn of 1.he dui;gepreJ.ation coefficient and may be

definect by

P(oi = dr R(t ) cos tor (1 .4 )

Thus to each type of autocorreiation eoefficierrt t l :ere correspor:ds a power

spectrum. The relation postulated by Ha;' and Pa.squil l  l inking the l julerian

a.nd Lagrangian power spectra is a simple sca.l ing of the frequencies as

given by the equation

CD
t f. r l

n J
o

Empirical evidence as presenterl by Gifford (ref. 4) inCicates lhat p should

be chosen in the range 2( f l  (  4.  We shal l  see in.  sect ion ? below that the

relation (1.5) may be deriveC as an approximation frorn, more general

functional relations expressing P" anrl P" in terrns of two different inte-

gral transforms of the energ:y spectum Eik). These more general" relations

wil l also permit an interpretation of the parameter P in terms of the ratio,
-

r  l .  . l

r l l  d

"/ \{ ao , between the mean fluid velocity and the root mean square of the

fluciuating part of the velocity field. Furthermore the r,vel-L-liuovrn e"iid - in

wind tunnel experiments often useci approximate relation between Eulerian

power and energy spectra

n"(r,r) = P P'({itt)

E(?),

t1 .5)

( 1  . 6 )Pr(r,r)

wkr-ich is occasionally termed Taylorf s hypothesis, ffi&Y be obtained in the

lj.mit for v )) UiZ as an asymptotic form of tLre more general equation ex-' f

pressing Pp( or) as an integral tranform of E(k).

1
I T



The relations derived in the

the problem of turbulent diffusion.

the following well-known expression

in the fixed frame of reference:

6

present rvork rrray be applied directly to

The so-called Fickian diffusion leads to

for the nlean $quare displacement F

with D constant.  IJsing the Taylor"relat ion (1 .1) and the expression ob-

tained in section 6 beLorv for the Lagrangian autocorrelation coefficient, i t
is  possible to general ize equat ion (1.  7) by introducing a t ime-dependent

diffusion parameter D(t) whicir may ire expressed as an integral transform

of the energy spectrunr with a t ime-dependent kernel. From this expression

for D(t) i t may be determinecl di::ectly under what conditions and in what

time intervals a turbuleirt velocil:y field with a given energy spectrum gives

rise to either enhanced or Fickian diffusion. Thus the present model covers

completely the range of Sritton's diffusion formula (ref. 5), giving at the same

time an explicit connection between the diffusion properties and the energy

spectrum,

2 . . S.e_{igs .STga3siqtq qlj$Loqo r{glationt

For later use we sirall recall two irnportant series expansions of the

autocorrelation coefficients. The first nray be der-ived directly frorn the

defining equation (1. 3) tn' performing a Tayi.crr ex:Fen,sian of u(t + r ). It is

a. well-known feattlre of this series expansion that" owing to the assumed

stationariness of the turbulence, only the even terms survive th.e averaging

process, and the series expansion may then be written as

Ft* l  = D . t

R"( r )  =

*---T

1 t  dnu\  ,2n
= \ ^/" / Trm'it '
u- '  

\ rv  
E

(1 .  7 )

(2 .  1 )

A quite similar expansion may of course be obtained for the Lagrangian

autocorrelation coefficient by substituting for u the velocity )i (t) obtained by

Lagrangian probing, and changing the avera,ging procedure comespondingty.

The other expansion is derivable fronn a Fourier cosine invei:sion of

equation (1.4) followed by a forrnal expansion of the cosine, and prorrided

that all moments of o exist one obtains by perforrning the integration over

each term separately
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r,vhere the averaging is carried out over the Eulerian potver spectrltm. A1-

so in th:is case a similar expansion may be obtained for the Lagrangian anto-

correlation coefficient by performing the averaging over the Lagrangian

power spectrum.

The above notions may easily }:e extendeC to space correlations and

are in fact conceptually simpler since they involve only a.verages over

simultaneous velocit ies. Thus the longitudinal space correlation is defined

by

(2 .  2 l

(2 .  3 )
,

u f (  € )  =  u (x )  u {x+ [  )

where the averagings in homogeneous turbulence may be carried out over

space, The corresponding normalized one-dimensional longitudinal spec-

trum is then given by

E(k) dE f(il cos kt, {2 .  4 l

v,ikr-i le the tvro series expansions corresponding to equations (2. 1) and (2,2)

get the analogous forms

m
2r

t

I E J
o

@
{ ' l

r (E)  =  )  ( - i ) *
{r
n=o

( -1)*; f f i  *  (z.n
TmT ' (2 '5)

o

m
! 

--l

\
L
11=

1_
z' t r

LL

Equating the coefficier:.ts of eorresponding terms in the two expansions {2.5},

one obtains the relation

d""7  a  f f i
, n=u ' , .

cI.X

which displays the connection between the

derivatives of the longitudinal velocity and

ergy spectrum. Similar relations may be

locit3' components,

( 2 .6 )

variance of Lr-igher-order space

moments of the longitudinal en-

obtained for the transverse ve-
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The relat ion (2,6i  makes i t  possible tc compare the orders of  mag-

nitude of the vat' iattces of h-igir-order clerivatives when one has knowledge of
the spectral  shape. In wel l -developed turbulence this shape has been in-
vestigated both theoretically and experimentall;', anC the following general

features are well established. Beyond- a certain u/ave nu.mber k, a region

is found, often str:etching over' $everal decades in k, rnrhere the spectrum

may i:e descri loed by a power iaw. ' lhis region, usually termed th.e uni-
versal equilibrium range, is dominated by the inertial subrange in v,rhich
theoretical consicleratj.or:lE sho'v t l iar lhe si:ectr:r:-:r:r cbe;:s the Kc'lrncgorcff

larv

E(k )  =  cons t .  x  k -5 /3

Experimentally this larv has gainecl some support, and in most practical

cases of atrrrospheric turbulence a power law is found with an exponent be-
tween -1 and -2 (ref. 10). At even higher wave numbers, viscous effects
become dominant, and eventually, beyond a 14rave num.ber. kZ, the spectrum

falls off exponentiaily. Under these circumstances it is possible to show

quite generally that for: all n )m ) C

{2 .  7 )

=0 , (2 .8 )

( 2 .  S i )

ffi,,-
r i r ^  \ 4 * n - m 7  \ d " t t  J
I I J . I I

r -

K . r , T l  . . 2 - -

J*o f  g-e \ -  2
E*" \*"  I  

'  r r

re.;ffi= lim
kl  

^
1 F . - r ut 2

m
K

In order to i l lustrate this reLation, which wil l  be exploiteC in later

sections, we rnay calculate the ratio in (2. B) for a rather general spectrum

of the type discussed above. Proper'Iy normalized in the l imit for kf ({ t,

it has the form

2 r (o+
E(k) $t **p [ -{k/k2)f

Lt . (k/k1)2j "* + 
'

\/? r(o)kr

where we shal l  only be interested in values of  o in the interval  0(s.(  1,

corresponding to powers frorn -1 to -3 for the k-depencience in the ine:rt i1.1

subrange of the spectrum, This intei 'val inciudes the Kolrnogcroff r i 'alue
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gamma function as defined

momentq_of k over the ope
+ T 1
kzn ry | r(n-o) r (o+ i i  IVA

L
ratio € (n, m) may be obtai

i I 3 . The function f(o) = (o- 1 )l is the usual

far instance in ref. 6. Evaluation of the even

ctrum .(2. g) gir, 'es for n )0 the expression

r  ( , ' i  l t r . ,  /o r ) to  u : " ,  f rom which the rnoment
I  r '

ned inThe same l imi t  fo r  n)m)  0 :

( ( n ,m)  =

F ffi p (n-a) r(o)

which is consistent witir equation (2. B) above inthe indicated range of values

for o, Most experiments suggest values of o somewhat larger than 1/3 and

nearer to t f  2;  thus i t  may usual ly safely be assumed that the rat io (2.  1"0)

is very smal l  for n)*)0 in wel l -developed turbulence. An est imate of  the

rat io \ lk ' ,may be obtained in terrns of  the Reynolds number R.,  cr  , [Vt"k1.

Using Kolmogor.offrs expressions for the energy dissipation rate per unit
. )  2 l '  , 4  3

m a S S ,  C * k 1  ( r r - ) " / "  * k ;  V - ,  o n e o b t a i * s

n2(n-m) .  k2m
1

r(n-rn-o) f(m-s) r,(o+ Z )
k r  2a

( r )  ,  ( 2 .  10 )
^2

uL '*, o -31 4
q'"1'

It is thus s een that the

Reynolds nurnbers anri

{2 .  LL )

ra t io  (2 .  10)  van ishes a t  least  as  Oi t  l2  n ,  la rge

r i  ) rn )  0.

3. The Statistical Model

In formulating the statistical model to be used in the following rve

have bee:r guided mainly by the statistical theory of shot effect noise as

developed by Rice (ref, 7) and to a rnore rnodest extent by the dynamic

relations governing fluid rnotion.

In the theory of shot effect noise it is assumed that a random process

may be described as a sum. of randomly distributed disturbances, It is then

possible to express many basic propert ies of  the random process in terms

of integrals over single disturi:anies and ihr:ir probabil i ty of occurrence.

Since the fluctuati i :-g pari of any., '"eloc.i i) 'component in a turbulent

velocity f ield may be ccnsidered a rarritrom process, a description in terms

of a superposit ion of a large nurnber of individual disturbance$ can always

be attempted. The physical na.ture of ,.he disturbances whicir compose the

turbulence and which ere used in the statisi ical model to be presented here



10

is wide open to discussion, In order to expose m.ore clear ly the assurnp-

tions and approximations underlying the model we shall, however, make use

of a specif ic physical interpretation of the disturbances constituting the

elements of the statistical rnodel. It should nevertheless be made clear at
this point that other interpretations than the one presented below might be
possible and that the rnodel seems to j:e sufficiently general to accornmod.ate

more than one physical interpreiation.

For an approxrmately incompressible mediuin the fluctuating part of

the velocity f ield is rotational and can'ihus in a large space region A be

written in the form of a volurne integral which ffray be converted into a sum

of l ine integrals as follows:

i l{i,t)= f d3f; -I:-€-il = v f f" g4"t4.41'  J0 +olr-E-s 
= 
A. J, 6 Tfft# 

' (3'1)

rvhere d3H, is the volume element,6 = curl il is the loca1 vorticity and r *,
defined by t"dR = d.3R, is the constant vortex strength of a narrow vortex

tube, c,  The volume integral  in (3.1) has been decomposed into a sum over

all tubes c, the contribution from each fube being given by a line integral

along the tube.

