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1. INTRODUCTION 

The vortex tube is a device of the kind that by simplicity in construction 
shows immediate promise of great utility and sets the imagination working 
on possible uses, for sooner or later to ruin all hopes by failing through 
inefficiency. This applies to the expectancy first entertained by Ranque in 
the thirties and by Hilsch in the forties that the tube would prove an efficient 
cooling machine; to the possibility, investigated from the early fifties, that 
the tube might be useful for mass separation in gas mixtures (e. g. for iso
tope production); and to the studies in the sixties on the use of the tube for 
containment of fissile material in nuclear rockets (Bibliographies: Dobratz, 
1964, Westley, 1954). 

This does not mear, however, that the tube is completely useless, as 
special applications have in fact been found for it; thus Vortair, 1 967, men
tions its use for cold air breathing systems, while application to free air 
thermometry has also been described. 

The limited usefulness of the vortex tube once admitted, the fact still 
remains that the mctioning of the tube presents a complex and intriguing 
problem the solution of which may well turn out to be of a wider interest. 
For one thing, because the flow pattern is similar to that encountered in 
systems of potential practical interest such as vortex flow heat exchangers; 
furthermore, because the flow pattern in the tube may be used as a simple 
model for important phenomena such as the vortex in a tornade (Lewellen, 
1964) and that on the trailing edge of delta wings (Benjamin, 1 962). 

The vortex tube is basically just a tube with a tangential nozzle through 
which the gas is set into a swirling motion which persists along the tube. 
One tube end is closed except for an orifice at the centre. The other end 
may carry a similar orifice or have some kind of valve inserted. Typical 
designs are shown in fig. 1.1. They each have their special applications. 
Long asymmetrical tubes of type (a) or (b) are best suited for the production 
of net temperature differences. Short tubes of the quite symmetrical type 
(d) with centre exits at both ends are best at gas separation, while the type 
(e) with many inlet nozzles spaced along the periphery and with one centre 
exit has formed the basis for fission rocket desirns. Only the concurrent 
type (c) has, for reasons that will become clear later in this work, shown 
no special merit. 

In the tube, radial and axial motion must necessarily be superimposed 
on the initially tangential motion from the nozzle. It is not surprising that 
this motion influences the tangential velocity gradients and that together 
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they play a deciding role for the functioning of the tube, both for the tem

perature and for the gas separation. 

Accordingly in chapters 2, 3# and 4 the distribution of the three r e l 

evant parameters , the circulation, the concentration, ant' the total temper

ature, respectively, a re studied in turn. 

The three chapters all s ta r t with a discussion of two-dimensional ap

proaches which neglect the axial gradient of circulation, of concentration 

and of total temperature, respectively. This constitutes a satisfactory 

zero-order approximation in cases where the secondary flow may be con

sidered as purely radial. Each description provides the radial distribution 

of one of these three parameters , with the corresponding radial Reynolds 

number (based on diffusion, mostly turbulent, of angular momentum, mass , 

and total-enthalpy, respectively) as the governing parameter (see sections 

2 . 1 , 3 . 1 , and 4.1); the radial Reynolds number is a measure of the re la 

tive importance of transport by radial flow (normally directed inward) and 

by (turbulent) diffusion (normally directed outward), and the radial distribu

tion resul ts as a balancing between the two t ranspor ts . 

In tubes with xial gradients of any one of the three parameters , where 

the distribution is found to be the result of an interplay between axial and 

radial flow, it is necessary to include t e rms in the equations that contain 

the axial flow. Chapters 2, 3 and 4 all contain sections with discussions of 

three-dimensional distributions of this type. 

At the three-dimensional stage it is necessary to distinguish between 

the angular momentum case and the other two cases, 3ince both mater ial 

and total enthalpy are preserved within the tube while a considerable amount 

of angular momentum may be lost to the peripheral wall. The axial gradient 

of circulation therefore takes on a completely different shape (through the 

influence of eq. 2.6, a combination of the momentum equations for the radial 

and axial velocity components) from those of the other two 'governed by ma

terial balance and total-enthalpy balance equations). 

As regards the latter two distributions, it is essential to note that axial 

flow in the centre region tends to upset the balancing (which exists in the two-

dimensional case) of the eitects of radial flow and diffusion, and that the 

resulting net transport in the radial direction gives r i se to axial gradients 

both in the outer annulus and in the core. The larger the axial core flow is 

compared to that in the outer region, the la rger amounts of the quantity in 

question may be involved and the more important may the axial gradient of 

the parameter become. Expressed in another way,, since the axial flow in 

the core region (more correct the flow through centre exits, fig. 1.1) is 
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equal to the net radial flow into the core and since the latter is found to de
termine the radial gradient of the parameter in question (concentration or 
total-temperature) in such a way that this is small when the radial flow is 
large, it is seen that when large amounts of the quantity is transported with
in the core the radial gradients at the same time are small and therefore 
particularly suited for a large outward diffusion (which necessarily gives 
rise to appreciable axial gradients.) 

In chapter 2 the interaction between the radial flow and the tangential 
velocity distribution, as indicated above, is first discussed (2.1); then in 
section 2. 2 the influence of the end wall boundary layers is treated, while in 
section 2.4 its importance for a classification of vortex tubes of different 
types is discussed. The remainder of chapter 2 (section 2.3) is devoted to 
a study of the interplay between the axial flow and the axial decay of tangen
tial velocity (ref. IV). 

In chapter 3, section 3. t, studies of the radial concentration gradient 
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in vortex tubes, as made in connection with the fission rocket projects, are 
discussed in terms of the two-dimensional approximation; the results are 
qualitative, as the object in most cases has been restricted to showing that 
a heavy component has some tendency to be concentrated in a layer at a 
certain distance from the axis. Next (section 3. 2) a short discussion of the 
three-dimensional theory with reference to data for low-pressure tubes is 
included. The main theme of chapter 3 (section 3. 3), is the study of the net 
concentration differences that the vortex tube (at normal pressures) may-
produce between the two outgoing streams (ref. 1), and an interpretation of 
the rather complex picture emerging under these conditions (ref. III). 

In chapter 4 the temperature distribution within the tube is treated in 
some detail, made possible by a number of experimental studies that have 
been carried out over the past 1 5 years. The discussion of the three-dimen
sional case (section 4. 2) is based on an approximate solution to the energy 
equation developed in ref. IV. In section 4. 3 the net temperature difference 
between the outgoing streams is discussed on the basis of the theoretical 
results and a comparison with experiment. 

In chapter 5 he performance of the tube both as a gas separator and as 
a temperature separator i s considered; equations are derived in section 5.1 
which describes the performance of the tube in terms of separative work 
(gas-separation) and availability (temperature separation). Next in section 
5. 2 a correlation of temperature and tangential velocity data, as described 
in ref. IV (with IVc) on the basis of the work treated in sections 2.3 and 4. 2, 
is discussed. Finally (section 5. 3) a comparative discussion of the mass 
and temperature separation effects i s carried out. 

In chapter 6 the performance criteria of the tube are first discussed 
(section 6.1) on the basis of the performance functions developed in chapter 

5. In the remainder of the chapter, evaluations are made of the performance 
of the tube in relation to its use, on the one hand (section 6. 2), for the sep
aration of gas mixtures (isotonic) by comparison rith other similar devices, 
such as centrifuges and nozzle separators, and on the other hand (section 

6. 3), for the separation of temperature by comparison with cooling machines. 

It can be deduced from the discuBSion in chapter 6 that the tube will 
probably never be found useful as a separator of gas mixtures; on the other 
hand the possibility remains that gas separation data such as those (resented 
in section 3.3 may, once their interpretation i s clear, become useful for 
further study of the flow in the tubes: this also applies to such special cases 
as are discussed in section 5.3, where gas and temperature separation are 
closely correlated, and where therefore their relative magnitude provides 
information on the turbulence in the tubes. 



2. THE TANGENTIAL VELOCITY DISTRIBUTION 

The tangential velocity distribution in the vortex tube has been studied 
experimentally in a number of cases (Keyes 1961, Ragsdale 1961, Ross 
1964b. Reynolds 1962, Bruun 1967, 1969, Hartnett and Eckert 1957, Lay 

1959, ScheUer and Brown 1957, Schowalter and Johnstone, 1960, Suzuki 
1960, and Takahama and Kawashima 1960). It i s a characteristic feature 
of the results that the radial distributions obtained range from anywhere 
near a free vortex to close to a forced vortex. This diversity of results is 
explained quite adequately in many cases by the two-dimensional approxi
mation described in section 2 .1 . 

The realization that diversion of flow into the end-wall boundary layers 
plays a decisive role for the secondary flow pattern has led to studies of 
this phenomenon and to an evaluation of its importance for the tangential 
velocity distribution; results of these studies are discussed in section 2.2 . 

