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Abstract 

By means if a fluid description, an investigation is made of 

the spectral structure of turbulence in a plasma confined by a 

strong homogeneous magnetic field. The turbulent spectrum is 

divided into subranges. Mean gradients of velocity and density 

excite turbulent motions, and serve as sources in the production 

subrange. The spectra of velocity and potential fluctuations 

interact in the coupling subrange, and the energy is transferred 
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along the spectrua in the inertia subrange* to be ultimately 

dissipated in a dissipation subrange. Applying the method of 

cascade decomposition, we obtain the spectral laws k , k~ , k 

for the velocity fluctuations, and k~3, k , k~3' for the poten

tial fluctuations, in the production, coupling and inertia sub

ranges, respectively. The Bohm diffusion coefficient is also 

reproduced. Good agreement is found with measured power laws 

reported in the literature. 
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1. INTRODUCTION 

It is now generally accepted that the Macroscopic transport 

properties of partially or fully ionized plasmas may be consider

ably modified if the intensity of the fluctuations associated 

with the collective degrees of freedom greatly exceeds the ther

mal equilibrium value. These collective or "anomalous" prop

erties of turbulent plasmas are particularly important to fusion 

research because they control the plasma confinement. The sub

ject is also of great interest to other branches of plasma 

physics, e.g. astrophysics. 

In the present work we are concerned with low frequency 

oscillations in a non-uniform plasma confined by a strong, hom

ogeneous magnetic field. Such a configuration is known to favour 

(linearly) unstable oscillations of the drift-wave type (see e.g. 

refs. 1-5). For the purpose of investigating the spectra of 

potential and velocity fluctuations, we apply the method of cas

cade decomposition . This choice is not necessarily self-

evident; one could apply an alternative method based on resonant 

wave-wave and wave-particle interaction. Such a method has been 

highly successful in describing certain phenomena in weak plasma 

turbulence ' , e.g. the well known Kadomtsev spectrum, but it is 

4 8) 

not valid in strong turbulence ' . This is by no means sur

prising, as wave-wave interaction may be visualized as quasi-

particle interaction with conservation of energy of momentum. 

When strong turbulence sets in, the identification of a wave as 

a quasi-particle is no longer meaningful. In this case it is 

more likely that the energy is cascaded along the spectrum in 

wave vector space, in a manner very similar to that applied in 

the dimensional analysis by Kolmogorov and Obukhov in their in

vestigations of fluid turbulence (for a review, see Chandrasekhar, 

ref. 9). Because we expect drift waves to induce strongly tur

bulent fluctuations, we apply the method of cascade decomposition. 

We may mention, however, that some authors attempt to evade the 

difficulties of the wave-wave interaction description in strong 

turbulence by introducing a new elementary excitation; for ex

ample, by describing strong Langmuir turbulence by a superposition 

of self-trapped plasma waves or solitons 
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2. THE MODEL EQUATIONS 

The drift turbulence is represented by the following dy

namical model: 

|S + v .(nv) *= o , (1) 

nM(-rr + v 'Vv) + e n (-7* + v x B ) = -V * P . (2) 

As we are dealing with low s plasmas, i.e. B smaller than the 

electron/ion mass ratio, m/M, we consider only electrostatic 

(longitudinal) oscillations. The confining magnetic field B is 

therefore assumed to be constant. Equation (2) for the velocity 

v of icr.s contains the tensor ial pressure £. The effect of finite 

Larmor radia being important for the ion motion only, may be in

cluded in g if so desired ' ' . The wavelengths involved are 

much longer than the Debye length, so that we can assume that 

the density oscillations are quasi-neutral, i.e. n. = n = n. 

We furthermore allow for small but non-zero wavenumbers along the 

magnetic field, i.e. by assuming a large but finite eddy size in 

this direction. The (warm) electrons can then maintain quasi-

neutrality by flowing isothermally along the magnetic field lines, 

and we can assume that the electrons are Boltzmann distributed, 

i.e. 