A certain amount of persistence in t ime and space must be reqnired.

of the disturbanees used in the statistical model, Thus the Helmholtz

theorems suggest that a suitable choice for a disturbance might be the

velocity f ield accompanying a section of a vortex tube. Let such a section

be characterized by its posit ion in space frr, i ts orientation and size Afr..
I

and a constant vortex strength pij it then clntributes to the fluctuating

velocity field by a disturbance of the form

F,(r-fr,i,a Ri) = +* +tF-F"i)*  i ' -  
-R i '  a  Ri )  =  

* r  
|  ,_* ,1 j :  

(3 '2)
*

In order to introduce the statistical element in the theory we assume

that the fluctuating part r:f the turbulent velocity field can he written as a

sum

il(f, t) = n Frtf-H' a?i) ,
i

(3 .  3 )
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where the eummation rnr:st  be extendeC over al l  d isturbances present,  each

disturbance representing a ferv of the rnany clegrees of freedom character-

izing a turbulent velocity f ieId. The assumption of homogeneity is satisfied

by requiring that at any instant the distribution of disturbance positions A.,
I

is random and homogeneous in space, Furthermore isotropy is ensured by

requiring the distributir:n of orientations AH' to be isotropic in space, and.

finally we shall obtain stationariness of the turbulence by requiring the

distributions of vortex strengths I, and sizes I ^H, I to be time-indepenclent.

The equat ion (3.3) is incomplete since the t i*"  dependence of H.,  anA
.',, 

I

AR' has not yet been stated. Equations giving this dependence ff iBy, how-

ever, be obtained by makirig use of the fact that according to ihe }lelnrholtz

theorems, which contain all the dynarnics of inviscid f lorv, vortex l ines are

also material l ines. Pr"ovided that the terms giving a signif icant contribu-

t ion to (3.3) are d. isturbances of a s ize large cornpared with the scale U;t

of  v iscous dissipat ion, v,re mav thus r lse equat ion (3.3i  i tsel f  in order to ob-

tain the equations of rnotion for a d.isturbance, i, e. the position H.' and the

oriented size A fr '  of the it th cl isturbance must satisfy the equationl
.L

.]' ...t -"+

R.  =  2  F ,  (R .
I  ,  K '  I

K

-.+ ..rF

-R, .  AR, }
K; K.'

(3 .4 )

t3 .5)

and

r T ^ }

I

f- -+

PlFk(Ri
K r -

-, -t -+ -1
-i- alr. - Ii., . alt, ) - F, (1" rl

r  1L-  K '  K '  
t i  -  *uk '

'{' IsRro) 
J

Thus, if the cont:.nuous sequence of space points ?(t) in which the fluctuating

part of the velocity f ield is probed is prescribed in some way as a function

of t ime, then the three equat ions (3.  3),  (3.4) anct (3.5) completely determine

the measured fluctuaiing velocity i l(t).

In this in.restigai;ion we shall make the further impo:rtant asstirnption

that over the tirnes of interest for the probing process one may neglect the

stretching of  vortex tubes, i .  €.  put.  the r : i .ght s ide of  equat ion {3.5} equal to

zero, while keeping the time dependence due to the shift of posit ions of

disturbances as indicated in equatj.cn (3, 4), The present interpretation of

the disturbances used in the moctrel thr-r$ corresponds to a representation of

the velocity f ield t(f, t) in terms of a superposit ion of rigid "edd,y" velocity

f ie lds,  the'reddiest ' thernselves l , :e ing suir ject  to a mot ion determined by the

compound effect of all the other "eddies". As mentioned abo.re, one is not

restricted to this special interpretation of the d.isturbances F, so iong as

they have the propert ies descr ibed in connect ion with equat ions (3.3) and (3.4).
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We shall now make a few remarks concerning the validity of the ap-

procimations inherent in the statistical model as clescribeC above, sti l l  using

the special physical- interpretation of a dis'[urbance. As generally assumed

in the equil ibrium tireorv, the tr-rrbulence may hre ciraracterizFd$V three

quantit ies, the r, 1Tr. s. of the fiuctuating part of the velocitr. I F, the scale

of the energy-containing ecldies tr r '- '  ki '  anC the Reynolds nurrrber
iF

- r . - t
Rr o L., ,J u' lv . As remarked at the end of section 2, the scaie in which ,L  r l

viscous effects Cominate ihe r:rorion is epproximatei."l gir.r:n by tJre expression
_ 1  q l a

L2 * k; '  o \1Ri"t  =.  
The nurn.h*r cf  c iegrees of f reed.orn per uni t  volume in

the turbulent mot ion is est j .mated to be of  the orcier of  l r  qt  \  i t  
*  r i3nr9/a,

which indicates horv th.e r-:omplex.ity of the motion increases with Rr. Since

each of the distrrrhrances onL;r contain a few degr:ees of freedcm, the above

quantitv p also girres a rough estirnate of the spaiial density of disturbances.

Thus, if a tyi: icai distui 'bance has a range L, the number of disturb-

ances contributing to t.he rre.l-*r: i ' f i , 'at a given poin'L in space is of the order of
? a

Ntr L"p tr () ' /\ 
ZJ", which, if h )) t:, irnplies a large amount of orrerlap be-

tween disturbanc es and thus justif ies ihe statistical treatment. Another

reason for want ing the inequal i ty X i )  XZ tc be sat isf ied is thai  under these

circumstances one is justified in clisr"ertr1a::c}"ir;.g the effect of viscosity, which

is only i.mportant for moti.cn in a scal* of the crcier of hr.

However, one wor-ikl ;llso like airothei.^ inequal-ity, \t )) t, to be

satisfied for the following reason. Since, arcc,:rcl ing to the theory of KoI-

mogoroff and Obukhov, the r. m" s. of l-lre r.'elociiy fgggjuations evaluatg_d

over a region of  s ize I  is given by the expre$sion l l rT:  ( ]" / t ,  ]1/3 lF,
I  A  r  r  L '  t

the validity of the above inequalit;' sn*.ures that the rate cf deforrnation

with.in a region of size h remains $maIl compared.tvith the rxrean. vr:l-o*it1'

of displacement of the region. This would tend to justify the neglecting of

the effect of stretching of vortex l ines.

To see whether the two inequalit ies may be satisfied sirnultaneously,

a rough estirnate of the size of a typical disturbance may be obtained for the

spectrurn given in equation (2.9) by setting L-2* F, from wLr-ich one obtains,

using equation (2. 11), the two approximate relations tr.H trRi 3(1 - 
"j! 

a 
anci

\ s L 
r*f"ln. For o in the range q (o( 1 anC for large values of, the Reynolcls

number these relations indicate that the two'above-mentioned inequalit j .es.

tt )) t )) L2, may be satisfied simultaneously.

In the following sections we shall turn io t ire proiriem of cornpanrlg

averages obtained by Eulerian and Lagrangian probing of the velocit;r f ielr l,

using the statistical model described al;ove.
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*. . The Fulellal- I*agr?rigiaT Traq.s f.g.lgletio.q

As a result of the approximations made in section 3 we may write
the eguat ions (3.3) and (3.4) in the simpl i f ied form

u t f , ( 4 .  1 )

(4 .21

A special case of the Eulerian probirrg would be to let? remain constant

in t l ie f ixed frame of reference; this would of course correspond. to ? = 0.

In the Lagrangian probing the point r in 'which the velocity is rneas -

ured moves with the fluid, and the time dependence of ? is thus given by

the implicit equation

t(r, t) {Lagrange} , ( 4 .  3 )

wlrich leads to a eonsiderabrl;r more involved motion than equation (4 . Z),

By solving the equations one would in each of the two cases get il

as a fi.urction of the time t and then in principle be able to calculate the

autocorrelations corresponding to Eulerian and Lagrangian probings

r esp e ctiv ely,

\ . ' *  -t )  =) ,Fr{?-Rr}
I_J +

i

+ \ r
Ri =) FutRr-hn) ,

k

where we have suppressed AR, since it does not enter explicit ly in the

equations of motion; implicitly, however, it enters in the statistical proper-

ties of F'. In order to determine f ** a function of t ime, the probing path
1

?(t) must be specif ied. This specif ication is clearly different for Eulerian

and Lagrangian probings.

By an Eulerian probing with velocity f we shall understand a probing

where the point ? in which the velocity is rneasured., is rnoving with a con-
stant velocity i with respect to the fixed frame of reference, i. e. the aver-
age velocity of the fluid measu::ed in the point i is -?. Thus, with all

quantit ies expressed in the coordinates of tJre fixed frame of reference,

the time dependence of ? in the Eulerian probing characterized by the con-

stant probing veiocity 3 is given by.

( I t r i le : : ) .
..4

r=v

r=
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In order to bring fr:r"ward" the essentia} paints without too much corn-

plication in notation we slr.all in thj.s section restrict ourselves to the one-

dimensional problem, postponing to a later section the treatrnent of the

general three-dimensionai case. Furthermore we shall init ial ly treat the

even simpler problem in which the disturbance centres fr '  are assumed

fixed in space, thus reducing the equations (4. 1) to a singie equation

utx) Fr(x-Xr) (4 .4J

rvhe::e the time-independent disturbance posit ion coordinates X. are assumed

to be randomly distributed with a density t, per unit length. The disturbances

Fi 
"epresent 

signals with random shapes, which ff iay, however, be classif ied

into a possibly infinite nnmber of types with a corresponding time-independent

probabil i ty distribution, In order to satisfy the assumption of isotrop)' i t is

sufficient in the one*dimensional case to require that the probabil i ty distribu-

tion of shapes is symmet.ric, i . e, has the property that shapes Fr(x) and
rFr(x) are equally probable. Tiris aLso ensures that rve are only dealing

with the fluctuating part of the velocity since the assumption irnplies that

u' = 0. In this one-dimensional sirnplified picture, the Eulerian and Lagran-

gian probings are characterizecl by the equatiorrs

+
i---i

= )
lr; -

and (4 .5 )

r  espect ively,

Before calculating auiocorrelation co efficients corresponding to

EUJ-erian and Lagrangiian pr"cbings we shall derive a few useful relations

which are direct consequences c:'f the sirnplif ied statistical model we have

just described" They j.nvolr:e moments over the distribr:t ion of the fluctu-

ating part of the velocity and its space derivatives.

