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Abstract 

An investigation was made of the possible effect of the boundary layer 

on the lack of separation observed between the shock and the current sheath 

in a magnetically driven shock tube operating under discharge conditions 

of high voltage and low pressure. Since the calculated and the observed 

maximum displacement thickness in the pressure range investigated was 

around 1 mm only, it was concluded that the presence of a viscous layer 

at the wall cannot be of importance. Instead, the observed lack of separ

ation i s most likely due to the leakage of the compressed gas through the 

current-sheath, and to the diffusive nature of the driving current. 
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1. INTRODUCTION 

In magnetically driven shock tubes operating under discharge conditions 

of high voltages and low p res su re s , i. e. conditions where high speed shocks 

a re produced, a lack of separation between the shock and the current-sheath 

i s often observed ' . As a possible analogy a lack of sufficient separation 

between the shock and the contact surface was observed by previous inves

tigators in conventional diaphragm-type shock tubes operating at low initial 
2 3) p res su res * ' . They attributed the observed lack of separation, and the 

associated non-uniformity of the flow, to the mass leakage of the flow 

through the viscous boundary layer at the wall. Since the reported phenom

ena show the same tendencies as those observed in the magnetically driven 

shock tubes, the possible influence of the boundary layer should not be over

looked. 

In this repor t , we first present a brief review of the boundary layer 

effect in conventional shock tubes; this is followed by an examination of i t s 

possible influence on our experiments . Based on the calculated as well as 

on the experimentally indicated displacement thickness , it id concluded that 

the effect of boundary layer cannot be of great importance under our exper

imental conditions. Instead, the observed lack of separat ion is to a great 

extent caused by the lerkage of the mass through the current -sheath and by 

the diffusive nature of the driving cur ren t . 

2. BRIEF REVIEW OF THE BOUNDARY LAYER 

EFFECT IN CONVENTIONAL SHOCK TUBES 

In an idealized shock tube, one assumes all the gas initially occupying 

the region between the position x reached by the shock and the diaphragm 

to be compressed into region 2 between the shock and the contact aurface, 

see fig. 1. Accordingly, the separation distance, A , between the shock and 

the contact surface, and the corresponding test t ime, t , i s given by 

T* */u2 ' W 1 - 1 ) ' *!> 

where u„ i s the flow velocity of the compressed gas, V i s the shock speed, 

and 

V « P2fPy M 
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is the compression rat io. P9 and P . are the mass densities of the gas 

downstream and upstream of the shock respectively. For a given gas, n i s 

a function of V . Consequently, for a given shock speed, one should expect 

the test rime * to increase proportionally with the distance x travelled by 

the shock. 

In an experiment conducted in a shock tube operating at low initial 

pressures (~ I Torr) Duff first noticed that at a given initial pressure p^, 

contrary to expectations, there i s a limiting value of the test time * , i . e . 
2) . . 

T cannot be increased by increasing x indefinitely . He attributed this 

eflect to the mass leakage through the viscous boundary layer at the wall. 

Subsequently, Roshko ' made some further experiments and obtained quite 

good agreement with Duffs ear l ie r results. He also showed analytically 

that fhe maximum test time T is related to the shock Mach number, M_, 
m s 

and tne initial state of the gas by 
Tn ~ P l D 7 G ( M s ) . (3) 

In t\ e above expression 

D = - A / L (4) 

is the hydraulic diameter with A as the c ro s s sectional area of the tube 

and L the wetted per imeter . The function G(M ) is given explicity by 
s ' 

T2 T , * 
G(M l . ± _2 l l ± L , (5, 

where T. and T 2 a re the temperature upstream and downstream of the 

shock respectively. Z 7 is the compressibil i ty factor for the downstream 

gas in region 2, thus 

, kT0 

<VPI = Z; "nf ' ( 6 ) 

For helium, X., is related to the degree of first anu second ionization 

a and £ by 

y- = (' u Q + * )o • ( 7 > 
2 

Assuming the existence of an equilibriuon sta'.e in region 2 , using the 

result of i-'ueks .ind Artmann for o'» and t 2 » w e have calculated G(Mg) in 
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the range of shock Mach number M_ covered in our experiment. (The 

corresponding current-shock speed u_ i s from 1.76 to 7.30 cm/as ) . The 

result i s shown in fig. 2. It should be mentioned that average values of 

Z 2 , H and T 2 /Tj are used in calculating G(M ) by interpolating the data 

of reference 5 between p. = 0. 5 and 1 Torr. 

From eq. (2) one observes that the limiting test time * is proportional 

to the initial pressure p. and to the square of the tube diameter as indicated 

by Duffs earlier experiment. Furthermore, one notices that T decreases 
m 

rapidly with the shock Mach number M , since G(M ) increases rapidly 

with Mg . 

3. ESTIMATION OF THE BOUNDARY LAYER 

EFFECT IN OUR EXPERIMENT 

The following phenomenon was observed in the magnetically driven 

shock tube used in our experiment. When the discharge voltag* is kept 

constant, the current-sheet speed increases as the discharge pressure 

decreases. According to the predication of eq. (3), one would expect the 

separation distance to be smaller at lower pressures than at higher press 

ures. Since this trend was observed experimentally (see fig. 3, ref. 1), 

the possible influence of the boundary layer effect cannot be overlooked. 