K Te v n = n e v * (3) 

with T * const. We assume that the ion motion is isothermal 

also, i.e. T. = const. Hence, we reduce (1) and (2) to: 

dt* = - a 7 ' V (4) 

dtv = - av*+ | v x ^ (5) 

_ 3 where dt = '3T + v-'7 t a = / K ( T +T.)/M and i|>= a in (n/n0) 
with n being a normalization constant of dimension density. Note 
that a and <\> have the dimensions of velocity. 

As already mentioned, linear drift waves will have very 
large wavelength components along the magnetic field lines. The 
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ratio between the perpendicular wavenumber, k,, and k,. (along 

the magnetic field) may be estimated from the relations 

vi,th * "/kll < ve,th ' M * k± vd ' 

or 

vi,th/vd < ki/kll * ve,th/vd (6) 

where v. .. and v .. are the ion and electron thermal velocities, 
i,tn e, tn 

respectively, and v. is the diamagnetic drift. With a finite ion 

temperature and a weak density gradient, we can expect strongly 

field-aligned perturbations as supported by experimental obser

vations ' ' . Under these circumstances we can further 

simplify our equations (4) and (5) by considering only components 

perpendicular to the magnetic field. 

By introducing vorticity, ?xv, we can reduce (4) and (5) to 

a two-dimensional Navier-Stokes equation and find a close simi

larity between turbulence in magnetized plasma and in incompress

ible fluids . In this study we shall, however, treat the com

plete system of equations (4) and (5). 

3. CASCADE DECOMPOSITION 

We may rewrite our model equations (4) and (5) in the form 

dt<p = - a 7>L V i (7) 

and 

dt vi " «*c eij vj = "aV (8) 

in the plane perpendicular to the confining magnetic field; w_ « 

eB /M is the ion cyclotron frequency, and 3A = a/ax^, while 

( cAi } » { \ . (9) 
1 3 l-l 0> 

Summation over repeated indices is understood throughout. The 

non-linear system of equations (7)-(8) will be treated by cascade 
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decomposition . As we expect a coupling between various portions 

of a spectrum, we decompose the velocity v into 

v(x,t) = v(x) + u(x,t) (10) 

u(x.t) = u(o)(x,t) +u'(x,t) (11) 

where v(x) is the mean velocity and u and u* represent macro

scopic and random fluctuations, respectively, separated by a 

wavenumber k that serves as an independent variable, u (k,t) 

and u'(k,t) are components truncated within the large and smaller 

scales, respectively. The function t> can be decomposed similarly. 

This decomposition may in principle be continued with u', etc., 

infinitely, leading to a hierarchy of equations forming the basis 
16 18 19) 

for the repeated cascade theory ' ' . In this work, however, 

we shall limit ourselves to a single decomposition. 

The two components in eq. (11) can be screened by an en

semble average 

< >k <12> 

scaled at kj this procedure derives the equations for u , u', 

ii and i*' from eqs. (7) and (8) as follows: 

Dtui wceijuj uj 3jvi a3i* <u j3jui--<13) 

V < 0 ) = "uj(°>3J * " o 3 j u j ( 0 ) -< u , 5 3 j * ' > (14) 

dtU'i-MCEijU,j = -«V ,- U ,8 aB (V Ui < 0 , ) + < U ,J 3j U ,i > U 5 ) 

d.^' = -aS.u'. - U* 3 (? + <i(0) ) + <U'. 3 . *' > (16) 
t J J S S J J 

where D.=9t + (v + u ' ) * v as distinct from dfc defined earlier. 

For brevity, we omit the index k on the average sign. 

In order to form correlation functions from eqs. (15) and 

(16) we write 
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. t t 
u i " - ( V V " u i )}f dru (ttt-t)u

I(t-T)+£ JdxUjtgb-Djr'^t-T) 
o o 

(17) 

t t 
»' « -(»«(••• ))/ dTU(t,t-T)U' (t-T)-a3 / dTU(t,t-T)u'.(t-T) 

s o s o 

(18) 

where 

| £i = -»»i* , (19) 

obtaining 

t 

o 

(20) 

u'. 3 .u« > = -<u« 3 ( 3 (v.+u. l°')) / dtU (t,t-T)u* (t-T)> 
J J A J J » A A O 

e ,fc 

+ | < u y . / dtuw(t,t-T)ri(t-T) > , 

t 

f 

o 

and 

<u'. 3.*'> = -<u'. 3.(3e(H-+*
(0))) / dTU(t,t-i)u' (t-x) > 

J J J J s Q s 

t (21) 