A general formula has been proved in the appendix wirich permits us

to express expectation vaJ-ues of proclu.cts of u and its space derivatives,

each raised to an arbitra.";;/ pov,ruv prn and hence having the general form

) t  =v

*  =  u(x)

n

tr (d* u/dxmlpm
m=0

(truler)

{Lagrange}

( 4 .  6 )
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in terms of the disturbance ciensity p and the irreducible mixed rnomenis

involving only an average over a single clisturbance and its derivatives, The

definit ion of an irreducible mixed *Fomgnt, which in a space-saving short-

hand notation rnay ire r,vritten { n i ,n l* 
*t 

) , is
!n=oL- i  

' -

t l r

#,1*J"*, =
* o o

{( t\J
* c 0

11
,  

*^  
r  I f I . -  r  I f I  ' t rm-0 -x  n  t 0  . h i /Ox  J  ) im=0

(4 .  ? )

where ( )i indicates an averaging over disturbance shapes.

With this notation the formula derived in the appenclix leads to the

expression

n p
7 'III t t fflr^ rII rn (d-'-ui dx---) -'-lp* I

m=0

smax
f-1

L
s=0

s (pt I;
so l  q

(Po , rpn i

"  
n * )

. . r 0 i

1T nr(%
l (  t r  i -ml  

* /n* t  
) . "o '' m = o  L  J

, t n ,
I Q n

E
I

t r e' no t

I

(
) t(oo, '

= (0 ,

which has the forrn of an expansion in powers of the disturbance densitir p .

The coefficient to f contains products over all integer nurnber seis

(no ,  . . . , *  r r )  sa t i s f y ing  the  i nequa l i t i es  0  onon  p6 , , . , ,  0  o  nn  t  p r r ,  wh i l e

the summation should be carried out over all possible different non-negatirre

integer solutions for nto, .. e,n* to the Diophantine equations (A. 16) anrJ

(A. 1?) subject to the condition (A. 19). For large values of p the dominant

tgr* wil l  be the one containing the highest power of F, i. e, propol:t ional io
max ,T.rr^p 'I'he largest value of s is obiained when tlte non-vanishing qts have

n_

the least possible index surn n = I 8'.". In the present case of symmetric

"#o 

4!r

shape distributions the rnaximurn s is obtained when all q!s vanish except

those for rn'hich a is eq-ual to 2, ihat is, when only pair correlations appear

in the corresponding term. The pair correlaiions may be either quadratic

or cross term correlations; in eit irer case the maximum value of s is

s*^ ̂ -, = pl2 for a symmetric sirape distribution, where p stands for the surn
n:Iax L t
n

t -  A n n t l r o r , .  i r r z r r r ^ r - * t r r r *  r ' n r r c - !  6 d r r . , ? l ' - o  n f  * 1 r c  o  c : ( : r l r . y r n i i n n  n f  c " r r r r r r n  r r i

/ 
ym. *lnother impc''rtant consequcrlce of the a"ssumption of symrnetric

?*.=o
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shape distribution is that all moments of odd oi 'der vaniskr; this may of course

also be seen frorn a sirnple parit-r, arguntent.

Writ ing only the dominant terrn in p, one obtains for the sim.pJe mo-

ment iltr from equation {a, B)

Zn , .  n  )
u  / ( 2n ) t r y  F ' "  ( [ 0 ] " / 2 ! ) " / n l  ( 4 .9 )

Substituting in this equation the rela|ion obtainecl f'or n = l, 7 = $ (i 0] I
(which is in this case an exact rela.t ioni, one obtains

;2" 1| [esl- fiF\ "
Znnl  \  /

( 4 .  10 )

Equat ion (4.10)  is  character is t ic  of  the moments of  a  Gaussian d is t r ibut ion

and thus ensures that the model, as expected, yields a Gaussian distr ibt i t ion

for the velocity u in the l imit of large [r,  i .  e. a high Reynolds number.

Another importa.nt special ca.se of equation (4.8) is obtained when

one evaluates the variance of the ntth order space derivative of u; in this

case the relat ion is exact and has ttre forrrr

{ .1r /  =p( i "12}  . ( 4 .11 )

Comi:ination of this reLation with equation (2,6) yields the following ex-

pression for the moments of the energy spectrum:

1.m = (t" l '> I (t ol 2) . ( 4 .  12 )

Inserticin of this expression for the moments in the ratio {2, 10) yields what

is later seen to be a tiseful expansion parameter

r r  t  ]2  )  ( [ '  * . t2 )  , . -  r  - . -  r
€ (n ,  m)  =  (n )  m)  o )  (4 .  13 )

( [" ]  ")  ( [oJ"]

With these relations at hand. one can easily calculate the Eulerian

autocorrelat ion coeff icient under the simple assumptions made at the be-

ginning of this section, I t  f fray for instance.be done by evaluating the terrns

in the expansion (2.I).  With a constant probing velocity v and f ixed dis-

turbance centres one oi: i :ains
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m/ ou \
t -  I
\ ot* ,h,

(n
f '
i dk
ti

o

).{ :  Znf f i  z= v  K  1 1

Inserting this expression in

tion over n, one ob.'ca-ins 'ihe

spect rum E(k i :

the expansion i2. 1) and performing the summ.a-

foiior,ving reJ.atiori krei-ni;eeri R*{r } and the energi'

( 4 .  14  )

( 4 ,  1? )

Rr{r }  = ts{k} cos {vr}r} (4 .15 i

A comparison of the e:<pairs-ion "v'"it l t  equ-ation {2.5};rielcls the follo*ring s:m1r1':

connection between 'the ErrJ"erian autocorrelation coefl icient correspond-ing to

the constant probing veiocit;r v and the one-dimensionaL sperce c:orrelation:

RE, .r{ t} 
= f{r* } { 4 .  i 6 }

This equat ion is just  the l {our ie: : ' i ra.nsform of the r :elat ion {1.6);  thus

Taylorts hypothesis is r:eproduced es an exact relation in the simplif ied

case under considerat ion in this sect ion. From equat icn (4.  16) i t  is  reaXized

that the different I lulerian autoco::re.r.ations scale in a very sj.rnple way with

the probing velocity v in this simplif ied prcture, The connection betr,veen

two such autocorrelaticir coefficients belonging to tire probing r.elccj.tj-es rri

and v, respectively is given by

Ro,vr(") = RE,rz t  
+r 

) ;

the awkward result thai for v, = 0 the autocorreLation coefficient remains

I for all t imes is a consequerlce of the simplifying assumption that' ihe dis-

turbance centres are fixed in space or, as it is frequently formulated" that

the turbulence pathern is "frozen". We shall later see that equaiion (4. 17)

is only valid as an approximation in the case vr-here both vt and v, are large

cornpared r ,v i th. \ / ;p .  In fact ,  equat ion {4" 16} may be jnterp::etecl  as se.yi i rg

ttrrat in the limit in which one may neglecte motion of the disturbance

centres, i. €, for probing velocit ies v)) V u2, averages obtained by Eulerian

probing are equivalent with space averages when properly scal-ed witli the

probing velocity v. As another example of this simple scaling la.ov, the re-

lation between the power spectra obta.ined by Eule::ian probing.wj"th cliffei:*n"

r,'elocities is given by



"",,rr(") 
= 

f 
I l-,vz(t u)

u

9
u-+

t-,"3 + 4

1B -

dZr, du
:2 A;(1X

(4. t" B)

( 4 .  19 )

/ 0., \2
\m/ u

(#), =

/ 02 * \
\P7 L

(#)"=

)
ou
, 4

0x

t r )( 1 L l

- o
ctx

/ ,  f  3
/ cu \
\a; l  u

/0 " \2
\ dx/#)"=

A

d*u  4
- u r
OX

4 , 2
d " u  d u  3  .  1 a  d - u

-T .F L.t 7 ^+

, J C I X . Zqx ox

)
u f

/ o.' \n
\ffi,/

n  {dzutt \ 
-'-?t

\dx-
'11 r

ihe differentiation with respect

path.

etc, , where the

time is carried

prob:

{?

rvhich is of a form siwrilar to the Hay-Pasquilt conjecture (1 .5). Ali lrough
it has not been properly justif ied here" i i  hasffit ive value to remark that
if vt is chosen as the r" m. s, of u" i. e. t l  = I uz , and v., as the average

wind speed, a value of p = u2lvy would fall with.in the experimental li.mits
found in nature in many cases and thus give an inclication that the Lagrangian

l"ng In som-e respects resemble an Eulerian probing with a velocity

We rnay now turn to the less trivial problem of calcuiating the Lag-
rangian autocorrelation coefficient RL(r) in the same approximation in .which

we have just calculated the Eulerian autocorrelation coefficient.

By successive differentiations of the lorver one of the two equations
(4.5) rvith respect to t irne rve rna)" obtain the higher-order t ime derivatives

for a Lagranglan probing path in terms of higher-order space derivatives.

Differentiating through the space variable x and using the equation wtrich
irnpticitly defines the Lagrangian probing path, 

'one 
gets for the first few

d erivative s

du
ffi

)' 
,.,3 +

index L indicates that

out tbr the Lagrangian

u2+

to
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By induction one ir'lay obta-in the following explicit expression for the
first four terms in thre expansion cf t l :e ntth derivative rvith respect to t ime,
These are the only ones coniaining space der ivat ives of  the order n -  Z or
high er:

7 1. f1 .  .  , f l  "n-  I
/ d--x ) = o_l ,,* + E g= .r{i r-rr-1 +
\;F 

t r"" 
i1 ' -n 

dxnJ dx

' *-  2u 
d2.,.  --n 

1 1u- 2,,  
/  0.. ,  \2 n-z ,  ,c-  o. . "# 9+ . r t - r  - ' .  D^ ' \ .=}  f *  ) , r t -Z + . . , (4 .  20)n a*ffi F 

u n d**T \A"l 
u

where 
2

Bo = BL = o, Bz= 1 and Br, = 
ry for n> B

Co*Cl  =Cz=C3=0,  C4=4andCr ,=  t f l . :H l f .93 forn> s

4

D = D1 = Dz = 0, Ds = l ancl Dr, = -"1=Ug+igT'-+g"igg for n> 4"o

Squaring equation (4. 20i and takirrg expectation values, one obtains

Af =7m. Bz +
tpa= \*n/u n \u*"f/ \_ff i1

'rr 'ffi---
ZC d.-r g-" 

-u d-*u Zn-I
n  .  r r  ,  *T  -  u- - -  +  {4 .2 I )

ox L1X Clx

ch dnu .it- 
2., 

{ au \2 
- 

zn-Z
;L ,  '  : ;  - r  

.  .  .-*n 
dxn d*n-2 \dx l  

vr  '  "  '  ,

where, for reasons which r.,vill be obr.'ious shortly, only those terrns have

been retained in which the two highest derivatives are either both of even

or both of  odd order.

