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ABSTRACT 

The theory of the slowing down and thermalization of alfa-par-

tides created in and slowed down by a plasma considered as an 

undisturbed thermal bath is re-examined. The considerations 

are limited to a homogeneous, isotropic plasma. Also the alfa-

particles are considered as a density-wise negligible component 

of the plasma. Under these circumstances, all essential parts 

of the theory can be studied analytically. Thus all standard 

approximations can be studied with precision. However, the con

clusions do not differ from numerical results earlier obtained 

by numerous authors. In this sense the present paper must be 

considered as a review based on analytical methods. 

The standard approximations referred to are such as the neglect 

of the variation of the Coulomb logarithm with velocity, the 

influence of quantum-mechanical effects, the significance of 

the impact parameter cut-off (the Debye length), and the assump

tion of a Maxwellian plasma. Some of these effects have been 

examined analytically by other authors. However, the present 

work shows that the Fokker-Planck equation can be solved without 

the aid of computers for the simplest set of standard approx

imations. The result thereof is a determination of slowing down 

rates and rate of growth of energy spread and thereby thermal

ization of the alfa-particles. 
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INTRODUCTION 

The theory of the slowing down of energetic particles in a plasma 

has been re-examined in view of the ultimate goal of the JET ex

periment , i.e. the investigation of the slowing down of alfa-

particles resulting from deuterium tritium fusion in the JET 

plasma. Such an experimental investigation is planned as one of 

the last exercises to be conducted on JET. 

The slowing down of energetic particles in a plasma is described 
2) 

in the classical paper by Rosenbluth, MacDonald and Judd . Sev
eral authors have repeated and expanded such studies. However, 
the present paper will quote but a few . 

Computations of friction and diffusion coefficients from the 

theory of Coulomb collisions are carried further than usual in 

the sense that the various causes of the possible variation of 

the Coulomb logarithm, log A, are examined in detail. The results 

are, however, as expected. For parameters of interest to a thermo

nuclear plasma, neither variations of temperature, density, Debye-

leggth cut-off, nor of the precise point of transition to quantum-

mechanical considerations are of great significance for the fric

tion and diffusion coefficients (except for the obvious scaling 

laws resulting in the log A = constant approximation). 

In this same approximation (log A = constant) and neglecting the 

so-called small terms in the diffusion coefficients, and for a 

homogeneous, isotropic and thermalized plasma, the Fokker-Planck 

equation may be expressed in a particularly simple form permit

ting considerable insight using analytical methods and avoiding 

numerical work. A certain number of simple explanations thus 

become evident. 
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THE INITIAL SITUATION 

The initial situation consists of the creation of an alfa-par

ticle through the reaction 

D + T •* a + n (1) 

We assume this to happen in a homogeneous, isotropic and elec

trically neutral plasma consisting of equal densities of deu

terium and tritium, i.e. 

nD = nT = n e / 2 (2) 

with n , n , and n being the deuterium, tritium, and electron 

densities, respectively. 

The alfa-particle created in reaction (1) is born with a kinetic 

energy of E =3.52 MeV in the rest frame of the reacting deute

rium-tritium system. We could, of course, easily transform to 

the laboratory system and obtain an initial distribution of alfa-

particle energies including the Doppler-broadening resulting from 

the thermal motion of deuterium and tritium. However, we shall 

simplify and assume an initial situation describable in terms of 

a delta function in energy at 3.52 MeV. 

We shall, as mentioned, assume that the alfa-particles have a 

negligible influence on the plasma at large. Thus the velocity 

distributions of the electrons and the tritium and deuterium 

components are constant in time. We use the notation P.(v.) for 

the i component and normalize to unit density 

J Pi(vi) v2
idv± * 1 (3) 

o 

The velocity distribution F(t,v) of our alfa-particle depends 

on time, t, and it is precisely this development in time that 

we wish to study. At time t • 0 we have, as mentioned above, 
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F(o,v) = ij 6(v-v ) (4) 
v 
o 

where v is the alfa-particle velocity corresponding to the kin

etic energy of 3.52 MeV, as mentioned. 

It is of considerable consequence that the initial velocity of 

our a-particle is typically slightly less than the average elec

tron velocity but very much greater than the average ion velocity 

for the plasmas of interest (average particle energy of a few 

keV). This is due to the smallness of the mass ratios M /M_ etc. 

The point in question is illustrated in Fig. 1, which shows vel

ocity to energy relations for e, D and T and where the initial 

a-particle velocity is also indicated. 

As a consequence the a-particle is initially cooled by the elec

trons only. As can be estimated following, e.g., the discussion 

4) 

of Sivukhin , the energy loss to electrons and ions breaks ap

proximately even for E S 20 E for a 50%-50% DT mixture. This 

characteristic velocity is also marked on the figure*. From this 

it is evident that high plasma temperature shifts the energy 

dissipation so as to deliver a larger fraction into ion heating. 

However, it also slows down the energy loss in time. 

•See also eq. (56). 
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Fig. 1. The figure shows velocity divided by velocity 

of light, c, vs. kinetic energy -j Mv . Also shown is 

the initial velocity of the a-particles from DT fusion. 
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THE FOKKER-PLANCK EQUATION 

The Fokker-Planck equation appropriate to our slowing down prob

lem can be written as follows (in Cartesian coordinates in vel

ocity space) 

| | . [ [ - v ( F . y +£v1VF-Dik)>] (5) 

with the friction on the component 8 (for D, T and e) given by 

A o=A<
6 )(v)0 (6) 

and the diffusion on species 0 given by 

D(e) = D<6) 1 + D(6)0 v (7) 

Dik ul = + D2 vivk 

A A A 

with the notation v for unit vectors, and v.v, being the dyadic 

formed by two unit vectors. The form of eqs. (6) and (7) is a 

consequence of homegeneity and isotropy. Only one direction is 

specified in space, i.e. that of the a-particle velocity v. 