-O <U'. d.Zi f dTU(t,t-l)U,
i(t-T) > . 

o 

The propagators U and U give a Lagrangian representation to 

the functions following them. Note that U contains the effect 
u _ # . 

of the magnetic field. The macroscopic quantities, v. + u., 

and ^ + ii are taken outside the integral sign, because they 

vary slowly, as compared to the random fluctuations. The last 

terms in (15) and (16) do not contribute to the correlations (20) 

and (21) and are therefore omitted in (17) and (18). 

Now we assume that a flux of transport is proportional to 

the gradient of the macroscopic quantity transported, following 

the transport theory of non-equilibrium thermodynamics. Under 

these circumstances, we reduce (20) and (21) to 
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<u'. a.u' > = - 3.K«. 3 (v. • u.Co)) (22) 
J J * J J* » x x 

(23) 

by neglecting transports by cross-diffusions. Here 

t 
K\« • / dt <u'. (t,x) U (t,t-T)rfft-t)> (24) 

JS Q J • • 

t 
X'js = f dT <u j (t'x) O^.t-f)"', (t-T)> (25) 

are diffusivities in the presence and absence of the magnetic 

field, respectively. 

In locally homogeneous turbulence, the transport coefficients 

(24) and (25) can be assumed to be independent of position and 

simplify (22) and (23) to 

<u j 3 j u i > s - K'js V s ^ i + u i < 0 ) ) < 2 6 ) 

<ur a •• > = -A j 8 » j V * • *
(0)> • (27) 

We should emphasize that the fluxes (26) and (27) are of the 

gradient type contributing to the transfer across individual 

spectra of u and 4> fluctuations. However, there are correlations, 

such as <u'°'£to'> and <u'2'>, which play the role of a coupling 

between the two spectra and will therefore be of non-gradient 

type. Thus by multiplying eq. (17) by j« £' and averaging we 

obtain 

t 

! < s , i u i > = w IdT K*\ ( t 'x ) °«< t' t-T> fc'i ( t-T)> ,e,2 

o 

(28a) 

" S 3S ( Vi + Ui ( 0 ) ) / dT ^ i (t,X)0w(t,t-T)u's (t-t): 
O 
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For the reasons Mentioned above, we expect that the first 

tern in (28a) is predominant, as it is essential to the coupling 

between the two spectra, and that the last tarsi is negligible. 

A similar expression for «£*0,u?0>> can be obtained fro* (28a) 

g<rl0,uj0)> » eg)2 /dt<2j0,(t.*) ujt.t-Ti£j0,tt-,i» 
o 

= D(0)(t,x) . 

The quantities nr and \\ are eddy-viscosity and eddy-dif-
J* 3* (o) 

fusivity in x-space, i.e. physical space, while D is an eddy-

diffusivity in velocity space. 

He may reduce U to U, appearing in (24) and (28b), as 

follows: 

t 
*;«<t,x) - / dT <ul(t,x) U(trt-T)u;(t-T)> cose T (2*) 
3* J_ J » c 

and 

D(o)(t,x) - (g)2 / dT <£{
o)(t,x) U(t,t-x) ?rJo)(t-x)>cosvcT 

(30) 

Since «c is large we only get a significant contribution to 

the integral from a small region around t \. 0, and because 

U(t,t) = 1 we can write (29) and (30) approximately as 

K'. (t,x) = £2S2£<<u'(t,x) u'(t,x)> , (31) 
}s «c 3 » ' 

and 

D(o)(t,x) - Z2*± (f>2 <(c-i0)(t,x))2 > . (32) 

A more rigorous treatment would require a determination of 

U and U by repeated cascade . We believe, however, that 

the approximate expressions (31) and (32) are sufficiently ac

curate for our purpose. 