A11 terms in equat ion (4,21) are of  the type for which we have

previously stated the general  expression (4.8),  in terms of the disturbance

density p and the irreducible mixed moments involving only a\rerages over

a single disturbance and i is deri-ra.t ives. For instance the first term yields

the following contribution to an expansion in terms of the reciprocal dis -

turbance density fr,-1 ,
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{4 .  22}

It should be noted. that the leading term, which is proportronal to U::{- 
L 

,

contains only pair correlations while the term wlich is one power sm"a-Iler:

in p contains al.so quad::upie correlaticns etc. trn the limj'c fci:: large

Reynolds number only the leading term will surrrive orving to the large

v'alue of F. But even the leadirg term is corlposerd of t lvc eubt*rnrs i ire
' )  - r 2 r  / r , . 2 "ratio of which is 2* ([ 

"] [ o]) 
- 

I ( <["J 
-) 

( L oJ 
-] 

). Horvever, by partini. l

integrations of the numerator, which contains integrals of the type {4. 1},
it is seen that this ratio ,ranishes for odd n and is of the orclen 2n g(r,, li

for even n. Thus only one terrn survives in the l imit of large ReynohJ

numbers. A similar analysis ri la1: be carried throu.gh for the second and

following terms in equation {4. 21). Like the firsi terrn they wil l  give rise

to terms of the order ,f l* 
t 

coniaining pair correlations only and terms of

a J-ower order in p corrtaining higiler-order ccrnelations. I{orvever, as it

is easily verif ied, the pair correlation tex'ms wil l  be at Least, of the order"

€{n, m) smaller than the leading term rnentioned above and are thus negli-

gible in tb.e l imit of iarge Re*vnclds numbers. T']re terrns of lower order in

ti r,vill also be negligJ,hlc fcr ti're reasons earl-ier rnentioned. Tirus ihe ex-

pansion in p 
' 

and t in, rn) leads to an expressiol.-'. of the type

( [ " ] 2  r  t Z
L O J

Xl' l
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J

u'* 
t  ( t  " l  

2) ( i  o l ' )"  {\ L  J  /  
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" (e)  +

( znl l
znn!

( l " l  2  [ " ]2)

ffi+
( to la)

1t;i;p 
-n(n -  1 )*3j*

_l+

where 
"(e) 

represents terms of at leasi f irst ord,er in the small quantit ies
€ (n, m). The last equality is valid in the limit in rvhich the Reynolds nurnber
goes to infinity. In deriving the last expression, use has also been made of
the equality (4. 12j.

If the above l imit is inserted in the Taylor expansion for the Lagran-
gian autocorrelation coefficient analogous to {2. 1), the foilowing simple
result is obtained:

R" ( r )  =
2z

( - .9*#- )*/,.1

dkE{k} exp( +? "2k2} 
.

CXi

\ ' f f i
\ k '

L
n=o

foL ....j. .... t: tr o%m n*r , (4.23)

{4.  24}

We thus note that in thj.s Li"rnit, and neglecting the rnotion of the disturbance
centres, this one-dimensional nlodel makes it possible to express the
Lagrangian autocorrelation coefficient j-n terms of an integral transforma-
tion of the one-dirnensional energy spectrum wiih a Gaussian kernel, where-
as the Eulerian autocorrelation coefficient is ohtained by performing a
cosine transformation of t ire energy spectrum as given by (4. 1s).

co
I
I,

J
o
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5. Effect of the Motion of Disturbance Centres

In this section lve shall return to the full set of equations (4. 1), in-

cluding the motj.on of the disturbance centres; we shall, h.owever, stit l

restrict the consideratrons to the one-dir:rensionai problem, r,vhich may then

be formulated through the equations

F.  {x -X.  i
I '  T '

and

+m
\--"r

I r r \

u(x ,  t J  =  )
. l )
1 = - C O

Fk(Xi-Xk) ,

f m
t * l

i t \^ i )
-  

" l , JK = - C D

( 5 .  1 )

(5 .3 )

the last equation standing for the whole set of equations deseribing the

motion of the disturbance centres X.. The velocity f iel-d n(x, t) is now tirne

dependent through the mot ion of  thek.,* .
1 . "

As before, 'we define the two different ways of probing the velocity

field by the equations

l i  = v (Eu1er)

and ( 5 .  2 )

)i = u(x, t) (Lagrange) .

Taking the variance of the ntth order t ime,Cerivative of the fluctu-

ating part of the velocity in the trulerian description, we obtain instead of

equation (4 . L4) the equatiorr

rvhere only the term wirich becomes dominant after the averaging process

has beetr retained, Aiso the last equation is, only rralid in the limit of large

Reynolds numbers, where expansions of  the t) 'pe {4.22} may be used. Tkr is

essentially amounts to saying that the dominant term of the variance i5.3)
rria.;r be ohtained by treati.ng {anu/a **) 2 as uncorrelated rn ith (v-X, )2tt.

I

l-r-rrthermore, since the statistical" vanables X, ancl u are similariy distrib-
I

uted rvith a Gaussian distribution function in the limit of large p, as rnay be
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proved by the method described in detail in section 4, one may in a sirnple

wayob ta in theva1ueo f theaverage(V{ r= f f i - ,us ing themethod

of characteristic functions (ch. f. ) des""ileC in ref. 7 ,
The ch. f. corresponding to the Gaussian distribution of u is girren by

eJ*) = J= exp( -  i7"21

lvhile the b-function distribution of the constant velocity v has the ch.

err(x) = explr . t*n]  = exp( ixv)

The ch, f. corresponding to the difference v-u is then given by

v,r-.r( n) = exp(irv
-72 ,
ux  ]

The moments of v-u rnay now be

the ch, f .  (5,  6) wi th respect to r  .

function for Herrnite polynomials

(5 .4 )

f,

( 5 .5 )

(5 .6 )

the usual way by differentiating

property (5. ?) of the generating

t
T

{J

i- Jn
(v) =i + exp( zy*-zz

La z---

obtained in

Using the

( re f . 6 )

" ,
) l  ,
J z = O

one obtains the result

( 5 .  ? )

(5 .  B )(.;;F" = (-1)* (F)" Hzn
\ A J  /

Ins erting
. :-jf--,--T:z

sion (  0--u/  0x")-

one cbtains

the resr-rlt (5.

=k2n .  uz

B)  in  equat ion (5 .3)  together

deriv'ab1e from equations (4.

with the expres-

11 )  and  (4 .  12 )  ,

1_
au

/ a*rr\Z
\FA (-1)Y Hzr.

T.n
11 \
r y l

/

{  i v \
t i-F- I

\1 ;;z /
' I  u v

( 5 .9 )

which, ins erted in

coefficient, yields

the

the

expansion (2. Ll for the tulerian autocorrelation

In{)re gen eral relation
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where use has

polynomials of

24

E(k) exp{ kz t 2) 
cos (vkt )

been made of the follo,lving relation

even .-;rder:

(D
I= ldk

J
o

12
2u t5 .  1o)

( 5 .  1  2 )

(5 .  1  3 )

applying to Hermite

( - 1 )* ur*(r) r2*l {?m) I = e*p1r2; '  cos (zyzl ( 5 .  11 )

This expressiori for R,.(r) contains both the constant probing velocity r, 'and

the varianc* rrz of ttrelluctuating part of the velocity as parameters. It has

the expected prCIperty cf  being reduced to the usual cosine transform (4.  L5)

in the l imit ror u? (( 
"2" 

In the opposite l imit, ,r2(( A, it is interesting

to note that one obtains the ::elation (4,24) deri ' , 'ed in the previous section

for the Lagrangian autocorrelation coefficient when neglecting the motion

of the disturbance centres.

Turning now to the Lagrangian caser one may analogously write the

variance of the ntth derivative of the fluid particle velocity:t with respect

to time in the form

r---t

/)
m = u

/a**t'^,
\  dt"  )L-

,;Err (sr
where, as before, only the dominant term has been retained.

The characteristic function for the difference between the two

variables u and *, which have equal Gaussian distributions is given by

9',r-x exp( -
I

2u t r
I
" )

and the moment appearing in (5.12) then has the value

- 
:- 

')v-r

( u - X n ) " ' "  =  { - i ) " ' -
I

the usual substitutions,

expressio-n

r-- 2n
la
L#* eu-xJ * =o = ( 5 .  14 )(?nl

nl

- T l
t )'  ( u " )

Ma-liing

correlat ion th e

one obtains for the Lagrangian auto-
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nr(r)
r y  e ,

E(k) exp( - t t 'k* r" l  ,

oo
3
J

R' '(r)  = I  dk E( l i )  exp{
I.J J

o

r,  *T
u f U-r-, rn  , 2  Z ,- . n _ * . K T '

( 5 .  15  )

( 5 ,  i  61

are restr iciet i .  to t l .re one-

treatrnent rv:'.11 be ex-

m
ln

= iot
I

o

"n',"hich only deviates from the earlier derived explression {,+.24} t i ' ire- y:lrrg
r y +

2u' instead of u2 , This is tJrus the cn1i, effect cf including the lnotirr:. of

the distu::bance centres in th.e Lagrangian descript ion,

An interesting elspect of i:he proi:ing pi"obl-ern- is conner.tcr'l rnrili.)t t.itr:

appl icat ion of weather bal loons, wherc, the motion of the probe is neither a

translat ion with constant velocit ;-  v 11or can be considered a Lagrangian

probing since, r:rving tc the f ini te si l .ze of the bal loon, i t  ma)'not be sr-rhject

to th-e srnal l-scale rnctrcn in the atmosph.er:e. Horrever, i f  the nrotioir o:f

the bal loon in the f ixed coordinate system is assum.ed to be ranCorn lvj . th" a

Gaussian clistrii:ution :.,i i ' ih c1,:,spersign rr-2,=, a tril,-:-a.L extension of thc s-rgu.-
t5 '

ments leading to equat ion {5,15} gives the relat ion between the energy

spectrt im, E(k)" and the measureci autocorrelation, which tve ma;r caII

RU(r) ,  rvhere B stancls for bal loon. The relat ion i .s

Al"1 ihe expressicns cierived in this section

dimensional probLem, In the following section the

tended to the three-dimensional case.

