Technical University of Denmark

Environmental radioactivity in Denmark in 1983

Aarkrog, Asker; Boelskifte, S.; Bøtter-Jensen, Lars; Dahlgaard, Henning; Hansen, Heinz Johs. Max; Nielsen, Sven Poul

Publication date: 1984

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA): Aarkrog, A., Boelskifte, S., Bøtter-Jensen, L., Dahlgaard, H., Hansen, H. J. M., & Nielsen, S. P. (1984). Environmental radioactivity in Denmark in 1983. (Denmark. Forskningscenter Risoe. Risoe-R; No. 509).

DTU Library Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

DK8500061

Risø-R-509

2

Environmental Radioactivity in Demark in 1983

A. Aarkrog, S. Boelskifte, L. Bøtter-Jensen, K. Dahlgaard, Heinz Hansen and S. P. Nielsen

Risø National Laboratory, DK-4000 Roskilde, Denmark June 1984

ERRATA to RISØ-R-509

Environmental Radioactivity in Denmark in 1983.

<u>p 16</u> Table 3.2.1.1.

Cesium-137, 13 December, station 25: 87 Bq kg⁻¹: read 8.7 Bq kg⁻¹

<u>p 117</u>

The tritium results for precipitation are shown in Tables 4.2.7., and 4.2.8. Tritium in ground water is shown in Table 4.3.1. Tables 4.4.3., and 4.4.5. show the tritium content in sea water. Risø-R-509

ENVIRONMENTAL RADIOACTIVITY IN DENMARK IN 1983

A. Aarkrog, S. Boelskifte, L. Bøtter-Jensen, H. Dahlgaard, Heinz Hansen and S.P. Nielsen

<u>Abstract</u>. Strontium-90 was determined in samples from all over the country of precipitation, ground water, stream and lake water, sea water, dried milk, grain, bread, potatoes, vegetables, fruit, total diet, and human bone. Furthermore, ⁹⁰Sr was determined in local samples of air, rain water, grass, sea plants, fish and meat. Cesium-137 was determined in air, precipitation, sea water, sediments, milk, grain products, potatoes, vegetables,

(continued)

INIS-Descriptors: AIR; AMERICIUM ISOTOPES; AQUATIC ECOSYSTEMS; AT! `SPHERIC PRECIPITATIONS; BACKGROUND RADIATION; BARSEBAECK-1 REACTOR; BARSEBAECK-2 REACTOR; BONE TISSUES; CESIUM 137; COBALT 58; COBALT 60; DENMARK; DIET; DRINKING WATER; ENVIRONMENT; FALL-OUT DEPOSITS; FISHES; FOOD; FOOD CHAINS; GLOBAL FALLOUT; GROUND WATER; LOCAL FALLOUT; MAN; MANGANESE 54; MILK; PLANTS; PLUTONIUM ISOTOPES; RADIOACTIVITY; RINGHALS-1 REACTOR; RINGHALS-2 REACTOR; RINGHALS-3 REACTOR; RISOE NATIONAL LABORATORY; SEAWATER; SEA-WEEDS; SEDIMENTS; STRONTIUM 90; TRITIUM; ZINC 65.

UDC 614.73(489)

June 1984 Risø National Laboratory fruit, total diet, sea plants, fish, and meat. Estimates of the mean contents of radiostrontium and _adiocesium in the human diet in Denmark during 1983 are given. Tritium was determined in precipitation, ground water and sea water. Plutonium and Americium were measured in marine samples. The γ -background was measured regularly by TLD, ionization chamber and on site γ -spectroscopy at locations around Risø, at ten of the State experimental farms, along the coasts of the Great Belt and around Gylling Næs. The marine environments at Barsebäck and Ringhals were monitored for ¹³⁷Cs and corrosion products (⁵⁸Co, ⁶⁰Co, ⁶⁵Zn, ⁵⁴Mn).

ISBN 87-550-1035-0 ISSN 0106-2840 ISSN 0106-407X

Risø repro 1984

CONTENTS

			Page
ABB	REVIAT	IONS AND UNITS	7
1.	INTRO	DUCTION	9
2.	FACIL	ITIES	11
	2.1.	Detectors	11
	2.2.	Data treatment	11
3.	ENVIR	ONMENTAL MONITORING AT RISØ, BARSEBÄCK AND	
	RINGH	ALS IN 1983	13
	3.1.	Environmental monitoring at Risø	13
	3.2.	Marine environmental monitoring at Barsebäck	
		and Ringhals	13
		3.2.1. y-emitting radionuclides in brown algae	13
		3.2.2. y-emitting radionuclides in benthic	
		invertebrates	22
		3.2.3. y-emitting radionuclides in fish	25
		3.2.4. y-emitting radionuclides in sea	
		sediments	2 5
		3.2.5. Field experiments at Ringhals	25
4.	FALLO	UT NUCLIDES IN THE ABIOTIC ENVIRONMENT	33
	4.1.	Air	33
		4.1.1. Strontium-90	33
		4.1.2. Cesium-137	35
	4.2.	Strontium-90 and various y-emitters in	
		precipitation	37
	4.3.	Fresh water	44
		4.3.1. Radionuclides in ground water	44
		4.3.2. Strontium-90 in fresh water from Danish	
		lakes and streams	47
		4.3.3. Strontium-90 in Danish drinking water	
		(no samples in 1983)	4 7
	4.4.	Radionuclides in sea water in 1983	50
	4.5.	Strontium in soil (no samples in 1983)	64
	4.6.	Sediments	64

			Page
5.	DANISH	H FOOD AND VARIOUS VEGETATION	68
	5.1.	Strontium-90 and Cesium-137 in dried milk	
		from the entire country	68
	5.2.	Fresh milk (no samples in 1983)	75
	5.3.	Strontium-90 and Cesium-137 in grain from	
		the entire country	75
	5.4.	Strontium-90 and Cesium-137 in bread from	
		the entire country	79
	5.5.	Strontium-90 and Cesium-137 in potatoes from	
		the entire country	82
	5.6.	Strontium-90 and Cesium-137 in vegetables	
		and fruits from the entire country	83
	5.7.	Strontium-90 and Cesium-137 in total diet	
		from the entire country	85
	5.8.	Strontium-90 and Cesium-137 in miscellaneous	
		foodstuffs	88
		5.8.1. Strontium-90 and Cesium-137 in meat	88
		5.8.2. Strontium-90, Cesium-137 and Cesium-134	
		in fish	88
		5.8.3. Strontium-90 and Cesium-137 in eggs	91
		5.8.4. Strontium-90 and Cesium-137 in	
		various vegetable foods (no samples	
		in 1983)	91
	5.9.	Estimate of the mean contents of 90 Sr and 137 Cs	
		in the human diet in Denmark in 1983	91
	5.10.	Grass samples	96
		5.10.1. Grass collected around Risø	96
	5.11.	Sea plants	98
		5.11.1. Sea plants collected in Roskilde Fjord	98
		5.11.2. Sea plants collected at Klint	
		(55°58'N, 11°35'E)	99
		5.11.3. Sea plants collected in Danish waters .	100
6.	STR'ON'	TIUM-90 AND CESIUM-137 IN MAN IN 1983	106
	6.1.	Strontium-90 in human bone	106
	6.2.	Cesium-137 in the human body	114
7.	TRITIC	UM IN THE ENVIRONMENT	117
	7.1.	Introduction	117
	7.2.	Assay of tritium in low-level amounts	117

			Page
8.	MEASU	REMENTS OF BACKGROUND RADIATION IN 1983	118
	8.1.	Instrumentation	118
	8.2.	State experimental farms	118
	8.3.	Risø environment	121
	8.4.	Gylling Næs environment	124
	8.5.	Great Belt and Langeland Belt areas	125
	8.6.	The Baltic island, Bornholm	127
	8.7.	Discussion	128
9.	CONCL	USION	129
	9.1.	Environmental monitoring at Risø, Barsebäck	
		and Ringhals	129
	9.2.	Nuclear-weapon debris in the abiotic	
		environment	129
	9.3.	Fallout nuclides in the human diet	130
	9.4.	Strontium-90 and Cesium-137 in humans	131
	9.5.	Tritium in environmental samples	131
	9.6.	Background radiation	131
ACK	NOWLED	GEMENTS	132
APP	ENDICE	S	133
APP	ENDIX	A. Calculated fallout in Denmark in 1983	133
APP	ENDIX	B. Statistical information on population	
		density, area of the zones,, and milk,	
		grain, vegetable, and fruit production	
		in the zones	134
APP	ENDIX	C. A comparison between observed and predicted	
		levels in the human food chain in Denmark	
		in 1983	135
APP	ENDIX	D. Fallout rates and accumulated fallout	
		$(mCi 90 \text{ sr km}^{-2})$ in Denmark 1950-1983	139
REF	ERENCE	S	142

```
ABBREVIATIONS AND UNITS
```

```
J:
       joule: the unit of energy; 1 J = 1 Nm (= 0.239 cal)
       gray: the unit of absorbed dose = 1 \text{ J kg}^{-1} (= 100 rad)
Gy:
       sievert: the unit of dose equivalent = 1 \text{ J kg}^{-1} (= 100 rem)
Sv:
       becquerel: the unit of radioactivity = 1 \text{ s}^{-1} (= 27 pCi)
Bq:
cal: calorie = 4.186 J
rad: 0.01 Gy
rem: 0.01 Sv
      curie: 3.7 \cdot 10^{10} Bq (= 2.22 \cdot 10^{12} dpm)
Ci:
       peta: 10<sup>15</sup>
P:
       tera: 10^{12}
T:
       giga: 10<sup>9</sup>
G:
       mega: 10<sup>6</sup>
М:
       milli: 10^{-3}
m:
       mikro: 10^{-6}
и:
     nano: 10<sup>-9</sup>
n:
      pico: 10^{-12}
p:
       femto: 10<sup>-15</sup>
f:
       atto: 10^{-18}
a:
pro capite: per individual
       trinitrotoluol; 1 Mt TNT: nuclear explosives equivalent
TNT:
       to 10^9 kg TNT.
cpm: counts per minute
dpm: disintegrations per minute
OR:
      observed ratio
     concentration factor
CF:
FP: fission products
      micro-roentgen, 10<sup>-6</sup> roentgen
μR:
S.U.: pCi = {}^{90}Sr (q Ca)^{-1}
O.R.: observed ratio
M.U.: pCi 137Cs (q K)<sup>-1</sup>
```

V: vertebrae male m: f: female nSr: natural (stable) Sr eqv. mg KCl: equivalents mg KCl: activity as from 1 mg KCl (~ 0.88 dpm) . 1 g K ~ 756 pCi ~ 28 Bq. standard deviation: $\sqrt{\frac{\Sigma(\bar{x}-x_i)^2}{(n-1)}}$ S.D.: standard error: $\sqrt{\frac{\Sigma(\bar{x}-x_i)^2}{-1}}$ S.E.: U.C.L.: upper control level L.C.L.: lower control level sum of squares of deviation: $\Sigma(\bar{x}-x_i)^2$ S.S.D.: f: degrees of freedom s²: variance v^{2} : ratio between the variance in question and the residual variance probability fractile of the distribution in question P: coefficient of variation, relative standard deviation n: ANOVA: analysis of variance A: relative standard deviation 20-33% relative standard deviation >33%, such results are B: not considered significantly different from zero activity B.D.L.: below detection limit In the significance test the following symbols were used: * : probably significant (P > 95%) ** : significant (P > 99%) ***: highly significant (P > 99.98)

- 8 -

1. INTRODUCTION

1.1.

The present report is the twenty-seventh of a series of periodic reports (cf. ref. 1) dealing with measurements of radioactivity in Denmark. The organization of the material in the present report corresponds to that of last years report. After the introduction and a chapter on organization and facilities there follows a chapter on environmental monitoring around nuclear facilities (Risø, Barsebäck and Ringhals). Chapter four deals with fallout nuclides in the abiotic environment, i.e. air, wacer and soil. Chapters five and six comprise fallout nuclides in the human diet and human tissues, respectively. Chapter seven is devoted to a general discussion of our environmental tritium studies. External radiation is treated in chapter eight. The names of the authors of each chapter appear at its head.

The Becquerel has replaced the Curie, however, in tables (mean values) and figures the Curie is shown for comparison. In the figures we have used the right-hand ordinate for Curie.

1.2.

The methods of radiochemical analysis²⁻⁴) and the statistical treatment of the results^{5,12}) are still based on the principles established in previous reports¹).

1.3.

The detailed tables of the environmental monitoring programme for Risø National Laboratory appear in the two semiannual reports: Radioactivity in the Risø district January-June 1983 and July-December 1983.

1.4.

The report contains no information on sample collection and analysis except in cases where these procedures have been altered.

1.5.

In 1983 the personnel of the Environmental Control Section of the Health Physics Department consisted of two chemists, one biologist, one statistician, eight laboratory technicians, two sample collectors, and two laboratory assistants. The group for Electronics Development continued to give assistance with the maintenance of counting equipment, with the interpretation of γ -spectra and with data treatment. The programme (cf. 2) used in the calculations of 90Sr and the γ -analysis, as well as the programme for data treatment, were developed by this group.

1.6.

The composition of the average Danish diet used in this report is identical with that proposed in 1962 by the late Professor E. Hoff-Jørgensen, Ph.D. 2. FACILITIES^{1,6,7,8})

By S.P. Nielsen

2.1. Detectors

The activity of the samples is measured as follows:

Alpha $(^{239}Pu, ^{241}Am)$: 20 solid-state surface barrier detectors connected to four multichannel analyzers (64 channels per detector) and another two for total alpha counting.

Beta (90 Y mainly): Six "multidetector"-systems each containing 5 sample counters and a common anticoincidence shield are now put into regular use. This type of detector has replaced the mechanical sample changers previously used.

Gamma (natural and fallout isotopes): 4 Ge(Li) detectors in 10 cm lead shields and connected to a 8192-channel analyzer with four-input facility. One further Ge(Li) detector mounted on a tripod and a 4096-channel analyzer are used for field measure-ments, and a 8" × 4" NaI(Tl) in an underground shielded room is used for whole-body counting. The Ge(Li) detectors have an efficiency of \geq 20% (relative to 3" × 3" NaI(Tl)).

2.2. Data treatment

Measured spectra are transferred to a Burroughs B7800 computer for evaluation.

A program system STATDATA¹⁶⁾ is developed for registration and treatment of environmental measurements including multichannel analyzer spectra. To date, approximately 65 000 sets of results have been registered covering the period from 1957.

Fig. 3.1.1. Sampling locations at Risø Vational Laboratory. 1-5: locations for rain bottles (0.03 m² each), ion-exchange columns (0.06 m² each) and grass samples.

3. ENVIRONMENTAL MONITORING AT RISØ, BARSEBÄCK AND RINGHALS IN 1983

by H. Dahlgaard

3.1 Environmental monitoring at Risø

From the two semiannual reports: Radioactivity in the kisø district January-June 1983 and July-December 1983 the results of the environmental monitoring at Risø are presented. The reports are available from the Risø Library.

The various anthropogenic radionuclides measured outside the Risø area came from non-Risø sources, preferentially from ylobal fallout.

3.2. Marine environmental monitoring at Barsebäck and Ringhals

The radiological monitoring of the marine environment around the two nuclear power plants at Barsebäck and Ringhals in Sweden¹⁾ was continued in 1983.

Figures 3.2.1.1 and 3.2.1.2 show the sampling locations.

3.2.1. y-emitting radionuclides in brown algae

Tables 3.2.1.1, 3.2.1.2, and 3.2.1.3 show the radionuclide concentrations found by γ -spectrometric analysis in brown algae sampled near Barsebäck and Ringhals in 1983. Monthly data on radionuclides in time-integrated water samples and sea weed from locations 99 and 98 are reported in chapter 3.2.5. Note that the data are expressed on the basis of dry weight. For comparison with other data, the mean values of the ratios fresh weight/dry weight obtained 1977-1982 can be used. For Fucus vesiculosus and Fucus serratus from Ringhals these are 4.43±0.10 (S.E., n = 43) and 3.94±0.06 (S.E., n = 23), re-

Fig. 3.2.1.1. Sampling locations at Barsebäck. 49 and 50 indicate fishing tracks. Arrows indicate cooling water intake and outlet.

Fig. 3.2.1.2. Sampling locations at Ringhals. 14 and 16 indicate fishing tracks. Arrows indicate cooling water intake and outlet.

Date of sampling	9 February			2 May				30 September		13 December	
Station No.**	24	25	25	24 ^Δ	25	25	26 44	25	26	24	25
<pre>% dry matter</pre>	19.8	22.1	20.4	17.7±5.0	21.2	23.4	19.0±1.0	23.0	23.4	20.2	19.6
Species	Fu.ve.	Fu.ve.	zo.ma.	Fu.ve.	Fu.ve.	Fu.se.	Fu.ve.	Fu.ve.	zo.ma.	Fu.ve.	Fu.ve.
Distance from Outlet in km	1.4	2.9	2.9	1.4	2.9	2.9	4.0	2.9	4.0	1.4	2.9
54 _{Nn}	71	18.6	30	81 ± 3	31	24	14.1±0.6	15.4	7.6	47	25
58 _{Co}	43	12.6	15.4	33 ± 3	14.3	7.9	8.0±1.1	4.3	3.3		7.8
60 _{CO}	1860	340	340	760 ±87	470	380	191 ±34	145	87	1350	680
65 _{2n}	142	41	41	70 ± 6	38	34	19.4±4.4	6.9	8.4	112	42
95 _{2r}				20 A							
95 _{Nb}				12 ± 6							
110m _{Ag}			28 A	7.1 A							
124 _{Sb}					6В						
125 _{Sb}				4.2 A							
131 _I	27 A	8 B									
137 _{Cs}	10 A	8.3	9.1	13.8±1.6	15.7	10.9	11.8±0.3	9.4	6.6		87

<u>Table 3.2.1.1.</u> Gamma-emitting radionuclides in Fucus vesiculosus (Fu.ve.), Fucus serratus (Fu.se.), and Zostera marina (Zo.ma.) collected at Barsebäck in 1983 (Unit: Bq kg⁻¹ dry weight)

* Locations south of the outlet; the other locations were situated north of the outlet.

**Cf. Fig. 3.2.1.1.

 $^{\Delta}$ The error term is 1 S.E. of the mean of 3 samples.

^{$\Delta\Delta$}The error term is 1 S.E. of the mean of 2 samples.

- 16 -

Station No.**	۲	7	6	6	5	5		•	•	9*	9 *	13*
<pre>% dry matter</pre>	20.0	22.6	22.6	23.0	22.7	22.6	20.7	21.7	24.6	21.8	22.1	19.1
Species	Fu.ve.	As.no.	fu. ve .	Fu.se.	fu.ve.	fu.se.	Fu.ve.	Fu.se.	As.no.	Fu.ve.	fu.se.	Fu.ve.
Distance from outlet in km	0.2	0.2	1.9	1.9	4.1	4.1	4.8	4.8	4.8	1.1	1.1	4.1
54 _{Nn}	4.6	1.4A	1.5A	1.7A	1.3	1.71	0.8A	0.8A		1.66	1.77	
58 _{Co}	31	11.0	5.1	6.4	3.2	4.3	2.5	3.1	0.8A	0.5	10.3	1.2
60 _{Co}	118	98	29	36	21	24	11.2	14.0	8.4	34	48	4.8
65 ₂₀	142	210	44	52	31	31	16.8	18.9	13.2	42	73	6.4
110mAg	5.9	7.0	2.8	0.98	1.57	0.78				1.78	2.5	
124 ₅₀					0.68							
137 _{CB}	7.6	6.3	8.4	8.4	9.4	8.4	7.8	8.7	5.6		9.0	6.8

<u>Table 3.2.1.2.</u> Gama-emitting radionuclides in Fucus vesiculosus (Fu.ve.), Fucus servatus (Fu.se.) and Ascophyllum nodosum (As.no.) collected at Ringhals April 14, 1983. (Unit: Bq kg⁻¹ dry weight)

* Locations south of the outlet; the other locations were situated north of the outlet.

**Cf. Fig. 3.2.1.2.

Table 3.2.1.3. Gema-emitting radionaclides in Pacus vesiculosus (Pauvel) and Pacus serratus	
Fulsel: collected at Ringhals August 9, 1983. (Unit: Bq kg ⁻¹ dry weight:	

Station No.**	•	-	6°	6	5	5		•	·a+	3+2	*	. 3•
+ dry matter	27.5	17.5	24.0:0.4	24.4	24.1	27.9	25.1	26.4	24.5	25.410.9	25.4	22.1
Spezies	₹3.9 0 .	₹3.5 4 .	f 2. 74.	f 1. 99.	F1.40.	F 3. se.	t3.90.	t	F3.78.	Farve.	P 99.	Pulve.
Distance from outlet in KR	1.1	:.1	·.•	' . •	4.1	4.1	4.9	4.9	:.)	·_·	· . •	. . '
14 ₈₀	•••	-1	11.3:0.5	8.4	1.4	6.7	3.2	3.2	24	31 113	3.	4.4
5 9 19	4*3	532	40 - 13	97	52	42	43	34	243	2233	253	34
9 :	1342	453	119 16	• 12	44	*5	53	47	120	421 -14	4*1	-1
4524	1:41	-13	** *2	.33	43	49	41	44	220	. 94	241	41
**3#A3	••	2-	4.4-2.5	2.*	2.4	1.17	2.1	•.2 A	14.3	1.111.4	3. * A	2.1
· 2450										4.2		
19*ts	. 1	9.9	·. 4:3.9	4.7	7.0	9.4	4.9	9.9	•.•	·····	11.4	4.4
· • · •						3.2 A						

* Decations south of the outlet; the other locations were situated corth of the outlet.

++16, Fig. 3.4.1.4.

¹ The error term is 1 Sid, of the mean of 2 samples.

spectively, and for Fucus vesiculosus from Barsebäck the ratio is 5.02 ± 0.14 (S.E., n = 36).

The activity concentration of reactor produced nuclides in Fucus can be expressed by a power function:

 $A = k X^{-\beta}$

where X is the distance in km from the point of discharge. Northward from Barsebäck, out to ~ 125 km, a β -value of 1.4±0.1 has been found for ⁶⁰Co (chapter 5.11.3 and refs. 1, 10 and 32).

After normalizing all reactor-related data from Ringhals, the northward distribution showed β -values of 0.631 and 1.02 for the April and August samplings, respectively. Southward, a β value of 1.02 was recorded at both samplings. Pooled results back to 1977 (n = 11 northward, 10 southward), gives mean values of 0.82±0.14 (S.D) northward and 0.95±0.08 (S.D.) towards the south. The Ringhals-values are calculated only from data within 5 km from the discharge point.

Table 3.2.1.5 shows a comparison of the 3 fucoids Fucus vesiculosus, Fucus serratus and Ascophyllum nodosum. The levels of significance of differences from unity are indicated.

Tables 3.2.1.6-3.2.1.7 report transfer factors calculated as

$$TF = \frac{A_i}{\frac{m}{1 \sum D_j}}, \quad \left(\frac{Bq \ kg^{-1}}{GBq \ month^{-1}}\right)$$

where A_i is the activity of the sample collected in month i (Bg kg⁻¹ dry weight), D_j is the discharge during month j (Bg month⁻¹) and m is the number of months in the calculation. Here m is chosen as 12, i.e. the transfer factors are based on the mean discharge rate during the 12 months preceding the sampling. Monthly discharges are from reference 36.

<u>Table 3.2.1.5</u>. Ratios of activity concentrations on dry weight basis in Fucus vesiculosus (Fu.ve.), Fucus serratus (Fu.se.) and Ascophyllum nodosum (As.no.) collected at Ringhals 1978-1983

Isotope	Fu.ve./Fu.se.	Fu.ve./As.no.								
60 _{Co}	0.83**±0.058 (n=17)	1.3 ±0.24 (n=7)								
58 _{CO}	0.86**±0.043 (n=16)	3.0**±0.36 (n=7)								
54 _{Mm}	1.09 ±0.070 (n=15)	3.8* ±0.39 (n=4)								
65 ₂ n	0.88 ±0.076 (n=17)	1.5 ±0.32 (n=7)								
110mAg	1.57* ±0.212 (n=13)	1.1 ±0.21 (n=5)								
137 _{Cs}	1.05 ±0.041 (n=16)	1.4**±0.05 (n=3)								
131 ₁	0.94 (n=1)	1.2 (n=1)								
95 ₂ r	0.89 (n=1)									
The error term was 1 S.E.										

In Tables 3.2.1.6 and 3.2.1.7 transfer factors, TF, from Barsebäck and Ringhals from 1983, and mean values from 1977-1983 are reported. As the monthly discharges are very different the TF-values would vary even if the plants accumulated the same fraction of the discharged nuclides throughout the year. Differences in growth and in temperature also contribute to the variation. The fairly good reproducibility of the TF-value for most nuclides from both Barsebäck and Ringhals is therefore remarkable.

As discussed earlier^{1,32)}, the TP-values are higher at Barsebäck than at Ringhals. As furthermore ratios between radionuclides differs, a hydrodynamical explanation will not be sufficient. An experimental programme aiming at elucidating these differences and at estimating concentration factors for the relevant nuclides was initiated in 1983 (cf. chapter 3.2.5).