In order to obtain the equations for energy balance we now 

multiply eqs. (13) and (14) by uj°' and • , respectively. By 
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making use of eqs. (24)-(27), and after averaging, we obtain 

V0)DtV0)> - «j?». W i + D(0) + K J S < U 1 0 ) V D U 1 0 ) > -
(33) 

and 

:*(0) Dt^°>> = *£
)».*j#W°^j»j

0^**j.«»(°)a3»j* <°>> 

(34) 

We have applied expressions for <u! u! > and <u^ '* '> 

that are obtainable in the same way as (26) and (27) using eqs. 

(13) and (14) as in eqs. (20) and (21). This operation involves 

lc!o){t,x) and Ai°}(t,x) in a form similar to (24) and (25) but 
Js th 3 

with a zero rank. Making use of the identities 

<ui V j u i " " 1 V j <(ui } y <3sui 3jui > (35) 

- • (o> a a J o ) N _ l a . ^/,,(o)»2^ _ ., . (O) (O) „ ,,,, 

and 

a<*(°) 8jUi°)> _ 03 .<ii(o)ji(o)> _ a<a(o) 3 ,̂  (o)> 
3 (37) 

- a 3 j<uj°y
0 )> + D<°> 

we rewrite eqs. (33) and (34) as 

<u{°>otU(°>>. « £ V i ' j * i * °(°' + K;, $. , . , «u<°>,2> 

f o l f « l < 3 8 > 
- K! < 3 u 4

( o , 3 . u j o ) > j s s i ] i 

<*<°>Dt*
lo)> » xj°>3 s f a ^ - D ( O > - B a ^ u j 1 ^ * ^ > 

(39) 

+ *IBI V j * (* ( 0 , , 2 > - » 3 . < v ( 0 ) v ( 0 ) > • 
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The first term in (38) and (3?) is a production function, 

the second represents a coupling, while the last term accounts 

for the transfer across the spectrum. The remaining terms arise 

from non-equilibrium and inhomogeneity. In the universal range 

of the spectrum, which we will consider in the following, these 

terms will not play any role. They are important, however, in 

the non-universal range. The gradients of 7v and vf represents 

inhomogeneities. 

In the following, we assume tnat the traces in the dif-

fusivity tensors are mort important than the off-diagonal com

ponents, reducing the production functions to 

puo) E K j : ) a s W i 2 K ( 0 ) ru (4oa) 

p(o) s A(o)a ^ -̂  s x(o) r2 ( 4 0 b ) 
* ]S S J l|> 

and the transfer functions to 

T(o) =- K« < 3u.(0)3,u.(0)> 2 K- R<0) 

u ]s s i ] i (41a) 

<0) * >U 0.»(0)»y0)> * A' Ji0) (41b) 

i> js sT iT 

with 

ru H (3jvi)2 ( 4 2 a ) 

rj = Oj?)2 (42b) 

and 

R ( O ) H <0.Ui
(0,)2> (42c) 

J ( O ) H <Oj<(
(o))2> . (42d) 

With these definitions, the energy equations (38) and (39) 

become 

<u<0) Dt u<
o)> = P^0) • D ( o ) - ^C) (43) 

<*(0) D ^ ( o ) , - pj°> - D ( 0 ) - T<°> . (44) 
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These equations form the framework for our spectral analysis. 

4. SPECTRAL STRUCTURE 

4.1. Classification of Spectral Subranges 

We shall distinguish between universal and non-universal 

ranges in a spectrum and shall be concerned with the universal 

range exclusively. We can subdivide the universal range into 

production, coupling, and inertia subranges. The individual sub

ranges are investigated separately. 