6. Extension to Three Dimensions

In order to extend our 1;reatment of the Eulerian-Lagrangia.n trans-

formation problem to the more realistic three-dimensional problenr we

shall for a rnornent return to 'I'aylorts diffusion formuia (1 . I ). Sirnilar

relations rnay be written for the tlvo other space dirnensions and in iso-

tropic turbulence Rl(r) qriLl be iclentically the salrre function in all three

equations. Adding the three equations, v.re obtain

+
U'-5 i'

_ 6-.+ iJ L, .= 4Lt I O-T',
I

v

c

t l
r
j  u t  R,  i " )

J L
{s .  i " }

$,'helre H 

"{r} 

is d"':f:"r.c:.t l:_:. ecluarion {1" 2} or the equival-*::' i. j : : \ . ^ r ] l . r i i  r t . r  t ' :  l l \ .' . -  
L j  r r . *  v + ' J !  +  

\ ' - '  "  
- ,  . ,  .
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tr)t nr{ r}

I to ( r )  =  
*q ,  ( t )

(6 .2 )

( 6 ,4 )

(6 .5 )

and assuming stati.onari-

equat ion (2 .  1)

( 6 "  f i )

i '  ( t J
;  , , .  r
r t l f r  ]  ,

where tire averaging is carri*6 or-rt over the scalar product of the velocit ies

of the sgJllg par:ticle at t''r,ic instants separated- by a time interval 'c . 
'We

T;
nlay also recal l  that the velocity 'r , ,ar iance is gir, .eri  fry (? )z = tZ = ,2 where

r-l = l{il nol'\r cl+rrntes 1.hs site ol- the ftuciuating pa.rt of the th.ree-rlirnensional
t i

veioci ty vector"

When considering the Eul"erian autocorrelation coefficient Rrr(t),

rvhich we rvant to cornpare w.i.th Rr,(r), we must define it in a uray analogous

to  (6 .  2 )  as

;:
u nr(  r i  = r-i(t+ x ; ( 6 .3 ). t(  t)

rvhere the. averaging is r:arriecl out cver a probing path characterized- by the

equation ? = f,.

I f  rve spl i t  the scalar prodr-rcr ( t i "  3]  into i ts three components,

choosing a coordinate systern where f is paraliel to one of the axes, we

may ,write the autocorreiation coefficient as the following combination of

longitudinal and transvev's e autocorre.l-ertian s:

+ 3*, ( s )

where in the simple case in which the motion of the disturbance centres is

neglected, i. e. for J-arge velocit ies v, the functions R' and Ra are related

to the conventional longitudinal and transverse space correlations coef-

f icients f and g {as defined for instance in ref. 11) by the simple scaling

equations

R,, (r) = f(r ' t ) and R, (r) = g(r't) .

By performing a Taylor expansion of (6.

ness, we obtain the three*dimensional analogue

3 )

of
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and we shall as before be concerned with the evaluation of the variance of
"I1-* i . .I1d'-ri/dt" appearing in (6. 6).

Starting with the simple case of Fulerian averages, where the

motic'n of the disturbance centres may be neglected, we obtain the relation

/ann 1
\dr" I,

(f .v)nil = lt l 
n(€ .f )ntrt?) ,

a unit vector in the directicn of i and

the € direction, Squaring and taking

(6 .? )

E 'V is the differential

averages, we obtain the

where €

operator

result

1 S

in

2 n l
_?f

/.
L1

.l

I

-T
u_

-:-'
/  a. Ll\
I  - l

\ ottt /e

:
l16.v)" i l  i -  =  uzn
L 'J

I

4
u ffitf, (6.8)

where, in evaluating the scalar product, the x-axis of the coordinate system

has been chosen parallel to 6; the value of the average is, however, of

course independent of this particula-r choice. The scalar quantity

FTi;Ff , which obviously is an intrinsic property of the velocity field

and thr-rs is independent of the probing velocity ?, rnay be obiained in terrrr.s

of moments of a scalar wave number k over a suitabl; i defined energy

spectrum E(k).  Choosing E{k) as

E(k) (k) (6 .e)

where Eo and EJ are the one-cl imensional normalized energy spectra,

one has

Ef (k) f(r,) cos kr and

+ $nrt l
1= 
Esr

CD
, f '=31 d r
nJ

o

@

2 l= l d r
T I J

o

q (I<) S(r )  cos kr

Applying these definitions, one r:btains

(6 .  1o )

( 6 .  11 )am.E 
U . K

C])-T {"
- - J  i  J t -u l q l \

J
L_,f

ar[V
\ *"/

E(k )  k2*
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as a convenient short-hand expression for the scalar invariant considered.

Substituting in the expansion (6.6), we obtain the equation relating the en-

ergy spectrum to the Eulerian autocorrelation for fast probing, i. e. for
t . r

" , r t  \ \  r l z
'  

/ /  
s  t

R*( r i E{k) cos(r .s}c) (6 .  L2 )

Tfuis autocorrelation has the sarne sin:ple scaling properties (4. 17) as the

one-dimensional analogue consiclered in section 4"

We rnay oornr trirn to the three-dirnensional- Lagrangian probing,

neglecting the motion of the dist:-irbance centres. The Taylor expansion

9f (6.2) Ieads to the problem of evaluat ing the var iance of the der ivat ives

,m
I= l  dk

J
o

l -

/. L

, ,TI,J
{ s .  r

\F ( f - f ) {d . f ) ffi .f )ilF) = (Atr) .f )'t(il ( 6 .  13 )

(6 ,  14 )

where the syrrrbolic scalar operator G " f )* shoui.cl be understocd as

equivalent to lett ing the operator G 'f i  ,:perate rr c.onsecutive times in

the rvay indicated in (6. 13i, Irrom the analysis of section 4 leadirrg to

equation (4.23) rve knorv rvhat the effeet is of representing; t as the sum

*m
-.-) r--#r \ 1|- f+ ; \
u ( r )  =  

)  I ' i ( i ' " * i l
.l.r
l F - C O

of a vel J/ large number of c,verla.pping randcmly disrributeii. r"Liriturbances

of t i re type FrtF-Hr).  What t rva*q learned from the expansiorr  in (4.23) is

that the dominagt term of the var iance of an expression l ike (6.1.3) marr

be obtained in the l imit of large Reynolds nurnbers tly 1e'tt ing all the dif-

ferential operarors operate on the tast t only, neglecting the ? ,eependence

of the others, ancl further.more in the same limit by considering the scalar

operator (t .g )t as statistrcally indepenc'l-en"h of the last fi on which it

operates, In symbolic j lc::rn these steps trray be expressed by

ffi
I  i , , r  u ,  \ :  " r : .  Ir ir - J

- i-: q "{r.d
2

. |* : f  r lL i. i { e ' r z } u l
L '  J

- 2
l u

)'t{'1 | *'
J

t * t Z n
i l r i

;.r"i,F-
l - l  -

\  at* l

( 6 .  i 5 )
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vrhere e is a uni l  vector, the direct ion of which is now independent of the

di rect ion of  u ,  We thr- is  obta in the: :e lat ion corresponding to (6.  B)  above

1 / "t+T 
^, l*, ,r, 1. / il:u

7 
\dt" /L '  '  

7 \ax^ ' . /

I may be observed that in the present l imit the only difference between the

Eulerian and the Lagrangian average is that rvhereas the first is proportional
t ^

to v4n, the second is proportional to f i l12" , and the evaluation of the Lagran-

gian autocorrelation is thus reduced to the problem of evaluating moments

of the size of the random velocity t, wtricir is known to harre components

distributed according to a Gaussian rvith variance .tr '2 = 
$ ;2, where ut

denotes the root mean square of any single velocity component.

The evaluation of ;2" = 1.1Tffi- is easily performed when one

remembers that the size of a three.dimensional vector is distributed ac-

cording to a Maxrvell distribution rvhen each of its components lr.as a

Garissian distribution, 'Ihe distribr.rtion of u is tirus given by the norrnalized

Maxwell distribution function

(6 .  1? )

(6 .  I  B )

which leads to the vai.ues

-Z f i  
{ 2n+ l i l  t zn

J U

2n nl

for the moments under consideration.

Insert ing the Lagrangian ayerage {6, 16) inio the expansion for the

Lagrangian autocorrelat ion coeff icient and using the above result (6. 1B),

one obtains the followiirg frincticrnal relation between the energy spectrum

E(k) and the Lagrangian autocorrelat ion coeff icient, in which disturbance

centre motion has been negiectecl:
(D

R,  ( r )  =  i  dk  E(k )  exp  i  { , r ' 2  r  2kz  j  (1 -u '2  azk \  =
Lr '  Jn 

-  
L L ' i

2
{iO ,} '.1

r  r  d"  T ]
I  ck E{}.)  I  -  --T e I  (6.  le}

J L r l z o J -
o  z ;L \ ' ' c  R
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This expression is the three-Cirn en.sional analogue of equation {4,24}. It is

worth noting that, in contrast to Lhe one*dimensional case, the function with

which the energy spectrr-irn shoulct be folded j.n the three-dimensional case is

not posit ive definite. Thus it is possible to obtain negatirre autocorrelations

even for Lagrangian probing. This happens for instance if for theoretical

reasons a b-funct icn spectrum i-s con.sidered. Holvever,  the Lagrangian

autocorrelation is always strongly clarnped with. t ime even in this rrery special

case, r 'vhich corresponds to an extrernely regular pattern of motion, as is

apparent from the corresponding periodicity of ihe Eulerian autocorrelation.

We may no\'v apprcach the slighily more complex pr:oblern of taking

the mot ion of  the disturbance centres into account also in the three-dimen-

sional case. Using exactly the sam.e kind of arguments as those leading to

the equation {6.l-6}, one obtains for the Lagrangian and Eulerian expansion

coefficients the approximate expressions

I

l_

2

1
I

=
1i

/."rT
t - t
\ ott /r-

-t;
t l  k " ' "

ffi
I t l  t ? l ( 6 .20 )

and

/rlff F\, m-
-Ct

\ot^ /n
' *  * f f i
i '  u l

wher* frf and il, are tr,uo independent random velocities which in the La-

grangian probing ha.re the same Gaussian distribution for each of their

components, whil.e ? a.ncl f are the constant probing velocity and the rand.om

velocit-. i  of i ,he fluid, respectively" Thus also this problem is reduced to

the eva.luation of moment,$ of t l :e size of relative velocit ies rvith known

probaT:i3.ity Cj-stribrit ions . ' ir: i : '  the twc coiriponent yel-ocit ies. Thj.s problem

has been treater,l in anarhe:: '',:r,rr-r.i.ext b1; one of tir,e authors (ref. B) for the

case of vectors: thel conli:*nenis *f "vhich a::e either constant or have a

Gaus sian distri i :ution.

Ihe result for the douirle-C1;russia.n case is that the moments are

given by the expression

*ffi
' r ' r  =*L2 ffi

1u ,  -u2 l  = 1 . )  , - : . .  ;  \ t  , \
\ : L : - : : : -  { r r . "  - i -

' n  \ ' *  l

2 " n !  
4

'J r-r
, ,  !  " n !  ' - -

" z  l  , (6.  221

rvhich in the case

express ion  (6 .  1B)

of equal ciistril:u'tior:i, for

with ut replacecl b;r {2u'.