A direct check of the theoretical prediction, as given by eq. (3), i s not 

feasible, because an experiment of this kind involves a considerable elong

ation of the electrodes and of the duration of the driving current. Instead, 

we shall resort to the following indirect means. 

The importance of the boundary layer depends on the ratio between the 

displacement thickness b* ' and the hydraulic diameter D, Since in our 

case D s 2 d, where d i s the gap between the electrodes, from eq. (4), we 

have this ratio as b*/2d. According to Mir els ', for a laminar flow« b* 

at a distance 1 behind the shock i s given by 

l ' / 2 
H ) & # • (^-) f ( T , , M B ) , (8) 

where the function f(T1 , M0) can be shown to depend on the free stream 

property of the compressed gas and on two other tanetkma relate* to tfc* 

velocity and the static enthalpy profile of the boundary layer, Thea« latter 

two functions are tabulated by him with respect to the oomprepiejcn, raffr . 

Assuming the existence of an equilibrium state la the freo «tre«am r«gfal* 

behind the shock, and interpolating between the tabulated data of : 
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we can express f(T,, M ) explicitly as a function of the shock Mach number 

M , or, as shown in fig. 3, a function of the current-sheet speed u_. 

Once more it should be mentioned that in evaluating the property of the 

free stream flow in the compressed region, the same average process was 

applied as used in the computing of G(M ). 

The detailed calculation is rather involved and i s not worth presenting 

here , but it should be mentioned that a Prandtl number Pr = 0. 67 i s used, 

and that in evaluating the viscosity coefficient. »g, a relationship 

• » > , MT 2 / T , ) 0 - 6 4 7 (9) 

is used instead of the more accura te Sutherland formula . From the 

figure we notice that in the range of the current-sheet speed encountered, 

the maximum value of 6 " 6 x 1 0 " cm ' *". Since the observed separation 
g» 

distance in the pressure ra rge in question never exceeds 4 cm , even if we 

assume that it occurs ui t i e lowrest discharge p re s su re p. = 0.1 T o r r , we 
obtain (-1) & */'->,i ** ° - ' f r o m efl- (8)-

The above calculation, however, i s based on a viscosity law that is only 

valid for a neutral gas, a more cor rec t way of evaluating the viscosity coef

ficient n., might be to assume the gas in region 2 to be fuily ionized and to 

take the Coulomb interaction into account. 

At the discharge conditio.! V - 13 kV and p. = I Torr from the spec

troscopic data, we may take the average value of T " 2.67 x 10 K and 
17 " -5 e 

n * ?0 and obtain n9 = 8. 28 x 1 0 C .G.S . unit according to the Spitzer 
e 11) 

formula . Since i : is about two o rde r s of magnitude smaller than the 

calculated value based on eq. (9), we should expect that the maximum ratio 

(-1) 6*/2d will 'je reduced to about two per cent when the Coulomb interaction 

is present. The calculation presented here is certainly very crude, but it 

may give a reasonable order of magnitude estimate, as can be seen from 

the differential interferrogram (presented in fig. 4) that the indicated 

boundary layer thickness does not seem to exceed 1 mm. 
4. CONCLUSION 

Phenomenologically, insufficient separation between the shock front and 

the boundary of the driving medium was observed both in magnetically driven 

shock tubes and in conventional diaphragm-type shock tubes running at low 

initial p ressures . 
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Since the displacement thickness is not sufficiently developed at the 

point of observation, both with regard to calculations and to experiments, 

the observed lack of separation in magnetically driven shock tubes cannot 

be caused by the presence of the viscous boundary layer at the wall. To a 

large extent the phenomenon can be attributed to the flow leakage in the 

compressed region downstream of the shock. However, the leakage is not 

through the wall boundary layer, but through the driving medium (the current 

sheath) itself. Furthermore, due to the diffusive nature of the driving 

current in most of our experiments (especially those corresponding to high 

speed shocks) the shock has insufficient time to emerge from the current 

sheath. 
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Fig. I. Idealized trajectories of the currant sheet OC, the luminous front 
oL and the shock 55 in the x -1 diagram. Their arrival time« at a fixed 
location are denoted by tt, t^ and tg respectively. A is the separation 
distance; t • tc - tm is the test time. In a pressure driven shock tube the 
diaphragm is assumed to be located at the origin. 
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Wig. 2. Variation of the tawttee 0(M.» vera* the M M t t a ^ M s * * « , . 
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Fig. 3. Variation of the function f(T,, Mg), eq. (8), with respect to the 

current sheet speed u 2 . p is a reference p r e s s u r e . 
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Fig. 4. Two-wavelength different ial- interferrograms of the plasma region 

behind the shock front. The tip of the probe is at an axial position x * 35 cm 

from the end insulator plate. Discharge condition: Voltage, V • 13 kV, 

p r e s su re p. » 0 . 5 T o r r . Light source, a Q-switched ruby laser, pulse 

duration 30 nsec . Directioi. of motion is indicated by the arrow. 2 cm gap 

between the e lec t rodes . 