In long tubes, the axial gradient of the tangential velocity i s a conspicu
ous feature; the relation of the resultant three-dimensional pattern to the 
radial distribution of axial flow i s discussed in section 2.3 on the basis of 
zero order expressions obtained by Lewellen, 1964, 1965, from an expansion 
of the Navler Stokes equations (ref. IVa). 

In section 2.4, finally, an attempt i s made to explain qualitatively the 
origin of the interplay between radial and axial flow and the effect of this on 
the tangential velocity under differing conditions as determined by the vortex 
tube type. 

2 .1 . The Radial Distribution of Tangential Velocity 

Einstein and Li, 1951, Pengelley, 1 957, Donaldson and Sullivan, 1960, 

and Deissler and Perlmutter, 1960, have investigated the origin of the dever-

sity of tangential velocity patterns encountered experimentally. Deissler 

and Perlmutter have employed the following simple approximation to the 

tangential angular momentum equation, disregarding axial gradients, 

pu»(vr)/dr * p v ^ v / d / « + y3v/ar - v / i 8 ) ; (2.1) 

in dimensionless form this equation reads (cf. eq. 2. 5) 

a* ar , 2n d*r 
St 57 Refi 3rf 

(2.2) 



- 16 -

where 2tu' is a dimensionless circulation; while Re'a » F / v t is a Reynolds 

number, with F/i the total volume flow divided by 2 K into the tube per unit 

of tube length and v the kinematic viscosity or the corresponding turbulent 

parameter (below written c ). 

i w\ 

Fif. i. I. Mon-dJimiMionil taagantial valocity attribution hi vortan tub«. 
From DolMler and Parlmnttar 1960; ReQ and Wc/W aqnlvalent with Re>a 
and Rĉ RaVa in tant; r̂  and vQ corraapond to r and v in tant. 

Typical results are shown in fig. 2 .1. A simple radial flow function i s 
employed that permits the study of the influence on the velocity pattern of 
the ratio of radial flow entering the core region (W ) to total flow into the 
tube at the periphery (W) (tube model as in fig. 1.1b, but with nozzles 
spaced along the tube); W / W may be identified with Rer/Re,ro of sections 
2.3 and 2.4. The Reynolds number ReQ, used as a parameter in the figure, 
i s based on total radial flow into the tube at the periphery per cm tube length 
and as such may be identified with Re'/o as defined above. Thus the product 
of the two parameters is the radial Reynolds number Re^ based on centre-
exit flow. It is seen that this radial Reynolds number, which is a measure 
of the relative importance of angular-momentum transport by radial flow 
and by viscous (or turbulent) forces in the radial direction, has a major 
influence on the resultant distribution in that a large influx of fluid leads to 
preservation of angular momentum at smaller radii, i. e. to a distribution 
that, in the outer part of the tube, is close to the free vortex. 
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The solution neglects any axial changes; it i s to be expected, therefore, 
that the approximation works best for shorter tubes and especially for tubes 
of the type with nozzles along the periphery (fig. L i e ) . When the attempt 
is made to interpret such experimental results, the complication arises 
that it is necessary to postulate that the flow in the tubes is turbulent, in 
order to reconcile experiments with theory. On the other hand, this i s a 
major conclusion which i s fundamental to the understanding of all aspects of 
the tube functioning. Confirmation of the result by independent methods 
have been made by Kendall, 1 962, and by Rosenzweig, Lewellen and Ross, 
1964. 
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Since the solution obtained is very sensitive to the value assumed for 
Re when this is in a suitable range, an estimation of t*<e turbulence level 
in terms of turbulent diffusivity i s possible by matching the theoretical 
curves with experimental ones, as has been done by Deissler and Perlmut-
ter, 1 960, by Keyes. 1961, and by Ragsdale, 1961. Some results of these 
studies are shown in outline in fig. 2. 2. It i s seen that the laminar tangen
tial Reynolds number Re t = v r /» has some potential as a parameter 
for the correlation of the results. 

2. 2. The Boundary Layer Interaction 

Flow visualization experiments have shown that the end-wall boundary 
layers play an important role for the tube functioning in that a major part of 
the radial flow towards the centre region may be diverted into the layers 
owing to the fact that wall friction reduces the tangential velocity close to 
the wall and that this reduction tends to upset the balance between radial 
pressure gradient and rotation existing in the tube proper (Anderson, 1961, 
Rosenzweig, Ross and Lewellen, 1962, Kendall, 1962, Ross, 1964a, Lewel
len, 1 965, and Hornbeck, 1 969). 

2 .1 .1 . The Analysis by Rosenzweig et aL 

Results of a boundary layer analysis by Rosenzweig, Lewellen and Ross, 

1 964, are shown in figs. 2.3 and 2.4. The ordinate in fig. 2.3 measures 

the ratio of the circulation at the exhaust radius (fig. 1.1 type e) to that at 

the periphery; thus, a value of unity for this parameter indicates the pres

ence of a free vortex in the outer region of the tube, while a low value de

signates approach to a forced vortex (the ratio of exhaust radius to tube 

radius is 1 /6 in the case shown, and thus, the square of this is the ordinate 

that corresponds to the forced vortex). In fig. 2.4, the ordinate i s that 

fraction of radial flow which is not diverted into the end-wall boundary 

layers but, according to the model, uniformly distributed along the tube. 

The parameter A in figs. 2. 3 and 2.4 i s defined as 

where Re t is the (laminar) tangential Reynolds number, 2»r is the 

circulation at the periphery and 2*Q the flow into the tube (and, since there 

i s no peripheral exit, also the flow into the core) per cm tube length. The 
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turbulent radial Reynolds number is defined (as in section 2.1) as 

R e r - Q/e (2.4) 

A is essentially a swirl parameter inversely proportional to a radial 

Rossby number, Ro = (Q.A)/(*1-_r„)* similar to that defined by Lewellen 

(1 962 and 1 964) (see section 2. 3). A is in poriant in this context, because 

it is a measure of the fraction of the flow that must be accelerated towards 

the centre region in the end-wall boundary layer in order to make up for the 

excessive radial pressure gradient there, while Re i s important because 

it influences the shape of the radial distribution of tangential velocity which 

again determines the shape of the radial pressure gradient (a free vortex 

has a much steeper pressure gradient at intermediate radii than that of a 

forced vortex with the same tangential velocity at the periphery). 

It was found in the study that A-values in the experimentally interesting 

range (see section 2.4) do not have a large effect on the radial change of 

the circulation even though a substantial part of the flow is diverted into the 

end-wall layers; in agreement with this conclusion the data obtained in the 

study (XIV) agree quite well with those of Keyes (XII) in fig. 2. 2, where A 

has been of the order of 0. 5 - 2 (cf. figs. 2. 3, 2.4). The reason for this is 

that the boundary flow is rejected axially from the boundary layers at inter

mediate radii without having experienced excessive loss of circulation in the 

layers. 

The analysis is valid only for conditions in tubes of type d and e, which 

have exits at the centre exclusively. Thus, in these cases the very simple 

picture presented by Einstein and Li and Deissler and Per lmutter still holds 

true. 

2. 2. 2. Some Experimental Results 

In ref. II an investigation was carried out of the tangential velocity 

distribution in the vortex tubes (type d fig. 1.1) that were employed for the 

gas separation experiments described in chapter 3. 3 (ref. I). The diameter 

of these tubes was rather small so that extensive measurements could not be 

made (probes necessarily alter the flow pattern inside a narrow tube). Thus 

the data were restricted to wall pressure measurements along the periphery, 

at the end walls and in the exit ducts, from which approximate tangential 

velocity distributions were deduced on the assumption that the tangential 

velocity is proportional to the radius raised to a fixed power, n, i. e. 

v oc rn, in the outer part of the tube, with n the parameter to be deter-
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mined by fitting to experiment, n-values between -1 and +1 (in certain 
cases somewhat higher than one) can be expected, corresponding to distribu
tions between the free and the forced vortex (in certain cases, an angular 
velocity increasing with radius). It was assumed that the How in the whole 
of the core region forms a forced vortex, and that the transition between 
the two regions is sharp (similar assumptions have been made previously 
by other workers (Kerrebrock and Keyes, 1959)). 

In the experiments, the inlet nozzle geometry and the gauge pressure 
of the supply gas was kept constant with the result that the total flow through 
the tube was quite constant (though somewhat dependent on orifice diameters), 
see section 3. 3 and ref. II. n-values close to -1 were found in the very 
short tubes that had the strongest radial flow, while positive n-values ap
peared in tubes above a certain length, both results in agreement with the 
positions of the corresponding points in fig. 2. 3. In the longest tubes tested 
it was furthermore found that the tangential velocity decreased markedly 
along the tube, a situation typical of the long tubes with weak radial flow to 
be treated in the next section. 