-, 
I 

.,.4|

dt and ti, is reduced to the

Thus the Lagrangian auto*
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correJetion in the case rvhere thc: ir ' . r t icn of the ci. : l ,str- i ,r :1:ance c.entres is in-

c luded has the form {6.  1$}  rv j th  the abcrre subst i tu t ion of  2  ut  for  uf  .

One ff i&y, hotryetrer, easi ly general ize the result to ihe case where

the probe is moving r,r'ith a -i 'andom velociLy the com.ponents of which have

a Gaussia.n distr i i :ui icn cl i f fr :rent Jron: that of '1-he velocit ; .  of the f luid

part icles. This wil l  for instan*e be the case when the prcbing is done r,vi th

a bal loon moving with a ::ando.m .relocit ; , ' t_* which is obtained as some

average of  the - . rehgj r - ' r , r i ' the r lu-1c l  over  a vo iums of  the s ize of  the bal l .oon

ancl r,vhicir is la::ger ii lan tLre ar.rerage v,-lnme clf ttre disturbances contrib-

ut ing most of the f luctuating velocity i l  of the f luici  part icles. The corre-

sponding autocorrelat iorr funcLiari  rr lay ' then be obt,aj.ned by insert ing the

express ion  (6 .22)  w i th  u i  =  u [  ancL  u !  =  u r  i n to  the  coe f f i c ien t  (6 .20) .

The autocorrelat ion rvi i- l  then be relatecl to the energy spec.trum E(k) through

the equation

R*( t  )  = E{k}

m
I

l d k
I

J
o

t.-

I
t -
I
L-

a\

t t

____r- g
/.

lL /-

( 6 .23 )

It is instructive to conside:l irvo exl.rerne cases of this equation, one corre-

sponding to a ver)- smalJ. "l"ralloon'' ar:d the otirer j-o a very la,:ge one. The

small balloon will faiiirfull). foliow the i,r-rotion of the surrounding t1uid, and

u! rnay then he prrt €cy,;a.L to ur, In this }imit the a.utceorrelation is of course
lf

reduced to the above-menticned l-agrangian form" At the other extreme

corresponcting to a r/er)r large t 'balloon", the velocity i lU wilL be zero, and

consequently we shall have u[ = 0. This l imit actually corresponds to the

special case of Eulerian probing where the probing velocity S is zero, The

aritocorrelation function obtained in this limit happens to be identical with

{6. 19), rn'hich was th.e Lagrangian autocorrelation without motion of distu:'b-

ance centres.

Turning finally to the case of Eulerian probing with arbitrary

velocity ?, the inclusion of the motion of disturbance centres requires tire

evaluat ion of  moments of  the quant i ty l?- f i I  in equat ion (6.21).  The fact

that r,ve ltnow the expression for tlre mornents lqqjTfr ancl the form of

the iVlaxwell distribution function for f ;f I makes it possible to obtain the

value of the moments jf-T|Tll by an inverse Lapiace transforrnation (see

ref. Bi. The following res'ult is obtalned:
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;;=;m
l v -u l  =

nu(r)

*  n *1  r,  I , - - ' -  l - . f ru '
( -  q )  |  i. & L V

c()
I= ldk

J
o

(  a  l -  .  , 2 ,  , y
t # L **o(- z) sin(-:-

m
r
Idk

J
o

Hzrr* 1

E(k) exp( v: '{v '  1

(6. 24l,

u'her* HZrr* 1 are the Hermite polynomials obeying the equation

( -1 ) *H2m*1 WIr2^* t l (Z rn+1) i  =  exp{ "21  * i , .  ( l yz } ( 6 .25 )

This equa.Lion, which generates the Flerrnite polynomials of odd order, rnay

actually be used to sum the'Ta;rlor expansion of the Eulerian autocorrelatj-on

function, and afte:: some trivia.l rnathematical manipulation the follor,ving

relation is obtained betr,veen the energy spectrum E(k) and the Eulerian

autocorrelation coefficient characterized. by the constant probing velocity v

and the r, m. s. of the fluctuating velocity ut :

@

)
#=o

*t"'" ' k) sin{vrk) j
J

E(k)

( 6 .  26 )

ril

v
,, jl

z = u f t k

As expected, this equation is reduced to the earl ier derived equations

{6. 12) and (6.  19) in the l i rn i ts v })  ur and v ((  r ' ,  respect ively,

We have rlow ca.rried through the ilrogramme of relating the energy

spectrum E(k) in isotropic, homogeneous, well-developed turbulence to

the different types of autocorrelation coefficients which may be obtained

either by the Lagrangian pr"obing, i. €. fol.lor'ring a certain fluid particle

in t ime, or by at tbol locn" probing with speci f ied randorn Gaussian mot ion,

or finally by a llulerian prol:ing specified by the value of the constant

probing velocity v, In the last section vre shall investigate the relation

between. the energy specir. i-n-r 1l{}ri and i ire power spectra P{,o} obtained by

the different probing rrrethocis rnentj.oneC above. 5'inally, we shall discuss

how the Hay-Pasquil i  conjecture may tle deri..,red from the above relations

as an apprcximation, and hovr tfie Sutton theory for turbulent diffusion is

related to this th.er:rY.
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Having derived in the previous section the autocorrelation coefficients

for the va.rious ways of probing the veloeity field, 'vire are now in a pos:i.tion

to relate the corresponding power spectra P(tr) whicir would be measured in

i:krese probings to the energy spectrum characterizing the turbulence. The

relations are obtained by substitution of the respective autocorrelation coef-

f icients in the general formula (1.4). In this yiray one obta-ins Lagrangian,

"baIloonil and Eulerian power spectra in terrrrs of integral transforms of the

energy spectrum E(k), using kernei functions characteristic of the rvay of

probing,

In the case of Lagrangian and "balloont' probing the autocorrelatiorr

coeff ic ient (6.  23) is used" y ieldin.g the expression

P" ,  in r )
dk '- , .  \
tr tr(k) Kr( ft r

lvhere o is the frequency and U? is defined according to

is Lagrangian or t tbal loon" as

U t = t/Z ,r' (Lagrangian)

(ba11oon)

while Kl(z) is the nortnalized Lagrangian kernel funetion

r ' )- r l  ,  Z  ,  z '( r )  =  
l l  ;  

z "  exp( -  Z)

CO
< 1 1

I I
= . 1

T T I  Iv J

n

( ? .  1 )

whether the probing

(7  .2 )

( ? .3 )

This funetion has a "universal" shape, which is shorvn in fig. 1, This would

be lhe shape of the power spectrum in the extreme and unrealistic case in

which the energy spectrum containecl only one wav'e number ko, i. e. in

which E{k) = b (k-ko), Thus in these types of probing a particular wave

number rvil l  never be associated vrith a single frequency, but rather with

a frequency band with an average f,reqr-rency and standard deviation given by
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0.4

0.2

u ltJ'k

Fig, 1. The normalized Lagrangian kernel functiot KL is shown as a

function of dUtk. Mean value and standard, deviation of o are given by

; /u ' k  =  ] f qE '?  1 .60  and  r /u ' k  !  0 .6? .  case  L  co r responds  to  Lag ran -

gian probing. Case B corresponds to probing with a ttbailoont' rnorring

with a random veloeity il, with cornponents distributed accot'ding to a

Gaussian with rms u!.

I
I

a

q5
\-

\C*

LAGRAfVG IAN FUNCf IO,V
(J'2= 2 u'2

B : (J'2= u8 + u'2

2alu',k

6/u',k
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;=]reU r k  r j  1 . 6 0  i J r k
o

and ( 7 ,4 )

(? .5 )

(7 .? )

(? .  B )

l J  0 . 6 ?  U t k o

The general expression for the nrth-order moment of rrr is

r:r+ 2
n (u,k )n + ?,T r(+q) .(D \- ^o, 

\ffi.

Since most of the energy spectra occurring in nature have a rather

smooth shape ranging over several decades in the wave nurnber, the La.-

g::ang.ian kernel may for ms.n;r practical purposes be approxirnated by a

D-function yielding a one to one connection between the frequency and the

wave number. It is then naturai to choose ihe upper relation (7.4) to give

this connecticn. In this approxirna'tion one obtains the following rough but

sirnple relation between the Lagrangian po\,x/er spectrum and the energy

spectrum:

Pr(o): q- * t(+

In the case of Eulerian probing' one proceeds

substituting tire Eulerian autocoi'relati<-rn coefficient

t1. 4), obtaining the Ilulerian pcwer spectrum in the

Pn( o) E{ki Ks . , v - .  \
fTu' J '

where the normalizeqi l ;ulerian ker"nel function is given by

& J \
t .

t l '  /

( $

\Vtr ,
CO

r i" dk;
= t -

V J  , I (
o

= -.p 
{ 

."0[ -y2( 
"-nI ')  

-exp 
i_-t

( 7 .  6 )

in an analogous way by

(6, 26) in the relat ion

form

lcu(2, v)
21r*  t -2

i \
i l

J}
It is seen that this kernel contains a paranretel: which in (?. ?) has the value

y = vlE ut .  The shape of the kernel  t .hus depends on the rat io between the

probing velocity and the r. m. s, of the random part of the velocity. In f ig. 2

the lJuler ian kernel  funct ion is given for the three values 0.1,  1 and 10 of

the parameter y = v{7 ur" In the l imit  of  smal l  probing veloci t ies (v ((  
" t )

the shape is similar to the one obtained for the Lagrangian kernel. This

corresponds to the fact that in this l imit tulerian probing and "balloon"
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Fig. 2. Examples of norrnalized Eulerian kernel functions KU for various

ratios of the probing rrelocity r,' to the rms ut of a single eomponent of the

fluctuating part of the velocity field.
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probing with u[ = 0 are identical. In the opposite l imit (" )) u') one also

obtains a sirnple result since the kernel func.tion then degenerates to a

function yielding the following simple one to one correspondence between

wave numbers and frequencies:

(o' : i  vk ,

This relation, wtrich corresponds to the so-called Taylor hypothesis, con-

nects the Eulerian power spectrum and the energy spectrum by the simple

s caling law

Pu(o)"+E(#) .  (?. 10)

The general trend of the Eulerian kernel functions is indicated in fig. 3,

where the average frequency ; and the standard deviatioh. o corresponding

to a particular wave nurnber k are plotted in dimensionless units as func-

tions of the parameter v/ff i  ut. I 'or completeness the general expression

for the ntth mornent of a) corresponding to the wave number k is given below:

"" 
= (r,k)t fFiil- (*)"*1

]fz* 
' \r

( ? ,  1L  )

where D is the parabolic cylinder function of negative order defined by

(s ee ref, 6 )

D-*-r(z) = W#

It is quite clear from fig. 3 how the transformation relation (?.9) so

frequently used for instance in wind tunnel experiments becornes a good

approximation for 
")) 

ur and actually for many purposes may be sufficient

for v a few tirnes larger than ut if a not too detailed knowledge of the en*

ergy spectrurn E(k) is needed.