Testane	Sampling	Discharge th 12 m	e preceding onthe	TF Bq kg ⁻¹ dry weight			
1202056	dete .	GBg month ⁻¹	rel. S.D.&	GBg month ⁻¹			
60 _{Co}	9/2	4.1	83	460			
	2/5	4.1	64	186			
	13/12	4.1	94	330			
60 _{Co mean:}	1983			320±78	(n = 3)		
	1977-1983			600±79	(n = 19)		
58 _{Co}	9/2	0.30	133	143			
	2/5	0.31	129	106			
58Co mean:	1983	<u></u>		124±19	(n = 2)		
	1977-1983			260±49	(n = 18)		
54 _{Mn}	9/2	0.24	92	300			
	2/5	0.29	79	280			
	13/12	0.23	74	210			
54 _{Mn mean:}	1983			260±30	(n = 3)		
	1977-1983			400±42	(n = 19)		
65 _{Zn}	9/2	0.34	131	410			
	2/5	0.23	62	300			
	13/12	0.22	88	510			
65 _{Zn mean:}	1983			410±60	(n = 3)		
	1977-1983			550±83	(n = 19)		
110mAg	2/5	0.012	1 39	580			
110mAg mean:	1983			580	(n = 1)		
	1977-1983			132±47	(n = 11)		
SICr mean:	1977-1981		······	49±17,	5 (n = 4)		
The error te	erm was ±1 S						

Table 3.2.1.6. Transfer factor, TF, without decay-correction. Fucus vesiculosus collected at Barsebäck, location 24, 1.4 km north of the outlet

	Sampling	Discharge th 12 mg	e preceding onths	$TF = \frac{Bq \ kg^{-1} \ dry \ weight}{TF = \frac{Bq \ kg^{-1} \ dry \ weight}{TF}}$				
Isotope	date	GBq month ⁻¹	rel. S.D.%	Location 6	Location 9			
	14/4	3.35	65	8.6	10.1			
•	9/8	5.19	95	22.7	80.4			
⁶⁰ Co mean:	1983			15.6±7.0 (n=2)	45.3±35.2 (n=2			
	1977-1983			11.1±2.0 (n=12)	18.5± 9.0 (n=6			
58 _{Co}	14/4	2.20	124	2.3	3.9			
-	9/8	4.74	118	16.9	46.8			
⁵⁸ Co mean:	1983			9.6±7.3 (n=2)	25.3±21.4 (n=2			
	1977-1983			6.4±1.2 (n±12)	13.2± 5.0 (n=8			
54 _{Mn}	14/4	0.32	142	4.7	5.2			
*	9/8	0.62	108	17.6	50.1			
54 _{Mn mean:}	1983			11.2±6,4 (n=2)	27.7±22.5 (n=)			
	1977-1983			13.4±2.2 (n=12)	15.7± 5.2 (n≠			
65 _{2n}	14/4	1.45	107	30.3	29.3			
-	9/8	1.56	<u>92</u>	59.6	124.2			
65 _{2n mean:}	1983			45.0±14.6 (n=2)	76.7±47.5 (n=)			
	1977-1983			40,5±10.2 (n=12)	91.3±21.9 (n=			
110mAg	14/4	0.038	100	73.3	46.6			
•	9/8	0.032	100	135.6	92.6			
110mAg mean:	1983	<u></u>		104.4±31.1 (n=2)	69.6:23.0 (n=)			
	1977-1983			76.3±23.2 (n=11)	99.3±30.3 (n=1			
51Cr mean:	1978			1.13 (n=1)				

Table 3.2.1.7. Transfer factor, TF, without decay-correction. Fucus vesiculosus (from Tables 3.2.1.2 and 3.2.1.3) collected at Ringhals, location 6, 1.9 km north of the outlet and location 9, 1.1 km south of the outlet

3.2.2. y-emitting radionuclides in benthic invertebrates

Tables 3.2.2.1 and 3.2.2.2 show results of the γ -countings on benthic animals from Barsebäck and Ringhals in 1983, and in Tables 3.2.2.3 and 3.2.2.4 these results have been compared with identical Fucus samples, when available. As for the seaweeds (cf. Chapter 3.2.1), the results for benthic animals are now reported on the basis of dry weights. Averaging data back to 1980 give a mean dry matter content of 9.55% and 13.7% for Mytilus soft parts from Barsebäck and Ringhals, respectively. The dose commitment to a hypothetical critical individual consuming 20 kg Mytilus edulis soft parts (fresh weight) yearly would be approximately 3 μ Sv y⁻¹ based on mussels from location 24 in Table 3.2.2.1. This is < 0.2% of the background radiation dose.

Species	Mytilus edulis (soft part)	Mytilus edulis (soft part)	Mytilus edulis (soft part)	Mytilus edulis (soft part)	Astería: rubens
Date	9/2	30/9	30/9	30/9	3/5
Station No.*	24	24 west	24 east	26	30
% dry matter	8.0	9.4	10.3	8.5	22.4
Distance from outlet in km	T.4	1.4	1.4	4.0	3.7
Depth in m	0-1	0-1	0-1	0-1	14
51 _{Cr}	37 B	- <u></u>			
54 _{Mn}	9.6 A				
58 _{Co}	17.1				
60 _{Co}	250	240	220	40	2.6
65 _{2n}	39	79 A	70		
137 _{Cs}	7.7 A			6.3 A	3.1

<u>Table 3.2.2.1</u>. Gamma-emitting radionuclides in benthic animals collected at Barsebäck in 1983. (Unit: Bg kg^{-1} dry weight)

Species	Rupagurus bernhardus (total)	Buccinum undatum (soft part)	Sea urchin (total)	Mytilus edulis (soft part)	Mytilus edulis (soft part)	Mytilus edulis (soft part)	Mytilus edulis (soft part)	Mytilus edulis (soft part)	Mytilus edulís (soft part)	Mytilus edulis (soft part)	Mytilus edulis (soft part)	Nytilus edulis (soft part)
Pate	15-4	1574	14/4	14/14	14/4	14/4	14/4	9/8	9/8	9/8	9/8	9/8
Station No.*	14	14	16	7	5	8	134	6	5	8	10 ⁵	135
• dry matter	28	18,1	28	17.1	16.4	15.8	12.2	11.9	12.9	10.6	11,6	12.8
Distance from outlet in km	~ 2	~ 2	- 2	0.2	4.1	4.8	4.1	1.9	4.1	4.8	0.9	4.1
Depth in m				0-1	0-1	0-1	0-1	0-1	0-1	0-1	0-1	0-1
` ⁴ Mn					······································		0.6 8				8.7	
58,00				3.0 A		0.8 B		A 06		17 A	88	15.5 A
10 ₀₀		2.8 A	9.0	17.0	4.9	2.2	2.4	48	38	22	112	28
*5:2n	9.0	12.3	4 B	99	13.6	9.1	3.4	141	94	84	440	91
110mAg											10.2	
137 _{CB}	1.7 A	3.3 A	9,9	3.3	4.7	3.2	2.6					2.7
*Cf. Fig. 3.2	.1.2.											

Table 3.2.2.2. Gamma-emitting radionuclides in benthic animals collected at Ringhals in 1983, (Unit: Bg kg⁻¹ dry weight)

³Locations south of the outlet; the other locations were situated north of the outlet.

Table 3.2.2.3. Activity ratios on dry weight basis, Mytilus edulis soft part to Fucus vesiculosus collected at Barsebäck in 1983

Location	Date	60 _{Co}	58 _{Co}	65 _{2n}	137 _{Cs}	110m Ag	54 _{Mn}	95 _{2r}	144 _{Ce}
24	9/2	0.134	0.40	0.28	0.77		0.135		
Mean 1980-198	33	0.165	0.335	0.77	0.456	3.38	0.093	0.297	0.82
S.E.		0.037	0.120	0.29	0.113		0.021		
n		4	4	4	4	1	3	1	1

Table 3.2.2.4. Activity ratios on dry weight basis, Mytilus edulis soft part (from Table 3.2.2.2) to Fucus vesiculosus and Fucus serratus (from Tables 3.2.1.2 and 3.2.1.3) collected at Ringhals 'n 1983

Brown algae	Location	Date	60 _{Co}	50 _{Co}	65 _{2n}	137 _{CS}	110mAg	54 _{Rn}	95 _{1r}	144 _{Ce}	134 _{CB}
Fucus vesiculosus	7	14/4	0.144	0.097	0.70	0.43					
	5	-	0.23		0.44	0.50					
	8	•	0.196	0.32	0.54	0.33					
	13	•	0.50		0.53	0.38					
	6	9/8	0.41	0.38	1.52						
	5	-	0.58		2.19						
	8	•	0.44	0.42	2.05						
	10	•	0.35	0.34	2.00		0.73	0.36			
	13	*	0.39	0.41	1.99	0.32					
Mean 1983			0.36	0,33	1.32	0.39	0.73	0.36			
S.E.			0.048	0.049	0.75	0.033					
n			9	6	9	5	1	1			
Mean 1977-1983			0.36	0.27	1.16	0.36	0.72	0.160	0.22	0.60	0.58
S.E.			0.052	0.028	0.161	0.038	0.177	0.068	0.05	0.05	
n			20	16	19	13	7	4	3	4	1
Pucus serratus	5	14/4	0.20		0.44	0.55					
	8	-	0.157	0.26	0.48	0.30					
	6	9/8	0.36	0,34	1.41						
	5	•	0.51		1.96						
	9	•	0.46	0,45	1.83						
Mean 1983			0.34	0.35	1.22	0.43					
5. E.			0.069	0.055	0.32	0.130					
n			5	3	5	2					
Hean 1977-1983			0.30	0.23	0.95	0.36	0.36	0.078	0.17		
S.E.			0.063	0.053	0.192	0.063	0,29				
n			12	7	11	6	2	1	1		

3.2.3. y-emitting radionuclides in fish

Tables 3.2.3.1 and 3.2.3.2 show results from 1983. As the power plants do not contribute to the only significant nuclide measured (137 Cs), no dose calculations are reported here.

<u>Table 3.2.3.1.</u> Gamma-emitting radionuclides in fish meat collected at Barsebäck, location 30 ($55^{\circ}45'93N$ 12^o52'72E), 1983. (Unit: Bq kg⁻¹ fresh)

Species	Date	134 _{Cs}	137 _{Cs}
Dab	3/5	0.084 A	3.5
Cuđ	3/5	0.180	6.7

<u>Table 3.2.3.2</u>. Gamma-emitting radionuclides in fish meat collected at Ringhals, location 14, April 15, 1983. (Unit: Bg kg⁻¹ fresh)

Species	65 _{2n}	¹³⁷ Cs
Dab	0.29 A	2.6
Flounder		1.85

3.2.4. y-emitting radionuclides in sea sediments

As previously, sediments sampled by the HAPS bottom corer were sliced in 3 cm thick sections and analysed by γ -spectrometry (cf. Tables 3.2.4.1-3.2.4.2). ⁶⁰Co originating from the power plants was detectable at both sites.

3.2.5. Field experiments at Ringhals

Aiming mainly at the determination of concentration factors between Fucus and water, a special programme was initiated in April 1983 at Ringhals. In 1984 Barsebäck and Forsmark will be included too.

	Depth	60 _{Co}		125 _{Sb}		137 _{Cs}	
Date	in m	Bg kg ⁻¹ đ.w.	Bq m ^{−2}	Bg kg ^{−1} đ.w.	Bq m ^{−2}	Bg kg ^{−1} d.w.	Bq m ^{−2}
9/5	0-3	14.9	A8	4.2 A	25 A	86	510
	3-6	5.3	50			50	470
	6-9					38	300
	9-15					7.6	191
	0-15		£ 138		Σ 2 5		Σ 1470
14/11	0-3	150	1160	19.9	151	79	600
	3-6	1.88	23			43	520
	6-9					10.5	132
	9-12					3.6	50
	12-15					1.6 A	24 A
	0-15	<u> </u>	80 1 3		£ 151		Σ 1330

Table 3.2.4.1. Gamma-emitting radionuclides in sediment samples collected at Barsebäck, location 38, in 1983.

<u>Table 3.2.4.2</u>. Gamma-emitting radionuclides in sediment samples collected at Ringhals, location 2, in 1983. (Area: 0.0145 m^2)

	Depth	54 _{Mn}		60 _{Co}		125 _{Sb}		137 _{C5}	
Date	in m	Bg kg ⁻¹ d.w.	Bq m ^{−2}	Bq kg ⁻¹ d.w.	Bq m ⁻²	Bg kg ^{−1} d.w.	Bg m ^{−2}	Bg kg ^{−1} d.w.	Bq m ^{−2}
14/4	0-3			9.4	133			17.8	250
•	3-6	0.3 B	9 B	6.4	220	1.1 A	40 A	12.5	430
•	6-9			0.8 A	32 A			4.7	186
•	9-12			0.6 A	29 A			2.8	123
	0-12		ε9		I 410		£ 40		I 990
10/.1	0-3			10.3	2 30	3.1 A	70 A	19.1	420
•	3-6			8.8	3 3 0	4.6	170	8.4	310
•	6-9							1.93	96
•	9-12							0.9 A	37 A
	0-12				ε 560		E 240	- 	I 860

The idea is to measure monthly time-integrated mean values of the 60 Co-concentration in seawater and to compare them with seaweed samples. The integration period for the water samples is chosen as one calender month, and the corresponding sea

weed samples are taken as closely as possible to the first day in the next month. This allows a comparison to be made with monthly discharge values 36). The time-integrated water sample is pumped into a 420 l container by a continously running "Masterflex" peristaltic pump, which is set to ~ 400 l per month. The water is enriched in stable cobalt by adding 50 g $Co(NO_3)_2$.6H₂O and it is spiked with a known amount of ⁵⁷Co. At the end of the month cobalt is precipitated as CoS by adding 330 q Na₂S dissolved in water. After 1-2 days precipitation the overlying water is siphoned off, and the precipitate is taken to the laboratory for further concentration, drying, and γ -spectrometry. During the precipitation the water from the peristaltic pump is accumulated in another container. The chemical yield is usually 90-100%. In initial tests zinc (as ⁶⁵Zn) showed similar yields.

The water-sampling equipment has been placed in a shed by the northern cooling water intake channel ~ 2.5 km north of the discharge point. On the open coast outside the channel, Fucus vesiculosus and Fucus serratus was sampled monthly (Table 3.2.5.1), and Fucus vesiculosus was sampled in the channel (Table 3.2.5.2) close to the water-sampling station. It is not known why the radio-cobalt concentration in sea weed in the channel (location 99) somewhat is higher than at the open coast outside (location 98). Radiocobalt and ⁶⁵Zn measured in the water samples are reported in Table 3.2.5.3, and by comparison with discharge to water in the cooling water intake channel have been calculated (Table 3.2.5.5). The mean value of these numbers might be used to estimate the water concentration for months lacking water samples.

In Table 3.2.5.6 the accumulation of nuclides in Fucus vesiculosus transplanted from a low-activity area 20 km south of the power plant to the cooling water intake channel is shown. By comparison with results in Table 3.2.5.2, it is seen that after 2 months ~ 90% of the level of $60_{\rm CO}$, $65_{\rm ZN}$ and $54_{\rm MN}$ is reached. Cobalt-58 obtains the same level as the natural population already after the first month because of its short half

Date		28/3	2/5	2/6•	30/6	2/8	1/9	3/10	2/12	Hean	S.E.	1
• dry #	Matter Fu.ve.		15.0	20.610.88	16.6	28.0	26.1	19.6	20.6			
	Fu.se.	16.7		20.4=1.89		25.8		23.7	19.6			
54 _{Mn}	Fu.ve.		1.88	2.9±0.09	5.8	7.2	6.1	5.2	4.8			
	Pu.se.			3.0:0.33		8.0		4.0	4.4			
	Pu.ve./Pu.se.			0.97		0.90		1.10	1.11	1.02	0.049	4
58 _{Co}	Fu.ve.		8.5	11.0±0.82	57	61	39	27	18.6			
	Fu.se.	5.7		11.5±0.52		100		34	27			
	Pu.ve./Pu.se.			0.95		0.61		0.80	0.70	0.76	0.072	4
60 _{Co}	Pu.ve.		23	33 ±2.7	63	87	68	72	79		<u> </u>	_
	Fu.se.	17.9		39 ±1.0		137		85	106			
	Pu.ve./Pu.se.			G.85		0.63		0.84	0.74	0.77	0.051	(
65 _{2n}	Fu.ve.		24	35 ±2.4	35	53	61	82	67			
	Fu.se.	38		42 ±1.8		98		71	77			
	Pu.ve./Pu.se.			0.83		0.54		1.14	0.87	0.85	0.124	4
95 _{ND}	Fu.ve.		2.1									
110mAg	Fu.ve.				1.3 A	1.9 A	3.5	3.5	4.0			
	Pu.se.					5.1		2.7	3.3			
	Pu.ve./Pu.se,					0.37		1.27	1.20	0.95	0.29	3
1311	Fu.ve.		26									_
137Cs	Fu.ve.		9.5	10.1±0.13	10.6	9.4	7.6	6.2	7.8			
	Fu.se.	10.0		10.0±0.74		9.3		6.0	7.6			
	Pu.ve./Fu.se.			1.01		1.00		1.05	1.03	1.02	0.010	4

<u>Table 3.2.5.1</u>. Gamma-emitting radionuclides in Fucus vesiculosus (Fu.ve.) and Fucus serratus (Pu.se.) outside the northern cooling-water intake at Pinghals (location 98, 2.3 km north of the outlet) in 1983. (Unit: Bq kg⁻¹ dry weight)

Date	28/3	2/5	2/6	30/6	2/8	1/9	3/10	1/11	2/12
<pre>% dry matter</pre>	19.1	17.5	22.1	22.4	26.5	26.1	18.5	17.5	19.5
⁵¹ Cr		9.8 A							<u>-</u>
54 _{Mn}	2.3	9.7	11.6	10.4	8.5	8.5	11.9	6.0	6.0
58 _{Co}	8.7	46	51	82	79	54	40	20.0	18.5
60 _{CO}	38	53	68	94	114	106	128	76	92
65 _{2n}	34	27	47	48	61	6 5	83	61	51
95 _{2r}		5.6	3.9						
95 _{Nb}		9.3	6.4	2.5 B		3.0 A	4.4 A		
110m _{Ag}	0.8 8			3 В	3.1	1.9 A	3.2 A		2.5 A
124 _{Sb}			1.3 B		5.2 A				
131 _I		45							
134 _{Cs}	1.40								
137 _{Cs}	12.7	11.1	11.5	14.0	11.4	11.1	12.0	13.5	13.7

<u>Table 3.2.5.2</u>. Gamma-emitting radionuclides in Fucus vesiculosus collected from the northern cooling-water intake channel at Ringhals in 1983 (location 99, 2.5 km north of the outlet) for comparison with water samples (cf. Table 3.2.5.3). (Unit: Bg kg^{-1} dry weight)

<u>Table 3.2.5.3</u>. Radiocobalt and Zinc-65 in monthly time~integrated water samples collected from the northern cooling-water intake channel at Ringhals (location 99, 2.5 km north of the outlet) in 1983. (Unit: Bq m^{-3})

	1/4-29/4	2/5-30/5	30/5-29/6	29/6-1/8	1/8-24/8	1/9-30/9	3/10-31/10	1/11-30/11	30/11-19/12
58 _{Co}	1.30	1.88	4.38	2.33	0.92	0.70	·······	0.63 A	
60 _{CO}	1.68	2.20	2.74	2.55	0.98	1.66	0,72	0.62	0.68
65 _{2n}		1.47		1.3 A		1.0 A			

<u>Table 3.2.5.4</u>. Reported monthly liquid discharges from Ringhals in 1983 from reference 36. (Unit: Bq month⁻¹)

Isotope	Jan	Peb	March	April	May	June	July	Aug	Sept	Oct	Nov	Dec
51 _{Cr}	5.7 +108	1.67+108	7.4 -108	1.56=109	1.07×109	6.0 ×109	2.2 -109	5.8 +108	7.3 = 108	2.9 -107	1.59+107	2.3 =108
54 ₈₀	1.14	9.8 ×10 ⁷	2.4 ×10 ⁸	1.73=109	9.2 ×10 ⁸	1.04×109	2.1 ×10 ⁹	4.7 +108	5.1 = 108	1.29×108	2.6 ×10 ⁸	2.0 +108
57 _{CO}	0	1.20×105	1.20 + 106	1.60+10	3.4 -10 ⁶	1.5 +107	2.2 ×107	1.00×10 ⁵	1.40-106	6.2 ×105	1.60-10	2.0 +106
58 _{CO}	1.10×10 ⁹	1.03-109	1.18.109	1.05×1010	5.4 ×10 ⁹	1.75×10	1.20×10	4.2 +109	2.3 = 109	9.7 +108	2.0 +109	5.4 +108
⁵⁹ re	8.0 ×10 ⁶	2.9 = 10 ⁶	5.4 = 107	2.1 ×10 ⁸	3.5 +107	1.17=108	7.5 +107	5.0 +107	5.8 + 107	1.63-107	9.5 = 106	1.10+107
60 _{C0}	1.75+109	2.1 +109	4.2 ×10 ⁹	9.0 ×10 ⁹	5.0 +109	9.6 ×10 ⁹	1.80-10 ¹⁰	5.2 +109	1.00=10 ¹⁰	3.1 +109	4.7 ×109	5.3 ×10 ⁹
65 ₂ n	6.3 ×10 ⁸	3.3 ×10 ⁸	8.1 ×10 ⁸	7.1 +108	3.1 ×10 ⁹	1.00+109	5.4 ×10 ⁹	1.91×109	3.5 × 10 ⁹	8.6 +108	8.1 ×10 ⁸	6.0 ×10 ⁸
110mAg	o	2.9 = 107	1.98×107	3.4 +107	0	7.7 ×10 ⁷	1.1 +10 ⁸	5.6 +107	8.8 × 10 ⁷	4.3 ×10 ⁷	3.4 +107	3.1 ×10 ⁷
1111	8.0 +107	0	2.6 ×16	3.2 -109	6.2 = 107	4.6 ×10 ⁷	3.8 ×10 ⁶	0	0	0	4.3 +106	8.1 +106
134 _{C8}	3.1 +108	6.0 ±10 ⁸	9.5 -108	1.1 ×109	9.7 -108	7.5 -108	9.7 ×10 ⁸	1.32+109	8.8 × 10 ⁸	3.8 ×10 ⁸	4.9 ×10 ⁸	6.4 +107
137 _{CS}	3.4 +108	9.6 ×10 ⁸	1.93 = 10 ⁹	1,42+109	1.47×109	1.32-109	1.73+109	2.4 +109	1.66=109	7.6 ×10 ⁸	9,6 =10 ⁹	1,76×108

<u>Table 3.2.5.5.</u> Transfer-factor from reported monthly discharge (GBq) to monthly time-integrated mean water concentration (Bq m⁻³) in the cooling-water intake (location 99, 2.5 km north of the outlet) at Ringhals in 1983. (Bq m⁻³/GBq month⁻¹ or $10^{-9} = month m^{-3}$)

	April	Hay	June	July	Aug	Sept	Oct	Nov	Dec	ĩ	S.E.	n
60 _{CO}	0.19	0.44	0.29	0.14	0.19	0.17	0.23	0.13	0.13	0.211	0.033	9
65 _{2n}		0.47		0.24		0.28						

<u>Table 3.2.5.6</u>. Gamma-emitting radionuclides in Fucus vesiculosus transplanted from Stora Näss, Varberg $(57^{0}07^{1}N \ 12^{0}11^{1}E)$ to the northern cooling-water intake channel at Ringhals (location 97) June 2, 1983. (Unit: Bg kg⁻¹ dry weight)

Date	2/6-83	30/6-83	2/8-93	1/9~83	3/10-83	1/11-83	2/12-83	1/2-84	1/3-84	2/4-84
a dry matter	19.1	22.9	27.7	26.0	21.6	22.1	21.5	21.1	24.5	23.8
54 _{Mn}	0.6 B	5.9	7.2	10.1	10.5	6.1	7.1	4.8	4.8 A	5.0
58 _{Co}		92	90	58	46	28	21	13	11.4	7.6
60 _{Co}	1.99	65	100	106	122	93	105	85	118	112
65 _{2n}		16.3	57	67	61	63	50	32	30	20
1 10mAg		3.4 A					2.6 A			
137 _{CB}	12.0	12.5	8.4	7.9	11.9	10.6	16.3	16.3	15.5	12.7

life. These results shows that in June-August 1983 the sea weed equilibrated with water levels in 2-3 months. Due to the effects of temperature and growth, this equilibration time is expected to be a minimum.

