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ABSTRACT 

The effect of the a-particle from the D(T,n)a reaction on a 

3 mm solid deuteriur. pellet was studied by disregarding the 

optimum of the refuelling process and limiting attention to the 

feasibility of pellet refuelling alone. A comparison of the 

refuelling period required with the slowing-down time of the 

a-particle in a D,e plasma corresponding to a 2.5 GW(e) reactor 

showed that the pellet is first subjected to the direct impact 

of a-particles of around 2-3 MeV energy. The penetration depth 

of these particles in the pellet is comparable to that of a 20 

keV electron. If the temperature of the ablated cloud created 

around the pellet is about 1 eV, a cloud radius of about 20 cm 

is required for the subsequent thermalization of the a-particles. 
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1. INTRODUCTION 

The injection of a solid D-, (or DT) pellet has long been suggested 
1 2 ) 

as a possible means of refuelling a fusion reactor ' . In 

the 2.5 GW(e) reactor envisaged by Hancox (plasma tempera­

ture, kT = 20 keV, plasma density, n = 1.8 x 10 cm ), the 

particle flux N and the energy flux F of the thermal electrons 
23 - 2 - 1 9 -2 

are 4.26 x 10 cu sec and 2.73 x 10 Watt-cm , respect­

ively. As a comparison, the corresponding fluxes for the 3.52 

MeV a-particles from the D(T,n)a reaction, at a burn-up factor 

fK = 3%
4), are N = f. % V = 3.5 x 1021 cm-2 sec"1 and F„ = f. 

nb ° 9 b * ° -2 ° !? 
j V B • l.»8 x 10* Watt-cm , respectively, (Va = 1.298 x 10* 

cm/sec at E = 3.52 MeV). We observe that although the particle 

flux of the a-particles is two orders of magnitude less than 

that of the thermal electrons, their energy flux is comparable 

to that of the thermal electrons. Accordingly, questions were 

raised regarding the part that the 3.52 MeV a-particles might 

play in the ablation of a refuelling pellet 
A correct answer clearly depends on many other factors involved 
in the successful operation of a fusion reactor. Among them 

6 7 8) are the production and loss rate of a-particles ' , the 
9) 

energy spectrum of the escaping a-particles , the possible 

introduction of a suitable radiant, and the efficient use of a 

divertor . Most of these problems are related more closely 

to the optimum of the refuelling process than to the feasibility 

of pellet refuelling. To avoid complexity in this paper, we 

shall adopt a simplified model and make some plausible estima­

tions of the effect of a-particles on pellet ablation. 

In the model considered here it is assumed that the a-particles 

are continuously produced in the central core of the reactor 

only and that they diffuse outward, lose their energy and become 

thermalized through collisions with plasma ions and electrons. 

We ask now as the pellet enters, near the outer region of the 

reactor, what can be the average impact energy of the a-particles 

and what can be their effect on the ablation of the pellet? 

To analyze the problem, we shall first use the binary collision 

approximation ' ', estimate the average impact energy of the 
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a-partide after being slowed down by the reactor plasma, and 

then use the stopping power argument to estimate its penetration 

depth and energy deposition in the pellet itself '. Sub­

sequently, we shall estimate the further attenuation of the a-

particle energy in the dense cloud created during the direct 

impact phase. Finally, a discussion is given of the effect of 

the magnetic field. 

As basis for the analysis,' we shall take the plasma parameters 

corresponding to the 2.5 GW(e) reactor mentioned previously . 

For simplicity, the plasma is assumed to be homogeneous through­

out the reactor. 

To compare with this rather conservative estimation, the fol­

lowing section presents an alternative case in which it is as­

sumed that the pellet is always injected at a time when the a-

particles are already thermalized. 

2 . PENETRATION DEPTH OF THERMALIZED ot-PARTICLES IN THE SOLID 

DEUTERIUM 

When a-particles produced from the D(T,n)a reaction are ther­

mal i zed to the same temperature as the reactor plasma, their 

average energy will be around 20-30 keV. The penetration depth 

of 20 keV a-particles in solid deuterium calculated from the 

tabulated data of Ziegler is approximately 1.56 x 10 m '* 

Comparing this depth with the penetration depth of 20 keV elec­

trons of 30 x 10 m, extrapolated from the experimental data 

of Schou and Sørensen , it is about a factor of 20 smaller. 

We conclude, therefore, that if a-particles are already ther­

mal i zed during the injection of the pellet, their effect can be 

neglected. 