2. 3. The Three-dimensional Distribution of Tangential Velocity 

A theoretical investigation of the tangential velocity distribution in the 

vortex tube that takes into account that axial gradients may exist has been 

carried out by Lewellen, 1962. From the continuity equation and the Navier 

Stokes equations for the velocity components in cylindrical coordinates, 

Lewellen eliminated the pressure, introduced the circulation 2r.r = 2r.vr 

and the axi-symmetric stream function 

ol/az Eur and a$ /dr= -wr 

and obtained the following two equations, where all quantities are dimension-

less 

â  ar_ aj< _ar. 2^ af_r . a a2r ,„ . . 
at, an " ai) at ' Ke s TKé" d .2 ^ • D ' 

r « = Rd> {irf [ »t £ i - ?t 5 ^ _ * (2 £ t + „ £±) ] 
1 1 ~ an* asarf *" a,» a,« 

(2 .6 ) 

~ a? ™ a,652 ^ as» ro an'oi;2 * as« 
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are normalised circulation and stream func-
o 

z / z s is a normalised axial position; ') = ( r / r
s ) 

Here l- r. I'/r and 4. = +/I 
tions respectively; 
measures the radial position as the square of a normalised radius; and 
o = ( r

s / 2
s ) i s *n e square of a ratio of characteristic lengths. Further

more Ro = * /(T r ) and Re s >•-./(» O are Rossby and Reynolds num-
bers, respectively, v is the kinematic viscosity. The above equations are, 
strictly speaking, derived for laminar flow; in ref. IV it was, however, 
assumed (see e. g. Deissler and PerLmutter, 1 960) that they may be applied 
unaltered to the turbulent case with Re interpreted as a constant turbulent 
Reynolds number. * is a suitable standard flow rate. 

Eq. 2.5 equates the transport of angular momentum out of a volume 
element by secondary flow (left side) to that by turbulent diffusion into the 
volume element (right side). Eq. 2. 6 describes the fact that the gradients 
of radial and axial velocity necessarily must be related through the mixed 
second order derivative of the pressure; i. e. that the radial pressure 
gradient which appears in the radial momentum equation and the axial 
gradient which appears in the axial momentum equation may be elin'inated 
by suitable differentiation followed by combination of the two equations. 
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Fig. 2.5. a. Vorta tab« with schematic stream lin« pattern and boundary 
of region 1 (two example* shown), b. Diagram of region 1; arrow* indicate 
axial and radial flow components. 
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2. 3 .1 . The Analysis by Lewellen tor u - w 

Lewellen selected the quantity Q* for 4>s, where 2nQt is the total 
radial volume flow at r , i. e. at the radius where the axial velocity changes 
sign (see fig. 2.5). In most cases of interest the resultant Ro \< 1. and 
thus, the form of eq. (2. 6) suggests a series expansion of .' and <|> in Ro 
as described by Lewellen, 1962, writing 

r = i r r , , r . ) R o 2 n (2.7) 

o 

. = TvJn.ORoJ 3 1 1 (2.8) 

By inserting these expressions into 2. 5 and 2. 6, and collecting terms 
2 

of the same power in Ro , it was found that the zero order expression of 

eq. (2. 5) may be written 

2r,ro' - R e r . ^ i ' + 0 / 3 i = 0 (2.9) 

with r independent of the axial coordinate. The corresponding zero-
order stream function, written as a polynomial in £, was found to take the 
form 

*o = foo("> + t f o1 ( , l > <2-'°> 

Thus eq. (2. 9) may be written 

2" r o - R e r f o i r o = ° <2-"> 

It follows that the radial flow alone governs the radial distribution of the 
circulation; eq. (2.11) can be shown to be identical with the simple equation 
(2. 2), which has been found useful in two-dimensional studies. 

2. 3. 2. The Theory for u « w 

Lewellen proceeded to discuss the first order set of equations and the 
convergence of the series. Implicit in the treatment is that both V 

(=df /3r|) and f . are of order one. If, however, 3*/3i) ) ) 3^/31, as 
may well be the case, then 3c|/3Sxdr/ai) and i^/iriXdV/bl, in eq. (2. 5) may 
be of the same order of magnitude. This case was treated by Lewellen, 
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1 964, on the basis of an expansion of r and v in terms of Bo , rather than 
2 Ro . The resultant zero-order expressions of (2. 5) and (2. 6) describe 

conditions in long vortex tubes with weak radial flow quite well, as was 

shown in ret. IV. As shown in ref. IVa, it is advantageous to transform 
the original zero order equations (Lewellen, 1964) and express them in 
terms of experimentally available parameters. This was done on the basis 
of the following set of reference parameters (cf. fig. 2. 5): 

rs H V Z E ' • '"s S > = W and
 *B

 E F- < 2 - ' 2> 

where r i s the tube radius, I the length of region I, 2 nr the circulation 
P po 

at the periphery near the nozzle (and v the corresponding tangential 
velocity) and 2nF the total volume flow through the tube. The resulting 
equations read 

Re Re 
r r n =4i,»Ro2[f'" — T - f., - f t — F - f" - 2 _L(2f'" + TIf'" ) ] 
o i l » R , J : H °o R ( , , r s 11 Re ^ oo ' oo ' J 

(2.14) 

R e / a H ° ° R e f 5 

Here Ro ^ / ( r ^ ) , Refa = F/(M) = F/(«rp) * fa. while a = (rjif. ' 

(r /r ) and Z=z/l; furthermore, in (2.13) and (2.14) r and* are ap

proximated by 

^ ' o o + S f ' ^ 

(2.15) 

where rQ, r , , , fQO, and fj j are all functions of t], only. Re r i s the 
radial Reynolds number so chosen that Re/(Re,'o) is equal to Q l / F , the 
ratio of the total radial flow of region I (fig. 2.5) at r (the radius at which 
the axial velocity changes sign) to the total flow through the tube. 

The validity of (2.13) and (2.14) is restricted to ^ ^ « 1 and Re r / 
Re/a x f| ] « 1 (»ee Lewellen 1964). This may be achieved in the experi
mental cases considered by restricting attention to short tube lengths, i. e. 
by choosing Æ large enough; that fj j is reduced by this choice as well 
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may be deduced from the fact that TaP^ 1 in eqs. (2.13) and (2.14) is in

variant to changes in Ta. 

Equations equivalent to (2.13) and (2.14) may be derived, as mentioned 

in ref. IVa, directly from (2.5) and (2. 6) on the basis of (2.15) and with the 

assumption that '/Q ( ( 1 . The same restriction as above that only short tube 

lengths are to be considered has to be made, here expressed by the demand 

that l has to be kept small compared to unity. 

2. 3. 3. Comparison with Experiment and Interpretation of the Results 

The connection between the secondary flow and the circulation, estab

lished through eqs. (2.13) and (2.14), was investigated in ref. IV (in detail 

in IVa). For this purpose the equations were solved with respect to the 

circulation r and its axial gradient r.. on the basis of prescribed second

ary flow functions. The radial flow was found to have essentially the same 

effect on r as represented by eq. (2.2) of previous two-dimensional in

vestigations (compare fig. 2.6b and fig. 2.1), and to have very little in

fluence on T.. (fig. 2,6d), The inclusion of the additional term containing 

r . j in (2.13) as comparts with eq. (2. 2) was found to have an effect on the 

radial distribution of P somewhat akin to the effect of the radial flow term: o 
its physical relevance i s therefore somewhat difficult to assess (fig. 2.6a). 

It was furthermore found in ref. IV (with IVa) that the axial gradient of 

the circulation, 2*r . . , is linked in a unique way to the axial velocity and 

its radial gradients through eq. (2.14). That is to say that, although eq. 

(2.14) contains higher order derivatives of f that cannot be derived direct

ly from experiment (since this would demand excessive accuracy), there 

appears to be essentially only one single f -function for each case (dis

tinguished primarily by the ratio of the flow in the outer annulus to that in 

the core, i. e, the cold flow fraction) that satisfies the requirements of the 

experimental axial velocity distribution, and, at the same time, provides a 

physically relevant axial gradient of circulation r. . . Comparison with ex

periment shows the latter conditions to cause the tangential velocity distri

bution to have r. . negative (i. e. r decreasing with z) within an annulus 

bounded approximately by n = i) and the periphery, while it shall be posi

tive in the core (see fig. 2.6c and d; and e. g. Bruun, 1967, 1969 or Hart-

nett and Eckert, 1957). 