Thus any vector coefficient must point in the direction v and 

any tensor must be describable as an ellipsoid with one compo

nent parallel to v and one perpendicular to v, the latter with 

azimuthal symmetry around v. Such a tensor can be written in 

the form (7). We now note that F, A, D. and D depend on the 

numerical value of v only. Carrying out the differentiations 

involved in (5) through v (or using formulas from curvilinear 

geometry) we obtain 

3 t " ^ L " ~ ? " 5 7 ( v F A ) + I ~ " Z " 5 7 v " 5 7 (FDl > a L v v 

+ i ^ l ^ (V2PD(6))] ' (8) 
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where the coefficients mist now be specified. 

THE FRICTION AND DIFFUSION COEFFICIENTS 

Ne calculate the friction and diffusion coefficients from binary 

collision theory for Coulomb encounters. A test particle (our 

»-particle) of velocity v., mass M, and charge Z. collides with 

a field particle (any one of our plasma particles) of velocity 

v_, mass Mj and charge Z,* T n e differential cross-section is 

given by 

Z2Z2e42»dcos8 
do(e) x _*| (9) 

IJ w (1-cose)' 

where e is the scattering angle in the centre of mass (CM) system, 

u is the reduced mass 

» • w??r2
 (10) 

and w is the relative velocity 

2 2 2 w = v. • v, - 2v1v2cos$ (lx) 

with * the angle in the laboratory system between Vj and v2. 

Thus we must compute the transition-probability-averaged vel

ocity increments per unit time 

A(2) (Vj) » / (Avx , , ) ( 2 ) P(v2)v
2dv2- \ dcos* n2wd'» (12) 

D l+ D2 * f [ ( A v l l | , ( 2 ) ] p < v 2 , v 2 d v 2* 1 d c o * * n2w d° {1J) 

D1+3D2 * J [<Av 1 ) ( 2 > ] P(v2)v2<?v2. | dcos* n2wdo (14) 
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with the velocity increments obtainable fro* the laws of the 

conservation of energy and momentum. 

CONSERVATION OF ENERGY AND MOMENTUM 

The variables introduced so far (v2, * and 9) are carefully 

chosen so that their physical regiers 

6 . < 6 < H (15) 
•in — — 

0 < # < w (16) 

0 <_ v2>< - (17) 

are independent of all azimuthal variables. This is possible be

cause of isotropy ar.d homogeneity. Figure 2 illustrates the Car

tesian coordinate systen with v^ as the first axis, the second 

axis in the plane containing v, and v 2
 s o that the third axis, 

e 3, lies in the direction of the vector product v^ * v 2. We in

troduce a unit vector a in the 1,2 plane and perpendicular to 

the relative velocity w = v. - v"2, and we note that the impact 

parameter "p lies in the a, e, plane. Let F,2 be the relative 

distance of the two particles before the encounter, and let * be 

the azimuthal angle of r.2 projected onto the a, e, plane. It 

then follows that 

p - acosti> + e\sin<i (18) 

Because of homogeneity, • is a trivial variable with the inde

pendent physical region 

0 < »» <_ 2it (19) 

and with the constant probability distribution JJJ- per unit in

terval d<> (transition-probability 1 per unit d * ) . 
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-v« 

Fig. 2. A convenient coordinate system. The unit vector 

e3 goes out of the plane of the paper. All other vectors 

shown lie in the plane of the paper. 

Conservation of energy and momentum tells us that elastic colli

sions lead to a change of the direction of w by an angle (which 

we call 9) in the plane containing p and w, and when the process 

is considered in the CM system. Thus we transform v^ from the 

coordinate system of Figure 1 to the CM system, rotate by the 

angle 6 in the w, p1 plane and transform back again to the origi

nal system. We subtract and have 

M-
Av, Mj+M-

(w(l-cos9) - wpsinS) (20) 
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Because of homogeneity and isotropy, our interest in this expres

sion is limited to finding transition-probability averages of 

(Av^) . - , (Av^) and ((Av.)..) , yielding simply 

M2 1 
(Av^) . | = ! (v1~v2 cos<J>) (cos9-l) + v2sin4>cosiJJSin9 (21) 

leading to averages over ijt as follows 

— M2 
< ( A V 1 ) I ̂ ^ = MTTM;

 ( vr V2 cos*)(cose-l) (22) 1 " 2 

and 

M 
( A vl>fl^ * ( M ^ ) [(w2 - \ v2 sin2*)(l-cos6) 

2 

2 2 
+ v- sin <|»(l-cose) 

(23) 

together with 

< ( A V 1 ) 2 > * = ( ^ ) 2 2w2(l-cos9) (24) 

appropriate for insertion into eqs. (12-14). 

Before we carry out the integrations, we return to the physical 

region of 9 as given in eq. (15) . Here we introduced the cut off 

9 . in order to avoid the divergency in the integrals over do 

as given in eq. (9). 