3. SLOWING DOWN OF THE 3.52 MeV a-PARTICLES BY THE REACTOR 

PLASMA 

The rate of energy loss of a-particles in a plasma can be 

written as 

dE m ,dE, ,dE, 
3t " (3t'N + (3t'R 



7 

where (jrr)N is the loss rate due to binary collisions of a-

particles with their closest neighbours, and (jr)R is the loss 

rate due to the polarization of the plasma caused by the a-

particle. (For simplicity of notation, we shall omit the sub­

script a for the energy E and velocity v of the a-particle in 

the subsequent treatment). 

To determine the maximum impact parameter, p_,„ , for the binary 

collision, and thus the dividing distance between the two regions, 

we employ the concept of adiabatic collision, i.e. energy trans­

fer due to binary collisions is negligible when 

wpT > 1 (1) 

where u is the plasma frequency, and T is the effective col­

lision time taken approximately as 

T - 2 Pmax/U- (2> 

Here u is the relative impact velocity between an a-particle 

and a target particle (electron or deutron), and it can be taken 

as 

u = (3 kT/u)* (3) 

where p is the reduced mass for the appropriate collision 

partners under consideration. 

Using eqs. (2) and (3), and recalling the relationship that 

VD
 = w' (4) 

where A-. is the Debye length and w = (8 kT/mn)* is the thermal 

velocity of the target particle, it can be shown that eq. (1) 

is satisfied if we take 

pmax I XD' (5) 
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a) Energy loss due to close encounters 

Using the notations of reference 11, the energy loss rate of 

a-partides through binary collisions with plasma electrons and 

ions can be written as 

s=e,i s 

where 

*(£_) is the error integral and 

As = ln(Pmax/Pmin,s " l n { V W s 

is the Coulomb logarithm. The proper value of the minimum im­

pact parameters P m i n is to be chosen as the larger one of 

and 

H z e 2 

c l a 
P m i n " yu 2 

p q - * - -''min yu 

2 e 2 

" 3kT 

•ft 

ti,.iff\ * 

+ cl 
It can be shown that for a-D collisions, P m i n should be used, 
while for a-e collisions, pJL- should be chosen. 

b) Energy loss due to remote collisions 

For large impact parameters, p > P_ax/ the collective effect of 

the plasma must be taken into account. By treating the plasma 

as a dielectric medium, the energy loss of the a-particle due 

to the polarization effect can be written as 
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2 4 

where 

n- S 

and k is the maximum wave number that can be excited by the o 
moving a-particle. 

Comparing eq. (7) with the electron component of the energy loss 

due to close encounters eq. (6), one notices that the two ex­

pressions have an identical appearance except for the expres­

sions of the logarithm term. Owing to the uncertainty of k , 

the exact contribution of the loss rate as a result of remote 

encounters is difficult to assess. However, from the range of 

V / V K ko < 1/P»in' (8> 

or using the relationship that >D =
 w

e^
WDe' w e n a v e 

Vv * VD < D/Pmin- (8a) 

In other words, the contribution resulting from the collective 

effect in our case could be at least 111, and at most about the 

same amount as that resulting from binary collisions. As this 

uncertainty appears in the argument of the logarithm, it can 

hardly afiect the estimation of the slowing-down time by any 

order of magnitude. 

c) The slowlng-down time 

To investigate the slowing-down time, eq. (6) can be rewritten 

as the following 

St <w> - - h <sr> G(v> 
s e 

where 
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i 

« " ' ¥ —7 s - {»• ^ -F77»— } 
(9) 

, % E * „ 3« V p w e . 
(sT kT} » *S * 12? "IT" A" <x e n e 

The slowing-down t 

E AF 

*o * 

i s then given by 

K 
!(y) 3 ' G(y) ' , X U | 

The result is shown in fig. 1 for a D -e plasma at kT = 20 keV 

and ne = 1.8 x 10
14 cm-3. In th'. figure, E ^ « *4p and 

"a f 3 / i % . ^ D l 2 / 3 

~ *e ^~rmD * J 
Ec = -» | ^ ^ . _2f| k T (H, 

is the critical energy for the slowing-down process (* 0.84 NeV), 

i.e. the average energy of the a-particle at which the loss rates 

to the electron and to the ion component of the plasma are equal. 

Observations show that it takes about 3/4 sec for the a-particles 

to cone into thermal equilibrium with the background plai 

For the 2.5 GW(e) reactor previously mentioned , the total 
23 number of particles in the reactor amounts to NR = 3 x 10 

If we wish to keep the number of particles, H , contained in a 

pellet of radius r below N * 0.02 N„, and in the meantime 
P P v 2 2 - 1 

satisfy the required refuelling rate N = 6.42 x 10 sec , we 

may inject pellets of 3 mm radius at intervals of 71 msec. Com­

paring this time with the slowing-down time T(E) shown in fig.l, 

we notice that in all likelihood the pellet will be bombarded 

by a-particles of around 2-3 NeV energy. 
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Fig. I. Slowing-down time, T, of a 3.5 MeV a-particle in a 

D+-e plasma at kT = 20 keV and n = 1.8 x 10 cm . 