The effect on the circulation of a radial flow that increases with axial 

position, as is often found experimentally (see section 2.4), i s not taken 

into account in the present approximation, which is limited to linear 4>-

gradients in the ^-direction. It i s possible, as discussed in ref. IVa, that 
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FJ«. 2.6. TJP, . «„{-»/» at z * O); and c. d, r„fR = »„<= g J-); 
P° 

as functione of /n . Also shown, corresponding secondary flow functions, 
3+ /ba, at [ - 0 and '. = 1 (i. e. wfj (2F) at i « 0 and z = t). •'•Re = 1 ", 

s - 0 . 0 1 . ! / » „ - 3-

s and c: Re^Re/a = 0.055; Ro=0 0.040 0.090 0.124 

enrve: L0.2] i l . 2 ] i?,2] [3,2] 

b and d: Ro " 0.090; Re^/Re/a » -0.055 0 0.0275 0.055 0.110 

carve: i 2 , - l ] [2,0i {.2.ll ^2,2] 12,3] 

the large positive axial gradient of circulation found typically at small radii 
in part has its origin in such an effect as this gradient is not well reproduced 
within the present approximation. At larger radii where the axial reduction 
of circulation takes place, such radial flow-increase with axial position 
cannot be invoked as the cause of the reduction, since in the work by Bruun, 
1 967, 1 969, where radial data are available, it is found that the axial gradi
ent of circulation maintains its typical trend in tube sections, where the 



- 27 -

radial velocity is constant or even has a tendency to decrease (see discus
sion in ref. IVa). 

The calculations in ref. IV showed that r. ( is almost proportional to 
Ro /Re (fig. 2.6c and eq. (2.14)). This means that the axial gradient of 
circulation in the outer part of the tube i s larger the smaller the peripheral 
circulation and the larger the axial volume flow. According to the model, 
this implies that the axial gradient of the centripetal acceleration, 3 (Vs /r)/:' z, 
i s related, through the axial variation of the radial pressure gradient, to 
turbulent stress created by the radial gradient of the axial velocity. 

When the theory i s applied to experimental cases, turbulent Reynolds 
numbers can be obtained by adjusting the calculated - . . -curve until an 
optimum fit with experiment i s obtained. Results of this procedure are 
shown in fig. 2. 2 for a number of cases from the literature all involving 
long asymmetric tubes of type a or b (fig. 1.1) with weak radial flow. The 
inconsistency that the theory i s developed for incompressible flew while the 
experiments considered are compressible cases is discusssed in ref. IV 
(IVa). 

The flow in t«e tube need not be turbulent; thus in Suzuki's case (fig. 
2 .2 , point XI) conditions are close to being laminar because the tangential 
velocity is comparatively low. Small tangential Reynolds numbers may 
also be obtained by reducing the pressure level sufficiently, as was done 
by Murtz and Ndller, 1961, in their investigation of the mass separation 
potential of vortex tubes of type c (fig. 1.1). Fig. 2.2 predicts, on the 
basis of their tangential Reynolds number, that laminar conditions are just 
reached by th > pressure level chosen. 

It i s seen from fig. 2 .2 that the turbulent diffusivities obtained in the 
present cases are of the same order of magnitude as those of previous 
(quasi-)two-dimensional studies. 

A procedure somewhat similar to that described here has been adopted 
by Wolf, Lavan and Fejer, 1968. 

2.4. The Connection between Secondary Flow and Tangential Velocity 

The treatment in section 2.3 does not provide any explanation of why 
the axial and radial flows are distributed as they are, i. e. it is taken for 
granted that the axial flow emerges from the end-wall boundary layer in 
such a way and provides such a radial flow that the experimental tangential 
velocity distribution results. Some insight into this problem may be 
achieved on the basis of the treatment in section 2.2. The theory there 
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does not include long asymmetric tubes, but one may argue that the tube 

region removed some distance from the nozzle (say, region IV of figure 2. 5) 

in a way behaves like an extended boundary layer of the short tube type. 

2 .4 .1 . Further Discussion of the Boundary Layer Analysis in 2. 2.1 

The treatment in section 2. 2 employs Re r and A as independent param
eters; however, the results of section 2 . 1 - 2 . 3 indicate that the turbulent 
to laminar viscosity ratio is related to the tangential Reynolds number Re t 

so that with some justification we may assume 

e/v - C Re t (2.16) 

where 1/C, according to fig. 2 .2 , is about 2. 5 10 . Furthermore, Re* 

may be written, in accordance with the definitions in section 2. 3, 

Ho . t Re = £ R e r 1 1 „ . . . 
*et,v~fRZ v TCo 7? Re r / (Rerø ' • ' 

so that from eq. (2.16) 

Re r = j , Ro(Re r /ReYSj^ (2.18) 

(where Ro is the Rossby number). Re /(VaRe) is here taken to mean the 
ratio of the net radial flow into the core region, as measured by the flow 
through the exits in the centre, to the total flow through the tube; this means 
that region I (Fig. 2. 5) is taken to cover the whole tube with t equal to the 
tube length. It is clear that Re^ReYo in all cases must be less than or 
equal to one. Since A may be written (eq. (2.3)) 

A = 0.27 ' . i . ' , (2.19) 
( R e t j p ) ' ' 5 Ro(R e r /Rert 

the governing parameters of figs. 2. 3 and 2.4 are now Ro(Re /ReVo), the 
radial Rossby number, and /a, the ratio of radius to length of tube, with 
Re. the laminar tangential Reynolds number, a third parameter of less 
importance. Experiments set limits to the values of these parameters with 
the result that only the regions covered by the dashed curves in figs. 2.3 
and 2.4 (see below) are of interest. 

All factors in (2.18) and (2.19), the reference tangential velocity, v . 
being the only exception, contain easily accessible external parameters. 
Without actually measuring it, a prediction of v is possible on the fol-
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lowing evidence. In most experiments, conditions with sonic velocity in 
the nozzle(s) have been sought; it is generally found that v almost reaches 
this limit in long asymmetric tubes, while in shorter tubes of the more 
symmetric type (d or e in fig. 1.1) a considerable reduction in velocity 
takes place when the gas enters the tube (down to 20% or less of the velocity 
in the nozzle). This incidentally has been a major obstacle to the practical 
use of the vortex tube for containment in nuclear fission rockets. Rosen-
zweig, Lewellen and Kerrebrock, 1961, discuss this velocity reduction on 
the basis of a torque-balance analysis by Rosenzweig, 1 961, for laminar 
flow. They find that the radial turbulent Reynolds number and the ratio of 
injection radius to tube radius (or rather its deviation from unity) are the 
two parameters that govern the reduction. Their results are difficult to 
use in most cases of interest because the ratio in question does not have a 
well-defined value, as it usually covers the range from one to 3/4 or less . 
Furthermore they predict better velocity recovery with increasing radial 
Reynolds number for the tubes under consideration (of type e), while the 
opposite seems to apply, as described above, for the transition from long 
tubes with weak i lial flow to short tubes with strong flow. 

The total range of Ro spanned by experiment i s no more than a factor 
of about 50 (from 0.002 to 0. OS), and different types of vortex tube tend to 
cover the same range; the reason for this is basically that the interest over 
the years has been centred on obtaining maximum flow rates (2itF) through 
the tubes under the given conditions. These, in tubes with centre outlets, 
are rather restrictive on F (if the radial pressure gradient is not to be 
ruined), while at the same time in the usually short tubes of this type, v 
tends to be rather small, as mentioned above. Conversely, in long vortex 
tubes with peripheral outlet, the hot exit normally can carry a larger amount 
of gas, but v tends to be larger too. Thus the ratio of the two quantities 
(appearing in Ro) remains within the same range of values. 

2 .4 .2 . Classification of Vortex Tubes according to Flow Type 

On the basis of the above considerations, it is now possible to relate 
the secondary flow pattern and resultant radial distribution of tangential 
velocity to external tube parameters and thereby explain in qualitative terms 
the dependence of the patterns on tube type, as found experimentally. 

1. The forced vortex type flow with mainly axial flow in tubes of the 
long asymmetric type is found from eqs. (2.18) and (2.1 9) to arise, on the 
one hand because Va • r / £ is small, on the other hand because the radial 
flow fraction (Re /ReVo) in many of the experimental cases recorded has 
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been small (cf. table 2. t ) . Both effects tend to make Re r (eq. 2.18) small 
while the latter one tends to increase A (eq. 2.19). Since this implies that 
the tubes considered are represented by points in fig. 2.3 towards the right 
and in the lower part of the figure where re i s small, the presence of the 
forced vortex is strongly indicated. Furthermore, fig. 2.4 shows the axial 
diversion in long tubes with Re small and with A sufficiently large (i. e. 
Re^Re'/a sufficiently small) to be large; this means that the smaller the 
percentage of net radial flow, the larger i s the tendency for all of it to be 
diverted along the tube. 