Table 3.2.5.7 shows preliminary numbers for concentration factors between water and Fucus vesiculosus based on the mean transfer factor for 60 Co from discharge to water (Table 3.2.5.5) and transfer factors for several nuclides to sea weed sampled 1977-83. Taking an average of ratios between monthly Fucus vesiculosus samples (Table 3.2.5.2) and water samples the preceeding month (Table 3.2.5.3) gives a 60 Co-value of 80 000, i.e. a factor 2 higher than the above estimate. This might be because a decreasing concentration in the water gives an exaggerated number for the concentration factor due to 60 Co from earlier months in the plants - especially during the winter when growth rates are low. Another explanation might be an inadequate correction for differences between the two locations - in that case all the reported concentration factors should be raised. The concentration factors for Mytilus are estimated on the basis of ratios between Mytilus soft parts and Fucus (Table 3.2.2.4).

It is noted that these factors apply to the Ringhals environment (18-20 o/oo salinity) and Ringhals-discharges alone. Ratios between the different nuclides are different at Barsebäck^{1,32}).

<u>Table 3.2.5.7</u>. Concentration factors for Fucus vesiculosus and Mytilus edulis soft parts from Ringhals calculated on the basis of mean transfer factors from discharge to sea weed at location 6, 1977-83 (Table 3.2.1.7), to water at location 99 (Table 3.2.5.5), and on measured ratios between Fucus and Mytilus 1977-83 (Table 3.2.2.4). The distance-related differences between the two locations are corrected by a factor 0.8. The values are preliminary and will be further assessed in the next report. (Units: Bg kg⁻¹/Bg 1⁻¹.)

	60 _{Co}	58 _{Co}	54 _{Mn}	65 _{2n}	110m _{Ag}	51 _{Cr}
Fucus vesiculosus						
dry weight:	40.000	25.000	50.000	150.000	210.000	4.300
fresh weight:	9.500	5.500	11.500	35.000	65.000	1.000
Mytilus edulis,						
soft parts						
dry weight	15.000	6.500	8.000	180.000	200.000	-
fresh weight	2.000	900	1.100	25.000	30.000	-

4. FALLOUT NUCLIDES IN THE ABIOTIC ENVIRONMENT

by A. Aarkrog and Heinz Hansen

4.1. Air

4.1.1. Strontium-90

The mean air activity for 1983 was 1.8 μ Bq ⁹⁰Sr m⁻³. This is the lowest annual mean found since our measurements began in 1956.

Our paper filters have a background of 4.2 μ Bq 90 Sr m⁻³. In 1983 we subtracted this background from our results. If we do the same for the 1982 data, they then become been 2.9 μ Bq 90 Sr

Month	Daily air filters	Weekly air filters		
	Paper	Gl ass Shunt Cut out		
January	0.03 }			
February	2.6	3.3	1.8 A	
March	2.2			
April	0.65	6.6 A)		
May	1.68	4.5	2.2	
June	1.47	4.6 A		
July	2.4			
August	1.00	2.1	1.4	
September	0.10			
October	0.17			
November	1.22	0.8 B	0.6	
December	B.D.L.			
1983	1.13	2.8	1.5	

<u>Table 4.1.1</u>. Strontium-90 in air collected at Rise in 1983. (Unit: μ Bg m⁻³)

Fig. 4.1.1. Strontium-90 in ground level air at Rise, 1957-1983.

 m^{-3} , i.e. from 1982 to 1983 the ⁹⁰Sr air concentrations decreased by a factor of 2.6.

The results for "shunt" and "cut out" of weekly glass-fibre filters (those used for γ -spectroscopy in Table 4.1.2.1) suggest that there may be an error in our air volume calculations. However, the ⁹⁰Sr concentrations were too low for a reliable calculation of a possible correction factor.

Figure 4.1.1 shows the quarterly levels of 90Sr in air since 1957.

4.1.2. Cesium-137

Air samples were collected weekly by means of a "new" air sampler installed in 1979 at Risø. The sampler collects the air dust on

Month	µBg m ^{−3}	n
January	1.40±0.15	4
February	1.83±0.31	4
March	2.0 ±0.34	4
April	2.3 ±0.22	5
Мау	2.6 ±0.42	4
June	4.1 ±0.64	4
July	3.3 ±0.64	5
August	2.3 ±0.28	4
September	1.44±0.26	5
October	0.80±0.04	4
November	0.79±0.16	4
December	0.81±0.07	5
1983	1.97	

<u>Table 4.1.2.1</u>. Cesium-137 in glass-fibre air filters collected once a week at Risø in Denmark in 1983. (Unit: μ Bg m⁻³)

The error term is 1 S.E. of the mean.

6 glass-fibre filters each 56 × 48 cm². The filters collect approximately 275,000 m³ in one week.

Table 4.1.2.1 shows the monthly 137 Cs concentrations in air from Risø. The concentrations have decreased by a factor of 2.7 since 1982.

Table 4.1.2.2 shows the annual 137 Cs concentrations in air collected at Risø since 1958.

The mean 137Cs/90Sr ratio in Risø air was 1.1 in 1983 which is lower than expected. Risø rain showed thus a ratio of 1.71.

Fig. 4.1.2. Cesium-137 in ground level air at Risø in 1983.

air coi	lected at Ris	0 1958-1983
Year	fCi m ⁻³	µBq m ⁻³
1958	4.2	155
1959	13.1	480
1960	1.98	73
1961	2.3	84
1962	23	850
1963	66	2400
1964	31	1150
1965	10.6	390
1966	5.7	210
1967	2.1	79
1968	2.4	88
1969	2.4	91
1970	3.4	127
1971	2.7	98
1972	1.37	51
1973	0.47	17.3
1974	1.96	73
1975	1.30	48
1976	0.42	15.5
1977	1.62	60
1978	1.70	63
1979	0.62	23
1980	0.24	8.7
1981	0.81	30
1982	0.146	5.4
1983	0.053	1.97

Table 4.1.2.2. Cesium-137 in air collected at Risø 1958-1983

4.2. Strontium-90 and various y-emitters in precipitation

Samples of rain water were collected in 1983 from the State experimental farms (cf. fig. 4.2) in accordance with the principles laid down in Risø Report No. 63, p. 51^{1}).

Fig. 4.2. State experimental farms in Denmark.

Table 4.2.1 shows the results of the 90Sr determinations and Tables 4.2.2 and 4.2.3 the analysis of variance of the results.

The maximum concentration in precipitation occurred in July-August when the mean content in precipitation was 14 Bg 90 Sr m⁻³, and the maximum fallout rate also occurred in March-April, 0.45 Bg 90 Sr m⁻². The mean levels for ten State experimental farms were 1.65 Bg 90 Sr m⁻² and 2.4 Bg 90 Sr m⁻³. The fallout

Period	Unit	Tylstrup	Borris	Øduæ	Astov	St. Jyn- devad	Blang- stedgård	Tystofte	Abed	Akirke by	Ledre- borg	Hean
	Bq m ^{−3}	1.43	1.93	1.43	2.8	2.1	1.44	7.7	2.3	6.1	1.90	2.51
Jan-Feb	8g m ⁻²	0.133	0.199	0.108	0.27	0.181	0.102	0.34	0.113	0.23	0.107	0.177
	8g m ⁻³	1.81	3.4	4.2	1.71	1.99	1.50	5.6	2.1	5.2	2.2	2.9
Herch-April	Bq a ^{≁2}	0.29	0.51	0.60	0.35	0.37	0.24	0.82	0.28	0.69	0.32	0.45
	Bq m ⁻³	3.2	2.9	2.5	2.7	1.61 A	2.5	2.6	2.1	5.8	1.99	2.7
May-June	8g m~2	0.54	0.55	0.31	0.37	0.27 A	0.28	0.30	0.37	0.51	0.23	0.37
July-Aug	Bq m ^{~3}	16.5	7.9	6.6 B	(9.3)	4.5	19.6 A	33	9.8	23 A	45	14.2
	Bq m ^{∼2}	0.81	0.170	0.101B	(0,056)	0.095	0.075A	0.117	0.110	0.51 A	0.171	0.22
	8q m ⁻¹	1.73	0.89	0.67	0.58	0.91	1.19	4.1	2.2 A	5_1	2.6	1.61
Sept-Oct	Bq m ^{∼2}	0.43	0.30	0.120	0.155	0.21	0.142	0.35	0.188A	0.79	0.24	0.29
	Bc ∎~3	1.65	1.11 A	1.06	0.51	0.63	0.90	0.98	1.38	2.4	1.23	1.14
Nov-Dec	Bq m ^{−2}	0.164	0.170A	0.097	0.081	0.101	0.10)	0.096	0.141	0.29	0.124	0.137
	Bq m ⁻³ x	2.9	1.99	2.1	1.47	1.44	1.63	4.1	2.2	5.4	2.3	2.4
1983	Bg m ^{~2} ∑	2.4	1.90	1.34	1.28	1.23	0.94	2.0	1.20	3.0	1.19	1.65
- precipita	tion I	0.812	0.961	0.629	0.868	0.851	0.582	0.492	0.551	0.553	0.514	0.681

<u>Table 4.2.1</u>. Strontium-90 fall-out in Denmark in 1983 (sampling area at each location: 0.147 n^2)

<u>Table 4.2.2</u>. Analysis of variance of $\ln Bq \, {}^{90}\text{Sr m}^{-3}$ precipitation in 1983 (from Table 4.2.1)

Variation	SSD	f	s ²	v ²	P
Between months	34.872	5	6.974	35.928	> 99.95%
Between locations	9.751	9	1.083	5.582	> 99.95%
Remainder	8.541	44	0.194		

<u>Table 4.2.3</u>. Analysis of variance of $\ln Bq 90 \text{ Sr m}^{-2}$ precipitation in 1983 (from Table 4.2.1)

Variation	SSD	f	s ²	v ²	P
Between months	11.370	5	2.274	14.538	> 99.95%
Between locations	6.764	9	0.752	4.005	> +9.95%
Remainder	6.882	44	0.156		

rate in 1983 was 0.8 times that observed in 1982. The 90 Sr deposition in 1983 was nearly the same in Jutland and in the Islands. As in 1982 Bornholm (Åkirkeby) shows the highest 90 Sr fallout levels.

A comparison between the yearly amounts of precipitation found in the rain gauges used by the Danish Meteorological Institute⁹⁾ and the amounts collected in our rain bottles at the same ten locations in 1983 showed a mean ratio of 1.09 ± 0.14 (1 S.D.) between the two sampling systems.

In order to determine the annual 137 Cs fallout in Denmark, 10% of all rain samples from the ten state experimental farms were pooled into a single sample for 1983.

The concentration in this sample was 2.8 Bg 137 Cs m⁻³ and the deposit was 1.88 Bg 137 Cs m⁻². Hence the observed 137 Cs/ 90 Sr in fallout became 1.88/1.65 = 1.14 in 1983.

Month	m	Bq m ^{−3}	Bg m ^{−2}
January	0.035	1.47	0.051
February	0.020	1.13	0.022
March	0.076	1.05	0.080
April	0.075	1.13	0.085
May	0.098	2.2	0.21
June	0,052	1.31	0.068
July	0.006	4.3	0.027
August	0.006	3.4	0.022
September	0.072	0.82	0.060
October	0.033	0.86	0.028
November	0.042	0.48	0.020
December	0.045	0.26	0.012
1983	Σ 0.560	x 1.22	ε 0.685

<u>Table 4.2.4</u>. Strontium-90 in rain water collected in a 10 m² ion-exchange column collector at Risø in 1983

The ratio: $137_{CS}/90_{Sr}$ measured in monthly rain at Risø was 1.71, i.e. higher than the ratio found at the experimental farms; in air we found the ratio as 1.1.

The washout ratios calculated for Risø was 1.22/1.8 = 0.7 for 90 Sr and 2.1/1.97 = 0.78 for 137 Cs, these values were in reasonable agreement with the usually observed washout ratio of 1.0^{21} .

Tables 4.2.4 and 4.2.5 show the 90 Sr and 137 Cs levels in rain water collected at the 10 m² rain collector at Risø. As compared with the State experimental farms in Zealand (Tystofte and Ledreborg in Table 4.2.1) the 90 Sr fallout (Rq m⁻²) measured at Risø was only 43% and the concentration (Bq m⁻³) was 38%. The amount of precipitation at Risø was 0.560 m which was 111% of the mean of Tystofte and Ledreborg. Our big ion exchange column at Risø may thus have been inefficient for the collection of 90 Sr from precipitation. A similar conclusion is reached if we look at Table 4.2.6.

Month	m	Bq m ^{−3}	Bq m ⁻²
January	0.035	3.3	0.116
February	0.020	2.6	0.051
March	0.076	1.41	0.107
April	0.075	1.42	0.107
Мау	0.098	3.3	0.33
June	0.052	2.4	0.125
July	0.006	9.8	0.061
August	0.006	3.7	0.024
September	0.072	1.25	0.090
October	0.033	1.66	0.055
November	0.042	1.65	0.069
December	0.045	0.74	0.034
1983	ε 0.560	x 2.1	Σ 1.17

<u>Table 4.2.5</u>. Cesium-137 in rain water collected in a 10 m^2 ion-exchange column collector at Risø in 1983

Month	m	_{Bq} 90 _{Sr m} -3	Bq °∂Sr m ⁻²
January-March	0.092	3.3 A	0.30 A
April-June	0.126	3.1	0.39
July-Sept	0.053	1.84	0.098
Oct-Dec	0.105	0.82	0.086
1983	Σ 0.376	x 2.3	Σ 0.87

<u>Table 4.2.6</u>. Strontium-90 in rain water collected in ion-exchange column collectors at Risø in 1983. (Sampling area 0.325 m^2)

Table 4.2.7. Tritium in precipitation collected at Risø in 1983

	m	1 m ² rain collector	10 m ² rain collector		
Month		kBq m ⁻³ kBg m ⁻²	kBq m ⁻³ kBq m ⁻²		
Jan	0.035	2.7±0.6 0.094	16.2±1.1 0.57		
Feb	0.020	4.0±0.4 0.080	4.4±1.1 0.088		
March	0.076	6.1±0.6* 0.46	8.4±1.1 0.64		
April	0.075	15.6±1.3 1.17	3.4±0.6 0.26		
May	0.098	3.6±0.4 0.35	3.4±0.2 0.33		
June	0.052	4.4±0.4 0.23	3.1±0.2 0.161		
July	0.006	5.3±0.2 0.032	5.5±0.0 0.033		
Aug	0.006	5.1±0.0 0.031	14.0±1.8 0.084		
Sept	0.072	2.8±0.5* 0.20	10.5±0.2 0.76		
Oct	0.033	1.6±0.2 0.053	4.0±0.0 0.132		
Nov	0.042	4.0±0.7 0.168	5.3±1.3 0.22		
Dec	0.045	2.1±0.7 0.094	2.7±0.2 0.122		
1983	ε 0.560	x 5.3 Σ 3.0	x 6.0 Σ 3.4		

The error term is 1 S.E. of the mean of double determinations. *Triple determinations. The surface of the 10 m^2 rain collector is washed every month with diluted HNO_3 and after evaporation the washwater is added to the ion exchange resin before the analysis.

The tritium content of rain-water in 1983 (cf. Table 4.2.7.) was a little higher than in 1982. This is contrary to the decrease observed for 90Sr and 137Cs, because tritium in rain depends also upon the accumulated deposition from previous years (cf. 7). However, the tritium background at Risø is the most important reason for the nearly unchanged levels in 1983.

Table 4.2.8 shows the tritium concentrations in rain-water from three other locations in Denmark. Compared with Risø the average concentration for these three stations was approx. half of that from Risø. The concentrations from Bornholm were higher than those at the stations in Jutland. As earlier mentioned (Risø-R-487¹) this may reflect the high tritium concentrations in the Baltic Sea as compared with those in the North Sea.

Date	Tylstrup	Jyndevad	Bornholm
Jan-March	2.4±0.6	3.4±1.0	3.3±0.4
April-June	3.0±0.2	3.2±0.1	3.5±0.4
July-Sept	2.7±0.3	3.9±0.0	2.7~J.9
Oct-Dec	1.0±0.0	B.D.L.	2.4±0.2
Precipitation weighted mean	2.3	2.6	2.9

<u>Table 4.2.8</u>. Tritium in precipitation collected in Denmark in 1983. (Unit: $kBq m^{-3}$)

The error term is 1 S.E. of the mean of double determinations.

4.3.1. Radionuclides in ground water

As in previous years¹⁾, ground water was collected in March from the nine locations selected by the Geological Survey of Denmark. Figure 4.3.1.1 shows the sample locations and Table 4.3.1 the results of the 90Sr, tritium and a 226Ra analysis.

Fig. 4.3.1.1. Ground water sampling locations in Denmark.

Location	_{Bq} 90 _{Sr m} -3	kg Ca m ⁻³	kBq ³ H m ⁻³ ±1 S.E.	Bg 226 _{Ra} m ⁻³
Hvidsten	0.025 B	0.032	B.D.L.	4.5
Feldbak	86	0.027	4.2±0.2	94 ±10
Rønø	0.102 A	0.030	B.D.L.	7.9
Rønne new	0.021 B	0.023	B.D.L.	1.62
Rønne old	0.117	0.0106	B.D.L.	12.1
Hasselø	0.081 B	0-143	1.7±0.8	7.1
Fåretofte	0.086 A	0.147	4. 1±1.2 [∆]	6.8
Kalundborg	0.56	0.018T	4.6±0.0	6.0
Ravnholt	0.062 B	0.107	5.9-1.4	3.4 ±0.6
Fredericia	0.49	0.084	4.0±1.4	8.9 ±0.8
Geometric mean	0.097*	0.062**	2.4±2.3** (1 S.D.)	5.7*
Median	0.094	0.031	2.8	7.0

Table 4.3.1. Radionuclides in ground water collected in March 1983

A sample of ground water from Maglekilde in Roskilde contained 1.36 Bg 90Sr m⁻³, 6.8±0.9 kBg ³H m⁻³, 1₁.2 Bg ²²⁶Ra m⁻³ and 0.088 kg Ca m⁻³.

* Feldbak was not included in the geometric mean. **Arithmetic mean.

The error term is 1 S.E. of the mean of double determinations.

 $^{\Delta}$ Triple determinations.

The median level of 90Sr in 1982 was compatible with the values found since 1967 (cf. Fig. 4.3.1.2) but there seems to be a decreasing tendency with time.

The tritium concentrations in 1983 were similar to the 1982 levels. The tritium content of ground water has been decreasing since 1977 (cf. Fig. 4.3.1.4). The locations may be grouped as "high", "medium" and "low" level stations. Feldbak and Fåretofte were not included in this grouping because they showed a

Fig. 4.3.1.2. Median ⁹⁰Sr levels in Danish ground water, 1961-1983.

time variation different from that of the other stations; in other words, there was an interaction between locations and years if these two stations were included.

The radium content in Danish ground water was determined in 1983. The concentrations varied from 1.6 to 94 Bq m⁻³. The median was 7 Bq 226 Ra m⁻³. The highest concentration was found in the water from Feldbak.

As appears from fig. 4.3.1.3, the 90 Sr levels in ground water from Feldbak have been in the order of 50-100 Bg m⁻³ in later years. The arithmetic mean of 90 Sr in Danish ground water in 1983 (excluding Feldbak and including Maglekilde) was 0.29 Bg m⁻³.

Fig. 4.3.1.3. Strontium-90 in ground water at Feldbak 1961-1983.

4.3.2. Strontium-90 in fresh water from Danish lakes and streams The 90 Sr content of stream water was higher in 1983 than in 1981. We have no explanation for this increase, and it is not expected by our prediction model (cf. Appendix Cl). The streams from the western part of the country especially showed enhanced concentrations.

The lake water contained a little less 90Sr than in 1981.

4.3.3 Strontium-90 in Danish drinking water No samples in 1983.

<u>Fig. 4.3.2.1</u>. Sample locations for fresh water from Danish streams ($\frac{3}{2}$) and lakes (sø).

Zone		Streams		Lakes	
			_{Bq} 90 _{Sr m} -3	Bq	90 _{Sr m} -3
I:	North Jutland	Bangsbo å	19	Norssø	43
11:	East Jutland	Randers å	17	Mossø	13.2
111:	West Jutland	Skjern å	19	Flyndersø	12.7
IV:	South Jutland	Ribe å	12.6	Hostrup sø	21
v:	Funen	Odense å	12.7	Arreskov sø	13.6
VI:	Zealand	Suså	8.2	Arresø	34
VII:	Lolland-Falster	Halsted å	8.6	Søndersø	27
VIII:	Bornholm	Læs å	17	Almindingen sø	18.3
Mean			14.3		23
±1 S.	ε.		1.6		3.9

Table 4.3.2. Strontium-90 in Danish streams and lakes in March 1983

<u>Pig. 4.3.2.2</u>. Strontium-90 concentrations (±1 S.E.) in 8 Danish streams and 8 Danish lakes collected every second year since 1971.

4.4. Radionuclides in sea water in 1983

As in previous years, sea water samples were collected by M/S Fyrholm from inner Danish waters (cf. Table 4.4.1 and figs. 4.4.1, 4.4.2 and 4.4.3). Furthermore, sea water samples were collected at Barsebäck in the Sound, and at Ringhals in the Kattegat (Table 4.4.3). Samples were obtained from the research vessel DANA, which in 1983 have collected samples from the Danish straits as well as from the North and the Baltic Seas (Table 4.4.3). Furthermore, samples were obtained from F/S Gauss and from F/S Polarstern (Tables 4.4.3 and 4.4.4).

Figure 4.4.2 shows that the maximum 137 Cs concentration in bottom water occurred in 1979, since then the levels have decreased. Also the surface water shows decreasing 137 Cs concentrations in 1983.

As earlier (Risø Reports Nos. 421, 447, 469 and 487)¹⁾ we found in 1983 that the transport time of radiocesium from Sellafield (Windscale) to the Danish straits was approximately 4 years and that somewhat less than 1% of the ¹³⁷Cs released from Sellafield enters the Baltic Sea. From the regression given in Fig. 4.4.6 the ¹³⁷Cs concentration in 35 o/oo sea water was estimated at 69 Bq m⁻³ and we found 75 Bq m⁻³ according to the equation for ¹³⁷Cs related to salinity in 1983.

	Posit	ion		90	137.0-	1340-	
	N	E	Deptn in ת	Bq m ⁻³	Bq m ⁻³	Bq m ⁻³	o/oo
Kullen	56 ⁰ 15'	12 ⁰ 25'	0		24	B.D.L.	11.8
			17	23	74	2.7	33.3
Hesselø*	56 ⁰ 10'	11 ⁰ 47'	С	26	45	B.D.L.	20.1
			23		60	2.4 A	31.2
Kattegat SW	56 ⁰ 07'	11 ⁰ 10'	0		31	B.D.L.	14.7
и			27	18.9	66	2.4	33.4
Asnæs rev	55 ⁰ 38'	10 ⁰ 47'	0	26	24	B.D.L.	12.4
			32	<u> </u>	67	2.2	32.9
Halskov rev	55 ⁰ 23'	11 ⁰ 02'	0		24	B.D.L.	11.8
n n			19	27	70	2.1	32.2
Langeland bælt	54 ⁰ 52'	100501	0	26	18.8	B.D.L.	9.6
n P			29		67	1.79	31.0
Femern bælt	54 ⁰ 36'	11 ⁰ 05'	0		19.8	B.D.L.	9.6
n n			21	25	59	2.3 A	28.9
Gedser odde	54 ⁰ 28'	1 1 ⁰ 59 '	0	26	18.9	B.D.L.	9.2
н п			17		45	1.28	20.0
Møen	54 ⁰ 57*	12 ⁰ 41'	0		16.5	B.D.L.	8.3
n			22	25	21	B.D.L.	10.0
The Sound - South	550251	12 ⁰ 37'	0	30	16.7	B.D.L.	7.8
11 ti 11			10		16.4	B.D.L.	8.0
The Sound - North A	55 ⁰ 48'	12 ⁰ 43'	0		16.6	B.D.L.	8.7
n n u			14	25	42	B.D.L.	18.9
The Sound - North B	55 ⁰ 59'	12 ⁰ 42 '	0	25	19.5	B.D.L.	9.7
II II II			25		76	2.3	31.6
Mean			Surface	26	23		11.1
S.D.				1.76	8.15		3.45
<u>S.E.</u>				0.72	2.35		1.00
Mean			Bottom	24	55		26.0
S.D.				2.79	19.98		9.30
S.E.				1.14	5.77		2.69
*Collected in August	•						

Table 4.4.1. Strontium-90, Cesium-137 and Cesium-134 in sea water collected around Zealand in May 1983

	Posit	ion	Decth	90	137-	134-	6 - 1 · - ·
	N	E	Depth in m	Bg m ⁻³	Bq m ⁻³	Bg m ⁻³	Salini o/oo
Kullen	560151	12025 '	0		23	B.D.L.	11.3
H			22		59	1.8 A	27.3
Hesselø	56 ⁰ 10'	1 1 ⁰ 47 '	0		51	1.8 A	25.0
»			23	26	60	B.D.L.	26.8
Kattegat SW	56 ⁰ 07'	1 1 ⁰ 10 '	0				
P			35				
Asnæs rev	55 ⁰ 38'	10 ⁰ 47'	0		32	B.D.L.	16.8
H H			23	28	44	B.D.L.	23.1
Halskov rev	55 ⁰ 23'	110031	0		31	B.D.L.	15.8
			18		41	B.D.L.	21.2
Langeland bælt	540521	10 ⁰ 50 '	0		30	B.D.L.	14.8
10 11	<u></u>		29		44	B.D.L.	21.6
Femern bælt	54°36'	11 ⁰ 05 '	0	24	29	B.D.L.	15.1
			22		39	B.D.L.	19.2
Gedser odde	54 ⁰ 28'	1 1 ⁰ 59 '	0		21	B.D.L.	11.3
r7 W			15	28	26	B.D.L.	13.5
Møen	54 ⁰ 57'	12 ⁰ 41'	0	29	18.0	B.D.L.	9.9
**			20		21	B.D.L.	10.4
The Sound - South	55°25'	12 ⁰ 37'	0		18.9	B.D.L.	10.2
п н н			11		19.4_	B.D.L.	10.7
The Sound - North A	55 ⁰ 48'	12 ⁰ 44 '	0	25	18.6	B.D.L.	10.5
n n n			14		22	B.D.L.	11.1
The Sound - North B	550591	12042'	0		21	B.D.L.	10.8
17 97 17			25		56	B.D.L.	27.3
Mean			Surface	26	27		13.8
S.D.				2.65	9.66		4.4
S.E.				1.53	2.91		1.3
Mean			Bottom	27	39		10.3
S.D.				1.15	15.33		6.7
S.F.				0,67	4 67		م د

Table 4.4.2. Strontium-90, Cesium-137 and Cesium-134 in sea water collected around Zealand in November 1983

Fig. 4.4.1. Strontium-90 in surface sea water from inner Danish waters, 1962-1983. (1 S.D. indicated) (from Table 4.4.1).