4. INTERACTION OF 3 MeV a-PARTICLES WITH A DEUTERIUM PELLET 

The interaction at 2-3 MeV of a-particles with the pellet can 

be approximately divided into two stages; (a) direct impact 

phase, and (b) attenuation of a-particle energy in the dense 

and cold (?) ablated plasma surrounding the pellet. 

a) Range and expected impact phenomena of 3 MeV a-particles in 

solid deuterium 

From the tabulated date of Ziegler 14) we expect the range in 

solid D- for 3 MeV a-particles to be around 0.06 mm. (In com-
15) parison, the range of a 20 keV electron is around 0.03 mm '. 

For a 3 mm pellet, the energy of the a-particle will be de-
13) posited in a thin shell. According to Lindhard et al. ', for 

incident ions at high energy, the energy deposited in the atomic 

motion tends to a limiting value and is Inversely proportional 

to the electronic stopping number. Extrapolating the data cal­

culated by Sigmund et al. , we expect that only 1/1000 of the 

total energy carried by the a-particles will be deposited in 
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the atoms. Most of the energy will be spent in causing ex­

citation and ionization of the bound electrons. Assuming the 

average energy of electrons produced by the primary impact to 

be around 400 ev, using the data of Schou and Sørensen , their 

range R = 3.62 x 10 cm. Because of the straggling effect of 

electrons, we may assume their path length to be S = 3R. As­

suming furthermore a constant deceleration process, it will 
-14 take only about 10 sec for the electrons to be thermalized. 

This, in turn, causes the temperature rise of the pellet and the 

possible formation of a dense, cold cloud around the pellet 

(taking approximately an 

of the Debye frequency). 

-12 (taking approximately another 0.6 x 10 sec, the reciprocal 

b) Slowing down of the a-particle in the ablated cloud sur­

rounding the pellet 

The further slowing down of a 3 MeV a-particle in the ablated 

cloud clearly depends on the plasma parameters T, and n, of the 

cloud (we assume T , = T., = T,). Although the exact values of 

these parameters depend on the interaction mechanism of the 3 

MeV a-particles with the pellet, an estimation of their range 

can be made based on some reasonable guess of these paramters. 

Assuming that the electron temperature kT. is not likely to 

exceed 10 ev, the thermal velocity w of the ablated plasma is 

about an order of magnitude smaller than the velocity v of the 

3 MeV a-particle. Consequently, the plasma can be considered 

as cold, i.e. F(£g,0s) = 1 in eq. (6). The stopping power 

formula simplifies to 

H § = - 327rnie tf) - In < — ) . 
e Pmin 

Under the stated condition w < v, we may take 

q « JL 
^min m v * e 

Finally, the stopping power formula reduces to 
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^ = - 167rn e 4 (% l n ( ^ E ) 
dS i t T O j e i > £ 

e 

where (12) 

n>e 2 kT x 

5 ~ ( e S ) IrfnTn" 
P 1 

o d„ 
The range R = / dE/(g^) is then given by 

E o 

R U ) = 

where 

Ej[lnUE0)] 

8 ™i« <SJ>52 

x efc Ej(x) =/ ^- dt . (13) 
— 00 

By assuming a pressure balance at the boundary of the ablated 

cloud, the electron number density n, can be related to the 

temperature kT, of the ablated cloud by 

2n1kT1 = 2nekTe + ffc -f kTfl. (14) 

Taking ne = 1.8 x 10
14, kTe = 20 keV, kTa = 3 MeV and a burn up 

factor, ffa = 0.03, we obtain 

kTx(ev) n^cm"
3) = 7.65 x 1018. (14a) 

Using eq. (14a) to eliminate n, that appeared in eq. (12), the 

range R can be expressed as a unique function of the ablated 

plasma temperature, kT,. The result is shown in fig. 2. (The 

line ab in the figure indicates the region below which the 
18) plasma becomes nonideal ; the result of the present analysis 

might require modification). The result of the analysis shows 

that if the ablated plasma temperature is not too cold, e.g. 

above 5 ev, the cloud surrounding the plasma will not be able 

to thermalize the energetic o-particles around 2-3 MeV. On the 

other hand, if the ablated cloud is cold enough, i.e. below lev, 
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102 

101 

10"1 10 

Fig. 2. Radius of the cloud surrounding the pellet required 

for the thermalization of a 3 MeV a-particle vs. the cloud 

temperature, T,. 

the energetic a-particles may become thermalized if the ablated 

cloud has a radius around 20 cm. 