The interpretation of these results is as follows. The radial flow is 

diverted because the radial pressure gradient is reduced along the tube (the 
tangential velocity level decreases), so that an axial pressure gradient 
builds up that i s larger than necessary for the axial flow moving towards 
the peripheral hot exit; son- ~where in region IV the extra axial flow induced 
by this pressure gradient changes to radial and then to axial flow towards 
the cold exit. Part of this flow may even be recirculated to the periphery 
at the nozzle as in the work by Bruun, 1 967, 1 969. Because of the small 
level of actual radial flow, the radial transport of angular momentum is 
small and the forced vortex results. Furthermore the relatively high axial 
flow rate tends to transport angular momentum far down the tube. 

2. Long tubes with outlets at the centre only (type d) or tubes of types 
a and b with the cold flow fraction p - 1 stand a somewhat better chance 
than the above type of having a free vortex in the outer part of the tube, be
cause Re /ReVo = 1 (fig. 2. 3). However, 2*F is rather limited in magni
tude, as mentioned above, while v may still be large; Ro i s therefore 
likely to be on the low side, and the possibility of finding a forced vortex 
rather than a semifree in the tube is enhanced (as in the experiments of 
ref. II, cf. point corresponding to long tube in fig. 2.3). As seen from 
fig. 2.4, part of the radial flow in tubes of this type is distributed along the 
tube, but a substantial part i s still diverted. 

The origin of these effects is in general terms as follows. The axial 
pressure gradient created by the decrease in axial velocity along the tube 
is still appreciable compared to case 1 above, and the major part of the 
radial flow enters the core region away from the nozzle end; that part which 
is reversed towards the cold exit may have sufficient angular momentum 
left to impart a deviation from the forced vortex; furthermore a sufficient 
amount of radial flow i s left to provide a substantial, uniformly distributed 
radial flow which carries additional angular momentum into the core. Thus 
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with the change from n • 0 (case 1) to » • 1 (case 2). some approach towards 
the free vortex may be seen provided, as mentioned above, that the limited 
capacity of centre exits in general does not reduce the total amount of gas 
through the tube. 

In long symmetric tubes (of type e) the situation is similar to the case 
considered above (for type d) except that the increased radial flow takes 
place in the two end-wall boundary layers rather than along the tube in 
region IV. 

3. In short tubes of type d or e, the free or semifree vortex appears, 
on the one hand because the radial flow fraction R e / R e 'Q is equal to one, 
on the other hand because la - r / t is comparatively large; factors that 
tend to make Re large and A small (cf. points referring to results from 
ret. II, in fig. 2.3). The resultant tendency to form the free vortex is 
directly deducible from fig. 2.3 (see also section 2.2). At the same time 
the axial diversion of the flow to the end-wall boundary layers has a tendency 
to become complete (fig. 2.4). An excess, even, of flow in the boundary 
layers appears possible in practice with the surplus recirculated to the 
periphery in the : ain part of the tube (i. e. f ( 0 in figure 2.4; according 
to Rosenzweig. Lewellen and Ross, 1964, this may be an additional effect 
of the centre exit discontinuity, which they allow for by *he use of an extra 
parameter (not included in figs. 2. 3 and 2.4)). 

These results may be interpreted as follows. The diversion of the 
flow into the boundary layers i s complete, because a large radial pressure 
drop at intermediate radii (and the presence of the exit) tend to draw a sub
stantial axial flow into the tube proper from the end-wall layers; these have 
to be fed from the periphery and thus the diversion takes place. The large 
pressure drop at intermediate radii takes place because the free or semi-
free vortex i s obtained in the outer annulus, and this in its part i s caused 
by the large radial flow (or rather Re r) , which, although it may all be 
diverted into the end-wall boundary layers, may preserve sufficient angular 
momentum to create the free vortex. 

In conclusion it may be appropriate to quote Lewellen, 1965 (who re
ferred to tubes of type e, but as discussed above the statement may be 
generally valid): " . . . the fluid will gravitate to . . . regions of lower centri
fugal force that provide a path of least radial resistance. Combined with 
this fact, is the fact that the radial velocity supports the swirl by convection 
of angular momentum. Thus, the radial velocity always distributes itself 
in a way that tends to make the tangential velocity two-dimensional as far 
as i s possible". 



Table 2.1 

Hartnett and Eckert 

Lay, 10psig 

Lay, 30psig 

Schowalter and Johnston 

Takahama 

Takahama 

Bruun 

Scheller and Brown 

Takahama 

Takahama 

Suzuki 

• 

No. 

I 

II 

III 

IV 

V 

VI 

VII 

VIII 

IX 

X 

XI 

V 

0 

0 

0 

0 

0 

0 

0.23 

0 . 5 

0 . 5 

0 . 5 

1 

r 
P 

cm 

3 . 8 

2 . 5 

2 . 5 

10 

3 . 9 

2.64 

4 . 7 

1. 25 

3 . 9 

2.64 

1 . 4 

Approx. 

2 . 5 

3 

3 

2 . 5 

3 

3 . 5 

2 

3 

2 . 5 

3 

3 

F 

cm / s e c 

2.9 104 

1.0 104 

1.7 104 

2.5 104 

6.5 103 

6.5 103 

1.2 I0 4 

1.5 103 

6.5 103 

6.5 10 3 

110 

V 

po 
cm/sec 

2.4 104 

2.1 104 

2.9 1 0 4 

3.4 103 

2.1 104 

1.7 104 

1.8 104 

2.2 1 0 4 

2.1 I0 4 

1.7 1 0 4 

1.3 I0 3 

Ro = 

F/<Vp> 

0.08 

0.08 

0.09 

0.07 

0.02 

0.05 

0. 03 

0.04 

0.02 

0.05 

0.05 

1 8V 
vpo d < Z < V 
at r=r , z=0 

P 

0.027 

0.030 

0.024 

0.054 

0.051 

0.045 

0.048 

0.048 

0.051 

0.060 

0.12 

Keyes XII, Ragsdale XIII, Rosenzweig, Lewellen and Ross XIV. 
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3. THE CONCENTRATION DISTRIBUTION AND THE GAS SEPARATION 

A number of papers on the stationary concentration distribution in the 
vortex tube of binary gas mixtures has appeared in connection with the 
development of gaseous nuclear rockets, as carried out by various groups 
in the USA (Kerrebrock and Meghreblian, 1 958, Kerrebrock and Lafyatis, 
1958, Rosenzweig, Lewel'en and Kerrebrock, 1961, Keyes, 1961, Ragsdale, 
1 960, Pivirotto, 1 966, Kendall, Mensing and Johnson, 1 967); these studies 
will be briefly described in section 3.1 within the two-dimensional approxi
mation. 

The possibility that the vortex tube may act as a separator of gas mix
tures appears to have been first realized by H. R. von Traubenberg during 
World War Two, according to an obituary in Zeitschrift for Naturforschung 
1 (1946) p. 420. A number of papers on this subject has since appeared that 
has treated the problem experimentally (Stone and Love, 1 950, Elser and 
Hoch, 1951, Baker and Rothkaiap, 1954, T^rocheshnikov and Koval, 1958, 
Nailer and Mflrtz 1 958, Bornkessel and Pilot, 1962, and ref. I) and in some 
cases theoretically (Murtz and NBller, 1 961, Strnad, Dimic and Kuscer, 1 961, 
and ref. III). 

Experimental investigations of the concentration gradients within the 
tube in connection with these studies have been made in only one case (Miirtz 
and Ndller, 1 961) and then at pressures far below atmospheric. These re
sults will be discussed briefly in section 3. 2 together with a presentation of 
equations that describe the three-dimensional distribution of concentration 
in the tube. 

At pressures above atmospheric it has proven difficult to obtain repro
ducible gas separation results, because the effects that can be obtained are 
very small; however, well-defined effects do exist, as was shown by the 
use of a suitable analytical method in ref. I; the interpretation of the results 
obtained in that study will be discussed in section 3. 3. 

3.1 • The Radial Distribution of Concentration 

The nuclear rocket concept has been investigated on the assumption that 
it might be possible to keep a heavy gaseous nuclear fuel contained in a vor
tex chamber (of type e, fig. 1.1) through which a light propellant is passed. 
The idea has been that the centrifugation of the gas should prevent the heavy 
fuel component from being carried with the light gas to the centre region. 
Thus the propellant should pass through the fuel zone and thereby be heated 
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by the fission processes for finally to pass axially out of the tube through a 

Laval type nozzle at supersonic velocity. 