THE COULOMB LOGARITHM 

In the following we shall encounter two types of integrals over 

9, namely 

h - C £sHé - ^ (pcsfr-) -** I ; *• * <»> 
- 1 x min ' 

and 

1-e 
I , = / dcos9 = 2 - E (26) 

1 - 1 
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Because of the rather large values of log (2/e) that will be en

countered (̂  50), we call terms containing I, the large terms 

and those containg I. the small terms. In eq. (26) we shall simply 

neglect e because that is only a correction to small terms. The 

result of eg. (25) is the Coulomb-logarithm. This integral con

tains a considerable amount of difficult physics connected with 

the fact that we talk only of binary collisions and neglect col

lective motion in the plasma. Furthermore, we look at the test 

particle along an average (eikonal) orbit and neglect its meander-

ings. For these reasons it is customary to consider the cut off 

where the impact parameter equals the Debye length, i.e., the 

length where the effect of a single charge is shielded by col

lective adjustment to average neutrality. The Debye length is 

given by 

A kT/(8irne ) (27) 

with T the plasma temperature and k the Boltzmann constant. We 

then have (from the scattering law) 

e 
tg 

min 
n n 2..1 2, 
1 2e ^1 ww ' 

2TT (28) 

and 

log A = log fl + f - 1 ) 
v L 2 / , l 2 J ' Z l Z 2 e / (I pw * 

(29) 

dependent on w. 

For large velocities, w, quantum-mechanical effects set in. They 

can be taken into account by replacing eq. (29) by 

log A = log 11 + 
( ' n7Tl 

(30) 

where B is Planck's constant divided by 2TT. Equation (30) should 

be used when 

.2 

(31) n >
 Zl Z2 e 

™ \\yJ 

It is now evident from the fact that the values of log A that we 
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1 2 

shall encounter are large, and from the fact that -= yw has char

acteristic values, say, of order kT*, that even relatively large 

variations in w change log A by relatively small amounts. For 

this reason, it is customary to take log A outside the integral 

t»nd calculate it as an approximate average. We shall study the 

results of this in detail in appendix B. However, our next step 

will be to let a rough average of log A enter into the character

istic scaling laws for our problem. 

SCALING THE FOKKER-PLANCK EQUATION 

We now introduce a standard case to which variations of the com

putational approximations shall be referred. We assume that there 

is one kind of field particles only, and that their velocities 

have a thermal distribution P(v_), and we extract the Coulomb 

logarithm from the integrals. At the same time we transform all 

velocities according to 

u = / ^ v (32) 

and wr i te (v , , v-r w) •» (u , , Ujr u) . We a l so transform time t 
as 

T = Z?Z2,e4n, U - l n A) * ( M 2 / ( k T 2 ) ) 3 / 2 / M ^ t (33) 
1 2 2 \iSi 

Introducing all this into the Fokker-Planck equation (8) and 

into the definitions of the friction and diffusion coefficients 

through eqs. (9), (12-14) and (22-24), we find 

3 1 2 
•Still better of the order of (̂  kT + -j w^), but we deliberate
ly neglect this v, dependence. 
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K-Jlls[^»V*-2|s««»-|!«-H <"> 
with J2, G and H being the functions that scale, and which are 

given by 

2 

J2 = / ~ e 2 u2du2 -| dcos* (u^UjCOs^/w
3 (35) 

/Tf 

G = (J1-J3)/2 + small term (36) 

H = (J,-3J3)/2 + small term (37) 

2 

Jx = / — e 2 u2du2 \ cos* 2u2/w3 (38) 
-u. 

2 

J3 = J -^ e
 2 u2du2 i dcos* u

2sin 2Vu 3 (39) 

Neglecting small terms, we find a few useful relations* (see ap

pendix A) 

G - H = J3 (40) 

J2 = U1J3 (41) 

and 

k J3 - ¥ - "2uJ3 (42> 

which permit us to write eq. (34) in the following form (for a 

one-compone»it plasma) 

3F i a_ 
3T

 = "~2* 3u °2j3 [fe p + 2u HJ F]] • (43) 

*Eq. (42) can be generalized to an arbitrary velocity distribu

tion for the field particles, see eq. (76). 
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This equation shows that the equilibrium distribution of the o-

particle velocity when slowed down in a thermal "bath" is ^ 

-u2M1/M2 

e , i.e. a Naxwellian with tne temperature of the "bath", 
as is seen by reintroducing v through eq. (32). 

Thus we have found that our approximations (log A = const, 

neglect of small terms, and eikonal treatment of friction and 

diffusion as binary collision effects) still permit exact ther-

malization to be contained in the formalism. 

SOLUTIONS TO THE FOKKER-PLANCK EQUATION 

In the following we shall solve eq. (43) with its initial value 

problem as described above. We shall use the momentum method. 

We find quite generally 

- i' u2n+2Fdu = /" u2n k (u2J3 fø F • 2u Ji FJ) du (44) 9 
77 o 

For n = 0 this simply means constancy of the normalization inte

gral since the right-handed side can be integrated directly and 

yields zero because F vanishes rapidly (as e~u or faster) for 

large n, and because both F and J3 are well-behaved for u •» 0. 