As was done earlier we calculated the regression equations between salinity and Sr and 137Cs activity in the sea water:

Bq 90Sr m⁻³ = 34.8-0.67 o/oo (1967-1971) Bq Sr m⁻³ = 35.9-0.74 o/oo (1972) Bq Sr m⁻³ = 35.2-0.52 o/oo (1973) Bq Sr m⁻³ = 34.4-0.37 o/oo (1974) Bq Sr m⁻² = 29.2-0.22 o/oo (1975) Bq Sr m⁻³ = 26.3-0.074 o/oo (1976) Bq Sr m⁻³ = 26.3-0.056 o/oo (1977) Bq Sr m⁻³ = 27.8-0.107 o/oo (1978) Bq Sr m⁻³ = 27.8-0.31 o/oo (1979) Bq Sr m⁻³ = 20.8+0.159 o/oo (1980) Bq Sr m⁻³ = 25.9+0.098 o/oo (1981) Bq Sr m⁻³ = 26.8-0.197 o/oo (1982) Bq Sr m⁻³ = 27.6-0.056 o/oo (1983)

- 53 -

Fig. 4.4.2. Cesium-137 in surface and bottom water collected in inner Danish waters 1972-1983.

Fig. 4.4.3. Sea water locations around Zealand.

The regression analysis showed only significant regression in 1967-1971, 1972 and in 1974.

Bq 137Cs m⁻³ = 29.6 -0.16 o/oo (1972) Bq 137Cs m⁻³ = 22.2 +0.44 o/oo (1973) Bq 137Cs m⁻³ = 20.0 +0.67 o/oo (1974) Bq 137Cs m⁻³ = 23.7 +0.37 o/oo (1975) Bq 137Cs m⁻³ = 19.6 +0.70 o/oo (1976) Bq 137Cs m⁻³ = 15.2 +1.00 o/oo (1977) Bq 137Cs m⁻³ = -10.4 +2.85 o/oo (1978) Bq 137Cs m⁻³ = -33.3 +4.44 o/oo (1979) Bq 137Cs m⁻³ = -9.1 +3.26 o/oo (1980) Bq 137Cs m⁻³ = -5.0 +3.04 o/oo (1981) Bq 137Cs m⁻³ = -4.11+2.56 o/oo (1982) Bq 137Cs m⁻³ = -2.34+2.19 o/oo (1983)

The regression analysis showed significant or probably significant regression in all years except in 1972.

In a recent report¹⁷⁾ from a cooperative programme under IAEA on the study of radioactive materials in the Baltic Sea, we have calculated the transfer factors of radiocesium and 90Sr from Sellafield to the Danish Straits.

For surface water (mean salinity 15 o/oo) we found:

16 Bg 90 Sr m⁻³ per PBg 90 Sr r ischarged per year from Sellafield 13 Bg 134 Cs m⁻³ (PBg 134 Cs a⁻¹)⁻¹ 7 Bg 137 Cs m⁻³ (PBg 137 Cs a⁻¹)⁻¹

and for bottom water (mean salinity 33-34 o/oo):

```
58 Bq 90_{\text{Sr m}}^{-3} (PBq 90_{\text{Sr a}}^{-1})-1
29 Bq ^{134}_{\text{Cs m}}^{-3} (PBq ^{134}_{\text{Cs a}}^{-1})-1
26 Bq ^{137}_{\text{Cs m}}^{-3} (PBq ^{137}_{\text{Cs a}}^{-1})-1
```

In these calculations discharges as well as water concentrations were all decay corrected to the same year (1983), i.e. we have

	Pos N	ition E el. W	Date	Depth in m	Salinity o'oo	⁹⁰ Sr Bq m ⁻ 3	¹³⁷ С5 Вд m ⁻ 3	1)4 _{Cs} By m ⁻³	3 _H kBq m ⁻³	239,240 mBg m ⁻³	241 Am mBq m
Bar sebäck	55° 4 5*29	12 ⁹ 52177E	9.15	0	8.0		16.8	B.D.L.			
•	•		•	18	33.0		74	2.0 A			
-	55 ⁰ 46'01	12 ⁰ 52168E	14.14	2	10.4		19.1	B.D.L.			
•	•	-	-	11	10.6		21	8.D.L.			
linghals	57015115	12 ^{.0} 03160E	14 14	0	18.2		37	B.D.L.			
-		-	-	24	33.7		65	2.3 X			
	57015117	12 ⁰ 03'55E	10-18	0	20.5		44	B.D.L.			
-	•	-	-	18	28.3		55	B.D.L.			
ana Togt 1	540451	0 ⁰ 30' Е	15/2	n	34.9		171	5.6			
	550151	0 ⁰ 30' Е	21/2	0	35.0	31	157	5.1			
• •	56 ⁰ 15'	0 ⁰ 30' Е	1572	Ċ	34.5		189	6.7			
• •	57045	0 ⁰ 30' E	15/2	0	35.5	10.6	48	2.1			
* *	59 ⁰ 45 '	0 ⁰ 30' E	1372	9	35.1		34	B.D.L.			
	60 ⁰ 45'	0 ⁰ 30' е	1472	0	35.4		3.8	8.D.L.			
	590151	1°30' E	13/2	0	35.3	6.9	28	B.D.L.			
	60 ⁰ 15'	1 ⁰ 30' Е	14./2	0	35.7	3.7	8.3	8.D.L.			
	610151	1 ⁰ 30' E	14/2	0	35.5	2.8	3.5	0.D.L.			
	58045	2 ⁰ 30' E	13/2	0	34.5		69	2.2 A			
	559151	3°30' E	22/2	0	35.0		135	4.1			
- H	580151	3 ⁰ 30' E	12 (2	0	35.3	7.2	28	B.D.L.			
	580151	4°30' E	12 12	0	34.2		85	2.4			
* *	530451	5 ⁰ 30' E	25 ′ 2	c	33.9	31	98	4.1			
	550151	5 ⁰ 30' E	22,12	0	35,1	18.8	113	4.1			
	579151	5°30' E	11/2	0	35.4		30	8.D.L.			
* *	57°45'	5 ⁰ 30' E	11/2	0	34.8	11.1	47	в.р.с.			
• •	57 ⁰ 15'	6 ⁰ 30' E	10/2	0	35.0		106	3.5			
• •	550151	7°30' E	22 22	0	33.9		34	2.9			
	570151	7 ⁰ 30' E	10/2	0	34.9	15.3	64	2.3			
)ana Toyt 7	5701813	8°20'5 E	10/5	0	33.2		71	2.4 A			
	57°57'5	7 ⁰ 51'0 E	975	0	23.6		46	8.D.L.			
	5871518	9 ⁰ 17'2 E	15/5	L	29,7		60	2.8			
	580001	9 ⁰ 26' F	16 / 5	0	32.6		87	3.1			
Jana Togt 8	551	7°50' E	27 15	0	29.6		20	2.9			
• •	54° 16 '	7 ⁰ 38' E		n	30.5	24	18.1	2.0			
	55040'	7 ⁰ 47' E	2875	n	29.6	25	24	2.4 A			
• •	560091	7 ⁰ 52' E	"	n	29.5		23	2.2			
	55 531	7 ⁰ 59' E	29 5	n	30,6	27	3.0	2.4			

Table 4.4.3. Radionaclides in sea water collected in the Danish straits, the North and the Baltic Seas in 1983

Table 4.4.3. (continued)

	Position N E el. W	Date	Depth in m	Salinity G/GD	90 _{Sr} Bg m ⁻³	¹³⁷ C8 Bg m ⁻³	¹³⁴ C8 89 a ⁻³	3 _H kBq m~3	239,240 mBq m ⁻³	241 An ang m ⁻³
Dana Togt 9	57º10.60 7º36.42E	6/6	0	31.6		73	2.9			
• •	57009'96 6017'29E	7/6	0	32.2	20	71	3.1			
• •	57º10'79 5º27'41E	7/6	0	34.9		89	3.2			
• •	57009'87 4028'34E	7/6	0	34.9	16.3	₿7	3.4			
• •	57 ⁰ 09'10 3 ⁰ 28'07E	7/6	0	35.0		92	3.4			
• •	57010'60 2030'20E	8/6	0	34.0	26	139	5.2			
- •	57 ⁰ 09'94 1 ⁰ 26'33E	8/6	0	34.7		136	3.9			
• •	57°08'30 0°29'868	8/6	0	34.9	19.0	95	3.1			
Dana Hanstholm	57º10'10 8º26'8 E	10/5	0	30.6	31	36	8.D.L.			
- Mandal 2	57049'6 7057'6 E	9/5	0	32.0	22	68	2.8 A			
* Arendal I	58°21'4 8°58'9 E	15/5	a	19.7	23	43	7.4 A			
* Arendal 3	58 ⁰ 08'5 9 ⁰ 36'4 E	15/5	0	30.0	27	60	3.0			
• Skagen	57048'1 10052'5 E	14/5	0	28.3	30	61	3.1			
Hals Limfj.	56059151 10018120E	2/8	0	26.0	31	37	8.D.L.	2.3=0.2		
Gjøl *	57003'74 9042'05E	2/8	0	24,6	29	27	B.D.L.	2.1±0.7		
Antoft *	57°00'32 8°56'70E	3/0	0	26.2	27	25	8.D.L.			
Sillerslev Lim.	56040183 8044105E	3/0	0	29.1	29	31	8.D.L.			
Thybor en	56042178 8013176E	3/0	0	32.0	32	77	2.6 A			
Ranstholm	57007'29 8036'20E	4/8	0	32.0		74	3. e			
Hirtshals	57°35'60 9°57'838	4/8	0	31.3		71	2.9			
Skagen	57º43'85 10º35'52E	4/8	0	31.6	26	76	2.6			
Laso East	57019 11008 E	10/8	0	22.4	25	45	B.D.L.			
* West	57018' 10056' E	10/8	0	21.5		44	8.D.L.			
Anholt	56°43' 11°31' 2	10/8	0	20.1	31	40	1.8 A			
Hesse]#	56011170 11042155E	11/8	0	19.7		41	8.D.L.			
GAUSS 8	55000'08 10006'11E	26/5	0	11.9	25	26	∎.0.L.		6.7*	0.67 A*
	• •	•	34	25.7	35	56	8.0.L.			
GAUSS 22	5404612 1204518 E	27/5	0	0.3	26	17.7**	0.108		3.4*	0.21 8*
• •	• •	•	17	8.5	31	19.1	8.D.L.			
• 24	55049189 10048129E	28/5	0	13.5					3.2*	0.60 A*
• 27 ^Δ	56°30'03 11°29'972	29/5	0	15					3.2*	0.28 A*
- 30	57°30'02 11°29'998	-	0	16					3.0 A*	0.24 B*
• 33 ^Δ	56015' 12022' E	30/5	0	14.5					2.8*	0.26 B*
	55º10'06 16º00'04E	1/6	4	•	26.1	16.2	Spiked		3.1 A	0.58 8
Polarstern 2+3	57°54' 4°07' E	30/6	\$	32.6	18.8	62	2.8 A	1.2±0.4	17.10	1.75*
• •	60°33' 4°00' E	30/6	10	30,2	19.7	53	2.0 A	1.810.4		

Table	4.4.3.	(centinued)
-------	--------	-------------

	Par N	lition E el. W	Date	Depth in m	Salinity @/00	40 _{5e} bq a ⁻³	137 _{CS} 89 m ⁻³	134 _{C8} Ng m*3	³ H kBq m ⁻³	239,240 mBq m ⁻³	241 Am mBq m ⁻³
Dana Togt 16	68 ⁰ 15*	2010.	W 16/9	0	34.6	10.7	45	8.D.L.			
• •	60 ⁰ 04 '	2001	. .	6	35.2		33	B.D.L.			
• •	59° 55 '	2-18-	¥ -	0	35.2		37	1.9 A			
• •	59 ⁰ 45 ·	2009.	w -	0	34.7	8.5	31	9.D.L.			
• •	59 ⁰)5 '	2014	N 17/9	0	35.1		88	2.9 A			
	50°35 '	2050.	M 29/9	0	34.9		147	5.6			
• •	58 ⁰ 34 *	20581	w •	0	34.9		157	5.7			
	58 ⁰ 46 '	2049'	u -	0	35.0		148	5.0			
• •	58°56 '	2029.	w -	C	35.0		134	5.6			
	59°05 '	2025	w -	0	34.0		164	6.9			
•••	599151	2010	w •	0	34.2		159	6.6			
Dana Toşt 16	540461	130311	E 20/10	0	11.1		23	B.D.L.			
•••	55°30 *	15015	E 21/10	0	9.4		20	8.D.L.		2.6**	
• •	•	•	-	60	9.6		18.6	B.D.L.		2.8**	
	54°48'	15934*	E 27/10	0	ŧ.3		17.6	8.D.L.			
• •	-	•	-	60	8.4		17.3	8.D.L.			
••	55003.	160291	E 22/10	0	0.2		14.4	8.D.L.			
• •	56°07 *	179051	E 24/10	0	7.8		16.5	8.D.L.			
• •	•	-	-	30	1.9		16.2	8.D.L.			
• •	55°21 '	18037*	E 25/10	0	7.7		14.9	8.D.L.			
• •	56°20 '	20015	E •	0	7.7		16.4	8.D.L.			
	•	-	-	45	7.7		14.4	8.D.L.			
• •	55°30'	20025	E 24/10	0	7.0	27	15.7	8.D.L.			
The Golf of Finland	60°15*1	25°48'95	E 23/10	0	5.0		11.5	8.D.L.			
Rise			15/5	٥	10.9		19.3	8.D.L.			
•			16/5	0	•		18.3	B.D.L.			
-			18/5	0	•		18.3	8.D.L.			
Bolund at Rise			6/6	0	10.3		20	8.D.L.			
Rese	550051	8734'	E 10/1	0	25.9		20	1.91			
Esbjerg	55°29 '	8°25*	E 10/1	0	27.9		18.2	1.44 A			

• 0.2 m³

••~ 1.7 m³

4 These samples were analysed for 60 Co (1600 1). Both samples contined 0.12 3g 60 Co m⁻³. All other samples were ~ 0.35 m³.

<u>Fig. 4.4.4</u>. Cesium-137 in the North Sea in 1983. (Unit: Bg m^{-3}) (cf. Table 4.4.3).

<u>Fig. 4.4.5</u>. Cesium-137 in inner Danish waters of 3 different salinities (1972-1983). The values were calculated from the regression equations in 4.4.

assumed no radioactive decay of the radionuclides during their transfer from Sellafield to the Danish Straits. Hence the two radiocesium isotopes should show the same transfer factor. This is the case only for bottom water. The discrepancy found for surface water, however, is hardly significant considering the many uncertainties in such calculations as these. The lower transfer factors for radiocesium than for 90Sr are due to sedimentation of 137Cs and 134Cs.

In 1983 a number of samples were obtained from the Jutland Current. The samples, in particular those along the southwestern part of Jutland (cf. fig. 4.4.4), contained relatively low 137Cs concentrations. The 134Cs/137Cs ratios (~ 0.1) were, however, higher than those seen in samples contaminated from Sellafield only. We assume that the samples were contaminated by effluents from Cap de La Hague in France. In these samples the 90Sr/137Cs ratios were also higher than is usually observed in the North Sea.

<u>Fig. 4.4.6</u>. Cesium-137 concentrations in "North Sea water" (35 $\sigma/\sigma\sigma$ salinity) in the Danish Straits related to discharges from Sellafield 4 years earlier.

Position N E	mBq 239,240 _{Pu m} (*1 S.D. %)	-3 238 _{Pu/} 239 (±1 S.D	,240 _{Pu} . \$}	ողը 241 {±1 Տ.	Am m ⁻³ D. %)	Sample size m ³	Filter
55°00' 10°06'	1.09 (10)	0.09	(34)	0_16	(32)	1.234	Millipore
54°46' 12°46'	0.15 (26)	-		0.16	(45)	1.082	Millipore
55 ⁰ 50' 10 ⁰ 48'	0.56 (21)	-		0.06	(58)	1.486	Millipore
	0.61 (24)	-		-		0.995	Gelmann
56 ⁰ 30' 11 ⁰ 30'	0.23 (32)	-		0.11	(35)	1.168	Millipore
57° 30' 11°30'	-	-		0.10	(26)	2.800	Millipor
	0.41 (18)	-		0.15	(33)	1.183	Gelmann
56°15' 12°22'	0.53 (16)	-		0.07	(30)	2.547	Millipor
The mean ratio	Pu-partic	rulate	- 0 15 1		5 D I		
THE WEEK LECIO:	total Pu (cf.	Table 4.4.3)	- 0.13:1	(*1	3.0.,	~ - /)	

<u>Table 4.4.4.</u> Particulate Plutonium and Americium collected on filters at the Gauss cruise 26-30 May 1983 in the Danish straits

Table 4.4.5. Tritium in sea water collected in Roskilde Pjord, I (cf. Fig. 4.6.1), 1983

Month	kBg ³ H m ⁻³
January	4.0±0.7
February	5.1±0.4
March	5.5±1.1
April	4.0±0.0
Мау	6.4±1.3
June	4.7±0.7
July	4.5±0.6
August	4.4±0.4
September	4.9±0.6
October	2.9±1.1
November	9.4:0.2
December	7.3±0.7

The error term is 1 S.E. of the mean of double determinations.

4.5. Strontium-90 in soil

No samples in 1983.

4.6. Sediments

We collected sediments from Roskilde Fjord (Table 4.6.1), Limfjorden (Table 4.6.2) and the Danish Straits (Table 4.6.3). The latter samples were collected from F/S Gauss during the joint German-Scandinavian Baltic Cruise in May-June 1983. The results show that the sedimentation of 137Cs in the Danish Straits varies by a factor of nearly 50. The geometric mean was 810 Bg 137Cs m⁻². The total area of the Danish Straits is 43,900 km², i.e. 36 TBq 137Cs are in the sediments; this is nearly the same as in the water.

Pig. 4.6.1. Roskilde fjord.

Location	Depth in cm	Date	Bg kg ^{−1} dry	Bq m ^{−2}
At Bolund	0-7	6/6	7.3	520
55°40'N 12°05'	E	25/7	16.6	2400

<u>Table 4.6.1</u>. Cesium-137 in sediment samples collected in Roskilde fjord, 1982. (HAPS) (Area 0.0145 m^2)

<u>Table 4.6.2</u>. Cesium-137 and Cesium-134 in sediments collected in Limfjorden in 1903 (MAPS) (Area: 0.0145 m^2)

Location			Depth	Date	Depth in cm	By ¹³⁷ Cs by ⁻¹ dry	Bq ¹³⁷ Cs m ⁻²	By ¹³⁴ Cs by ⁻¹ dry	Bq ¹³⁴ Cs m ⁺²
56°59'#	10 ⁰ 18'E	Hals	7 .	2/8	0-3	2.4	130		
•	•	•	•	•	3-6	1.64	92		
					0-6	· · · · · · · · · · · · · · · · · · ·	E 220		
56 ⁰ 60'H	8 ⁰ 57*E	Antoft	6 .	3/8	0-3	5.6	191		
•	-	•	•	•	3-6	4.2	178		
		•			0-6		E]70		
56°38'N	\$°17'E	Hiseum Ocedning	5.5 m	3/8	0-3	12.1	270	0.1 A	18 #
•	•	•	•	•	3-6	15.2	360		
•	•	-	•	•	6-9	16.9	370		
•	-	•	-	-	9-12	15.3	500		
					0-12		E 1500		E 10

Location		Station no.	Date	Depth in cm	Bq kq ^{∼1} dry	b q n ⁻²
4°46 * N 1	2°46'E	22	27	0-3	T.0 A	46
•	-	•	•	3-6	1.2	53
				0-6		L 19
4239.68'	N 10045.41'E	23 A	28	Q- J	16.7	420
-	•	-	•	3-6	9.1	350
				0-6		I 770
•	•	23 9	28	0-3	19.4	440
•	•	•	•	3-6	U _6	280
-	•	•	•	6-9	2.0	100
		<u></u>		0-9		E #20
•	•	23 C	29	0-3	15_6	530
-	•	•	•	3-6	6_7	250
•	•	-	•	6-9	2.7	110
				0-9		ĩ 890
5°50'N	10 ⁰ 48'E	24	28	0-3	20	430
-	•	-	-	3-6	0.3	260
•	•	•	•	6-9	5.1	180
-	-	-	•	9-12	1.96	70
				0-12		E 940
6 ⁰ 30 ' N	11º30.E	27	29	0-3	6.1	2 30
-	-	•	•	3-6	7.6	270
				0-6		£ 500
6 ¹⁷ 15 18	12º22'E	13	10	0-3	10,1	540
-	•	•	•	3-6	14.9	510
-	•	•	•	6-9	6.1	250
-	•	-	•	9-12	1.54	54
				0-12		£ 1350
7 ⁰ 30 *N	11030.E	10	29	Q- 3	62	780
•		-	•	3-6	65	970
•	-	•	•	6-9	A4	1080
•	•	-	•	9-12	55	490
-	•	-	-	12-15	40	770
-	-	-	•	15-18	12	620

<u>Table 4.6.3</u>. Cesium-137 in sediments collected in inner Danish waters in May 1983 by GAUSS. (MAPS) [Area: 0.0145 m^2]

Fig. 4.6.2. Cesium-137 in sediments (cf. Table 4.6.3) collected in the Danish Straits in 1983. Unit: Bq m^{-2} .

5. DANISH FOOD AND VARIOUS VEGETATION

by A. Aarkrog and S. Boelskifte

5.1. Strontium-90 and Cesium-137 in dried milk from the entire country

As in previous years, monthly samples of dried milk were collected from seven locations in Denmark (cf. fig. 5.1.1). Table 5.1.1 shows the results of the 90 Sr determinations and Table 5.1.2 the analysis of variance of the results. As in recent years, the local variation was significant for Bg 90 Sr (kg Ca)⁻¹. Milk from eastern Denmark showed as usual lower levels than the milk from Jutland. The Bg 90 Sr (kg Ca)⁻¹ mean level in 1983 was 80 Bg 90 Sr (kg Ca)⁻¹, i.e. 80% of the 1979-1982 means.

Table 5.1.3 shows the results of the 137 Cs determinations and Table 5.1.4 the analysis of variance of the results. The 137 Cs mean level in 1983 was 46 Bq 137 Cs (kg K) $^{-1}$, or 73% of the 1982 level.

Month	Hjørring	Randers	Videbæk	Abenrå	Nyborg	Ringsted	Nakskov	Mean
Jan	106	96	135	103	85	64	64	93
March	123	110	118	107	48	66	70	92
May	103	98	107	94	50	66	60	83
July	116	95	96	96	53	66	56	83
Sept	86	(74)	76	72	36	50	56	64
Nov	62	80	73	70	64	47	58	65
Mean	99	92	101	90	56	60	61	60

<u>Table 5.1.1</u>. Strontium-90 in dried milk in 1983. (Unit: Bg $(kg Ca)^{-1}$)

As 1 cubic meter of milk contains 1.2 kg Ca, the mean 90 Sr content in Danish milk produced in 1983 was 96 Bg m⁻³.

Figures in brackets were calculated from VAR3¹²⁾.