4.1.1. The Production Subrange 

Mean gradients of velocity and potential will feed energy 

into the fluctuations for further transfer across the individual 

spectra. In order to describe this transport explicitly we write 

the energy equations in the following differential form 

P2 K(0) - K- R(o) - K« R(o) = 0 (45) 

rj A(O) . *• j(o) _ y j(o) = 0 (46) 

obtained by retaining the production and transfer functions in 

(43) and (44). The upper dot represents a differentiation with 

respect to k. Introducing the spectral distribution F(k) and 

G(k) of u and • , such that 

f <(u|0))2> = / dk' F(k') (47) 
o 

^ <(#(o))2> m J dk, G(k,j {48) 

o 

we have 

k R<0) = < Oju|°
,)2> » 2 J dk' k'2 F(k') (49) 

o 

j ( o ) = < 0 ^ ( 0 ) ) 2 > - 2 / dk' k'2 G(k') . (50) 
J o 

As the production occurs at low wavenumbers we may neglect 

the last terms in (45) and (46) on account of small R(o) and J(o) 
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The simplified equations then become 

1-2 K<o) = K« R , 0 ) , (51) 

rj JCo) . x. j(o) {52) 

yielding the solutions 

F(k) = const.Ty k"3 , (53) 

G(k) » const.r? k~3 . (54) 

We shall not attempt to determine the numerical constants. 

4.1.2. The Coupling Subrange 

The governing terms in this subrange are the coupling and 

the transfer functions. From eqs. (43) and (44) we have 

D ( o ) - T ( 0 ) = - ( 5 5 ) 

-D<°> - T<°> = - % (56, 

or with the substitution of (19), (31) and (32), 

>c J
(o) - K- R ( o ) - - cu (57) 

-A„ J<0) - A« J<0) - - cd (58) 

c 4> 

where e and e are the rates of energy dissipation from u and f 

fluctuations, respectively, and 

Ac = const. o2/«c (59) 

20) 
is found to be the Bohm diffusion . In order to describe the 

exchange processes more explicitly, we again rewrite (57) and (58) 

in differential form 
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1 J<o) - K« R(o) - K« R<o) « O , (60) 
c * 

-Ac j
( 0 ) -x"- J{o) - X' J(0) » 0 . (61) 

Because the + spectrum is dissipated at a rate controlled by the 

Bonn diffusion, we can introduce the following approximations 

R(o) = 0, J(o) = J and x' « »c . 

These approximations reduce (60) and (61) to 

Xc j
( 0 ) - K' R(0> « 0 (62) 

. ;(0) . £f T n (63) 
—A J * J * 0 

or, after addition, 

-K' R(o) - i' J - 0 . (64) 

Substitution of (31) into (64) gives 

<u'2> R(o) 3 X' ° ' 
(65) 

where 

w* = «„ J . (66) 
o c 

As the left-hand side of eq. (65) is a function of F and k 

alone, we ottain the solution 

F(k> - const, w* k"3 . (67) 

On the other hand, eq. (62) gives, by the definition (31) i 

2 
2 k2 G(k) - const. *"' > R(0) , (68) 

*c*c 

On substituting the solution (67) for F(k), we find, from 

eq. (68), 
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G(k) = const. U*/A„uvJk-5 (69) 

corresponding to a spectrum for the electroste*"ic field 

G Ik) = const. <a2»*/i u. )k'3 (70) 

which is defined so that 

\ (e/M)2 < £^o) > = / dk'G^k') . (71) 
o 

He can conclude that the ^-spectrum (69) falls off much 

faster than the u-spectrum (67) in the present subrange, because 

the Bohm diffusion is effective in the ^-spectrum only. 

4.1.3. Inertia Subrange 

The inertia subrange is characterized by a constant transfer 

of energy across the spectrum, i.e. from eqs. (55) and (56) 

Tu<
0) = cu (72) 

V°> = % (73) 

or, with the definition (41), 

K' R(o) - eu, (74) 

»' J(0) - % . (75) 

In terms of the spectral function, (31) takes the form 

K' - C O n s t / dk' F(k') (76) 
wc k 

which combined with (49) permits us t o rewr i te (74) as 

c o n s t / d k ' F ( k ' ) 2 / dk"k"2F(k") * e , (77) 
wc k o u ' 



- IB 

or 

or 

° / dk'F(k') 
k 

After differentiation with respect to k, we obtain 

J,,.., _ cu"c P(k) .-,. 
2 const. r • <.2 

J dk'FU')] 
L k 

/ dk'F(k') = < cuw</2 c o n s t ^ 1 / 2 fcl • 1>0> 
k 

Differentiation of (80) finally yields 

F(k) = (£u«c/2 const)
1/2 k"2. (81) 

On substituting (81) into (75), we obtain 

G(k) = const. f ±>i k " 3 / 2 . (82) 
(eu"c> 

As the * spectrum is quickly dissipated by Bohm diffusion, 

as mentioned in section 4.1.2, we may expect under certain cir

cumstances that the inertia subrange (82) may not be fully 

developed. 