We normalize to unity and have 

/ u2Fdu - 1 (45) 
o 

Next we integrate in eq. (44) by parts (twice) and introduce the 

normalization (45). We may then write for the 2n moment 

3_ _ 2n^ _ 3 r ..2n+2 
9T 

<u'»> = « / u*"T'Fdu 
3T ' O 

= _ 4n ~ / u2n+2J3Fdu + 2n / F[2n+l)u
2nJ3 + u

2 n + 1 |j Jg]du 
2 o o 

(46) 
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This equation can now be solved in the cases of interest 1) the 

case where F(u) is significantly different from zero for u < 1 

only, and 2) the case when F(u) is significantly different from 

zero near u only and where u >> 1. We begin with the first 

case which corresponds to electron-cooling of the ot-particles. 

The second case corresponds to cooling by the ions. 

ELECTRON COOLING 

When we are interested in small values of u only, then we may 

use the power series expansion of J-, 

J, - l —-| •, x u (47) 
3 Æ m=0 m' 2 m + S 

When this is inserted into eq. (46), we obtain an infinite set 

of linear first order differential equations relating all the 
2 

moments of u . We note that higher moments contain faster time 

constants through the factor 4n contained in the right hand 

side of eq. (46). Thus the longest time effects are included in 

even the most drastic truncation of the set of equations*. We 

thus use the crude approximation only leading to 

3 . 2^ 16 M l f3 M 2 , 2^ . 1 ,jft. 

» < „ « > . « L £ [| £ <u2> . ̂  + .. ] (49) 
3 T 3/7 M 2 L 2 Ml J 

which are easily solved. Assume the initial situation to be 

u = u., i.e. a fi-function distribution. Then 

•This statement is justified in detail in Appendix C. 
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4 2 2 <u > - <u > 

= 2 ~ (l-e X ) ' '" 3 A - X 2 

Mi 

[,2 3 M2. - ^ ^ / ( . / T I M ^ 3 M2 , 

[ mo 4 M x
; e + 4 M ^ J 

(51) 

Note that the truncation is a truncation in both powers of u 

and of M2/M,. Note that the truncation has been done in such a 

fashion that the final equilibrium situation obtains, since we 

know that this is correct to all orders. The results are conse

quently correct both at T = 0 and for T •* ». We have neglected 

small term phenomena of short "decay" times. 

Physically, we find the "decay" time 

t -4/1 
(kT2)

3/2M1 
4 " I "7= 2 2 4 (52) 

•M2 log A z^z^e n2 

which is unfortunately a long time, because of the factor /Mj 

in the denominator. We also see that the energy spread, eq. (51), 

is small relative to the energy eq. (52), again because of the 

small electron mass. We now turn to the second case. 

ENERGY DEPOSITED IN IONS 

The energy loss to the ions is initially very small since u >> 1, 

In this case we may insert the asymptotic expansion for J, into 

equation (46) . The result is easily evaluated for the case where 

the electron cooling can be considered as resulting in a 6-func-
2 2 

tion in u centered around <u > given by eq. (50), and with the 

ion-cooling being a small perturbation on this result. We insert 

(for n = 1) 
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J3 = l/u3 (53) 

2 
into eq. (46) and think of u F as a fi-function around u . Note 

that the two last terms cancel each other exactly. The result is 

It lo* < u 2 >o - ~4 HT S <54> 
2 u o 

with the time constant t. , which we compare to t given by eq. 

(52). We find 

*. I .3* \ *• *ion £ p f 
t 
ion mean 

4 Mion log Ae v"e "a 

where ws have used ne = np+n™, and where M, should be taken 

as (MJJ+HJ.J/2. The initial situation where the content of the 

bracket is close to 1 is clearly that where almost all energy 

goes to the electrons. At the so-called critical energy 

M r , r H„ log A. -i2/3 

E = _2kT [1^ e .*on 1 (56) 
Ecrit M„ k Te [ 4 M. log Ao J (56) 

e *• ion J e J 

the ions become dominating as regards energy loss mechanism. 

2 4 
It is useful to write down the equations for <u > and <u > 
when J, is described by eq. (53). From eq. (46) we find 

I? '"2> - "4 vr2 <b < 5 7 > 

4- <u*> = -8 rp <u> + 8<i> (58) 
0 1 Flj U 

These equations are, of course, only valid when u > 1, i.e. some 

time before thermalization. 
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TWO-COMPONENT PLASMA 

Now we take a look at the energy spread when both electrons and 

ions are taken into account. We base the effect of the electrons 

on the approximations given in eqs. (48) and (49) with M- = M , 

but now we wish to undo the scaling with masses (for simplicity, 

we assume T e = T i o and Afi = AA ). Thus we introduce (cf. eqs. 

(32-33)) 

u = /B£ v (57) 

3 
T = /M^ 9 (58) 

with M~ = M for electrons and M, = M i o n for the ions, but for 

the ions, we use eqs. (57) and (58) scaled accordingly. Combin

ing the two sets of equations, we obtain first for the velocity 

squared 

|_ <v2> = - 1§_ M , Æ " <v2> + «_ Æ " - 4 jj^- <i> (59) 
36 3/7 X e /? e Mion v 

In order to find an approximate solution, we neglect the constant 

(thermal) term — Æ~ and substitute <v > ' for <l/v>. The re-
/TF 

suit integrates to 

o r f i/•> 1 -8M. /M - / rv» 9 
<v " = [ { o + (3^/4>(l/(Mion^))| c

 l 8 

l2/3 
-(3/7/4)(l/Mion/M^))j (60) 

which is, of course, valid only as long as the content of the 

bracket is positive and far from 0. In order to evaluate orders 

of magnitude, we only have to remember that 

0.2 < /FT v < 1 (61) 
- e o ~ 

(as was noted in Figure 1). Thus the constant term is indeed a 

small perturbation on the solution that obtains when both of 

the small terms in eq. (59) are neglected. 
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The present discussion permits an estimate of the relative 

energy deposited into electrons and into ions. At any time, 

the fraction f of the energy 

f = 

Ml 1 4—^- <A> 
M. v 
ion M 

1 — ^ <-> + 1£- M,/M <v2> M,„ v 3/ir 1 e 

(62) 

ion 

goes into the ions. Moreover, the energy loss per unit 0 is 
3 2 2 -r-f-'v >, and again we use the approximation l/u> = l//<v > *. 