5. EFFECT OF THE MAGNETIC FIELD 

In considering the slowing down of the a-particle energy we have 

hitherto treated the plasma only as a homogeneous, non-magnetized 

medium. To estimate the effect of the magnetic field, we shall 

confine our attention to the simple case where the plasma is 

permeated by a homogeneous field of a strength corresponding to 

the main confining field. For the previously mentioned 2.5 

GW(e) prototype reactor, we take B = B_ (= 75 kG) . The cor­

responding gyrofrequency and gyroradius of a 3.52 MeV a-particle 

are 

R(cm) 

Tv(ev) 
i • . . i • . • i • i • . i 
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n = 3.59 x 108 sec-1 

c 

p = 3.62 cm. 

respectively. As the Debye length of the plasma considered is 

L = 7.83 x 10 cm, we expect, for close encounters, that the 

effect of the magnetic field can be neglected. 

In principle, the presence of a magnetic field causes the 

medium to behave anisotropically. As a result, the dielectric 

property of the plasma changes drastically. However, some 

simplifications can be obtained, as stated by Akhiezer et al. , 

if the angle a between the particle velocity and the magnetic 

field satisfies the condition 

sina >> • „ i r (15) max {u> , w ) pe ce 

where u is the electron cyclotron frequency. For our case, 

w = 1.32 x 10 1 2 sec-1, u = 7.57 x 10 1 1 sec"1, eq. (15) re-ce pe ^ 
duces to 

sina >> 2.72 x 10~4. (16) 

This implies that condition (15) is satisfied for nearly all 

angles of a (? 0). Following the similar argument presented 

in reference 16, we may expect the additional energy loss rate 

resulting from the presence of the field for v < w to be 

,dEi _ 4/2"? 2 4 -v .3 .. . 
(3t' " 3HH? ne Za e (w7> f(n'o) 

a e e 

wh*»re 

2 
sin g ,un\ - i 

n = — 4 — (^0), a = wce/aipe. 

For a > 1, we have 

f(n,a) = n (I + In (^)} + lna . (18) 
3k 
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From the definition of n and eq. (16), the range of n is limited 

to 

2 x 10"8 < n <_ 0.25 . 

We observe that in the range of n concerned, f(n,a) is a mono-

tonically decreasing function, i.e. 

f(n,a) £ lna (= 0.556) . (195 

Therefore, the presence of the field in the case considered 

slightly reduces the loss rate. Considering max{-f(n,a)} -
Ulna 

-In ( -) as another "Coulomb logarithm", we have 
ui pe 

= 17.70/(17.70-0.556) = 1.032. 

We notice that the neglect of the magnetic field may lead to an 

overestimate of the energy loss rate of the a-particle to the 

electron component of the plasma of approximately 3% at the most, 

6. CONCLUDING REMARKS 

By disregarding the optimum of the refuelling process and re­

stricting attention to the feasibility of pellet-refuelling 

alone, the possible effect of the 3.52 MeV a-particle from the 

D(T,n)a reaction on a refuelling deuterium pellet is estimated. 

It is shown that if the pellet is always injected at a time 

when the a-particle is already thermalized, its effect compared 

with that of the thermal electrons (kT = 20 keV) is negligible. 

Alternatively, by comparing the slowing-down time of the 3.52 

MeV n-particle in a plasma corresponding to that of a 2.5 GW(e) 

prototype fusion reactor with the required refuelling period for 

a 3 mm pellet, it is shown that the pellet will probably first 

be subject to the direct bombardment of a-particles of around 

2-3 MeV energy. The possibility of the a-particle being sub­

sequently thermalized in the dense cloud created around the 

pellft depends on the electron temperature, T,, of the cloud. 
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At an electron temperature T. = 1 ev, a cloud radius of around 

20 cm is required. 

The present study also showed that the slowing-down time of the 

a-particle can be reasonably estimated with respect to its order 

of magnitude by considering the binary collision process alone. 

This is because the inclusion of the collective effect can only 

amount to an uncertainty in the argument of the Coulomb logar­

ithm. Besides, this collective effect is partly compensated by 

the presence of a strong magnetic field. 

As a final word of caution« we would like to emphasize that as 

a result of the simplified model used the present work was only 

intended to give an order-of-magnitude estimate. Implicitly, 

we have assumed that the a-particle is only (but instantaneously) 

produced when the fresh fuel enters the core of the reactor. 

The medium is assumed to be a homogeneous plasma without any 

anomalous loss processes. 
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