So far the idea has not met with success . This does not mean that the 

containment effect does not exist, in fact it has been demonstrated in a num

ber of cases, but simply that it has not been of sufficient magnitude to be of 

practical use. The reason for this is know to be the comparatively high de

gree of turbulence in the tube, the presence of which has three undesirable 

consequences for the tube performance. For one thing, the turbulence 

makes it impossible, as mentioned in section 2.4, to obtain at the same 

time a high peripheral tangential velocity and a free vortex with a further 

velocity increase towards the centre; thus, although close-to-a-free-vortex 

may be formed in the outer annulus, the benefit is limited owing to the ap

preciable velocity reduction that takes place when the gas enters the tube. 

Furthermore, with turbulence in the tube, a prohibitively high radial inflow 

(see below) may be required in order to get close enough to the free vortex 

(to make Re r in eq. (2.11) or (2. 2) (fig. 2.1) sufficiently large). Finally, 

turbulence in the tube reduces the attainable height of the concentration peak. 

The distribution problem has been approached theoretically by Rags dale, 

I960, and by Rosenzweig, Lewellen and Kerrebrock, 1961, on the basis of 

the two-dimensional approximation, which is quite adequate for the outer 

annulus of type e tubes (fig. 1.1). The treatment thus neglects the effect 

of the diversion of flow into the end-wall boundary layers; however, it is 

possible to argue, as was done in the case of angular momentum (section 

2. 2), that the combined effects of boundary layer flow plus axial redistribu

tion may not be essentially different from the results of the purely two-

dimensional approach. 

The treatments by Rosenzweig et al. and by Ragsdale do not differ much 

in their basic assumptions; both write the diffusion equation as an integrated 

version of the following equation 

where M»-M. is the molecular weight difference, N the mole fraction of 

the heavy component and e the turbulent mass diffusivity. Eq. (3.1) reads 

in non-dimensional form (cf. eq. (4. 2)). 
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where 

C ° / ^ P - ^ ^ (3-3) 

(with t being of order one and 0 { N < 1); thus Co/t is a measure of the 
diffusional force divided by the effect of the turbulence, while taken as s 
whole it is a measure of the attainable concentration gradient at equilibrium 
(Co may be considered as referring to K. Cohen, who has contributed much 
to the theory of mass separation in the gas centrifuge; it should not be con
fused uith the Co designating the Cowling number of magneto-hydrodynamics). 

Re„ =F/ (r p P e n ) (3.4) 

i s a Reynolds number based on turbulent mass diffusion; it is related to the 
corresponding Reynolds number Re( for turbulent momentum transport, 
through the turbulent Schmidt number 

Sc = P«n/P£ = Re/Ren (3.5) 

In both of the above treatments, Sc is assumed to be equal to 1; the selection 
of a proper value is a somewhat ambiguous process, as is the choice of a 
turbulent Prandtl number in chapter 4 (see ref. IV), since the concept oi 
turbulent diffusivities as such has a rather weak theoretical foundation. 

It is noted that, in eq. (3. 2) (compare (3.1)), the usual molecular dif
fusion term has been replaced by the turbulent diffusion term 2i)/Re [a x 

dN/Si|, while the pressure diffusion term 2i|Co/(Re_Æt) x N(1 -N)i / i s as 
sumed to retain its laminar form. These adaptations to the turbulent case 
appear reasonable, granted that an approximation has to be made; however, 
there is no good reason, as discussed in the work by Rosenzweig et a l . , why 
the relation should be quite as simple as that. 

Eq. 3. 2 is valid in the outer part oi the tube, where axial transport of 
mass may be neglected; it equates the net transport by radial flow out of the 
volume element (left side) with the net diffusion, also in the radial direction, 
into the element (right side). 

Diffusion acts towards the building-up of an equilibrium concentration 
gradient Co/t x N(1 -N)u?; thus the diffusion current is outward (when N is 
the concentration of the heavy component) and tends to make dN/dn positive. 
The radial inflow counteracts this diffusion; in chapter 4 the same takes 
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place with the total enthalpy; here, however, the transport by flow more 
than outweighs the diffusion in the outer region, but because the tangential 
velocity increases towards the centre (Re large in fig. 2.1) a reverse con
centration gradient with dN/dT] ( 0 builds up with the result that a concen
tration maximum appears at intermediate radii (see fig. 3.1}. The steeper 
the equilibrium gradient is , the higher the concentration peak and the less 
important the loss of heavy gas to the exhaust. It is seen that turbulence in 
this connection is harmful because it reduces the value of Co. 

•Or 

.8-
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Fig. 3.1. Experimental bromine density as a function of non-dimensional 
radius ft. From Ragsdsle, 1960. Estimated turbulent radial Reynolds 
number 2.1; peripheral tangential velocity v • 1.4 10 cm/sec; mole 
fraction of bromine N • 3.7 10" . The bromine density data would lie 
on the dashed line, were there no separation effect. 

The position of the concentration peak Is independent of the turbulence 

level, since it is determined by setting dN/di) = 0 in eq. (3. 2), a condition 

which makes pe /(pD) disappear from the equation; however, the peak 

position is still a function of the laminar Reynolds number, so that, above 

a certain radial flow, the peak will be swept far enough towards the centre 

axis to be caught by the axial flow. This limit happens to be so low that the 
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tangential velocity profile, owing to the turbulence (low turbulent Reynolds 
number R e ) , cannot be brought close to the desired free vortex. 

3. 2. The Three-dimensional Distribution of Concentration 

Eq. (3. 2) in section 3.1 does not necessarily apply to the core region 

where the axial flow is strong; the reason is that the axial flow term neg

lected in (3. 2) may be of greater importance than the radial term and thus 

the balance between transport by radial diffusion and by radial flow may be 

upset. In tubes with a peripheral exit this situation may apply to the whole 

of the tube as in the total-temperature case to be described in section 4. 2. 

An equation analogous to eq. (4. 3) that takes this possibility into account 

reads (Cohen, 1 951) in non-dimensional form 

8+ dN i± 3N . 5 r 2q , 3N Co ,, . „ . . i 0 • /o aN. 

(3.6) 

this expression equates the net transport by secondary flow of heavy com
ponent out of a volume element (left side) with the net accumulation in the 
volume element of the same component from radial and axial turbulent dif
fusion (the latter contribution will normally be of minor importance in vor
tex tubes). 

In most cases, it i s possible to treat N(1 -N)/t as a constant with the 
result that the partial differential equation (3. 6) takes identically the form 
of the energy equation (4. 3). It might therefore be solved by the methods 
of section 4. 2 and the results would be qualitatively as in that work for a 
given secondary flow and tangential velocity distribution. There are, how
ever, too few data of this kind for a test to be worth-while; instead, the 
conclusions drawn in section 4. 2 may serve as a guide for the further dis
cussion in this chapter. 

The only results available are those of the low-pressure ex ~riments 
by Mflrtz and Noller, 1 961. These authors used a tube of the concurrent 
type (fig. 1.1c) with the flow left to distribute itself between centre exit 
and peripheral exit; the major part of the gas therefore leaves the tube 
through the latter (owing to the pressure gradient) and the tube thus belongs 
to the "weak-radial-flow" type. The pressure level in the tube was much 
reduced in order to make the flow laminar (see section 2. 3). The pressure 
distribution shown in the paper indicates a forced vortex at all radii in 
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agreement with the tube's position, as calculated and shown in the diagram 

of fig. 2.3. 

The authors assume in their calculations that radial equilibrium is at

tained in the tube, i- e. that 

dS/in = C o / t » S ( l - N ) i , (3.7) 

and they proceed to discuss their data in terms of this equation. As shown 
in section 4. 2 (for ,i \ ( 1 , a range which in view of the above data is the 
relevant one for the comparison), this is a correct procedure provided the 
radial flow is strictly zero. On the other hand, even a very small radial 
flow is able to level-off the distribution considerably (fig. 4. 6) (see also the 
discussion in chapter 1); the comparison of the theory with experiment, 
made in the paper, shows quite clearly this effect at work, see fig. 3. 2 

where some of the data are reproduced. 

Fig. 3.2. Concentration gradient« A » M | . M dN/dr as a function of 
radius. From MOrte and Nailer, 1961. Gas mixture Hg/CO, • 1/3. 
G, in litres at 1 atm. and 0°C, corresponds to 2«F in teat. x ex
perimental data and o calculated equilibrium gradients. 

Murtz and N511er also studied the effect of the centre exit size. The 
flow in the tube does not have to change when this is changed, because the 
flow configuration is of the concurrent type; thus the concentration gradient 
may not be affected either. In agreement with this conclusion, the effect on 
the separation of varying the exit radius was found to be that which arose 
because smaller or larger core fractions were cut from the main stream. 