d v 
We then find that the energy going into the ions is measured by 

ff-̂ r <v2>. d0 ' 39 ions 

s / 
d<v2> 

o 1 + -X- M. /M <v2>3/2 

3/IT ion e 

4 - Mio /M |
2/3 

3* TT ion e 

{TR Mion ^e]2/3-o 

/ 
dx' 

1 ^ x 3 

(63) 

The integral here is easily evaluated. We have 

f^ = > 
o 1+x-* 

* * • (u2-u+l)/(u+l)2| 

2 
+ ?3 

| + ta 
-i 2u-m n ^rJJ (64) 

4* ~ -, A 
- T/3 * 2"4 

for (as here) large values of the upper limit. This means that 

the energy deposited into the energy of the ions is 2.4 E c r i t« 

* 2 
We are mainly interested in v values which are an order of 

1 2 magnitude above thermal energies where <->/<v > = /6/TT = 1.38, 
i.e. we only neglect a few per cent. 
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DISPERSION IN A TWO COMPONENT PLASMA 

3 4 
We now write down the equation for Y Q < V > corresponding to eq. 

3 2 
(59) for Tjq<v >> both for the interaction with electrons and 

with ions. The result is 

£<,«> . . M. V „ e p > - ̂ ] 

Mi 8 1 
(65) 

Combining (59) and (64) we obtain 

_3_ 
36 
[<v4> - <v2>2] = 

" & V M e{P> - <v2>2] • ^<v2>} 

(66) 

which we shall separate into decay terms and production or 

source terms as follows (again using our standard rough ap

proximation inserting l/v> * <v >/<v > ' and <v>*<v >/<v2> ' 

_3_ 
3 6 '] 

4 2 21 -v 
<v > - <v > ~ 

I2 

3 
- <v2>2] 

(67) 

It is now very interesting to compare this expression with eq. 

(59) neglecting the constant term (yielding the final thermal 
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equilibrium value). The striking fact is that the decay "con

stant" varies with time and so does the production term in eq. 
2 

(67). However, these three rates, i.e. the decay rate of <v >, 

the decay rate of the energy spread, and the production "con-
2 

stant" for energy spread ~ <\> > are strictly proportional at 

any time! Thus the slowing-down process takes place exponen

tially, as given in eq. (60), until E . is reached, whereupon 

the rest of the energy is relatively quickly dumped into the 

ions and thermalization is attained. At the same time dispersion 

builds up to the small equilibrium value known from a-particle 

straggling, and it decays as mean energy decays. At the time 

when the remaining energy is dumped abruptly into ion-energy, 

dispersion follows suit with proportional rates for both source-

terms and decay terms*. Matters change on nearing thermalization, 

but not drastically when one simply adds the final equilibrium 

values to the solutions of the homogeneous equations. 

If we stick to thermal equilibrium, there is not much more to 

say. We shall examine the points that have been neglected: the 

variation of log A, variation of density, temperature, etc., 

and the neglect of small terms - also noting that we may never 

reach thermal equilibrium and thus we should discuss non-

Maxwellian densities. 

In other words: by an integral transform to a new time-like 

variable, our equations become those of simple exponential decays. 
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NON-MAXWELLIAN DENSITIES 

So far we ha/e relied heavily on properties of the Maxwellian 

distribution of our field particles, and thus we were able to 

establish the relations eqs. (35-42?, which were essential in 

the reduction of the Fokker-Planck equation to the for« of eq. 

(4 3). Behind these equations also lies the fact that the 

Coulomb logarithm has been considered independent of relative 

velocity. This latter point is, however, of no great importance, 

and a special numerical investigation of it is described in 

Appendix B. Here we shall discuss non-Maxwellian field particles 

- but retain the log A * const idea. In this case we have quite 

generally 

J 2 ( u ) = " I IS J^u). ;M) 

The reason behind this is the fact that 

w5w = (Vj - v 2 cosd)3v1 , (69) 

and that precisely w and (v.-v2cos6) occur fundamentally in 

our friction and diffusion coefficients (cf. eq. A 15), and 

that our scattering law is "- 1/w . 