It is now also obvious how the relation (1.5) conjectured by IIay and

Pasquil l  may be obiained as a first rough approximation in the case cf

rather smooth energy spectra E(k). By elirnination of the energy spectrum,

using the relations (7.6) and (?. 10), one obtains the following asymptotie

relation between the two types of power spectra:

(7 .e)

2,

**ol _4 I *- 
L 4,-rt ' '  J

I"- n-Zt # j- D-"-'[+ j ] ,

2,m. rz
exp( i l  }*L""n?Errc( *f . t7.Lz)
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where

"r -
a  { A  v
P T r ( 7 .  14 )

in the timit where t))rt , ' Ihe relation obviously breaks down when v

becomes of the sarne rnagnitude as ut since, as mentioned above, Eulerian

probing with a velocity v (( rt corresponds to "balloon'r probing with.rb = 0.

Thus a lower limit for p is obtained by comparing the Lagrangian power

spectrurn with this particular tyue of "balloon" spectrum. The comparison

yields the value

e"(r^r) T P Pr(P or) ,

, 1pr" (1)  = +,
k-o

(? .13 )

(? .15 )

(7 .  1 .6  )

^1p \n
in the l imit where v (( u' .

It is of interest to apply this theory to the phenomenon of turbulent

diffusion. In order to investi.gate the contribution of a narrow wave number

range of the energy spectrum E(}c) to the diffusion process one may insert

in the Taylor relation (1. 1) the Lagrangian autocoru"elation coefficient

corresponding to an energy spectrum of the singular shape E(k) = b(k-ko).

After performance of the double integration over time the following variance

is obtained for the displacernent r along any one of the three independent

space directions:

I  
t  exp(u'  'u| t \  

) .

Thus tlre probability distribution for finding a displacement r in a pre-

scribed direction converges toward a limiting disiribution with the varianee
.  .  - 1

O;'  in a t ime which is large compared with the per iod ro = (u 'Uo)-t .  At

times srnall comparecl wj.th to the standard deviation rr grows with time

approximately as urt.

The spectra occurring in natural turbulerlce usually have a srnooth

shape, and the diffusion observed is the co-operative effect of all parts of

the spectmm, However, the above consideration shows how the high wave

number part of the spectrum is graduall; '  rendered inactive as the diffusion

proceeds while only t irat part of the spectrum which has wave numbers
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k ((utt)-1 is important for further d.iffusion, It is this progressive reduction

of the part of the energy spectrum which is active in the diffusion process

which results for a wide class of spectra in the well-known Fick law of

turbulent diffusion. In order to illustrate this statement one rnay consider

some very simple spectra for which the calculation may be carried out in

terrns of elementary functions.

Let us first consider a normaliz.ed spectrum

charactertzed by just one parameter L.

variance with its asymptotic values for

E(k) = 
# 

exp(-rZtz)

.+4 8)rl2
h -

( 7 .  1? )

The resulting expression for the

small and large values of t is

t  i ' \ '- r  I
I

J

zr.2 
i_ tr

, 2 , 2
l l '  T

(
I

{
(

t
1l '

a

L
t t  I
L|'

Since this spectrum is generally assoeiated with the last stages of decaying

turbulence, where one eannot expect the approximations underlying the

present statistical theory to apply, one might also consider a slightly more

realistic spectrum wbich has a qualitative resemblance to the ones expected

in fully developed furbulenee. This is true of the normalized spectrurn

T ' 2  =

E(k)
T

;;ffir

2u rL t

for  t ( (

fo r  t ) )

( ? ,1B )

(7 ,  1  9 )=z
*

which yields the follovtng appro>:imate expression for the variance of the

displacernent after a time t:

r,2 * L2 1-;-jfrqr
u rZ  t 2

ur  L t

for t ((

for t  ))

(? .20)

\
r
t

ilf

Thus, appart from numerical constants,

obtained.

the same general behaviour is

F'or more general spectral shapes the following expression rnay be

obtained by substitution of the general expression for the Lagrangian auto-

correlat ion coeff ic ient in the relat ion (1.1):

(? .21)r 'Z ( t )  =  D( t ) '  t  ,
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where the time-dependent diffusion parameter is given by an integral trans-

forrnation of the energy spectrum E(k) through

(7 .  22)

in which the kernel function T has the explicit universal form

tP ALr
D(t) = u' I t l  E{k) T(u'tk) ,

J
o

For many practical purposes and in order to get an intuitive understanding

of the turbulent diffusion mechanism, the kernel function T may be approxi-

mated b)' the somewhat simpler function

2- -z
rfu) = t -,"-

z

T(z) t  e  lh" I

( 7 .  23  )

(7 .  24\

(? .25 )

This form and the fact that the effective part of the energy spectrum usually

ranges over several decades in the wave numbqr k suggest that a trans-

formation should be made to a logarithmic scale in the wave number. If

this is done by introduction of the parameter s = lnk in the expression

(7. ZZ),  one obtains for D(t)  the expression

CO

D( t )  =  u ,  {  dsE (e -s }T (e -s+ In (u ' t } ,  .
J . *

In fig. 4 t}re function T and a sirnple arbitrary energy spectrum E

have been drawn on a logarithmic wave number scale. The instantaneous

value of the diffusion parameter D is then obtained by integration of the

product of the two functions over the entire range of s. The time de-

pendence of D comes about as the kernel function T advances without change

of shape toward larger wave numbers with an abscissa proportional to lnt.

In the initial stages this gives rise to enhanced diffusion by making the

"overlaptt integral in D proportional to t. At later t imes, when passing

into the region where E(k) is f1at, D(t) becomes almost constant, and

Fickian diffusion is obtained. I'his behaviour thus covers the range of

Sutton's diffusion formula relat, ing j-t directly to the shape of the energy

spectrum. I t  must,  holvever,  be remembered that the present theory is

restricted to the case c.-f isotropic turbulence and thus give-< rise to isotropic
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Fig. 4. Diagram showing the functions used fopfhe determination of the
time-dependent diffusion parameter D(t) = ut i a* E(k)T(urtk) with'  J_m
k = exp(-s). The function T moves without change of shape toward. larger

s values with a speed proportional to lnt, The transforrnation sr = s-In tr 
*

is introduced for scaling purposes, The dashed l ines coruespond to the
approximation (7 . 24).
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diffusion. Furthermore it is inherent in the approximations made that fully

developed turbulenee is presupposed over the wave number range considered

since the statistical assumptions imply a large amount of overlap of the

disturbances, Thus, in situations where the components of the random part

of the velocity field have a non-Gaussian distribution, the application of the

present theory would be expected to have a limited validity or might even be

misJeading. F urther applications and extensions of the present theory to

special cases of turbulent diffusion are discussed by one of us in ref. 9.
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Sppe*-{.lr

In this appendix we shall extend and generaltze sorne of the theorerns,

proved by Rice (ref. 71, about random processes of the shot effect type,

Let us consider a random process which rnay be expressed as a sum

(A.  1)

where each term F, represents a disturbance statistically independent of

the others wi'th a random shape and a random position X.. More precisely,

this means that the shapes of the disturbances may be classif ied into a pos-

sibly infinite number of types for which there exists a known probabiiity

distribution. The random distribution of the positions X, is characteri.zed

by a density p so that, witkr-in any interval X whieh is large compared with

the range of a single disturbance, the number N of disturbances occurring

in this interval is d:istributed according to a Poisson distribution with a

rnean vatue N = pX, while the position X, of each of these N signals will

have the probability dx/X of occurring in the subinterval dx within X.

Taking derivatives with respect to x in equation (A. 1), one obviously

obtains the randorn processes

f i l !  = )" * (m=0, 1,.. . ,n) ,  (A.z)
c l . x  . e , - t  d xr= -m

of which (A. 1) is nothing but the special  case m = 0.

Our aim is to calculate expectation values of products of u and its

derivatives, each raised to arbitrary powers pm, hence having the general

form

+co'r
u(x)  =  )  F .  (x -X*  )

I..-. 
_ 

i\_- 
__i, ,

i = -m

n
, r r l D

F  I Q .  U  1 ' f f l
U  t - l  t

r  I I I

ctx
m=o

(A.  3)

and to express them in terms of the irreducible rnixed monrents of a single

disturbance and its derivatives,
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*o

( f  dxTJ
-m

n ^*F. *m

n (o # )
I I l .m=o ax

t.f i. 
' . i 

r:

where ( )i indicates an averaging over the disturbance shapes.

To estabtish this relation lf i /e shall u$e the method of characte:' istic

functions (ch. f. ).

In order to be able to neglect end effects, w€ shall perform aLi

averages over an interval X which is long cornpared rvith the range of the

disturbances. Furthermore, r,ve shall f irst treat the special case where

u = u, (x) has just one disturbance F, in the j.nterval X, In this case the-  
1 .  '  "  I

joint ch, f. for u, and ii.s derivatives up to and including the ntth is given

by

o, (no,
_p

..,,o*) = -"nLtI
m=o

+Xlz  n
- 1  r  

'  
T '  \ - r

(k J 
f f i i  exp[ i  L *

-Xl  2 rn=o

+x' l2
t  f '= (+ ldx.\ -K  J-xl 2

t[
m * t

\ a .  Ij  v r  i
. L I
rrd =

o

11 
d*r' ttrfl

t r  (_#)
oxrn=o

n
T . ' 1
l n  t L  u
I  i l  I  " F : E

|  
' 1  o ? (b m

m=o

^m.-o $ i_ i
t t : =

m ^ f f r l
0 x--- -t

a fII-'v  J l  . '
l i r

r n  ^  r r r  l t
0 x  * 5  1

n aInF. m
n ( -  * i )  )

^  t r l
d  x  , r

rrl=o

(A .5 )

If i t  is assumed, as done in section 3 above, thai the probabil i ,;y

distribution of shapes has the speclal property that shapes Fr(x) and -Ft(::)

are equatly probable, the ch. f. (A.5) wii l  be real valued and an even. func-

tion in all i lm,

Recalling that moments of u, and its derivatives may be obtained

by differentiation of the ch. f. , we obtain

Under the al:o\re 'bllt:cia1 assllrnption abou.t.

distribution we in:rnecliately see that the mornent

(A .  6 )

l i je syi*ir:rei::: '3r of t ire EL:a,.