As regards the effect of tube length on the gas separation, Murtz and 
NSller found a maximum at a certain length (,ra - 0.1 5, with Ro ~ 0.06), 
which they attributed to the decay of tangential velocity. It is quite reason
able that this is the case in the concurrent tube used in the experiments; on 
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the other hand, a change in the secondary flow pattern may also be respons
ible, as it would be in tubes with counter-current flow (see section 5. 3). 
The above effect of the axial gradient of tangential velocity was included in 
the treatment by Strnad, Dimic and Kuscer, 1961, through introduction of 
an exponential decay of tangential velocity along the tube; any close agree
ment between theory and their experiments (conducted at low pressure) was 
not to be expected, since, as also stated by the authors, the radial flow had 
been neglected. 

3. 3. The Over-all Gas Separation 

Difficulties with the reproducibility of the separation results prompted 
Murtz and NSller (section 3. 2) to reduce the pressure and thereby obtain 
laminar conditions. Other authors have had similar difficulties. In ref. I 
it was, however, shown that it i s possible to obtain small well-defined gas 
separation effects in tubes at or above atmospheric pressure. 

3. 3 .1 . Experimental Results at Atmospheric Pressure 

Most of these experiments were carried out with air, and oxygen con
centrations were determined. The evidence that some separation does oc
cur was first produced with a sensitive differential analyser working on 
chemical principles (Linderstrøm-Lang, 1 960). Later a sensitive Beckman 
Oxygen Analyzer was utilized. This meter records changes in magnetic 
susceptibility with changing oxygen concentration. Differences in mole 
fraction of oxygen as small as 1 0" in the range from 0. 209 to 0. 210 can 
be detected; that is to say a difference in oxygen concentration of two flows 
measured within 3-5 minutes are reproducible to that extent. Typically, 
the concentration differences detected were 1 0-30 * 1 0 . 

Vortex tubes of different designs were tested, including traditional 
Hilsen tubes (type a, fig. 1.1), but most experiments were conducted with 
type d tubes which had the additional feature (ref. I fig. 1) that peripheral 
exits at both tube ends (normally covered up) could be used if desired. 

A number of design parameters were found to influence the net separa
tion detected. In addition, the hot flow fraction e (= 1 - n with n the cold 
flow fraction) had a decisive effect. Typical examples are shown in fig. 3. 3. 

Ths most conspicuous feature of the results of ref. I is that positive as 
well as negative separation effects with well-defined peaks are created in 
many cases (where a positive effect is characterized oy a heavy "hot" exit 
stream (fig. 1.1 d) I. e. a hot stream containing comparatively more of the 
heavy component than the light). Furthermore, when a vortex tube with a 
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Fig. 3.3. Gas aeparation effect (in per cent) dN = Nh-Nc aa a function of 
"hot" flow fraction e. From ref. 1, (cf. fig. I.ld). Ratios indicate r c / r h 

(mm/mm). Circles "a (based on tube length) * 1 /2; squares 'o = 1/12; 
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certain set of design parameters produces effects of both signs, the positive 
effect always appears at low hot-flow fraction and the negative at high hot-
flow fraction. The parameters that determine the shape of the curves such 
as these in figs. 3. 3 were found to be 1) the ratio of the diameters of the 
two orifices, 2) the absolute sizes of the orifices compared to the tube 
diameter, 3) the length of the tube and 4) the throughput of gas, i. e. the 
size of the inlet nozzle diameter. The first three parameters will be dis
cussed below, the fourth one in chapter 5. 

The first parameter, the ratio of the orifice diameters, is of special 
interest, as a close correspondence between the deviation of this from unity 
and the asymmetry o~' the curves is found. Thus a large cold to hot orifice 
ratio extends the negative effect range, while a small cold to hot orifice 
ratio favours the range with positive effects. When the orifices are of the 
same size, the curve is fairly symmetrical about the point 8 - 1 / 2 and 
zero effect. In ref. 1 (fig. 6) this correspondence was shown to originate 
in the further feature that the point of effect cross-over (the point of zero 
effect) i s closely correlated with the ratio of the flow capacities of the two 
exit ducts (as determined by their dimensions and by the conditions in the 
tube, notably the pressure gradient) when the valves at both ends are open. 
Since the closing of one or the other valve, i. e. departure from this inter
mediate state, necessarily leads to axial pressure gradients in the core 
region and therefore to changes in the axial flow pattern, it seems obvious 
that these changes are responsible in some way for the appearance of the 
complex effect curves. 

The symmetry displayed by the results provides a strong case for the 
conclusion that the nozzle position is of only secondary influence and with 
this that the outer part of the tube contributes little to the gas separation 
effect. This conclusion is further supported by results obtained with the 
peripheral annular exits of the tube open (ref. I fig. 1) and a limited amount 
of gas withdrawn at the two ends of the tube in addition to the streams through 
the centre exits (see ref. I fig. 7). The concentration in the peripheral 
streams did not follow the typical pattern, and thus the characteristic effect 
curve i s obviously a feature originating in the central part of the tube. 

It is important to note, before an interpretation of these results is at
tempted, that two or more independent driving forces behind the separation 
could never lead to symmetries and correlations as described above and in 
ref. I; furthermore, that the separation takes place in a region removed 
from all walls, so that centrifugation (pressure diffusion) is the only cause 
of any probability, as has also been assumed in previous sections of this 
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chapter. Strong support for this conclusion is found in ref. 1, table 1, where 
good agreement is shown to exist between the tube separation potentials (see 
chapter 5) obtained with three gas mixtures of different chemical composi
tions. 

3. 3. 2. The Flow Dynamic Basis 

In search for a more detailed explanation, it was noted in ref. Ill that 
the diversion of flow into end-wall boundary layers, as described in chapter 
2, leads to streng axial currents at intermediate radii where this flow is 
discharged into the tube. It was furthermore clear from the discussion by 
Rcsenzweig, Lewellen and Ross, 1964, that discontinuities in the end-walls, 
especially that at the edge of the exit, increase the axial flow discharge 
from the boundary layer into the tube. Finally, it was shown by flow visual
ization experiments (Kendall, 1962, Rosenzweig, Ross and Lewellen, 1 962, 
Ross, 1 964a) that the axial flow moves in annular layers with a high degree 
of mixing within the layers but with little between them. On this evidence, 
it was concluded in ref. Ill that the basic secondary flow pattern in the vor
tex tubes considei ;d, could be depicted as in fig. 3 .4 , for the case with both 
valves open. (It should be added that the model is not valid for tubes with 
large orifices where the centre flow is into rather than out of the tube.) It 
is readily seen that, according to this flow picture, radial mass diffusion 
between the streams does result in concentration changes ultimately detected 
as a net separation effect between the hot and cold streams. 

j-^-fr i^r 

Fig, 3.4. Secondary now pattern« with we'll flow *t intermediate radii. 
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It should be noted that the explanation offered in ref. I differs somewhat 

from that of ref. HI; the most important change is that originally concurrent 

systems were considered (see ref. I, fig. 11), while in the later paper the 

counter-current viewpoint was adopted. The main distinction is , in cases 

such as considered here, whether it is possible lo identify an inner layer 

against an outer in a given s t ream and trace the layers separately past the 

point where they separate; if that is the case, it is the diffusion across the 

two layers in the s t ream that mat ters , and the concurrent viewpoint should 

be taken. !f this is not possible, it is the diffusion across the boundary be

tween s t reams that contributes most to the separation and the counter-cur

rent concept is the one to apply. In the present case the axial s t reams ap

pear to be well-mixed, so that the lat ter point of view i^ the correct one to 

take (see fig. 3. 5). 

r Zc 

(1-0)L (1-g)C_ ~1~ f ._ _ 
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Fig. 3.S. Schematic representation of regions with separation, when both 
valves downstream of exit ducts are open (& = , < • * 

The flow pattern in fig. 3.4 gives some indication of why the outer 

region of the tube is secondary as regards gas separation, since it seems 

quite likely that a large part of the separation there will be lost again by 

mixing on approaching the core region. However, this cannot be entirely 

true, as experiments where temperature effects were measured along with 

gas separation showed no close correlation. Thus, no temperature effect 

reversa l (except in the shortest tubes) took place along with the gas separa

tion reversal (see section 5. 3 for a further discussion of these results) , and 

yet the equations governing the two separation processes have almost the 

same form (compare eqs. (3. 6) and (4. 3); see also chapter 1). The only 

probable explanation i s , on the one hand, that the direct flow into the exits 
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(fig. 3.4) must play some important part and, on the other hand, that condi

tions for temperature separation are better in the cuter region than in the 

core of the tube. The latter conclusion entails that the effective turbulence 

level must be higher at the periphery than in the core; as discussed in sec

tion 5. 3 this may be a reasonable proposition. 