We now use the definitions (36, 37) of G and H, and construct 

from equation (34) the equation for the second moment. We find 

(without reference to any flaxwellian distribution for the field 

particle) with J, a generalized integral (eq. A 1) 

^p<u > = 2/ A uJ F -^p du • 2 / u^F Jx du (70) 

we then use this for electron cooling and note that J, has the 

form 

J, = A(l - au2 + ..) z <4r> - \ P^ u2 • .. (71) 
1 u2 6 o 

Remembering that H2/M, <<1, we find 

» 1 Ml 2 

^-<u*> = - 4rr aA<u*> + 2A (72) 
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with the solution 

Ml 

2^ 1 2 1 _,_ 2 n2 
l M, a o 

i.e. the "decay" rate of the energy is given by 

M M 
4 M ^ a A = 3 M ^ P o (74) 

where P^ is the u-,=o value of the u0 distribution, and where our o 2 2 
approximations assume a certain measure of wellbehavedness of 

the field particles. Granted all that, we find (not very sur

prisingly) that the cooling rate is directly proportional to 

2 

the number of cool field particles, P = P(u =o). Stated dif

ferently we may say that for a given average energy of the field 

particles we gain in cooling-power by having a velocity distri

bution for the field particles with more zero velocity particles 

(and then necessarily a longer high energy tail) than the Max-

wellian. This is, of cource, a direct consequence of the fact 

that the friction function J2 only results from particles with 

u- - u. (see eq. (A13) of Appendix A). The argument raised 

here breaks down when so many particles are shifted away from 

average (partly to low energy and partly to the high energy 

tail) th--t eq. (71) becomes a poor approximation. 
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GENERAL CONSIDERATIONS ON THE NON-MAXWELLIAN DISTRIBUTION 

A few interesting points can be shown in the case when the 

distributions P are arbitrary. In particular, it is possible 

to discuss relatively simply the non-linear case when an initial 

6-function-like velocity distribution of particles thermalizes 

on itself through Coulomb interaction . The non-linearity in 

this case results from putting P = F. In this case the Fokker-

Planck equation becomes an integro-differential equation. First, 

however, we deal with the case of a test particle interacting 

with a non-Maxwellian ensemble of field particles. Corre

sponding to eq. (4 3) , we find 

If = ^ k u 2 ( J 3 f u - F + ^ 2 J 2 F ) <75> 

which yields eq. (43) in the special case when J, = u J, (see 

eq. (A26)), which is a particular property of Coulomb inter

action with a Maxwellian plasma. 

In order to prove eq. (75) , one has to use eqs. (All-14) and 

the generalized definitions of the functions J,. One can then 

prove that 

2u2J2F + U2F|^JJ3 - 2uFH = 0. (76) 

The particularly interesting case of self-thermalization 

results when P = F in the definitions of J. and when M, = M,. 

We find 

+ If F(v)vdv) + 2F -^ / F(v)v2dvj| (77) 

By partial integration this equation permits us to prove the 

conservation of probability and energy, i.e. 
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* 00 » OD 

j-( J u2F du) = O -» J u2Fdu = 1 (78) 

3 ,T( f u4Fdu "\ = O - / u4Fdu = ̂  <79) 

where the numerical constants 1 and 3/2 are chosen for con

venience. 

From equation (75) we may finally extract the result that 
—u F ~ e is a selfconsistent solution for the equilibrium 

distribution 9F/5t = 0. Since, according to Lindhard and Niel-
7) 

sen , the equilibrium distribution is not only a solution but 

the unique equilibrium solution, we see the significance of 

this result. 

Now we must remember that we made a few approximations. Notably 

we have used binary collision theory along the average (eikonal) 

orbit of the test particle and neglected orbit fluctuations. 

Also we truncated the Coulomb logarithm by a velocity-inde

pendent argument, i.e., velocity-dependent Debye length A, in 

exactly such a way as to cancel the velocity dependence of the 

closest encounter, and with this constraint imposed we ussd 

XD -»• °° in order to neglect "small terms". 

The author finds it interesting that this simultaneous set of 

approximations yields such physically relevant equations con

cerning the thermalization process. 
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CONCLUSIONS 

The conclusions of the present investigation are that a survey 

of the theory of cooling of a-particles in a thermonuclear 

plasma can be understood to quite a detailed extent by ana

lytical computations pertaining to an isotropic, homogeneous 

plasma. 

The a-particle energy will primarily go into heating of the 

electron component of the plasma and only some per cent of the 

energy goes into the ion component; even so this only happens 

late in the slowing-down process - so late that there may arise 

serious competition with confinement times. 

Near-thermal ions exchange energy at a fast rate among them

selves, and the rate is even faster for near-thermal electrons 

among themselves. However, the energy-exchange rate between 

ions and electrons is usually slow. Thus, sadly enough, the 

a-particle energy will mainly go into electron energy at a slow 

rate (then abruptly at a fast rate some per cent directly to 

the ions), and then from there into an electron heating of the 

now less heated ion-component, but again at a slow rate. The 

energy transfer is well represented by exponentials in time. 

The rate constants have been derived in the above. 

For temperatures, densities, etc., of interest in thermo

nuclear plasmas. 
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Appendix A 

The three integrals 

Jl = I P ( v 2 ) v 2 2 dv2 f k d c o s* 2w2/w3 (Al) 

f " f 1 

P(v2) v2
2 dv2 j *j dcos* 

(vl ~ v2 cos*>/w3 (A2> 

J3 = J P(v2) v2
2 dv2 ( ^ dcos* 

v2
2 sin2*7w3 (A3) 

where 

2 2 2 
w = v^ + v2 - 2v.v2 cos* (A4) 

may be transformed into integrals over dw with 

w_ < w < w+ (A5) 

where 

w_ = |vL - v2| (A6) 

v+ - vx + v2 (A7) 

using 

v2
2 sin2* = [w2 - w2] [w2 - w2]/(4v1

2) (A8) 
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3cos$/*w » - w/tVj^ v2) (A9) 

vx - v2 cos* = (w
2 + v x

2 - v 2
2)/2v x (A10) 