(A.6) vanishes i f

n l t  = f i
1L
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n
f-:

i f  r = ) r* is an odd integer. This result wil l
Lm

essential for the following considerations, which

shape probability distribntions.

In the case where exacLiy N disturbances

the n* 1 random lfrocesses we consider have ihe

be used later, but is not

also apply to more general

appear in the interval X

form

, mcl u.
_J=

.mctx

in the interval un

We rnery n

way and obtain

hI
.i-1

)
LJ

der

O14/

u*F,.
( r n = 0 ,  1 r . . . r n )

oxm

con.s i deration.

construct the corresponding joint ch.

(A,  ?)

f. in the usual

o1g(xo, ,X r r )
/  $ umFi\

** 
\.2r, a"m/

n
f \-r
i . \= e x l ) i r  )^L  L

ITI=O

.-..;
I
I

J
ofl (A.  B}

since all N disturbances are assumed

In the general  case the num.ber

stati stically independent.

interval X is assurned to be distributed

of the form

of disturbances N appearing in the

accorcling to a Poisson distribution

N exp(- N) (A.  9)

with N = p X. Thus we obtain the joint ch. f. corresponding to the random

processes defined in (A,2) by forrning the expectation value of (A. B) with

the distribution (A. 9):

N

(N) =P
ts NI

@

o(ro,  . . ,  r*  r , . )  = 
I  P,*(N) oN

rfjo N

In principle we have now solved

of the type given in (A.3) s ince they ma

through the relation

f  
- ,

t _=exdN(q  1 ) l  (A .  10 )
L I J

the problem of evaluating moments

y be obtained by differentiation of F



-47

n"mPm
,o  u .

II (-)
r  I I I

m=o clx

, l r u

t o .  - 1  |\ -  I  '
- 

sl-

1 t  a  rpo 
s

f 
tq' 

r.Ir 16

p
t I  a  \ ^m
\ T - - ,

o r o ? t m

Tn=l n
tr-m= =  t t r  =  o

(A .  11 )

(A ,  12 )

(A .  13 )

In order to obtain the dominant terms of these moments for large

values of p we shall, however, expand the ch, f. €, given by {A. 10) in terrns

of F = pX since this is the only quantity containing 5!. The large irrterval X

nsed for the purpose of arrereging rnust of course errenti:a1ly disappear f::orn

our equations since it was chosen arbitrari ly.

Expanding the exponential function in equation (A. 10), we obtain

O
\-r s

o= ) tr
/)
sr*o

The differentiations indicated in (A, 11) may then be performed separately

on each term of the expansion (A. 12i .  For that purpose we shal l ,  however,

need an extension of Leibnitzt rule for the differentiation of a product of

two variables, to the case of a product of s variables.

Le t  Y1 ( ro r .  ' . , t c r r ) ,  . . . ,  Y " ( ro r .  .  .  r * r r )  be  a  se t  o f  s  d i f f e ren t  f unc -

tions of the n* 1 variablcs ro, . . . rt3rr. On application of the multinominal

theorem instead of the binominal, Leibnitzt formula for the derivatives of

a product of two functions is easily generalized to the case of s functions,

yielding for the po'th derivative with respeet to ro

-t
ykj ,

T S
I t r
L k=l-

k=Po

T* )
LJ

S
n

Lt

k=1

'T
1 (o  -  \ ' b ' k

t t  ,  1 t O r  t
o r K  o

where the summation is to be

TT
O,

extended or,'er all different sets
S

t h e r e l a t i o n  f ,  f i  ,  = F  B v
k = J -  

o '  K  ' o  v

the other variables, the fol lowing

( tro, 1, . . . , no, 
") 

which satisfy

differentiation with respect t<t

expr es sion is obtained:

repeated

generalized
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ln l  t r
(k= lL  m=o

I}1

Tn
luL  m = o

"*jr f -  n

iL*:

The su.mmation should

integer solutions to th.e
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I

I
v - t
"}(J

, =f)
n), K

. r " 5 f I

- l

J

be extended over aII possible

Diophantine equations (A" 16)

p
' l  ' m

" 
I (€T-j I- m r n * l

1 /a  ,Pmll -

o W'u;t ' J
Sv

g

'i.-'1

= )
LJ

s
X t r

k=i

1]l.=o,

rs
ln
Lk=1

Since 1ve shall only need derivatives of powers of a single dependent variable,

we ident i fy al l  the funct ions y6 in (A. 14) by a single funct ion y(xo,. , . ,  *r) .

Sirnple combinatorial reasoning then leads to the following specialized

version of  equat ion (A. 14):

(A .  14 )

.  r [ n

i-
L

rn
fu
Lrn=

\- 
(Po" .- '

)u

"51. d("o,.. .
( q , . .

P*)

r  )=,n

,o )

o*o,
1 , d

#-i It" i
o rTt rrr'  * t l

)  
%o'

vf

(Po,
r
)

lr

;"
\/

lr

"  Pn )
q-[ot

, f i n
(A .  16)

(A .  1? )

The product over(to,  , .  . ,  *r . . ) in (A. 15) and the corresponding sums in (A, 16)

and (A. 1?) are understood to run over al l  d i f ferent sets ( fo,  . , . ,  f in)  wi th

the  on l y  r es t r i c t i on  t ha t  o<  * * *  p *  f c rm  =  0 ,  1 , . . . 1 i l .

h o r '  '  .  r  7 r r r ) =

(o, . . , , o )

bo,

(no,

( o ,

' P a r )
=  f m  t n o ' ' '  

" t r m '  
I  t '  r * a r =  

o * ( m = 0 '  1 '  "  "  
[ )

'  * * )=

,  o )

(A .  L5 )

different non- negative

and  (A .  17 )

*t*r-1"*,uru ll.
r n r K  m  J J
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In order to calculate the rnixed morn,ents (A.3) we may nolv insert

the expansion (A, 12) for the jo int  ch. f .  into the expression (A. 11).  On

application of the relation (A. 15), derived above, to each term in the ex-

pansion, the following equation is obLained after a slight rearrangement:

n " , m P m

*Io *tHl 
=

m

\

s = o

s { \:'-r
N.t  )(L

s o l

{Po, . 
n

q  
(no"  '

( o , - .

n )t J: 
TLr

, * r r ) =  % o r . . . r f [ r ,

,  o )

r n 1
|  ;  I  t I

Lorlo q \r

n*o, '

tf
lTl.{'  l  { 6  - 1 )

ox  '  * -1
m

- - . , Q * o ,  .  . .  r f [ n  
)ji; (A .  18  )

* o = . ,  .  = N r r = o

here the summation markedttsol  q" is again to be performed over al l  solu-

t ions io equat ions (A. 16) and (A, 1?).

From equation (A. 1B) and the conditions (A. 16) and (A. 1?) it is

possible to derive the consequences l isted l:elovr;

( i )  S ince $ t -1  is  equal  to  zero  for  *o=*13. , . * r r=o,  on ly  such so lu-

tions to equations (A. 16) and (A. t?) for which we have

for r '  =  t r ,  =  o (A .  19 )

" [ n

can give non- zete contributions to the suffr over ttsol qt' in (A. 1B), This

means that we rnay acld the eondition (A. 19) to the restricting equations on

the qts without affecting the right side of equation (A. 1B).

(i i) The sum over s in equation {A. L8) is a f inite sum since we may

establish an upper bound for the values of s r,vhich will give non- zero con-

tributions to the sum over solutions to the restricting equations. This may

be seen by surnming the n*1 equations (A. 1?); r,vith the help of (A. 16) and

(A. 19) one obtains



50

r*1
)

{r

n
f-]
\
L

m=o

(Po,

p =' r n
(n 

o,
{o,

%ttqoo, ' f i m t

P*r) n
f !-1
i \
LL

m = ofi

o )
n / -

(  po,

(*o,

(o,

, sn
i>

odd

,1-',t 
' ' Frr)

\ o
L  

' t o '

. . . r * r r ) =

r . . 1 0 )

(A .  20 )

(A .  21  )

The val. idity of the inequality is realized by observing that because of the

restriction (A- 19) there is no contribution to the la.st surn frorn the term

eo,  o , . , ,1o ;  thus the preced ing sum is  ter rn  by  ter rn  la rger  than or  equal
n

to the last. Therefore p = E p is an upper hound for the exponent of
f l 1 = O  

' m

highest order 
"rrr"* 

in ttr-ler expansion (A" 18).

(i i i) If the shape distribution is symmetric, &s desc_ribed aborre in

connection with equation {A,6), all terrns for rnrhich a = f a* is an
m=o

odd integer vanish, and we rnay thus under tkr-is assumption for the distrib-

ution of shapes impose a further condi.tion on the qts r,vithout changing the

'ralue of the right side of {A. 18). This conditiorr is

o to, , f i n
= t ] for

n
i'-r

r r=  )  n
Lm

rn.Eo

Apptication of t lr is condition together r,vith the first equality in (A.20) Ieads
n

to the conclusion that al i  n loments (A.3i  for which p = X pm is an odd
m=o

integer will vanish. Thus the syrrrrnetry assurnption eliminates all rnixed

monlents of odd order, as mighi also be proved in a more direct way by a

simple parity argumertt,

( ir ') In general the largest values cf s are obtained when

vanishing qts have the ieast possible inde:< quur. if, = E nm.

the non-

Since the
m=o

condit ions (A. 19) and (A.21) exciude the possihi l i ty of  non-vanishing qrs

for s equal to 0 a.nd 1, th.e largest s in the case of symmetric shape distrib-

utions is obtained when all qrs vanish except when n is equal to 2, that is,

when according to the rela't ion tA.6i only pair correlations appear in the
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corresponding term. As seen frorn (A, 6), the pair correlations may be

either quadratic or cross terrn according to whether the qt s are of the type

Q o r . . . ;  o ,  2 r o r . , . 1 o  
o r  Q o r . . .  

e  o s  1 ,  o ,

cumstances the rnaximum value of s as

(A. 20) is s*** = plz .

Finally, w€ shall rewrite equation (A. 1B) in the form (A.221, thus

introducing the irreducible mixed moments (A,4), by applying equation

(A.6). EU.mination of the dumrny range X is accomplished partly by canael-

lation and partly by extension of the integration limits to infinity; this ex-

tension is justif ied since X was chosen large cornpared with the range of the

disturbanc es considered,

.  .  . ,  o ,  1 ,  o p  ,  .  . ,  o '  
I J n d g r  t h g s e  c i r -

deterrnined from the inequality

n . ,rrr Pm
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(A .22)

This equation has the forrn rve set out to find since it gives an explicit ex-

pansion of the mixed moments of u and its derivatives in terms of the

disturbance density p, with coefficients containing only the irreducible

mixed moments (A.4).
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