Variation	SSD	f	s ²	v ²	P
Between months	0.827	5	0.165	7.982	> 99.95%
Between locations	2.485	6	0-414	19.989	> 99.95%
Remainder	5.601	29	0.021		

<u>Table 5.1.2</u>. Analysis of variance of ln Bg 90 Sr (kg Ca)⁻¹ in Danish dried milk in 1983 (from Table 5.1.1)

Fig. 5.1.1. Dried milk factories in Denmark.
Month	Jutland	The Islands	Mean
January	61	46	54
February	54	22	38
March	60	23	41
April	54	15.8	35
May	58	23	41
June	59	26	42
July	77	18.4	48
August	107	24	65
September	80	30	55
October	68	18.1 A	43
November	54	28	41
December	69	21	45
Mean	67	25	46
Mean pCi (g K) ⁻¹	1.80	0.66	1.23

<u>Table 5.1.3</u>. Cesium-137 in Danish dried milk in 1983. (Unit: Bq (kg K)⁻¹)

As 1 cubic meter of milk contains approx. 1.66 kg K, the mean 137 Cs content in Danish milk produced in 1983 was estimated at 76 Bg m⁻³.

<u>Table 5.1.4</u>. Analysis of variance of ln Bg 137 Cs (kg K)⁻¹ in Danish dried milk in 1983 (from Table 5.1.3)

Variation	SSD	f	s ²	v ²	P
Between months	0,568	11	0.052	0.760	-
Between locations	6.127	1	6.127	90.174	> 99.95%
Remainder	0.747	11	0.068		

Fig. 5.1.3. Predicted (curve) and observed 90 sr/Ca levels in dried milk from Jutland (May 1962-April 1984).

Fig. 5.1.4. Predicted (curve) and observed $^{137}Cs/K$ levels in dried milk from the Islands (May 1962-April 1984).

Fig. 5.1.5. Predicted (curve) and observed ¹³⁷Ca/K levels in dried milk from Jutland (May 1962-April 1984).

We found no significant variation in 137 Cs concentrations between months in 1982 (Table 5.1.4); this is unusual.

Figures 5.1.2-5.1.5 show the 90 Sr and 137 Cs levels in dried milk compared with the predicted values (cf. Appendix C). The observed 90 Sr levels in 1983 were 1.02 times the predicted, while the observed 137 Cs levels were 1.33 times the predicted ones (means of Jutland and the Islands).

5.2. Fresh milk

No samples in 1983.

5.3. Strontium-90 and Cesium-137 in grain from the entire country

As in previous years, grain samples were obtained from the State experimental farms (cf. Fig. 4.2). Strontium-90 was determined as previously (Risø Report No. 63^{12} , and 137Cs was measured on ashed samples by Y-spectrometry on a Ge(Li) detector. Due to the low 137Cs concentrations the samples were combined in two sets of samples: one for Jutland and one from the Islands, each sample represented five farms.

Tables 5.3.1 and 5.3.2 show the measurements of 90Sr in grain in 1983. Table 5.3.4 gives the analysis of variance of the Bq 90Sr (kg Ca)⁻¹ figures and Table 5.3.3 that of the Bq 90Sr kg⁻¹ grain figures.

Table 5.3.3 shows that the variation in Bg 90Sr kg⁻¹ between species was significant. Oats showed the highest Bg 90Sr kg⁻¹ levels.

As in previous years, the variation with location was highly significant; the mean Bg 90Sr kg⁻¹ level for grain from Jutland was 1.4 times that in eastern Denmark. The observed Bg 90Sr kg⁻¹ levels in grain from 1983 were 1.60±1.02 (1 S.D.) times those

	Rye	Barl	Barley Wh		at	Oats	
	Winter	Spring	Winter	Winter	Spring	Spr	ing
Tylstrup	0.40	1.17	0.52	0.64		1.	56
Øđum	0.31	0.37	0.82	0.98	J.168	0.	43
Askov	0.49	0.70	0-74	0.51		1.	30
Borris	0.53	0.65	0-87	0.64		1.	23
St. Jyndevad	0.64	0.94	0.89	0.76			
Funen	0.59	0.90	0.77	0.59		۱.	10
Tystofte	0-48	0.31	0.72	0.46	0.24	0.	95
Ledreborg	0.29	0.53	0.67	0.41		0.	35
Abed		0.173	0-42		0.26	0.	58
Bornholm	0.48	0.27	0.63			0.	38
Mean	Rye: 0.47	Barley:	0.65	Wheat:	0.51	Oats:	0.1

Table 5.3.1. Strontium-90 in Danish grain in 1983. (Unit: Bq kg⁻¹)

<u>Table 5.3.2</u>. Strontium-90 in Danish grain in 1983. (Unit: Bq (kg Ca)⁻¹)

	Rye	Bar	ley	Whe	eat	Vats
	Winter	Spring	Winter	Winter	Spring	Spring
Tylstrup	1610	2700	1250	1850		3300
Øðum	1120	780	1650	2600	450	520
Askov	1380	1440	1240	1600		1360
Borris	1530	1440	1920	3100		1520
St. Jyndevad	2100	1970	1650	2500		
Funen	1650	2200	1350	1910		1130
Tystofte	1020	710	1560	1640	750	1160
Ledreborg	960	980	1020	1560		370
Abed		420	760		720	540
Bornholm	1340	570	1380			400
Mean	Rye: 1410	Barley:	1350	Wheat:	1700	Oats: 1140

Variation	SSD	£	s ²	v ²	P
Between species	2.312	3	0.771	9.623	> 99.95%
Between locations	5.064	9	0.563	7.024	> 99.95%
Spec. * loc.	1.922	24	0.080	0.266	
Remainder	3.618	12	0.301		

Table 5.3.3. Analysis of variance of $\ln Bq^{90}Sr kg^{-1}$ in grain in 1983 (from Table 5.3.1)

Table 5.3.4. Analysis of variance of ln Bg 90Sr (kg Ca)⁻¹ in grain in 1983 (from Table 5.3.2)

Variation	SSD	£	s ²	v ²	P
Between species	1.006	3	0.335	3.380	> 951
Between locations	6.842	9	0.760	7.659	> 99.95%
Spec. × loc.	2.382	24	0.099	0.343	
Remainder	3.477	12	0.290		

predicted (cf. Appendix C). If we look at Denmark as a whole the ratio between observed and predicted Bg 90Sr kg⁻¹ in grain became 1.10±0.16.

Tables 5.3.5 and 5.3.6 show the measurements of 137Cs in grain in 1983. The ¹³⁷Cs mean level in grain from 1983 was 0.9 times the level in 1982. The fallout in May-August 1983 was 0.6 times that of the fallout in May-August 1982.

Table 5.3.5. Cesium-137 in Danish grain in 1983. (Unit: $Bg kg^{-1}$)

	Rye	Barley s	Barley w	Wheat	Oats
Jutland	0.156	0.	060	0.101	0.33
The Islands	0.077	0.026 B	0.044	0.034 A	0.071
Mean	0.117	Barley	0.043	0.067	0.20

	Rye	Barley s Barley w	Wheat	Oats
Jutland	35	13.1	23	72
The Islands	18.1	6-1B 9.3	8.7 A	15.7
Hean	27	Barley: 9.5	15.9	44

Table 5.3.6. Cesium-137 in Danish grain in 1983. (Unit: Bq $(kg \ K)^{-1}$)

The ANOVA's (Tables 5.3.7 and 5.3.8) showed probably significant variation between locations (Jutland = $2.84 \times \text{The Islands}$).

The observed pCi 137 Cs kg⁻¹ levels in grain from 1983 were 1.96± 2.07 (1 S.D.) times those predicted (cf. Appendix C). The concentration of 137 Cs in oats from Jutland was considerably higher than expected and this was the main reason for the large devi-

Variation	SSD	f	s ²	v ²	P
Between species	1.995	3	0.665	6.628	-
Between locations	1.919	1	1.919	19.132	> 97.5%
Spec. × loc.	0.301	3	0.100	0.800	-
Remainder	0.125	1	6.125		

<u>Table 5.3.7</u>. Analysis of variance of ln Bq 137Cs kg⁻¹ in grain in 1983 (from Table 5.3.5)

<u>Table 5.3.8</u>. Analysis of variance of ln Bg 137 Cs (kg K)⁻¹ in grain in 1983 (from Table 5.3.6)

Variation	SSD	f	s ²	v ²	P
Between species	1.943	3	0.648	6.418	
Between locations	1.756	1	1.756	17.400	> 95%
Spec. × loc.	0.303	3	0.101	1.123	-
Remainder	0.090	1	0.090		

ation between observed and predicted values. It is evident that the root uptake of 137Cs now plays an important role especially for the grain grown in Jutland.

5.4. Strontium-90 and Cesium-137 in bread from the entire country

In 1983, samples of white bread (75% extraction) and dark rye bread (100% extraction) were collected all over the country (cf. fig. 5.4) in June, and 90Sr and 137Cs were determined on pooled samples from Jutland and the Islands respectively. Samples from Copenhagen were analysed separately. The 137Cs determinations were carried out on the ash by Ge(Li)_Y-spectroscopy.

Table 5.4.1 shows the results. It is assumed that 1 kg flour yields approximately 1.35 kg bread¹¹) and that wheat flour of 75% extraction contains 20% of the 90Sr and 50% of the 137Cs found in wheat grain¹), while rye flour is 100% extraction. Hence we can compare the 1983 bread levels with the 1982 grain levels (cf. Table 5.4.2). The above assumptions for transfer of 137Cs from grain to bread seem justified, however, the transfer of 90Sr from wheat to white bread may be underestimated. This has in fact been envisaged in Risø-R-437 p. 86^{21} where it is predicted that the transfer will increase from 20 to 33%.

The mean ratios between observed and predicted bread values were 1.19 for 90 Sr and 0.52 for 137 Cs (cf. Appendix C).

<u>.</u>

Fig. 5.4. Sample locations for bread and total diet.

Zone	······································	Rye b	read		White bread			
	Bg ⁹⁰ Sr kg ^{−1}	Bq ⁹⁰ Sr (kg Ca)-1	Bq ¹³⁷ Cs kg ⁻¹	Rig ¹³⁷ Cs (kg K) ⁻¹	Bq ⁹⁰ Sr kg ^{−1}	Bg ⁹⁰ Sr (kg Ca)-1	Bkq ¹³⁷ Cs kg ^{∼1}	Big ¹³⁷ Cs (kg K) ⁻¹
Jutland	0.48	172	0.186	70	0.135	65	0.027	22
The Islands	0.29	115	0.087	32	0.185	103	0.032	26
Hean	0.38	144	0.136	51	0,160	84	0.029	24
Copenhagen	0.27	146	0.122	39	0.136	67	0.046 A	28 5
Population- weighted mean	0.37	149	0.141	51	0,150	76	0.03<	25

Table 5.4.1. Strontium-90 and Cesium-137 in Danish bread collected in June 1983

1

Nuclide	Species	Bread activity in June 1983 calculated as grain in Bq kg ⁻¹ (cf. text)	Activity in grain from harvest 1982 ¹) Bg kg ⁻¹	"Bread"/grain ratio
90.0	Wheat	1.08	0.52	2.1
^{so} sr	Rye	0.51	0.65	0.8
1370-	Wheat	0.078	0.10	0.8
	Rye	0.22	0.18	1.2

Table 5.4.2. A comparison between 90Sr and 137Cs levels in bread arg grain 1983

5.5. Strontium-90 and Cesium-137 in potatoes from the entire country

The samples of potatoes were collected in September from ten of the State experimental farms (cf. fig. 4.2) and analysed for 90 Sr and 137 Cs (Y-spectroscopy of bulked samples of the ash).

Table 5.5.1 shows the 90Sr and 137Cs contents in potatoes. The mean contents for the country were 0.066 Bg 90Sr kg⁻¹, or 1360

	Bg ⁹⁰ Sr kg ⁻¹	Bg ⁹⁰ Sr (kg Ca) ⁻	1 Bg ¹³⁷ Cs kg ⁻¹	Bg ¹³⁷ Cs (kg K) ⁻¹
Tylstrup	0.043	(1660		
Borris	0.094	2080		
Øðum	1.032	990	0.084	18.5
Askov	0.103	2100		
St. Jyndevad	0.037	1520		
Blangstedgård	0.072	10C J		
Tystofte	0.061	95 0		
Ledroborg	0.074	1520	0.0133	2.7
Abed	0.048	770		
Rønne	0.094	980		
Mean	0.066	1360	0.048	10.6

1

Table 5.5.1. Strontium-90 and Cesium-137 in Danish potatoes in 1983

Bq 90Sr (kg Ca)⁻¹, and 0.048 Bq 137Cs kg⁻¹ or 10.6 Bq 137Cs (kg K)⁻¹. The 90Sr levels were equal to those in 1982, and the 137Cs concentrations were 76% of the in 1982 values.

The mean ratio between observed and predicted 90Sr concentrations in potatoes was 0.68 and for 137Cs we found 1.09 (cf. Appendix C).

5.6. Strontium-90 and Cesium-137 in vegetables and fruits from the entire country

In 1983, as in previous years, vegetables and fruit were collected in the autumn from eight larger provincial towns, one in each of the eight zones (cf. fig. 5.4).

	Jutland			Islands	Mean		
	Bg kg ⁻¹	Bg (kg Ca) ^{−1}	Bg kg ⁻¹	Bg $(kg Ca)^{-1}$	Bg kg ^{−1}	By (kg Ca) ⁻¹	
White cabbage	0.57	1320	0.19	430	0.38	875	
Carrots	0.49	1780	0.36	1140	0.43	1460	
Beans	0.66	1230	0.36	670	0.51	950	
Peas	-	-	0.053	800	(0.053)	(800)	
Strawberry	-	-	0.10	570	(0.10)	(570)	
Apples	0.052	1060	0.028	830	0.04	94 5	

Table 5.6.1. Strontium-90 in vegetables and fruits collected in 1983

The y-measurements were performed on bulked ash samples representing the entire country (cf. Table 5.6.2).

Table 5.6.3 shows a calculation of the mean contents of 90Sr and 137Cs in Danish vegetables collected in 1983. The 90Sr levels are equal to the 1982 concentrations.

The 137 Cs concentrations in 1983 were approximately two times those in 1982, but this was due to a surprisingly high 137 Cs in cabbage from Jutland.

	Jutland		The	Islands	Mean		
	Bq kg ⁻¹	Biq (kg K) ^{−1}	Bg kg ⁻¹	Bg (kg K) ⁻¹	Bg kg ⁻¹	Bq (kg K) ^{−1}	
White cabbage	0.27*	120	<0.01		0.14	60	
Carrots	0.065	36	0.020	9.6	0.042	23	
Beans	0.044	21	0.011	4.1	0.028	12.8	
Peas	-	-	0.19	21	(0.19)	(21)	
Strawberry	-	-	0.006	3.8	(0.006)	(3.8)	
Apples	0.060	48	0.015	15	0.037	32	

Table 5.6.2. Cesium-137 in vegetables and fruits collected in 1983

*The concentrations in white cabbage from the four sampling zones in Jutland were as follows: I: 0.90, II: 0.13, III: 0.083, IV: 0.15 Bg ¹³⁷Cs kg⁻¹. In other words the unexpected high mean value was due to the sample obtained from Zone I: North Jutland.

Table 5.6.3. Calculated 90Sr and 137Cs mean levels in vegetables in 1983

Daily intake in g	Bg ⁹⁰ Sr kg ⁻¹	Bg ⁹⁰ Sr (kg Ca) ⁻¹	Bq 137 _{Cs kg} -1	Bg ¹³⁷ Cs (kg K) ⁻¹
50 leaf vegetables (cabbage)	0.38	875	0.14	60
30 root vegetables (carrut)	0.43	1460	0.042	23
40 peas and beans	0.28	875	0.11	17
120 g	0.36	1020	0.11	36

The 1982 levels in Danish fruit were calculated from apples (80%) and strawberries (20%). The mean levels in Danish fruit were thus 0.052 Bg 90Sr kg⁻¹ and 0.031 Bg 137Cs kg⁻¹. The observed Bg 90Sr kg⁻¹ levels in vegetables and fruit in 1983 were 1.59±0.87 (1 S.D.) times those predicted (cf. Appendix C). In the case of 137Cs, the observed values were 2.75±1.41 times the predicted ones.

5.7. Strontium-90 and Cesium-137 in total diet from the entire country

In 1983 total-food samples representing an average Danish diet according to E. Hoff-Jørgensen (cf. Appendix B in Risø Report No. 63^{1}) were collected from eight towns each representing one of the eight zones (cf. Fig. 5.2.1) and from Copenhagen. The sampling took place as previously in June and December.

Tables 5.7.1 and 5.7.2 show the results. The 90 Sr diet levels from Jutland were 7% lower than those from the Islands, and the 137 Cs levels were 38% higher. This is an unusual picture as the 90 Sr levels from Jutland used to be higher than those from the Islands.

Figure 5.7.1 show the zone mean Bq 90 Sr (kg Ca)⁻¹ levels (not population-weighted) in total diet compared with the predicted values (cf. Appendix C), the observed value was 0.84 times that predicted.

lone		$Bg 90 Sr (kg Ca)^{-1}$	Bg 90sr d-1	g Ca d-1	Bg 137 Cs (kg R) ⁻¹	Bg ¹³⁷ Cs d ⁻¹
Ι:	N. Jutland	118±4	0.21 ±0.01	1.01±0.01	73	0.29
11:	E. Jutland	123*2	0.20 ±0.00	1.62±0.01	64	0.25
111:	W. Jutland	15015	0.22 ±0.01	1,46±0,00	67	0.27
IV:	S. Jutland	147±3	0.24 ±0.00	1.65±0.00	57	0.22
۷:	Punen	135±1	0.21 ±0.00	1.58±0.02	45	176
۷1:	2ealand	107:5	0.178 +0.007	1.66±0.00	51	0.196
¥11:	Lolland-Palster	9814	0.149±0.006	1.52±0.00	40	0.154
VIII:	Bornholm	141±0	0.22 ±0.00	1.54±0.00	44	0.173
Mean		127	0.20	1.60	55	0.22
Copen	hagen	139∓12	0.23 ±0.02	1.63±0.00	57	0.21
Popul weigh	ation+ ted mean	1 30	0.21	1.63	58	0.23
Reiat to an	ive error due alysis	68	6 %			<u> </u>

Table 5.7.1. Strontium-90 and Cesium-137 in Danish total diet collected in June 1983

lone		Bg ⁹⁰ Sr (kg Ca) ⁻¹	Bg ⁹⁰ Sr d ⁻¹	g Ca d-1	Bq ¹³⁷ Cs (kg K) ⁻¹	Bg ¹³⁷ Cs d ⁻¹
1:	N. Jutland	105:7	0.174±0.011	1.6610.00	81	0.32
11:	8. Juliand	134=7	0.197±0.010	1.50:0.03	63	0.25
	W. Jutland	109±4	0.182±0.006	1.5610.00	67	0.26
ĮV:	S. Jutland	134±5	0.191±0.008	1.43±0.00	50	0.22
۷:	Funen	139±3	0.22 ±0.006	1.55±0.00	44	0-102
VI:	Zealand	9516	0.163±0.010	1.70±0.02	72	0.28
VII:	Colland-Falster	11126	0.182+0.009	1.64±0.00	43	0.157
VIII:	Bornholm	132±7	0.20 ±0.009	1.5120.01	49	0.199
Mean		120	0.189	1.58	59	0.23
Copen	hagen	120*10	0.18810.016	1.5610.00	76	0.28
Popul weigh	ation- ted mean	118	0.187		61	0.26
Relat to an	ive error due alysis	81	71			

Table 5.7.2. Supontium-90 and Cesium-137 in Danish total diet collected in December 1983

The 90Sr 1983 levels (mean of Jule and December values) in the total diet were 85% of the 1982 levels, while the 137Cs levels were 58% on γ .

From the total-diet sampling it is possible to estimate the mean levels of 90Sr and 137Cs in the Danish diet in 1983. For the period January-March 1983, the 90Sr level in the total diet is assumed to have been equal to that measured in December 1982, Risø Report No. 447¹). For the period April-September we assume the level to have corresponded to that measured in June 1983. The December 1983 figures are taken to represent the last three months of the year. Hence the mean content in the total diet in 1983 was 128 Bq 90Sr (kg Ca)⁻¹, or 0.20 Bq 90Sr (day)⁻¹.

Similarly, the 137 Cs content in the Danish diet in 1983 was estimated to be 0.25 Bg 137 Cs (day)⁻¹ or 64 Bg 137 Cs (kg K)⁻¹. The observed 137 Cs fallout level in total diet was 1.43 times that predicted (cf. Appendix C.2) (corrected for 137 Cs from Sellafield cf. 5.8.2).

Fig. 5.7.1. Predicted and observed 90Sr levels in the Danish total diet. The dotted curve represents the predicted values for "Diet C" (cf. Tables 5.7.1 and 5.7.2) and the circles are the corresponding observed values. The unbroken curve represents the predicted values for "Diet P" (cf. Table 5.9.3), and the triangles the corresponding observed values.

5.8.1. Strontium-90 and Cesium-137 in meat

Pork and beef samples were collected in Copenhagen in three large shops in September. Table 5.8.1 shows the results. As compared with 1982, the mean levels were a little lower in 1983.

The mean ratio between observed and predicted (cf. Appendix C.2) 137Cs levels in meat was 2.63 and for 90Sr the mean ratio was 0.94.

Table 5.8.1. Strontium-90 and Cesium-137 in Danish meat collected in Copenhagen in 1983

	Pork						Beef		
Month	Bq ⁹⁰ Sr kg ⁻¹	Bq ⁹⁰ Sr (kg Ca) ⁻¹	Bg ¹³⁷ Ca kg ⁻¹	Bg ¹³⁷ Ca (kg R) ⁻¹	Bg ⁹⁰ Sr kg ⁻¹	Bq ⁹⁰ Sr (kg Ca) ⁻¹	Bg ¹³⁷ Cs kg ⁻¹	Bg ¹³⁷ Cg (kg K) ⁻¹	
Sept	0.022	83	0.20	53	0.036	310	0.43	105	

5.8.2. Strontium-90, Cesium-137 and Cesium-134 in fish

Fish samples were collected in the North Sea and in inner Danish waters. Tables 5.8.2.1 and 5.8.2.2 show the results. The mean levels of the two samplings were 0.030 ± 0.008 (1 S.E., N = 6) Eq 90Sr kg⁻¹ and 4.0 ± 0.7 Bg 137Cs kg⁻¹. The 134Cs/137Cs mean ratio was 0.021 ± 0.005 .

If we include the data from Roskilde Fjord (Table 5.8.2.3) and Baltic Sea (Table 5.8.2.4) the mean levels become 0.031 ± 0.006 Bg 90Sr kg⁻¹ (±1 S.E., N = 11) and 4.0 ± 0.6 Bg 137Cs kg⁻¹ (±1 S.E., N = 12). The twelve samples showed a mean content of 0.072 Bg 134Cs kg⁻¹. As the mean ratio of 137Cs to 134Cs discharged from Sellafield throughout the years was 45.2 in 1983, we may estimate e.g. Sellafield's contribution in Danish fish in 1983 as $45.2 \times 0.072 = 3.26$ Bg 137Cs kg⁻¹ or 82% of the total 137Cs content.

If we had used the data from Tables 5.8.2.1 and 5.8.2.2 only, as earlier, we would have found that $\frac{0.021}{0.022} \times 100 = 95$ % of the ¹³⁷Cs was from Sellafield.

Species	Bg ⁹⁰ Sr kg ⁻¹	Bq ⁹⁰ Sr (kg Ca) ⁻¹	Bg ¹³⁷ Cs kg ⁻¹	Bg ¹³⁷ Cs (kg K) ⁻¹	¹³⁴ Cs/ ¹³⁷ Cs
Cod	0.022	30 (16.3)	5.1	1450	0.028
Plaice	0.0152	23 (16.6)	0.91	360	
Herring	0.009 A	29 A(6.0)	4.1	1320	0.032

Table 5.8.2.1. Strontium-90, Cesium-137 and Cesium-134 in fish from the North Sea purchased in Ringkøbing in September 1983

Bone levels are shown in brackets.

Table 5.8.2.2. Strontium-90, Cesium-137 and Cesium-134 in fish from inner Danish waters purchased in Hundested in September 1983

Species	Bq ⁹⁰ Sr kg-1	Bg 90 _{Sr}	(kg Ca)-1	Bq ¹³⁷ Cs kg ⁻¹	Bg ¹³⁷ Cs (kg K) ⁻¹	134 _{Cs/} 137 _{Cs}
Cođ	0.052	64	(47)	4.9	1 190	0.014
Flounder	0.056	40	(30)	3.8	840	0.027
Herring	0.026	51	(8.4)	5.2	980	0.024
Bone lev	els are shown	in bracket	.5.		· · · · · · · · · · · · · · · · · · ·	

Table 5.8.2.3. Strontium-90, Cesium-137 and Cesium-134 in fish collected in the Cattegat and Roskilde fjord in 1983

		JUCC	kg - 1 50	(kg Ca) ⁻¹	kg ⁻¹	(kg K) ⁻¹	USACS/ USACS
Herring Ro	oskilde fj.	April	0.028	64 (14.3)	4.6	1060	*** * <u>*</u> * <u>*</u> ***
Garpike Ki	khavn	3/5			9.3	2300	0.022

As previously, based upon the considerations above, we will assume that 90% of the 137 Cs in Danish fish in 1983 came from Sellafield.