5, CONCLUSION 

For comparison, we collected data on turbulent spectra re-
13 21-28) ported in the literature ' '. In most experiments the 

spectra are measured as a function of frequency rather than 

wavenumber, thus introducing the problem of Eularian-Lagrangian 

transformation. This can be solved by a generalization of the 

expressions (29) and (30). In this connection, if the streaming 

velocity included in the propagator U predominates, we obtain a 

linear relation between the spectral functions in w and k spaces. 
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This amounts to Taylor's hypothesis, or frozen turbulence, which 

is very widely accepted in the interpretation of turbulence 
29) 

measurements in plasmas and fluids 

It will be noted that several of the measured spectra refer 

to density fluctuations, while our model equations (4) and (5) 

indicate that velocity and potential fluctuations are more easily 

tractable quantities for theoretical analysis. Under most ex

perimental conditions ' the measured spectra of density and 

potential have quite similar structure. 

Figure 1 shows spectra obtained in conventional Q-devices 

reproduced from refs. 23-25. The reported spectra show amplitude 

variation as a function of frequency, so the spectral index should 

be multiplied by two before comparison with the theoretical pre

dictions. He emphasize the measurements of refs. 24 and 25 where 

a large ExB rotation of the entire plasma column renders Taylor's 

hypothesis effective. 

Figure 2 shows turbulent spectra for the density fluctuations 

obtained in a hot-cathode reflex arc (ref. 13) and the Etude 

stellarator (ref. 21j. Spectral measurements of the fluctuating 

electric field in the Zeta discharge (ref. 22) are shown in fig.3. 

Finally, fig. 4 shows a spectral analysis of turbulent 

density fluctuations in barium plasmas released in the upper 

atmosphere (ref. 28). Because the data were reduced by some 

photographic technique it was possible, in this case, to present 

the spectrum as a function of wavenumber. 

In conclusion, we summarize the comparison between theory 

and experimental results as fellows: 

a) Production subrange. The predicted spectral index a = 3 

for potential fluctuations is well demonstrated on figs. 

1 and 4. On fig. 2 this index is not so clearly presented, 

but also here the spectra are consistently flatter (rather 

than steeper) than in the coupling subrange. We note that 

the measurements reported in ref. 25 fit well with the 

expected spectrum for this subrange even though the B-field 

was rather inhemogeneous in this experiment. 

b) Coupling subrange. We find the spectral shape of the 

density fluctuations shown on figs. 1-4 to be in excellent 

agreement with theoretical predictions. (See also ref. 13). 

The measurements reported in refs. 26 and 27 (not shown on 
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figures) add further weight to our results. In particular, 

we note that the power spectrum of the fluctuating electric 

field in Zeta (see fig. 3) agrees with the theoretical 

predictions for this subrange, 

c) Inertia subrange. Unfortunately, we have only been able to 

find one measurement that also covers this subrange (see 

fig. 1 and ref. 24). Even this measurement shows only a 

portion of the spectrum. We find good agreement with 

theoretical predictions for this single case, but we should 

like to emphasize the comment made in subsection 4.1.3; in 

certain circumstances the inertia subrange of the potential 

fluctuations need not be fully developed. 

We thus feel, on the basis of the arguments and measure

ments presented here, that our theoretical predictions for the 

spectral shape of the potential fluctuations are in good agree

ment with experimental results. We find it particularly com

forting that our data refer to widely differing experimental 

conditions and not to one particular device. To tho best of our 

knowledge, experimental results for the velocity fluctuations 

are not yet available. An investigation of our predicted param

eter dependence of the turbulent fluctuations will also have to 

await future experiments. 
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