The results of the integrations over w (cos$) become 

ri * \ P(v2> v2 ? dv2 h ( V v2> Jt = P(v,) v, dv, j. (vlf v0) (All) 
'o 

with 

f'/vl 
'1 = L„ 

2/v, o < v 2 < Vj 

2/v, V l < v 2 < » 

2 
r2/(2v1 ) o < v 2 < v, 

v, < v2 < «• 
= I ' 1 

2 2 , 3 
fl v2 / vl o < v 2 < V;L 
y1 l/v2 Vĵ  < v2 < « 

<A12) 

(A13) 

(A14) 

Equation (Al3) indicates that only particles slower than the 

test particle (alfa-particle in our case) contribute to the 

friction. From (A12-13), or directly from (Al-2), one notes 

j2 " " 1 1v7 jl ' (A15) 

For the special case where P(v2) is a Maxwellian distribution, 

we find the following results 

r i - 7 ? r ^ v22 dv2 h (A16) 
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J x = — ERF ( v ^ (A17) 

4 r v - l ) 1 2in / » i o \ 
- -r- £ - — | — T—rr v i (A18) /TT ml 2m+l 1 m=o 

-» 2/Vj^ f o r vl -» °° (A19) 

J 2 = - ^ ERF (V,) - £ A- e " V l 2 (A20, 
V l l 

OD m 

4 _ ( - l ) m 1 2m+l , . . , , . 
= 7i l " T T - 2ST3 V l ( A 2 1 ) 

m=o 

•* l / v ^ f o r Vj^-*« (A22) 

2 
J 3 = - ^ 3 ERF (V;L) - -fe -±j e" V l (A23) 

V l V l 

4 ~ i z i ^ 1 2» ( A 2 4 ) 

/TT m! 2m+3 1 
m=o 

«* 1/Vj^3 f o r vx -» » (A25: 

Note that in this case 

J3 " v7 J2 " " 2 ^ &l Jl <26> 

and equation (42) of the text can be proved inserting eqs. 

(A17, A20, A23) into 

— J, - i- (J, - 3J,) + 2v, J, = 0 9v^ u3 vx
 vol J U3' T tvl u3 

and proving the equality. 
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Appendix B 

In the main text we have considered log A to hi a constant. 

However, the forms of eq. (29) are 

log A = log(J + Aw4) (Bl) 

and 

log A = logd + Bw2) . (B2) 

Consequently, the integrals (A1-A3) with such factors included 

may, through eqs. (A8-10), be considered as consisting of sums 

of integrals of the form 

J = 
w 

w1" logd + A wn) dw (B3) 
w 

which again is a sum of n integrals of the form (scaled indefi

nite integrals) 

Jj = "mil f ( o j w ) m l o 9 { 1 + a j w ) d(a-jw> <B4> 
°j 

th n 

with a^ the j root of S-k. 

However, these integrals are easily calculated through re

peated integrations by parts. The final step is then a numeri

cal integration over P(v,). Thus everything can be done, and 

the following numerical investigation was carried out. 

The complete integrals corresponding to our three coefficients 

of friction and diffusion were calculated and divided by 

logACQnst = log(4AD
2/(Z1Z2M2/p-(511/T))

2-2.8-10"13 (B5) 

with AD in cm and T in keV. (Xn from eq. (27)). 

The coefficients were then compared to a standard set computed 

from eqs. (A17, A20, A23) and the deviation is found as 
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J -J 
Deviation = 100 — n const (B6) 

A=const 

and is consequently given in per cent of the A = const values. 

Several parameters were varied: A., could be multiplied by a 

factor a, the transition of A from a classical to a quantum-

mechanical formula could be varied by a factor 6 multiplied 

into the left side of eq. (31). A factor y was introduced in 

front of the small terms (eq. (26)), and Y=1 means small terms 

included and Y=0 small terms neglected. Small terms were cal

culated from the formulas of appendix A since the Coulomb 

integral for them was equated to 2 as mentioned in connection 

with eq. (26). Also temperature, density and mass M2 of the 

field particles was varied. Finally P, could be changed. 

The first results to be presented are a standard set of func

tions J2, J3, G and H derived from equations (A17-25) and (36, 

37), i.e. the standard scaled functions. Remember that J3=J2/u. 

The results are shown in Fig. Bl. In all our drawings u is 

varied by a factor of 4 per unit in the figures, thus the func

tions are depicted in log scale for a variation of u by a fac

tor ^10 , (in Fig. Bl, u is varied by 5-10 ). 

Clearly, the asymptotic behaviour is changed when A "- log w is 

included, roughly speaking, into 

J ^ log u/un (B7) 

Thus all the curves will show larger deviations for large values 

of v. 

A reference case of T » 1 keV, M, = 4, M, = 1, Z. = 2, Z7 = 1, 
14 a = 6 = j = 1 and n = 10 is shown in Fig. B2. Here ve see a 

typical result, deviations of minus a few per cent for u S 3 

and the log u dependence for u ~ 1. The main coefficient is J,, 
3 3 

which goes as log u/u rather than 1/u . Consequently, when J, 

has practically disappeared, it is changed by some several per 

cent all told. 
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Fig. Bl. The standard set of functions J. 
W 

G, and H 

obtained from eqs. 

37) of G and H. 

(A17-25) and the definitions eqs. (36, 
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The varied cases are shown in Figs. B3-B8. 