The dose from Sellafield to the Danish population then becomes $4.0 \times 0.9 \times 5 \times 10^6 \times 10.9 \times 0.05 \times (4 \times 10^6)^{-1} = 2.45$ manSv (5 × 10⁶ population size, 10.9; annual pro capite fish consumption in kg, 0.05 Sievert pr 4 × 10⁶ Bg ¹³⁷Cs).

1

Species	Location	Date	Bq ⁹⁰ Sr kg ⁻¹	Bg 90 _{Sr} (kg Ca) ⁻¹	Bq 137 _{Cs} kg ⁻¹	Bq ¹³⁷ Сş (kg К)≁1	134 _{Cs/} 137 _{Cs}
Flounder	Bornholm	17/11	0.047	78	2.4	580	
Herring*	54°52'N 13°27'E	20/10	0.010 A	24 A	1.82	530	
Herring*	55°00'N 13°58'E	27/10	0.015 A	42 A	3.4	910	0.027
Cod*	55°44'N 20°10'E	24/10	0.057	72	2.5	690	
*Caught f	from the R/V DANA.						

<u>Table 5.8.2.4</u>. Strontium-90, Cesium-137 and Cesium-134 in fish meat caught in the Baltic Sea in 1983

Table 5.8.2.5 shows radionucle concentrations in Mytilus edulis from Danish waters. The ¹³⁷Cs mean content in flesh was 0.45±0.18 Bg kg⁻¹ fresh weight (±1 S.D., N = 11). This is 1.4 times the level observed in 1982. Cobalt-60 was also detectable in mussels. A sample of Patella flesh collected at Østerby, Læsø in April 1983 contained 7.4 Bg ¹³⁷Cs kg⁻¹ dry weight or 1.2 Bg kg⁻¹ fresh weight.

Location		Date	€ dry matter	Depth in m	137 _{C5}	106 _{Ru}	60 _{C0}	40 _{K*}
57°00'N 10°18'E	Hals	1/8	13,3		2.7 A	·		8.9
57°03'N 9°42'E	Gjøl	2/8	12.2	0.5	3.6 M			8.8
57000'N 8057'E	Amtoft	3/8	12.1	0.5	2.0			7.9
56°41'N 8°44'E	Sillerslev	3/8	15.6	0.5	1.72			7.8
57 ⁰ 07'N 8 ⁰ 36'E	Hanstholm	4/8	17.4	0.5	3.2		< 0.7	6.6
57 ⁰ 36'N 9 ⁰ 58'E	Hirtshals	15/3	16.0	0.5	4.5	20	0.8	17.6
57°44'N 10°36'E	Skagen	4/8	15.8	0.5	2.4		1,1 A	6.0
57°18'N 10°56'E	Lasø W	15/4	16.1	0.5	4.2		< 1.1	11.0
57 ⁰ 19'N 11 ⁰ 08'E	Læsø E	15/4	15.8	0.5	3.9		0.66 A	10.9
57°18'N 10°56'E	Laso W	10/8	10.8	0.5	1.6 A			4.1
55°58'N 12°01'E	Prederiksvark	24/3	10.6		5.1			11.7

<u>Table 5.8.2.5</u>. Cesium-137 and Cobalt-60 in Mytilus edulis fiest: collected in inner Danish waters in 1983. (Unit: Bg kg⁻¹ dry weight)

5.8.3. Strontium-90 and Cesium-137 in eggs

Eggs were collected in Copenhagen in 1983. They contained 0.034 Bg 90 Sr kg⁻¹ (54 Bq 90 Sr (kg Ca)⁻¹) and 0.033 Bq 137 Cs kg⁻¹ (27 Bq 137 Cs (kg K)⁻¹). The predicted values for eggs (cf. Appendix C) were 0.013 Bq 90 Sr kg⁻¹ and 0.023 Bg 137 Cs kg⁻¹.

5.8.4 Strontium-90 and cesium-137 in various vegetable foods No samples in 1983.

5.9. Estimate of the mean contents of 90Sr and 137Cs in the human diet in Denmark in 1983

5.9.1. The annual quantities

The annual quantities are calculated by multiplication of the daily quantities by 365 (as stated by E. Hoff-Jørgensen, cf. Risø Report No. 63, Table $B^{(1)}$).

5.9.2. Milk and cream

The 90Sr and 137Cs contents per kg milk were calculated from the annual mean values for dried milk (cf. Tables 5.1.1 and 5.1.3). 1 kg ~ 1 l milk, containing approximately 1.2 g Ca and 1.66 g K. Hence the mean contents in milk were 0.096 Bg 90Sr kg⁻¹ and 0.076 Bg 137Cs kg⁻¹.

5.9.3. Cheese

One kg of cheese contains approximately 8.5 g Ca and 1.2 g K. The 90 Sr and 137 Cs contents in cheese were calculated from these figures and from the 90 Sr/Ca and 137 Cs/K ratios in cried milk (cf. Tables 5.1.1 and 5.1.3). One kg of cheese appeared to contain 0.68 Bg 90 Sr and 0.055 Bg 137 Cs.

5.9.4. Grain products

Tables 5.9.1 and 5.9.2 show the estimates of 90Sr and 137Cs, respectively, in grain products consumed in 1983. From these

Туре	Fraction	from harves	t 1982	Fraction	from harve	st 1983	_
	kg flour	Bg kg ⁻¹	Bq	kg Elour	Bg kg ⁻¹	Bq	Total Bq
Rye flour 100% extraction	21.9	0.65	14.24	7.3	0.47	3.43	17.67
Wheat flour 75% extraction	32.9	0.10	3.29	10,9	0.10	1.09	4.38
Grits	5.5	0.20	1.10	1.8	0.29	0.52	1.62
Total	60.3	0.31	18.63	20.0	0.25	5.04	23.67

Table 5.9.1. Estimate of the 90Sr content in grain products consumed per caput in 1983

Table 5.9.2. Estimate of the 137Cs content in grain products consumed per caput in 1983

Туре	Fraction	from harvest	1982	Fraction	from harves	st 1983	
	kg flour	Bg kg ⁻¹	Bg	kg flour	Bg kg ⁻¹	Bq	Total Bg
Rye flour 100% extraction	21.9	0.18	3.94	7.3	0.117	0.85	4.80
Wheat flour 75% extraction	32.9	0.05	1.65	10.9	0.034	0.37	2.02
Grits	5.5	0.05	0.28	1.8	0.10	0.18	0.46
Total	60.3	0.10	5.87	20.0	0.07	1.40	7.28

tables, the activity levels in grain products were estimated at 0.29 Bg 90Sr kg⁻¹ and 0.091 Bg 137Cs kg⁻¹.

5.9.5. Potatoes

The figures in Table 5.5.1 were used, i.e. 0.066 Bg 90 Sr kg⁻¹ and 0.048 Bg 137 Cs kg⁻¹.

5.9.6. Vegetables

Table 5.6.3 shows the calculation of 90Sr and 137Cs in Danish vegetables consumed in 1983. The mean contents were 0.36 Bg 90Sr kg⁻¹ and 0.11 Bg 137Cs kg⁻¹.

5.9.7. Fruit

The levels in imported fruit in 1983 are assumed to be equal to the mean levels found in oranges and bananas collected in Copenhagen in 1982, i.e. $0.132 \text{ Bq} 90 \text{ Sr kg}^{-1}$ and $0.024 \text{ Bq} 137 \text{ Cs} \text{ kg}^{-1}$. The mean levels in Danish fruit (cf. 5.6) in 1983 were $0.052 \text{ Bq} 90 \text{ Sr kg}^{-1}$ and $0.031 \text{ Bg} 137 \text{ Cs kg}^{-1}$. The daily mean consumption of fruit consisted of 100 g of Danish and 40 g of foreign origin. Hence the mean contents in fruit were $0.075 \text{ Bg} 90 \text{ Sr kg}^{-1}$ and $0.029 \text{ Bg} 137 \text{ Cs kg}^{-1}$.

5.9.8. Meat

The annual mean values of 90Sr and 137Cs in meat were calculated from Table 5.8.1: 0.027 Bg 90Sr kg⁻¹ and 0.28 Bg 137Cs kg⁻¹. (In a Danish diet meat comprises 2/3 pork and 1/3 beef).

5.9.9. Fish

The 90 Sr and 137 Cs contents in fish are estimated from 5.8.2 at 0.031 Bg 90 Sr kg⁻¹ and 4.0 Bg 137 Cs kg⁻¹.

5.9.10. Eggs

The contents of activity in eggs were estimated from 5.8.3. The levels were 0.034 Bq 90 Sr kg⁻¹ and 0.033 Bq 137 Cs kg⁻¹.

5.9.11. Coffee and tea

One third of the total consumption consists of tea and two thirds of coffee. We use the mean contents from 1982: 0.87 Bg 90 Sr kg⁻¹ and 2.53 Bg 137 Cs kg⁻¹.¹)

5.9.12. Drinking water

The 90 Sr level (population-weighted mean) found in drinking water collected in April 1982 (4.3.3) was used as the mean level for drinking water, i.e. 0.0005 Bq 90 Sr kg⁻¹. The 137 Cs content in drinking water is assumed to be negligible.

5.9.13. Discussion

Tables '.9.3 and 5.9.4 show the estimates of 90Sr and 137Cs in the Danish diet in 1983. The figures should be compared with the levels calculated from the total-diet samples (cf. 5.7). The 90Sr estimates obtained by the two methods (cf. also fig. 5.7.1) were 125 Bq (kg Ca)⁻¹ and 128 Bq (kg Ca)⁻¹, respectively, and the 137Cs estimates were 0.28 Bq 137Cs (day)⁻¹ and 0.25 Bq 137Cs (day)⁻¹.

Type of food	Annual quantity in kg	Bg ⁹⁰ Sr per kg	Total Bq ⁹⁰ Sr	Percentage of tot al Bg ⁹⁰ Sr in food
Milk and cream	164.0	0.096	15.74	20.4
Cheese	9.1	0.68	6.19	8.0
Grain products	80.3	0.29	23.67	30.6
Potatoes	73.0	0.066	4.82	6.2
Vegetables	43.8	0.36	15.77	20.4
Fruit	51.1	0.075	3.83	5.0
Meat	54.7	0.027	1.48	1.9
Eggs	10.9	0.034	0.37	0.5
Fish	10.9	0.031	0.34	0.4
Coffee and tea	5.5	0.87	4.78	6.2
Drinkirg water	548	0.0005	0.27	0.4
Total			77.26	

<u>Table 5.9.3</u>. Estimate of the mean content of 90Sr in the human diet in 1983

The mean Ca intake was estimated at 0.62 kg y⁻¹ (approx. 0.2-0.25 kg creta praeparata). Hence the 90 Sr/Ca ratio in total diet was 125 Bg 90 Sr (kg Ca)⁻¹ (3.4 S.U.) in 1983.

Type of food	Annual guantity in kg	Bq ¹³⁷ Cs per kg	Total Bg 137Cs	Percentage of total Bg ¹³⁷ Cs in food
Milk and cream	164.0	0.076	12.46	12.1 (19.5)
Cheese	9.1	0.055	0.50	0.5 (0.8)
Grain products	80.3	0.091	7.28	7.1 (11.4)
Potatoes	73.0	0.048	3.50	3.4 (5.5)
Vegetables	43.8	0.11	4.82	4.7 (7.5)
Fruit	51.1	0.029	1.48	1.4 (2.3)
Meat	54.7	0.28	15.32	14.8 (23.9)
Eggs	10.9	0.033	0.36	0.3 (0.6)
Fish	10.9	4.0	43.60(4.36)	42.2 (6.8)
Coffee and tea	5.5	2.53	13.92	13.5 (21.7)
Drinking water	548	0	0	0 (0)
Total		<u> </u>	103.24 (64.00)	

Table 5.9.4. Estimate of the mean content of 137Cs in the human diet in 1983

In brackets are shown the values if the contribution of Sellafield 137 Cs in fish is excluded. This contribution is approx. 90% of the 137 Cs content in Danish fish. Sellafield thus contributed with approximately 38% of the total 137 Cs content in Danish diet in 1983.

As the approximate intake of potassium was 1.365 kg y⁻¹ the 137Cs/K ratios were 75.6 (46.9) Bg 137Cs (kg K)⁻¹ or 2.0 (1.27) M.U. in 1983.

The ratio between observed and predicted (cf. Appendix C) diet levels was 1.01 for 90 Sr and 1.02 for 137 Cs (corrected for Sellafield 137 Cs).

The relative contribution of 90Sr from milk products (~ 28%) was similar to those in 1978-1982. The contribution from potatoes, other vegetables, and fruit was ~ 32%, and that from cereals was 31%. The relative contribution of 137Cs in the total diet changed from 1982 to 1983 as follows: milk products (12 to 13%), grain products decreased from 30 to 11%, and meat increased (14 to 15%). Fish contributed 42% to the total 137 Cs intake in 1983, and is thus together with meat the most important source of 137 Cs. This is, however, due to the 137 Cs contribution from Sellafield. If this was excluded, milk products would contribute with 20%, grain: 11%, meat: 24% and fish: 7%.

5.10. Grass samples

5.10.1. Grass collected around Risø

Table 5.10.1.1 shows the 90Sr content in grass ash from Zealand in 1983. The mean 90Sr activity was 37 Bg 90Sr (kg ash)⁻¹, or 610 Bg 90Sr (kg Ca)⁻¹, i.e. the 1983 level was 90% of the 1982 level. Figure 5.10 shows the 90Sr concentration in grass since 1957. The ratio between observed and predicted (cf. Appendix C.1) 90Sr level in grass in 1983 was 1.27.

	Bg ⁹⁰ Sr (kg ash) ⁻¹	Bg ⁹⁰ Sr (kg Ca) ⁻¹
Jan-March	28	640
April-June	18.6	520
July-Sept	46	730
Oct-Dec	32	560
Mean	31	610

Table 5.10.1.1. Strontium-90 in grass from Zealand, 1983

Fig. 5.10. Quarterly ⁹⁰Sr levels in grass, 1957-1983.

Month	n	g ⁴⁰ K kg ⁻¹ fr es h
January	5	3.4±0.4
February		(snow)
March	4	2.3±0.5
April	4	3.7±0.6
Мау	5	4.6±0.3
June	4	5.1±0.1
July	4	5.6±0.5
August	5	6.1±0.6
September	4	4.4±0.4
October	5	5.9±0.2
November	4	3.7±0.5
December	2	3.6±0.2

Table 5.10.1.2. Kalium-40 in grass from Risø, 1983

The error term is 1 S.E. of the mean.

5.11.1. Sea plants collected in Roskilde Fjord

Figure 5.11.1 shows the Bq 90Sr (kg Ca)⁻¹ levels in sea plants since 1959 and Table 5.11.1 the results for 1983. The mean level in Fucus vesiculosus was 295 Bq 90Sr (kg Ca)⁻¹ (6.2 Bq kg⁻¹ dry weight). We got no samples of Zostera marina in 1983. The mean ratio between observed and predicted 90Sr levels in fucus was 0.64.

Fucus contained 8.4 Bg 137Cs kg⁻¹ dry weight.

Location	Date	% dry matter	8q ⁹⁰ 5r (by Ca) ⁻¹	Bq ⁹⁰ Sr kg ⁻¹ dry weight	Bg ¹³⁷ Cs (hg K) ⁻¹	Bg ¹³⁷ Cs hg ⁻¹ dry weight
At Bolund	25/1	24.3			250	7.4
-•-	21/3	18.4	191	5.6	230	6.9
- • -	11/8	19.6			340	11.6
- • -	20/12	16.9	410	5.8	206	7.2
IX	12/12	18.0	189	7.2	220	8.0
x	12/12	16.2	390	6.1	230	9.5

Table 5.11.1. Strontium-90 and Cesium-137 in Pucus vesiculosus from Roskilde Fjord in 1983

Fig. 5.11.1. Strontium-90 in sea plants from Roskilde fjord, 1959-1983.

5.11.2. Sea plants collected at Klint (55°58'N, 11°35'E)

The two Fucus species most often found in Denmark, Fucus vesiculosus and Fucus serratus, had been collected to test the difference between the two species and to get data of the important seasonal variation. All samples have been analysed for γ -emitting radionuclides and some of them also for 90 Sr, 99 Tc, Pu and Am. In one month five samples of each species were taken.

For most of the radionuclides there is a significant difference between the two species, but for 60 Co and 137 Cs this difference is not constant during the year. The seasonal variation has to be taken into account when using Fucus as a bioindicator, and to get a better estimate of this variation the sampling programme will continue in the future.

<u>Table 5.11.2</u>. Radionuclides in the brown algae Pucus vesiculosus (Fu.ve.) and Pucus serratus (Fu.se.) collected at Klint ($55^{0}58^{\circ}N$ 11⁰35'E) in 1983 (Unit: 8g kg⁻¹ dry weight)

Species	Date	% dry matter	Salinity o/oo	40 _K +	54 _{Mn}	60 _{CO}	90 _{Sr}	99 _{TC}	125 ₅₀	134 _{CS}	137 _{CS}	239,240 Pu	241 Am
Pu.ve.	14/2	24.9		21	0.4 A	1.32					7.5		
Fu.se.	•	24.6		30	0.69	2.6			1.47		9.5		
Fu,ve.	24/3	19.3		24	0.4 B	1.32	5.0	50		0.4 A	8.1	0.29	0.057
Fu.ve.	•	18.0		24	0.4 A	1.26	6.0	151			7.9	J.29	0.035
Fu.ve.	•	19.0		23		1.06	5.0	180			7.6	0.23	0.023
?u,ve,	•	19.2		25		1.45	5.7	137			8.3	0.32	0.042
₽u.ve.	•	17.4		26	0.4 A	1.28	5.1	187			8.7	0.24	0.030
fu.se.	•	19.7		27	0.64	1.96	9.0	81	1.28		9.7	0,54	0.057
fu.se.	•	18.6		29	0.95	2.1	10.3	87	1.22		9.0	0.62	0.046
Pu.se.	•	19.2		32	0.7 A	2.3	8.8	93	1.3 A		11.4	0.50	0.039
Pu.se.	•	20.0		29	0.86	2.1	11.1	86	1.45	0.4 A	9.9	0.35	0.110
Pu.se.	•	18.6		31	0.84	2.1	9,8	79	1.0 A		9.7	0.61	0.073
Pu.ve.	25/7	18.3	19.0	27		2.3					9.0		
Pu.se.	-	22.7	19.0	26	0.5 B	2.3					9.9		
Pu.ve.	18/8	18.9	20.3	32		2.8					8.1		
Fu.se.	•	22.1	20.3	26		3.0					7.6		
Pu.ve.	16/9	20.5	22.4	39	0.4 B	2.7					11.0		
Fu.s.	•	24.0	22.4	19	0.5 A	2.6					6.9		
Pu.ve.	21/10	18.6	26.4	30		3.0					7.7		
Fu .se .	•	24.4	26.4	27		3.0					6.6		
ľu.ve.	24/11	19.7	24.9	31		2.8					7.2		
fu.se	-	20.6	24.9	34		3.7					8.6		
fu,ve.	21/12	21.4		29		1.92					7.7		
*Unit: g	K kg	dry we	ight,				<u></u>						

5.11.3. Sea plants collected in Danish waters

Apart from the Klint collection, 83 other samples were taken in 1983. They consist of 3 samples of Zostera marina, 1 of Laminaria, 3 of Fucus spiralis, 12 of Fucus serratus, and 64 of Fucus vesiculosus. The samples have been analysed for γ -emitters, especially radiocesium and ⁶⁰Co.

The mean 137 Cs content in Fucus vesiculosus collected in the inner Danish waters was 9.35±1.75 Bq kg⁻¹ dry weight (1 S.D., n = 54).

 60 Co was measurable in nearly all samples. The data suggest that Barsebäck and Ringhals are the important sources in inner Danish waters. For 60 Co in the Sound and Kattegat a relation can be found between the levels found in Fucus vesiculosus and the distance X (in km) from Barsebäck:

Concentration in Fucus (Bq 60 Co kg⁻¹ dry)=1200(±400)X^{-1.4(±0.1)} This correlation is in good agreement with earlier results (Risø-R-469)¹⁾, thereby indicating a steady-state situation for 60 Co in that area. The samples from the North Sea are probably contaminated with 60 Co from sources in the UK and France. (A further discussion can be found in Boelskifte, (1984)¹⁰⁾).

⁵⁴Mn was measurable in several samples. There was no correlation with the ⁶⁰Co concentrations (r = 0.18). This shows that ⁵⁴Mn resulted from fall-out rather than from nuclear power plants. The mean concentration for ⁵⁴Mn in Fucus vesiculosus in the Danish Straits was $0.57\pm0.25(N = 22)$ Bg ⁵⁴Mn kg⁻¹ dry weight; in the North Sea ⁵⁴Mn was found in only two samples (0.36 and 0.32 Bg kg⁻¹ dry).

<u>Fig. 5.11.3</u>. Cobalt-60 in Fucus vesiculosus collected in the Danish Straits 1983. (Unit: Bg kg⁻¹ dry weight). The error term is 1 S.E. of the mean of double determinations. Δ Triple determinations. *Twelve determinations.

Species	Position N E	Date	% dry matter	Salinity 0/00	40 X+	14 Wn	58Co	60 _{Co}	65 _{Z1}
fu.sp.	57°44 * 10°36 *	4/8	21.8		35			1.05	
a.sp.	57°36' 09°58'	4/8	20.0		38	0.41 B		0.42 A	
u.ve.	57°27' 10°33'	2/8	25.1		30			0.95	
u.ve.	57°20' 10°32'	2/8	22.9		32			0.67 A	
u.se.	57°19* 11°08*	10/8	27.6		24			1.98	
łu.ve.	57°19' 11°08'	10/8	21.2		33			1.37	
łu.ve.	57°19' 11°08'	15/4	21.4		25			1.20	
tu.se.	57°18' 10°56'	10/8	24.8		32			2.1	
lu.ve.	57°18' 10°56'	10/8	23.7		29	0.32 A		1.30	
fu.se.	57°18' 10°56'	15/4	21.6		26	0.28 A		0.83	
fu.ve.	57°18' 10°56'	15/4	20.1		27	0.33 A		0.74	
fu.ve.	57 ⁰ 09' 10 ⁰ 26'	2/8	19.5		33				
Pu.v:.	57 ⁰ 07' 12 ⁰ 11'	1/12	17.5		37		1.04	8.3	3.1
fu.ve.	57°07' 12°11'	2/6	19.1		28	0.6 B		1.99	
Fu.sp.	57°07' 08°36'	4/8	26.1		28			1.37	
Fu.sp.	57°04' 10°22'	2/8	20.5		29				
20. ma .	57°04' 09°42'	2/8	19.1		27				
Fu.ve.	57°00' 10 ⁰ 18'	1/8	29.2		22				
Zo.ma.	57°00' 10°18'	1/8	24.8		19				
ru.se.	57°00' 08°57'	3/8	26.9		25	0.41 A		0.50	
ru.ve.	57°00' 08°57'	3/8	28.7		29			0.43 A	
Pu.ve.	56 ⁰ 54' 10 ⁰ 16'	2/8	22.3		31	1.06 A		0.44 A	
ru.ve.	56 ⁰ 54' 10 ⁰ 16'	2/8	23.5	25.4	32			0.51 8	
Fu.ve.	56°45' 10°18'	2/8	21.0		24				
Pu.ve.	56°45' 10°18'	2/8	22.9		28			0.36 A	
Fu.ve.	56°45' 10°18'	2/8	22.6	24.8	28			0.40 B	
Fu.se.	56°43' 11°31'	10/8	22.6		28			1.65	
fu.ve.	56°43' 11°31'	10/8	19.5		32	0.46 A		2.3	
Fu.ve.	56°43' 11°31'	23/5	13.2		35			1.15 A	
Fu.ve.	56°43' 11°31'	17/1	22.2		39	0.25 A		1.11	
20. ma .	56°41' 08°44'	3/8	20.7		25			1.13	
Fu.ve.	56°36' 10°19'	2/8	19.8		30				
Fu.ve.	56°31' 10°27'	2/8	23.4	22.8	25	0.59 B		0.52 A	
fu.ve.	56°27' 10°58'	2/8	23.3		29			0.89	
Fu.ve.	56 ⁰ 27' 10 ⁰ 58'	2/8	23.3		30			0.96	
fu.ve.	56 ⁰ 23' 10 ⁰ 56'	2/8	22.1		28			0.80 A	
fu.ve.	56 ⁰ 22' 08 ⁰ 07'	3/8	19.0	22.5	35			1.00	
Fu.se.	56 ⁰ 12' 11 ⁰ 43'	11/8	24.6		22		0.65 A	2.8	
fu.ve.	560121 110431	11/8	21.2		31			2.3	
Fu.ve.	56012" 10040"	2/8	23.2		40			0.82	
Fu.ve.	56 ⁰ 12' 10 ⁰ 40'	19/1	24.0		32			0.74	
Fil.V#.	560071 120191	29/7	24.4	16.3	28			2.0	

Table 5.11.3.1. Radionuclides in brown algae collected in inner Danish waters in 1983 (Unit: Bg kg⁻¹ dry)

Table 5.11.3.1. (continued)

Species	Position N E	Date	% dry matter	Salinity 0/00	40 _{K*}	54 _{Mn}	58 _{CO}	60 _{Co}	65 _{2n}
Pu.ve.	56006 12028	29/7	23.6	17.8	21		0.56 B	3.6	
tu.ve.	56°04' 12°33'	29/7	20.4	17.5	32	0.59 A		3.0	
fu.se.	56 ⁰ 03' 12 ⁰ 36'	29/7	22.3	16.3	24	0.45 B		6.1	
Pu.se.	56°03' 12°36'	17/2	21.6		30	0.76		4.6	
fu.ve.	56°00' 12°36'	29/7	23.0	14.9	25	0.56 A		4.2	
Fu.ve.	56°00' 12°35'	17/2	20.4		27	0.44 A		3.8	
Fu.ve.	56°00' 08°08'	3/8	18.1	23.8	32			0.82	
Pu.ve.	56°00' 08°08'	3 /8	17.4	23.8	29			0.81	
Pu.ve.	56°00' 08°08'	8/3	19.6		32	0.32 A		0.86	
Fu.ve.	55059' 11021'	14/2	19.8		32			1,40	
fu.ve.	55058' 11017'	25/7	24.4		24	0.51 A		0.68	
fu.ve.	55058 11017	14/2	22.8	22.8	25	0.50		0.73	
Pu.ve.	55°56' 10°04'	27/7	26.0		27				
Pu.ve.	55°56' 10°03'	6/6	19.1		24	0.3 B			
Pu.ve.	55°55' 12°40'	13/9	19 2	20.7	32	0.57 A	0.46 B	6.1	
Pu.ve.	55 ⁰ 55° 12 ⁰ 40°	13/9	19.1	20.7	31	0.41 B		5.2	
fu.ve.	55°55' 12°40'	13/9	24.2	20.7	30	0.43 A	0,38 B	5.1	
Pu.se.	55°55' 10°39'	27/7	23.9		29				
Pu.ve.	55°55' 10°39'	27/7	23.5	21.0	29	0.34 B		0.53 A	
Pu.ve.	55053' 12043'	13/9	18.6	20.9	32	0.55		5.6	
fu.ve,	55053' 12043'	13/9	18.6	20,9	32	0.63 A		6.5	
Pu.ve,	55053' 12043'	13/9	19.9	20.9	31	0.68 A		6.3	
Fu.se.	55052' 10003'	27/7	26.2		28				
Fu.ve.	55052' 10003'	27/7	24.3		26				
Pu.ve,	55°49' 10°39'	27/7	23.0		28			0.70 A	
fu.ve.	55°48' 10°32'	27/7	25.2	20.8	24			0.47	
Fu.ve.	55°46' 12°36'	28/7	22.7	14.1	22	0.4 B		3.4	
Fu.ve.	55°45' 10°57'	27/7	25.1	20.8	33			0.67	
Fu.ve.	55°41' 11°05'	27/7	23.1		28				
Pu.ve.	55°35' 12°55'	1/12	16.3		26	0.6 B		2.1	
fu.ve.	55°31' 09°46'	4/8	19.8		29				
Pu.ve.	55°27' 08°28'	3/8	24.6	29.7	32			0.64	
Pu.ve.	55°27' 08°28'	3/8	22.9	29.7	40			0.61 A	
fu.ve.	55°27' 08°25'	3/8	20.7	29.1	28	0.36 B		0.74	
fu.ve.	55°21' 11°07'	4/8	22.9		25				
tu.ve.	55°18' 10°51'	4/8	22.2	22.2	36			0.55 A	
Fuise.	55°05' 15°09'	17/11	18.6		28	0.91		0.33 A	
Pu.ve.	55°05' 15°09'	25/5	20.0		23	0.66			
fu.ve.	55°05' 08°34'	3/8	26.6		29			0.48 A	
fu.ve.	540401 110441	29/12	22.1		37	1.37			
Fu,ve.**	53033' 08035'	28/6	lost		28				

Species	Position N E	Date	8 dry matter	Salinity 0/00	95 _{ND}	106 _{Ru}	125 _{Sb}	131 _J	134 _{CB}	137CB
Pu.sp.	57044' 10036'	4/8	21.8						0.37 A	9.9
La.sp.	57º36' 09º58'	4/8	20.0			6.8	0.85 A		0.51 A	8.1
Pu.ve.	57027 10033	2/8	25.1							9.1
Pu.ve.	57°20' 10°32'	2/8	22.9							9.3
Pu.se.	570191 110081	10/8	27.6							8.8
Pu.ve.	570191 110081	10/8	21.2							9.3
Pu.ve.	570191 110081	15/4	21.4							6.7
Pu.se.	57°18 10°56 1	10/8	24.8							11.6
Pu.ve.	57018 10056	10/8	23.7							9.0
Pu.se.	570181 100561	15/4	21.6		0.5 A	3 B			0.27 A	8.5
Pu.ve.	57018* 10°56*	15/4	20.1						0.32 A	8.0
Pu.ve.	57°09' 10°26'	2/8	19.5							10.1
Pu. ve .	57007 12011	1/12	17.5							10.3
Pu.ve.	57007 12011	2/6	19.1							12.0
Fu.sp.	57°07' 08°36'	4/8	26.1			4.7 A			0.36 A	7.7
Pu.sp.	57°04' 10°22'	2/8	20.5							9.6
2 o.ma.	57°04' 09°42'	2/8	19.1				5.9			1.4 A
Pu.ve.	57°00' 10°18'	1/8	29.2							4.6
to.ma.	57°00 · 10°18 ·	1/8	24.8							7.2
Pu.se.	57000 08057 ·	3/8	26.9				0.61 A			6.3
Pu.ve.	57°00' 08°57'	3/8	28.7							4.9
Fu.ve.	56°54' 10°16'	2/8	22.3							12.7
Pu.ve.	56°54' 10°16'	2/8	23.5	25.4						13.2
Pu.ve.	56°45' 10°18'	2/8	21.0							10.1
Pu.ve.	56°45' 10°18'	2/8	22.9							14.2
Pu.ve.	56 ⁰ 45' 10 ⁰ 18'	2/8	22.6	24.8						11.0
Pu.se.	56°43' 11°31'	10/8	22.6							10.4
Pu.ve.	560431 110311	10/8	19.5							7.3
Pu.ve.	560431 110311	23/5	13.2							11.3
Pu.ve.	56943 - 11931 -	17/1	22.2			2.2 B			0.16 B	9.3
20.ma.	56°41' 08°44'	3/8	20.7				5.7			2.5
Pu.ve.	56°36' 10°19'	2/8	19.8				1.9 A			11.1
Fu.ve.	56°31' 10°27'	2/8	23.4	22.8						8.5
Pu.ve.	56°27' 10°58'	2/8	23.3							10.7
Pu.ve.	56°27' 10°58'	2/8	23.3							9.5
Pu.ve.	56°23' 10°56'	2/8	22.1							9,1
Fu.ve.	56°22' 08°07'	3/8	19.0	22.5		4,3 B				8.2
Pu.se.	560121 110431	11/8	24.6							10.0
Pu,ve.	560121 110431	11/8	21.2							9.4
Pu.ve.	56°12' 10°40'	2/8	23.2							5.1
tu.ve.	560121 100401	19/1	24.0						0.18 8	
Pa.ve.	56071 120191	29/7	24.4	16.3					w. 10 B	•••

<u>Table 5.11.3.2</u>. Radionuclides in brown algae collected in inner Danish waters in 1983 (Unit: Bq kg⁻¹ dry)

Table 5.11.3.2. (continued)

Species	Position N E	Date	t dry matter	Selinity 0/00	95 _{Nb}	106 Ru	125 _{Sb}	131 ₃	134 _{C#}	137CB
Pu.ve.	56°06' 12°28'	29/7	23.6	17.8			1.39 A			8.9
Fu.ve.	56°04' 12°33'	29/7	20.4	17.5						9.8
Pu.se.	56°03' 12°36'	29/7	22.3	16.3						8.5
Fu.se.	56°03' 12°36'	17/2	21.6					2.2 🛦		7.9
Pu.ve.	56°00' 12°36'	29/7	23.0	14.9						8.6
Pu.ve.	56°00' 12°35'	17/2	20.4		0.42 3			2.1 #		0.1
Fu.ve.	56°00' 08°08'	3/8	18.1	23.8		5.1 A	1.45 A			7.7
fu.ve.	56°00' 08°08'	3/8	17.4	23.8	1.5 A		1.1 A			7.1
Pu.ve.	56°00' 08°08'	8/3	19.6			2.8 A	0.76			3.1
Pu.ve.	550591 110211	14/2	19,8				0.83 A			8.8
fu.ve.	55058' 11017'	25/7	24.4							9.5
Pu.ve.	55°58' 11°17'	14/2	22.8						0.22 /	8.1
Fu.ve.	55°56' 10°04'	27/7	26.0							9.3
Fu.ve.	55°56' 16°03'	6/6	19.1							9.6
Fu.ve.	55°55' 12°40'	13/9	19.2	20.7			3.3	3.2 #	L	9.8
Fu.ve.	55°55' 12°40'	13/9	19.1	20.7			1.4	3.4		9.2
fu.ve.	55°55' 12°40'	13/9	24.	20.7			3.6	3.0 B	,	8.7
Fu.se,	55°55' 10°39'	27/7	23.9							13.7
Fu.ve.	55055' 10039'	27/7	23.5	21.0					0.44 7	10.8
Fu.ve.	55053 12043	13/9	18.6	20.9			0.96 A	4.2 #	L	8.9
Fu.ve.	55°53' 12°43'	13/9	18.6	20.9			0.97 A	3.7	•	8.3
Fu.ve.	55053' 12043'	13/9	19.9	20.9			1.0 A	4.5 #	I.	9.1
Pu.se.	55052' 10003'	27/7	26.2							11.8
Pu.ve.	55°52° 10°03°	27/7	24.3							9.1
Pu.ve.	55°49' 10°39'	27/7	23.0							8.9
Pu.ve.	55°48' 10°32'	27/7	25.2	20.8					0.23 1	8 8.5
Fu.ve.	55°46' 12°36'	28/7	22.7	14.1				10 B		8.8
Fu.ve.	55°45' 10°57'	27/7	25,1	20.8					0.34	12.4
Pu,ve,	55°41' 11°05'	27/7	23.1							10.1
Pu.ve.	550351 120551	1/12	16.3					1.5 /		8.2
Fu.ve.	55°31' 09°46'	4/8	19.8							11.0
fu.ve.	55°27' 08°28'	3/8	24.6	29.7		4.5 A				5.4
Fu.ve.	55°27' 08°28'	3/8	22.9	29.7			1.28 A			4.8
Pu.ve.	55°27' 08°25'	1/8	20.7	29.1					0.25	10.4
fu.ve.	55°21' 11°07'	4/8	22.5							8.6
Fu.ve,	55018' 10051'	4/8	22.2	22.2						10.8
Pu.se.	55005' 15° 09'	17/11	18.6							7.5
Fu.ve.	55°05' 15°09'	25/5	20.0							6.4
Pu.ve.	55°05' 08°34'	3/8	26.6				0.79 A			4.5
Pu.ve.	540401 110441	29/12	22.1							8.2
Pit. 14	51011 na014+	20/4	1075							

Fulve, Fucus vesículosus

- Fulse, Focus Aerratus
- Pu.sp. Pucus spiralis
- Zo.ma, Zostera Harina
- La.sp. Laminaria species
- Unit: $g \in kg^{-1}$ dry weight.
- **Collected at Bremerhaven.
- 106 -

6. STRONTIUM-90 AND CESIUM-137 IN MAN IN 1983

by A. Aarkrog

6.1. Stronium-90 in human bone

The collection of human vertebrae from the institutes of forensic medicine in Copenhagen and Arhus was continued in 1983. As in the total-diet survey (cf. 5.7), the country was divided into eight zones. The samples were divided into five age groups: newborn (< 1 month) (no samples in 1983), infants (1 month-4 years), children and teenagers (5-19 years), adults (\leq 29 years), and adults (> 29 years).

Tables 6.1.1-6.1.5 show the results for the five groups. The 90 Sr concentrations in human bone collected in 1993 were nearly unchanged from those observed in 1979-1982

The observed mean concentration in adults (\geq 30 years) was 76% of that predicted (cf. Appendix C).

```
Table 6.1.1. Strontium-90 in bone from new-born children
(< 1 month old) in 1983</pre>
```

No samples.

<u>Table 6.1.2</u>. Strontium-90 in bone from infants (\leq 4 years) in 1983

Zone	Age in years and month	Month of death	Sex	Bog (kg Ca)−1
III	3 m	10	м	42 A
Ħ	б т	10	м	22

Zone	Age in years	Month of death	Sex	Bg (kg Ca) ⁻¹
I	6	6	F	20
II	9	6	M	24
m	18	9	м	36
н	18	8	м	32

<u>Table 6.1.3</u>. Strontium-90 in bone from children and teenagers (\leq 19 years) in 1983

<u>Table 6.1.4</u>. Strontium-90 in vertebrae from adults $(\leq 29 \text{ years})$ in 1983

.

Zone	Age in years	Month of death	Sex	Bg (kg Ca) ⁻¹
1	26	9	M	23
11	26	11	M	38
"	28	9	м	27
111	22	6	м	22
"	28	6	м	35
VI	21	6	F	22
	26	11	м	28
	27	10	м	27

Zone	Age in years	Month of death	Sex	Bg (kg Ca) ⁻¹	
I	32	10	F	30	
**	48		M	19.5	
18	67	9	M	52	
**	80	6	м	28	
	83	11	F	44	
II	37	12	F	22	
n	41	11	F	17.6	
-	44	9	M	20	
•	46	11	F	49	
17	46	10	M	28	
n	48	11	M	26	
н	50	11	F	35	
п	58	8	F	32	
и	58	12	м	18.1 A	
н	59	6	м	27	
*	62	9	м	13.5	
14	66	6	м	26	
*	66	9	м	41	
•	68	11	P	36	
111	55	11	F	35	
n	60		M	27	
ч	68	ถึ	м	66	
IV	50	9	M	26	
VI	31	10	м	22	
"	43	11	P	33	
**	43	11	P	37	
71	45	10	м	26	
17	55	6	P	30	
••	57	6	F	31	
"	65	10	м	26	
-	73	6	м	30	
W	76	11	F	48	

Table 6.1.5. Strontium-90 in vertebrae from adults (> 29 years) in 1983

.

Ŷ

Fig. 6.1.1. Strontium-90 levels (sample number weighted mean) in bone from newborn (< 1 month) 1961-1983.

Fig. 6.1.2. Strontium-90 levels (sample number weighted mean) in bone from infants (> 1 month \leq 4 years) 1962-1983.

<u>Pig. 6.1.3</u>. Strontium-90 levels (sample number weighted mean) in bone from children (> 4 years \leq 19 years) 19i1-1983.

<u>Fig. 6.1.4</u>. Strontium-90 levels (sample number weighted mean) in bone from adults (> 19 years \leq 29 years) 1961-1983.

<u>Fig. 6.1.5</u>. Strontium-90 levels (sample number weighted mean) in bone from adults (> 29 years) 1961-1983.

Age group	Number of samples	Min.	Max.	Median	Mean
New-born (< 1 month)	0				
Infants (<u><</u> 4 years)	2	22	42	32	32
Children (<u><</u> 19 years)	4	20	36	28	28
Adults (<u><</u> 29 years)	8	22	38	27	28
Adults (> 29 years)	32	13.5	66	29	31

<u>Table 6.1.6</u>. Strontium-90 in human vertebrae collected in Denmark in 1983. (Unit: Bq (kg Ca)⁻¹)

<u>Pig. 6.1.6</u>. Strontium-90 in human bone from Danish cohorts 1960-1966. Abscissa: age in years. Ordinate: bone level in Bq 90Sr (kg Ca)⁻¹.

6.2. Cesium-137 in the human body

Whole-body measurements were initiated at Risø in July 1963 (cf. 2.3 in Risø Report No. 85^{1}). A control group from the Health Physics Department was selected and has since then been measured as far as possible three times a year.

However, due to the decreasing 137 Cs content in the body the contribution from interfering radionuclides to the y-spectra has made the determination of 137 Cs unreliable and since 1978 we have not published whole-body measurements. From the prediction model²¹⁾ for whole body 137 Cs we have estimated the level in 1983 at 84 Bg 137 Cs (kg K)⁻¹ (= 2.3 pCi 137 Cs (g K)⁻¹) and

<u>Fig. 6.2</u>. A comparison between observed (± 1 S.E.) and calculated²¹) Bq ¹³⁷Cs (kg K)⁻¹ levels in whole-body from the Islands.

from the diet measurements for the Islands our estimate becomes: 2.85.56 = 160 Bq 137 Cs (kg K)⁻¹ (= 4.3 pCi 137 Cs (g K)⁻¹, where 2.85 is the observed ratio between 137 Cs/K in body and diet²¹). The difference between the two estimates is mainly due to the fact that the latter includes the contribution of radiocesium from Sellafield whereas the former estimate is based on fallout 137Cs only. - 117 -

7. TRITIUM IN THE ENVIRONMENT

by Heinz Hansen

7.1. Introduction

Tritium is produced naturally in the atmosphere by the interaction of cosmic-ray protons and neutrons with nitrogen, oxygen or argon. Surface waters contain about 0.4 kBq m⁻³ from this source²⁵⁾. Tritium is also produced and injected into the stratosphere as the result of thermonuclear explosions. At present, this latter source has enhanced the natural inventory by about a factor of ten²⁵⁾. Finally, tritium is produced as a by-product of the peaceful uses of atomic energy: it is released both during reactor operation and fuel reprocessing.

Before Denmark builds any nuclear power stations of her own, it is of interest to know the general tritium levels in the environment that could be affected by this new energy source. Also, an assay of the current tritium levels can be used already now to control any tritium which may be released from the Swedish nuclear power stations at Barsebäck and Ringhals, and from the reprocessing plants at Sellafield and La Hague.

7.2. Assay of tritium in low-level amounts

The present assays of tritium levels in water are based on a relative enrichment of ${}^{3}\text{H}_{2}\text{O}$ by electrolysis and subsequent liquid scintillation counting as previously described (Risø Reports Nos. 386 etc. ¹).

We have recently found that the tritium background in the air in our laboratory makes it impossible to produce reliable results if the concentrations are below 2 kBq m⁻³ (Personal Communication G. Östlund, 1984). Hence we have discarded such results. We have furthermore applied a background correction by subtraction of 1.2 kBq ³H m⁻³ from our measured values. 8. MEASUREMENTS OF BACKGROUND RADIATION IN 1983

by L. Bøtter-Jensen and S.P. Nielsen

8.1. Instrumentation

Measurements of the background radiation were made with thermoluminescence dosimeters (TLD's), a mobile Ge(Li) spectrometer system²⁴⁾, a high-pressure ionization chamber (Reuter-Stokes RSS-111), and a NaI(T1) detector.

8.2. State experimental farms

The State experimental farms are situated as shown in fig. 4.2. The results of the TLD measurements are shown in Table 8.2.1. The results of the NaI(Tl) detector measurements are shown in Table 8.2.2.

Table 8.2.1. TLD-measurements of the	background
radiation (integrated over 12 months a	nd normalized
to $\mu R h^{-1}$) at the State experimental f 1982/83	arms in

	Sep 1982 - Oct 1983 µR h ⁻¹
Tylstrup	7.3
Borris	6.9
Ødum	7.9
Askov	6.9
St. Jyndevad	5.9
Blangstedgård	6.7
Tystofte	8.3
Abed	8.0
Mean	7.2

Location	Jan	May	Oct	Mean
Tylstrup	3.1	3.1	3.1	3.1
Borris	3.7	3.9	3.3	3.6
่ dum	4.5	4.6	4.7	4.6
i.skov	2.9	3.2	3.6	3.2
St. Jyndevad	2.0	1.9	2.0	2.0
Blangstedgaard	4.7	4.7	4.7	4.7
Ledreborg	4.4	4.9	4.6	4.6
Tystofte	5.2	5.1	5.1	5.1
Abed	5.1	4.8	5.2	5.0
Mean	4.0	4.0	4.0	4.0

<u>Table 8.2.2</u>. Terrestrial exposure rates at the State experimental farms measured with the NaI(Tl) detector in 1983 (ν R h⁻¹)

<u>Table 8.2.3</u>. Ionization chamber measurements of the background radiation at the State experimental farms in September 1983 ($\mu R h^{-1}$)

Location	Septembe	
Tylstrup	7.4	
Borris	7.0	
Ødum	8.5	
Askov	7.3	
St. Jyndevad	5.9	
Blangstedgård	8.3	
Ledreborg	8.2	
Tystofte	8.4	
Abed	8.8	
Tornbygård	9.5	
Mean	7.9	

Fig. 8.2.1. Terrestrial exposure rates at the State experimental farms in 1962-1976 and 1978-1983 measured with the NaI(Tl) detector (μR h⁻¹). Åkirkeb,/Tornbygård ______ Abed, Blangstedgård, Tystofte ______ Virumgård/Ledreborg, Ødum, Tylstrup ______ Jyndevad, Askov, Studsgård/Borris

The γ -background measured with the NaI(T1) detector in four groups of sampling stations is shown in fig. 8.2.1 from 1962 to 1983. The change of levels in 1977 is due to a modification of the instrument and of the calculational procedure³¹.

The results of the ionization chamber measurements are shown in Table 8.2.3. The results of Ge(Li) spectrometer measurements are absent due to a detector malfunction.

8.3. Risø environment

The five zones around Risø are located as shown in fig. 8.3.1. The results of the TLD measurements are shown in Table 8.3.1, and the results of the NaI(Tl) detector measurements are shown in Table 8.3.2.

Fig. 8.3.1. The environment of Risø. Locations for measurements of the background radiation.

Risø zone	Location	Feb-Sep 1983 µR h ⁻¹
I	1	8.1
-	2	8.7
-	3	20.6
*	4	8.4
11	5	11.1
Mean		11.4
II	t	7.6
•	2	8.3
-	3	7.6
•	4	7.9
Mean		7.9
III	1	8.8
•	2	8.4
•	3	8.2
Mean		8.5
IA	1	7.3
•	2	8.3
-	3	8.1
	4	8.6
•	5	6.9
*	6	7.8
•	7	8.9
Mean		8.0
v	1	-
-	2	8.7
"	3	8.8
•	4	7.9
	5	8.3
•	6	8.1
•	7	8.6
•	8	7.1
"	9	8.5
~	10	7.5
Mean		8.2

<u>Table 8.3.1</u>. TLD-measurements of the background radiation (7-month integration period and normalized to $\mu R h^{-1}$) in five zones (I-V) around Rise in 1983

Risø zone	Location	January	April	July	October
	1	5.0	5.6	7.3	5.3
	2	6.6	6.5	7.0	6.8
	3	60.2	59.6	65.6	67.9
,	4	5.1	5.1	5.7	5.7
	5	9.2	9.0	10.0	9.4
ean		17.2	17.2	19.1	19.0
I	1	4.2	4.3	4.5	4.6
	2	5.0	4.8	5.2	5.0
	3	4.7	5.0	4.9	5.0
	4	4.3	4.4	4.6	4.5
an		4.6	4.6	4.0	4.8
11	1		5.0		4.9
	2		4.3		4.4
	3		4.1		4.1
an			4.5		4.5
,	1		3.8		4.0
	2		4.1		4.0
	3		4.6		4.7
	4		4.3		4.3
	5		2.8		2.7
	6		3.7		3.8
	7		4.2		4.9
an			3.9		4.1
	1		4.6		4.6
	2		5.1		5.2
	3		4.3		4.5
	4		4.3		4.3
	5		3.9		3.9
	6		4.5		4.5
	7		4.9		4.7
	8		4.4		4.9
	9		4.5		4.5
	10		3.2		3,3
ean			4.4		4.4

Table 8.3.2. Terrestrial exposure rates at the Risø zones in 1983 measured with the NaI(T1) detector ($\mu R h^{-1}$)

- 123 -

The Gylling Næs environment (a potential nuclear power plant site) is routinely monitored with TLD's, and the results from the site are given in Table 8.4.1. The locations are shown in Fig. 8.4.1.

Fig. 8.4.1. The environment of Gylling Næs. Locations for measurements of the background radiation.

Location	Sep 1982 - Oct 1983 µR h ⁻¹
1	7.6
2	7.9
3	8.0
Mean	7.8

<u>Table 8.4.1</u>. TLD-measurements of the background radiation (integrated over 12 months and normalized to $\mu R h^{-1}$) around the Gyllingnæs site in 1982/83

8.5. Great Belt and Langeland Belt areas

Locations on both shores of the Great Belt and the Langeland Belt (an international shipping route) are likewise routinely monitored with TLD's; the results and locations are shown in Table 8.5.1 and Fig. 8.5.1, respectively.