Finally, a non-Maxwellian distribution 

P(u2) = 4/5" exp(- /B u2) 

was introduced with the same normalization and average energy 

as our standard Maxwellian, but with P(o) roughly 5 times as 

large as for the Maxwellian. Consequently, H and J- deviate 

by a similar factor for u < 1, i.e. for the region in u which 

is interesting for electron cooling. Figure B9 illustrates 

the u > 1 behaviour. 
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Pig. B2. The values of AJ2/J2, AG/G and flH/H in t and as 

functions of u for the reference case of input data as 

noted in the figure. (Also Mj = 4 amu, Zj = 2 appropriate 

for alfa-Darticles. 
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Figs. Bi-**. Similar to Fig. B2 but with the individual 

parameters changed as indicated. 
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Figs. B6-8. Similar to Fig. B2 but with the individual 

parameters changed as indicated. 
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Fig. B9. The non-Maxwellian results as mentioned in 

the text. 



- 42 -

Appendix C 

The text contains statements to the effect that electron cooling 

is well described by the longest "timeconstant" which to a good 

approximation is given by 

3/7 M2 

and also that the remaining energy is eventually dumped "rela

tively quickly" into the ion component of the plasma, i.e. 

relatively quickly compared to T. These statements are based 

on the following study of thermalization in the M-/M, << 1 

approximation. Our starting point is the Fokker Planck equation 
2 

as given by eq. (43) with J\ expanded in u as shown by eq. 47 

(eq. (A24) of appendix A). We now proceed step by step and 

start with 

J, = — (C2) 

and we seek solutions to the Fokker Planck equation which are 

separable in T and u, i.e. we put 

F = i|in(u) ' 8n(T) (C3) 

with n a possible eigenvalue parameter belonging to our problem. 

This leads to the separated equations 

l r e = K n 9 <C4> 

and 

4 1 d , / d ( | i M. \ - i u Ur + 2J é VJ= Vn- (c5) 
3/7 u2 ^ l" ^au n2 

For convenience, we introduce 

V = u/ Tji (C6) 
M2 

C = ̂  ^ K (C7) 
n 4 M, n 
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and 

*n = V
e" V (C8) 

leading to 

^ 2 » n + 2[v " -JdT 1 ~ Cn«n = °- (C9) 

This equation has the following set of eigenfunction solutions 

(which are wellb 

n = 0, 1, 2, ... 

(which are wellbehaved for v -» 0) for the eigenvalues C = -4n, 

n -

*n * 1 + I a m V <Cl0> 
n L, m m=l 

with (for each value of n) 

am+1(2m+2)(2m+3) = ^ ( C n + 4m) (Cll) 

The first few polynomials and eigenvalues are 

<J> = 1 for C, = 0 
o o 

<|>1 = 1 - |v
2 for C x = -4 (C12) 

4 2 4 4 
<*2 = 1 " 3V IT for C2 " "8 

etc. 

From this it follows that we can decompose any initial distri

bution F(o,u) in such a way that 

16n M. „ 

^ r- V 
3/iT M- IZ- - — u 
3/TT M, / /M, x M 

F(T,U) - I ane • •n(u/HM-. (C13) 
n=o 

We shall illustrate this point later on, but first consider the 

next approximation where small variations of J, with u are 

included. We write 
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M„ , ., /M, »•£{>-ifr- m^ - j 

4 J 
3 Sri 

— ( 1 - 6 x v 2 + B 2 v 4 - . . . ) (C14) 
3/if 

Corresponding to eq. (C9) we find in this case 

J ±T *n + f2J(v- " v) + 
dJ 
dv 

d# 
n - Cé = 0 (C15) , ~ .. . . -. dv nyn dv - J 

which is not a simple equation like eq. (C9). Here we shall 

only solve approximatively considering B2
 = 0 an<^ &i a small 

perturbation. We shall find that we are admixing neighbouring 

eigenfunctions of eq.(C9),but in small amounts only proportional 

to 6,. Thus, if we insert solutions of the form eq. (CIO), 

then we may, e.g., try to find a solution close to $•. of eq. 

(C12) by inserting a9 = ag, and neglecting higher order terms 
2 like 8, , a,, a., etc. The result is 

M 
c i ~~ - 4 + 6 W 1 

2 «2 
al = * 3 + M" 

(C16) 

1 

and 

a2 " " 5 M, 

M< 
which justify the rr- =•=*• 0 approximation for electron cooling. 

We now return to the 8i - $2
 = ® approximation. In this 

particular case, with the solutions to the Pokker Planck 

equation given by eq. (C13), one may show that the following 

expression 

N 2 
F(T,v) = I BN m(-l)

m(Oin(v)e"
V e"mT (C17) 

m=o ' 
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written in the v, T = T16M,/(3/TTM.,) system and with B„ _ the 
X c. N,ra 

binomial coefficients, is a solution which satisfies the initial 
condition 

>N 
F(o,v) = 

(2N+1)II 
2N -v v e (C18) 

which for large N approximates a 6-function around v = /U. Thus 

eq. (C17) is an analytical approximation (and for M-/M, << 1 a 

very good approximation for velocities much smaller than the 

thermal velocity of the field particles) to the entire slowing-

down and thermalization problem. Figure CI illustrates the N= 

10 case as a function of T and v. 

T= 6 

.4 

v2F 

.2 

3 0 

2 1 '5 

A * 
A ., * / 

Fig. CI. The velocity distribution v F as a function of T 

and v and as given by eq. (C17) and for N * 10. 
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