<u>Table 8.5.1</u>. TLD-measurements of the background radiation (integrated over 12 months and normalized to $\mu R h^{-1}$) along the coasts of the Great Belt and Langeland Belt in 1982/83

· · · · · · · · · · · · · · · · · · ·	
Location	Sep 1982 - Oct 1983 µR h ⁻¹
Røsnæs	7.4
Reersø	8.3
Svendstrup	7.1
Vesternæs	8.5
Frederiksdal	8.4
Kelds Nor	8.8
Tranekær	8.4
Hov	-
Fyns Hoved	7.8
Knuds Hoved	8.1
Mean	8.1

Fig. 8.5.1. The coasts of the Great Belt. Locations for measurements of the background radiation.

8.6. The Baltic island, Bornholm

Locations on the island of Bornholm have been monitored with TLD's in the period June 1982-May 1983. The results and locations are shown in Table 8.6.1 and Fig. 8.6.1, respectively.

<u>Table 8.6.1</u>. TLD-measurements of the background radiation (integrated over 11 months and normalized to $\mu R h^{-1}$) on the island Bornholm in 1982/83

Location	June 1982 - May 1983 µR h ⁻¹
1	9.3
2	9.2
3	8.6
4	17.1
Mean	11.1

8.7. Discussion

•

The reported results are in reasonable agreement with those obtained in 1982.

9.1. Environmental monitoring at Rise, Barsebäck and Ringhals

No radioactive contamination of the environment originating from the operation of the National Laboratory was ascertained outside Risø in 1983.

Benthic brown algae, mussels and fish collected at the Swedish nuclear plants at Barsebäck and Ringhals were analysed for radioactive pollution. Transfer factors from releases of various radionuclides to <u>Fucus</u> were calculated. The radioactive contamination of the marine environment due to the operation of the Swedish nuclear power plants resulted into doses of less than 1% of the background radiation to any individual eating 20 kg mussel and 100 kg fish per year.

9.2. Nuclear-weapon debris in the abiotic environment

The mean content of 90 Sr in air collected in 1983 was 1.8 µBq m⁻³ (0.05 fCi 90 Sr m⁻³), i.e. approximately 40% of the (corrected) 1982 level. The average fallout at the State experimental farms in 1983 was 1.6 Bg 90 Sr m⁻² (0.045 mCi 90 Sr km⁻²) or 80% of the 1982 figure, and the mean concentration of 90 Sr in rain water was 2.4 Bg 90 Sr m⁻³ (0.06 pCi 90 Sr 1⁻¹).

By the end of 1983 the accumulated fallout was approximately 1640 Bg 90 Sr m⁻² (44 mCi 90 Sr km⁻²). The corresponding 137 Cs was estimated at 2620 Bg m⁻².

The median level of 90 Sr in Danish ground water was 0.09 Bg m⁻³ (2.5 fCi 90 Sr 1⁻¹). Stream and lake water showed mean levels of 14 and 23 Bg 90 Sr m⁻³, respectively.

Inner Danish surface waters (salinity ~ 16 o/oo) contained 26 Bq 90Sr m⁻³ (0.7 pCi 90Sr l⁻¹) and 25 Bq 137Cs m⁻³ (0.7 pCi 137Cs l⁻¹). This shows a decreasing contribution of 137Cs from Sellafield as compared with that observed in the previous years.

9.3. Fallout nuclides in the human diet

The mean level of 90Sr in Danish milk was 80 Bg (kg Ca)⁻¹ (2.2 S.U.), and the mean content of 137Cs was approximately 76 Bg m⁻³ (2.1 pCi 137Cs 1^{-1}).

The 1983 90Sr and 137Cs levels were 0.8 and 0.7 times respectively the levels found in milk produced in 1982.

The 90 Sr mean content in grain from the 1983 harvest was 0.63 Bq kg⁻¹ (17 pCi 90 Sr kg⁻¹). The 137 Cs mean content in grain was 0.11 Bg kg⁻¹ (2.9 pCi 137 Cs kg⁻¹). The 90 Sr level in grain from the 1983 harvest was 1.1 times the level found in the 1982 harvest, and 137 Cs was 0.9 times the 1982 level.

The mean contents of 90 Sr and 137 Cs in Danish vegetables collected in 1983 were 0.36 Bg 90 Sr kg⁻¹ (9.7 pCi kg⁻¹) and 0.11 Bg 137 Cs kg⁻¹ (3.0 pCi kg⁻¹), respectively, and in fruit 0.04 Bg 90 Sr kg⁻¹ (1.1 pCi kg⁻¹) and 0.037 Bg 137 Cs kg⁻¹ (1.0 pCi kg⁻¹); potatoes contained 0.066 Bg 90 Sr kg⁻¹ (1.8 pCi kg⁻¹) and 0.048 Bg 137 Cs kg⁻¹ (1.3 pCi kg⁻¹).

The mean levels of 90Sr and 137Cs in total-diet samples collected in 1983 were 128 Bg 90Sr (kg Ca)⁻¹ (3.5 S.U.) and 64 Bg 137Cs (kg K)⁻¹ (1.7 M.U.), respectively. From analyses of the individual diet components, the 90Sr level in the Danish average diet was estimated to be 125 Bg 90Sr (kg Ca)⁻¹ (3.4 S.U.) and the 137Cs level to be 76 Bg 137Cs (kg K)⁻¹ (2.0 M.U.). The levels of 90Sr and 137Cs in the Danish total diet consumed in 1983 were respectively 0.8 and 0.6 times those observed in 1982.

Grain products contributed 31% and milk products 28% to the total 90 Sr intake; 30% of the 137 Cs in the diet originated from grain products, 15% from meat, and 12% from milk products. Fish contributed with 42% to the 137 Cs diet intake, of this 90% were estimated to be due to radiocesium from Sellafield (Windscale).

Both 90 Sr and 137 Cs diet levels were on the average higher in Jutland than in eastern Denmark.

9.4. Strontium-90 and Cesium-137 in humans

The 90Sr mean content in human bone (vertebrae) collected in 1983 was about 30 Bg (kg Ca)⁻¹ (0.8 S.U.).

Whole-body measurements of 137 Cs have been suspended due to the low 137 Cs concentrations in man. The estimated level in 1983 was 160 Bg 137 Cs (kg K)⁻¹ (4.3 pCi 137 Cs (g K)⁻¹).

9.5. Tritium in environmental samples

The tritium concentration in ground water was approximately 2.4 $kBg m^{-3}$ in 1983. The mean content of precipitation was nearly the same.

9.6. Background radiation

The average total background exposure rate measured with TLD's at the State experimental farms was 7.2 μ R h⁻¹. The average terrestrial background exposure rate measured with a NaI(Tl) detector at the State experimental farms was 4.0 μ R h⁻¹. These results are a little lower than those observed in 1982.

ACKNOWLEDGEMENTS

The authors wish to thank Miss Anna Holm Pedersen, Mrs. Karen Mandrup Jensen, Miss Karen Wie Nielsen, Mrs. Jytte Lene Clausen, Mrs. Anna Madsen, Mrs. Pearl Baade Pedersen, Mrs. Alice Kjølhede, Mrs. Helle Porsdal, Mrs. Oda Brandstrup, Mrs. Elise Ebling and Mrs. Else Sørensen for their conscientious performance of the analyses. We are grateful to Mr. Svend Aage Winfeldt Jensen, Mr. Gunnar Bitsch and Henrik Prip for collection of samples and performance of the Y-background measurements. We thank Mrs. Lis Sørensen and Mr. Jørgen Rabe for careful work with the TL dosimeters.

We are specially indebted to the staffs of the ten State experimental farms at Tylstrup, Ødum, Borris, Askov, St. Jyndevad, Blangstedgård, Tystofte, Ledreborg, Abed, and Åkirkeby, who have continued to supply us with a number of the most important samples dealt with in this report.

R/V DANA belonging to the Ministry of Fisheries have collected surface water samples from the North Sea, the Danish Straits and the Baltic Sea in 1983.

F/S Gauss and F/S Polarstern have collected marine samples from the Danish Straits, the Baltic Sea, and the North Atlantic in 1983 and we convey our thanks to these ships from the Federal Republic of Germany for their hospitality and assistance.

Zone		mma precipitation in 1983	Bg 90 _{Sr m} -2 in 1983	Accumulated Bg ⁹⁰ Sr m ⁻² by the end of 1983	
I: N.	Jutland				
II: E.	Jutland	824	1 6	1027	
III: W.	Jutland	(843)	1.0	1627	
IV: S.	Jutland				
V: Fu	ien				
VI: 2ea	aland	609 (596)	1.3	1458	
VII: Lo	lland-Falster				
		681			
VIII: Bornholm		(749)	3.0	-	
		759			
Area-weig	inted mean	(769)	1.5	1717	

Appendix A. Calculated fallout in Denmark in 1983

The amounts of precipitation were obtained from ref. 9. The 90 Sr deposition was estimated from 4.2 and appendix D.

The precipitations in brackets were the mean of values measured by the Meteorological Institute at the State experimental farms (or neighbouring locations): Jutland: Tylstrup, Ødum, Borris, Askov, St. Jyndevad;

<u>The Islands</u>: Blangstedgård, Tystofte, Ledreborg, Abed; <u>Bornholm</u>: Åkirkeby.

Zone	Area in km ² 15) 1971	Population in thousands 28) 1976	Annual milk production in mega-kg 14) 1971	Annual wheat production in mega-kg 13) 1972	Annual rye production in mega-kg 13) 1972	Annual potato production in mega-kg 13) 1972	Vegetable area in km ² 13) 1972
I: N. Jutland	6,171	471	911				
II: E. Jutland	7,561	881	1,258	145	155	609	14
III: W. Jutland	12,104	687	926	145	133		
IV: S. Jutland	3,929	245	572				
V: Funen	3,486	446	393				
VI: Zealand	7,435	2,165*	395				
VII: Lolland-Falster	1,795	123	68	448	71	100	73
VIII: Bornholm	588	47	39				
Total	43,069	5,065	4,562	593	226	709	87

Appendix B. Statistical information

- -

*1,270,000 people were living in Greater Copenhagen and 895,000 in the remaining part of Zealand.

APPENDIX C

For the calculation of the 137 Cs levels we have assumed the 137 Cs/ 90 Sr ratio equal to 1.6 because that was the ratio used in reference 21.

Sample	Location	Unit	Observed	Predicted	Obs./pred.	Model in reference (2
Dried milk*	Jutland	Bg ⁹⁰ Sr (kg Ca) ⁻¹	89	119	0.75	C.3.2.1 No.
• •	Islands	- • -	63	49	1.29	- " - No.
Rye	Jutland	Bg ⁹⁰ Sr kg ⁻¹	0.47	0.43	1.09	C.2.2.1 No.
•	Islands	- • -	0.46	0.117	3.93	- " - No.
Barley	Jutland	- • -	0.77	0.62	1.24	- * - No.
•	Islands	- • -	0.54	0.26	2.08	- * - No.
Wheat	Jutland	- • -	0.62	0.57	1.09	- * - No.
•	Islands	- • -	0.39	0.26	1.50	- " - No.
Oats	Jutland	- • -	1.13	1.40	0.81	- • - No.
•	Islands	- • -	0.67	0.65	1.03	- * - No.
Rye bread	Denmark	- • -	0.38	0.35	1.09	C.2.3.1 No.
White bread	•	- • -	0.16	0.124	1.29	- " - No.
Potatoes	Jutland	- - -	0.062	0.104	0.60	C.2.5.1 No.
•	Islands	_ • _	0.070	0.094	0.75	- " - No.
Cabbage	Jutland	- • -	0.57	0.33	1.73	- " - No.
•	Islands	- • -	0.19	0.28	0.68	- * - No.
Carrot	Jutland	- • -	0.49	0.56	0.68	- ' - No.
•	Islands	- • -	0.36	0.20	1.80	- • - No.
iyy les	Denmark		0.040	0.014	2.86	C.2.5.1 No.
Pork*	•	- • -	0.022	0.025	0.88	C.3.4.1 No.
Beef*		- • -	0.036	0.036	1.00	- ' - No.
Egg 8	•	- • -	0.034	0.013	2.62	C.3.6.1 No.
Total diet C	-	$Bg^{90}Sr (kg Ca)^{-1}$	128	151	0.84	C.4.2.1 No.
• • p	•	- * -	125	125	1.01	- • - No.
Human bone > 29 yr	•	- • -	31	41	0.76	C.4.3.1 No.
Whole year grass	Islands	- • -	610	480	1.27	C.2.4.1 No.
fucus vesiculosus	•	- • -	295	459	0.64	C.2.7.1 No.
Ground water	Denmark	Bq ⁹⁰ Sr m ⁻³	0.29	0, 29	1.00	C.1.4.1 No.
Str eam wate r	-	- • -	14	7	2.00	- • - No.
Lake water	•	 .	23	37	0.62	- " - No.

<u>Appendiv C.1.</u> Comparison between observed and predicted 90Sr levels in environmental samples collected in 1983

Sample	Location	Unit	Observed	Predicted	Obs./pred.	Model in reference (21)
Dried milk*	Jutland	$Bg^{-137}Cs$ (kg K) ⁻¹	66	42	1.57	C.3.2.2 No. 1
• •	Islands	- • -	29	27	1.08	- • - No. 3
Rye	Jutland	Bg ¹³⁷ Cs kg ⁻¹	0.156	0.092	1,70	C.2.2.4 No. 2
•	Islands	- • -	0.077	0.065	1.18	- " - No. 3
Barley	Jutland	- • -	0.060	0.067	0.90	- • - No. 4
•	Islands	- • -	0.035	0.044	0.80	- " - No. 5
Wheat	Jutland	_ • _ ·	0.101	0.068	1.49	- " - No. 6
•	Islands	- • -	0.034	0.037	0.92	- • - No. 7
Oats	Jutland	- • -	0.33	0.055	6.00	- " - No. 8
•	Islands	- • -	0.071	0.041	1.73	- " - No. 9
Rye bread	Denmark	_ • _	0.136	0.195	0.70	C.2.3.1 No. 4
White bread	•	- • -	0.029	0.088	0.33	- " - No. 5
Potatoes	Jutland	- • -	0.084	0.127	0.66	C.2.5.3 No. 5
•	Islands	-•-	0.013	0.0088	1.51	- " - No. 7
Cabbage	Denmai k	- • -	0.14	0.036	3.89	- " - No. 1
Carrot	•	- • -	0.042	0.0104	4.04	- " - No. 3
Apples	٠	- • -	0.037	0.024	1.54	C.2.5.3 No. 11
Pork*	•	- • -	0.20	0.12	1.67	C.3.4.2 No. 3
Beef*	•	- • -	0.43	0.12	3,58	- • - No. 1
Eggs	•	- • -	0.033	0.023	1.43	C.3.6.2 No. 6
Total diet C	•	Bg ¹³⁷ Cs (kg K) ⁻¹	40	28	1,43	C.4.2.2 No. 1
• • P	•	- • -	47**	46	1.02	- • - No. 6

Appendix C.2. Comparison between observed and predicted 137 Cs levels in environmental samples collected in 1983

(cf. note to Appendix C.)

**Exclusive contribution of ¹³⁷Cs from Sellafield. (389 Sellafield, 628 fallout)

APPENDIX D

 d_i :

Annual fallout rate in mCi 90Sr km⁻² y⁻¹.

Accumulated fallout by the end of the year (i) assuming effective half-lives of 90Sr of 27.7 y. Unit: mCi 90Sr km⁻².

di(May-Aug) and di(July-Aug):

The fallout rates in the periods: May-Aug and July-Aug, respectively. Unit: mCi 90Sr km⁻² period⁻¹.

The fallout rate (d_i) was based on precipitation data collected for all Denmark in the period 1962-1983 (cf. Table 4.2.1¹). Before 1962 the levels in the tables were estimated from the HASL data for New York (HASL Appendix 291, 1975)²⁹) considering that the mean ratio between ⁹⁰Sr fallout in Denmark and New York was 0.7 in the period 1962-1974.

The $d_{i}(May-Aug)$ and $d_{i}(July-Aug)$ values were also obtained from Table 4.2.1¹⁾ for the period 1962-1983. For the years 1959-1961 the values were calculated from data obtained from ⁹⁰Sr analysis of air (1959) and precipitation samples (1962 and 1961) collected at Risø. Before 1959, the values were estimated from the corresponding d_i values assuming that the ratios $d_i(May-Aug)/d_i$ and $d_i(July-Aug)/d_i$ were constant in time and equal to the means found for the period 1962-1974, which were 0.54 (1 S.D.: 0.09) and 0.24 (1 S.D.: 0.06), respectively.

	Denmark		Ju	tland	Islands		
	đi	A1(27.7)	di	A1(27.7)	di	Ai(27.7)	
1950	0.021	0.020	0.022	0.021	0.020	0.020	
1951	0.101	0.118	0.114	0.132	0.088	0.105	
1952	0.198	0.309	0.224	0.347	0.172	0.270	
1953	0.500	0.789	0.566	0.891	0.434	0.687	
1954	1.961	2.623	2.152	2.967	1-650	2.279	
1955	2.501	4.997	2.831	5-655	2.171	4.340	
1956	3.101	7.898	3.510	1.939	2.692	6.858	
1957	3.101	10.728	3.510	12.142	2.692	9.313	
1958	4.302	14.658	4-869	16.591	3.734	12.725	
1959	6.102	20.247	6.908	22.918	5-297	17.576	
1960	1.140	20.859	1.291	23.610	0.990	18.107	
1961	1.481	21.787	1.676	24.661	1.285	18.913	
1962	7.428	28.493	7.976	31.830	6.880	25.155	
1963	16.695	44.071	18.453	49.041	14.937	39.101	
1964	10.412	53.136	11.605	59.225	9.139	47.048	
1965	3.954	55-679	4.204	61.867	3.704	49.497	
1966	2.145	56.395	2.166	62.445	2.124	50.345	
1967	1.047	56.023	1.176	62-048	0.918	49.997	
1968	1.403	56.006	1.568	62.045	1.237	49.968	
1969	1.035	55.632	1.241	61.721	0.829	49.542	
1970	1.647	55.863	1.993	62.140	1.301	49.586	
1971	1.506	55.951	1.726	62.288	1.286	49.615	
1972	0.435	54.993	0.457	61.194	0.413	48.792	
1973	0.192	53.821	0.215	59.891	0.168	47.750	
1974	0.710	53.183	0.779	59.171	0.643	47.197	
1975	0.414	52.272	0.452	58.150	0.376	46.397	
1976	0.103	51.082	0.116	56.826	0.090	45.339	
1977	0.384	50,204	0.405	55.827	0.362	44.501	
1978	0.463	49.426	0.538	54.985	0.388	43.867	
1979	0.166	48.379	0.174	53.810	0.155	42.947	
1980	0.116	47.307	0.140	52.620	0.095	41.988	
1981	0.353	46.482	0.379	51.697	0.330	41.272	
1982	0.056	45,388	0.059	50.477	0.053	40.304	
1983	0.0441	44.271	0.064	49.272	0.045	39.352	

Appendix D. Failout rates and accumulated fallout (mCi 90Sr km⁻²) in Denmark 1950-1983

Denmark		Jut	land	Islands		
di _(May-Aug)	đi (July-Aug)	di (May-Aug)	di _(July-Aug)	di (May-Aug)	di _(July-Aug)	
0.01	0.01	0.01	0.01	0.01	0.01	
0.05	0.02	0.06	0.03	0.05	0.02	
0.11	0.05	0.12	0.05	0.09	0.04	
0.27	0.12	0.31	0.14	0.23	0.10	
1.03	0.46	1.16	0.52	0.89	0.40	
1.35	0.60	1.53	0.68	1.17	0.52	
1.67	0.74	1.90	0.84	1.45	0.65	
1.67	0.74	1.90	0.84	1.45	0.65	
2.32	1.03	2.63	1.17	2.02	0.90	
2.50	0.68	2.76	0.75	2.24	0.61	
0.47	0.31	0.52	0.34	0.42	0.28	
0.66	0.47	0.73	0.52	0.59	0.42	
4.223	1.857	4.566	2.052	3.880	1.662	
9.965	5.629	10.753	5.932	9.177	5.327	
6.235	2.568	7.170	2.910	5.299	2.226	
2.029	0.850	2,094	0.052	1.964	0.848	
1.049	0.418	0.984	0.496	1.114	0.340	
0.367	0.141	0.300	0.134	0.354	0.148	
0.848	0.426	0.910	0.460	0.786	0.392	
0.614	0.276	0.723	0.319	0.505	0.233	
0.908	0.547	1.076	0.632	0.740	0.462	
0.992	0.405	1,154	0.516	0.830	0.294	
0.253	0.084	0.262	0.084	0.244	0.084	
0.075	0.033	0.093	0.039	0.057	0.027	
0.421	0.190	0.463	0.219	0.378	0.162	
0.159	0.075	0.179	0.091	0.157	0.060	
0.032	0.010	0.032	0.011	0.032	0.009	
0.178	0.107	0.164	0.085	0.190	0.129	
0.232	0.096	0,275	0.098	0.188	0.093	
0.086	0.030	0.087	0.031	0.084	0.029	
0.063	0.027	0.079	0.031	0.047	0.022	
0.214	0.073	0,215	0.071	0.213	0.075	
0.027	0.0087	0.029	0.0104	0.025	0.0071	
0.016	0.0059	0.018	0,0067	0.014	0,0053	
REFERENCES

- Risø Reports Nos. 1, 3, 9, 14, 23, 41, 63, 85, 107, 130, 154, 180, 201, 220, 245, 265, 291, 305, 323, 345, 361, 386, 403, 421, 447, 469 and 487 (1957-83).
- R.G. Osmond, M.J. Owers, C. Healy, and A.P. Mead, The Determination of Radioactivity due to Caesium, Strontium, Barium and Cerium in Waters and Filters. AERE-R 2899 (1959).
- F.J. Bryant, A. Morgan, and G.S. Spicer, The Determination of Radiostrontium in Biological Materials. AERE-R 3030 (1959).
- 4) John H. Harley, Manual of Standa d Procedures. HASL-300 (1972).
- 5) A. Hald, private communication (1958).
- 6) J. Lippert, Low Level Counting. Risø Report No. 44 (1963).
- 7) P. Quittner, Nucl. Instr. and Methods 76, 115-124 (1969).
- J. Lippert, Some Applications for Semiconductor Detectors in Health Physics. Proc. of the First International Congress of Radiation Protection, 271-277 (Pergamon Press, 1968).
- 9) Meteorologisk Institut, Ugeberetning om nedbør m.m. 1982.
- 10) S. Boulskifte, The application of Fucus vesiculosus as a bioirdicator of ⁶⁰Co concentrations in the Danish Straits. Accepted for publication in Journal of Environmental Radioactivity.
- Folmer Dam and Agnes Elgström, Vore fødemidler (Svegårds Forlag, Sorø, 1968).
- 12) J. Vestergaard, Analysis of Variance with Unequal Numbers in Group. GIER System Library No. 211 (A/S Regnecentralen, Copenhagen, 1964).
- 13) Landbrugssta' istik 1975. Danmarks Statistik (Copenhagen, 1977).
- 14) Fortegnelse over samtlige mejerier og mejeriorganisationer i Danmark (Århus, 1972).
- 15) Statistisk årbog 1972 (Statistical Yearbook) (Copenhagen, 1972).

- 16) J. Lippert, Statdata, Risø-H-1780, June 1975.
- 17) A.Aarkrog, H. Dahlgaard and S. Boelskifte, Transfer of Radiocesium and 90Sr from Sellafield to the Danish Straits. To be published in a TEC-DOC from IAEA under a cooperative programme on the Study of radioactive materials in the Baltic Sea.
- 21) A. Aarkrog, Environmental Studies on Radioecological Sensitivity and Variability with Special Emphasis on the Fallout Nuclides 90Sr and 137Cs. Risg-R-437 (June 1979).
- 24) S.P. Nielsen, In situ measurements of environmental gamma radiation using a mobile Ge(Li) spectrometer system. Risø Report No. 367 (1977).
- 25) UNSCEAR. United Nations Scientific Committee on the Effects of Atomic Radiation. Ionizing Radiation: Sources and biological effects. (New York) 773 pp. (1982).
- 28) Statistisk årbog 1977 (Statistical yearbook) (Copenhagen 1978).
- 31) S.P. Nielsen and L. Bøtter-Jensen, Intercomparison of Instruments for Measurements of Background Radiation, Risø-M-2239 (1981).
- 32) Henning Dahlgaard, Bioindicators for monitoring radioactive prllution of the marine environment. Risø-R-443 (1981).
- 36) Sydkraft: Månadsrapport, and Vattenfall: Rapport över luftoch vätskeburna utsläpp, ... Ringhals. (Monthly reports to the Swedish authorities on discharges from Barsebäck and Ringhals, respectively) (in Swedish).
- 37) R.S. Cambray, Annual Discharges of Certain Long-lived Radionuclides to the Sea and to the Atmosphere from the Sellafield Works, Cumbria 1957-1981. AERE-M 3269 (1982).