However, if this picture is to be correct and if the assumption below 

holds true that all concentration gradients a re small enough to be indepen

dent of the turbulence level (see eq. (3. 8)), the low efficiency of the outer 

region as regards gas separation can be understood only, if the resul ts of 

chapter 2 are taken into account as well, i. e. that the tangential velocity, 

in the tubes of interest, increases towards the centre with a maximum close 

to the exit radius, so that also the driving force of the diffusion (eq. 3. 6) 

is largest there (see section 5. 3). 

Eq. (3. 6) might in principle, as discussed in section 3. 2, be used for 

a calculation of the concentration gradients encountered, provided experi

mental secondary flow patterns were available. Although it might be pos

sible to devise a reasonable flow pattern in the case shown in fig. 3.4, f. ex. 

on the basis of the data in Reynolds, 1 962, this would not be sufficient, 

since these only apply to the case where both valves of the tube are op?n, 

while the object of a theoretical study of the effect curves (fig. 3. 3) must 

include the changes in the axial flow caused by the closing of the valves. 

3. 3. 3. The Approximate Diffusion Equation 

Because of these difficulties, a much cruder approach was adopted in 

ref. III. The secondary flow was represented by systems of counter-current 

units such as shown in fig. 3. 5; it was assumed that the radial flow between 

two counter-flowing streams is zero, and that the flow rate in all s t reams 

is so large that appreciable radial concentration gradients nowhere are able 

to develop (and that axial diffusion gives a negligible contribution). With 

these approximations eq. 3. 6 is reduced to 

-a-^i, m/di, - ±- [—22— S ^ N O - N ) « / ] ; (3.8) 
"° Ren

,/5 x 

this may be quite a reasonable approximation provided the flow rates in all 

s t reams a; high, since then (as discussed in section 4. 2 and ref. IV for 

large cold flo»» Traction; see also chapter 1) radial gradients a re likely to 

be small (this also implies that a small radial flow does not disturb the 

separation process appreciably). 
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Eq. {3. 8) may be integrated with respect to T (after introduction of the 

continuity equation, which here reads o? y/oVij = 0) to give 

J ( N A v | 2 ) / H ( S d L / 2 Ndd/Oi)doj/OQ= - - ^ p i r N<1-NMiiuf ),-(!)</),] 
1 Va n e

n " 

(3.9) 

N is the average mole fraction of the heavy component in the stream and 

^''*I2 the flow rate (non-dimensional), while T)W"* with subscripts 1 and 2 

are the tangential velocities at the two radial boundaries; N(1 -N)/t is con

sidered as constant. Co/Re , which does not contain the turbulent diffus-

ivity (cf. eq. 3.1), may be calculated from a knowledge of the diffusion 

coefficient. The tangential velocity is assumed to be independent of the 

axial position; thus integration of eq. (3. 9) with respect to s gives 

ANAu12 = - 2 ^ 2 ^ N(1-N) ^ L ( W ) 2 - ( r)^) , , (3.10) 
n ,a 

an equation which relates the mean concentration change AN of the heavy 

component of the s t ream over the tube length £E, to the radial diffusion of 

the component through the radial boundaries of the stream over the same 

length. 

3. 3. 4. The Flow Dynamic Model 

In order to proceed with the calculation, material balance equations for 

each component must be introduced; for that purpose it is necessary, as 

was done in ref. Ill, to specify the secondary flow pattern under various 

conditions. This remains a somewhat arbi trary process, though a certain 

number of cr i ter ia have to be met before any choice can claim to be physi

cally relevant. Some experimental tests are also possible: Thus if the 

pattern in fig. 3. 5, which depicts conditions with both valves open, is to 

be correct there must be competition between the two regions with separa

tion and, dependent on the relation between the lengths of the two zones and 

that between the tangential velocities at the separating boundaries, either 

s t ream may become enriched in, say, the heavy component; end-wall con

ditions will therefore determine the sign of the effect found, in such a way 

that increase in the axial flow from an end-wall boundary layer will tend to 

increase the length of the nearby zone. Experimentally such an increase 

was established in two ways, either by placing steps on the end wall at 

intermediate radii in the form of lumps of glue (see ref. Ill, fig. 4) or by 
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replacing the end wall orifice by a coaxial tube, of the same diameter as 

the exit, reaching into the tube (ref. I, fig. 8); this tube is likely to promote 

an axial flow along i*s outer surface. In all cases (where the flow pattern 

as such did not change radically by the modification, i. e. in cases where 

the orifices were comparatively narrow) the expected change (see above) in 

the separation effect occurred. Thus, to this point the model is probably 

quite realistic. 

When one valve is partly closed, a pressure increase in the co r re 

sponding exit duct resul ts ; this must be felt more strongly at the centre 

than at the periphery of the exit duct. Indeed the flow will be quite easily 

stopped and reversed near the centre before any large change in the flow 

fraction has taken place; this will lead to a shift of the stagnation point on 

the axis towards, and perhaps into, the partly closed exit duct, as indicated 

in fig. 3. 6. The flow reversal at some distance from the axis may not be 

much affected, and thus a third counter-current system may appear as 

indicated in the figure. This idea was developed in ref. Ill on the basis of 

various assumptions which, necessarily in a crude fashion, were brought 

into relation with accessible tube parameters . The main purpose was not 

to give an accurate description of the processes occurring, but rather to 

enable a discussion on a reasonably realistic basis of the origin of the com

plex experimental resul ts . That this goal was in fact achieved, is indicated 

tc —K: 
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-Zh" 1 
Fig. 3.6. Schematic representation of region with separation when valve 
downstream of "hot" exit duct is partly closed (0 ( s ). Lettering a, b, 
c, ... defines the control volumes used in appendii. 



- 4 7 -

by ihe fact that the theory both reproduced qualitatively, as described below, 

all pertinent features and gave results of the experimental order of magni

tude (with the use of available experimental data) (ref. III). 

The derivation of the pertinent equations has not been given in detail 

before; it is therefore included as an appendix in order to facilitate the 

understanding of the model. 

3. 3. 5. Comparison with Experiment and interpretation of the Results 

The results of the parameter study carr ied out in ref- III are shown in 

figs. 3. 7, 3. 8, 3. 9. In fig. 3. 7 the effect of varying the raUo of the orifice 

diameters is studied. A comparison with fig. 3. 3 shows that all essential 

features of the curves are well reproduced. These resul ts may therefore 

be interpreted with some confidence in te rms of the model. For that pur

pose it is essential to note that the capacity of the exits is proportional to 

Fig. 3.7. Calculated gas separation, dN = Nn-N as a function of "hot" flow 
fraction 0. Influence of ratio of "cold" to "hot" orifice dibmeters, d /d^. 
From ref. Hib. 'o (based on tube length) * 1/12; ( r

c
+ r

h ) / r _ appro«. 0.4; 
r • 0. 5 cm; n (in v oc rn) • -0. 5; m {in '^(1 - BQ) * fr . /r )m) * 4; 
N0-N>' 0.16. 
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the radius raised to a power, m, that is considerably greater than one (due 

to the presence of the radial pressure gradient); this is evident from the 

finding that the hot flow fraction with open valves is a very sensitive function 

of the orifice diameter ratio. Furthermore, that axial momentum consider

ations indicate that the intensity of the outflow at a given radius in an exit is 

proportional to r to the same power (in fig. 3. 3 the exponent m i s set 

equal to 4). This means that the third separating surface r = r , referred 

to in the discussion of fig. 3. 6, moves quickly away from the centre axis 

when minor deviations occur from the hot flow fraction where both valves 

are open. Since the changing of in one or the other direction from 

means the appearance of opposite axial pressure gradients and, accordingly, 

oppositely directed third separating zones, it is clear why the experimental 

effect curve, when 1 is made to increase from below v to above this value, 

passes quickly from a large positive to a numerically large negative value. 

The return to zero or small effects at low and high ' is, according to the 

model, caused by the contributions from the end-wall flows which gain in 

importance in these cases. Experimental support for the latter conclusion 

is found in the experiments with peripheral exits, referred to ear l ier in this 

chapter (ref. I, fig. 7), where the concentrations of the "hot" centre and 

peripheral s t reams were found to be almost identical when the hot flow frac

tion approached zero, while the same tendency was at work for the cold 

stream at hot flow fractions close to one. 

The shift of the cross-over point with orifice diameter ratio i s , ac

cording to the model, related to the fact that this point must, in view of the 

rapid reversal of the axial flow represented by the widening of the rK sur 

face, remain close to J . the value where both valves are open. Fur ther-
* oJ r 

more, since $ is a very sensitive function of the orifice diameter ratio, 

so i'j the cross-over point. The concomitant shift in the relative magnitude 

of the maximum and minimum reflects the facts that the displacement of 

the cross-over point away from the midpoint ( •• = 1/2), say, towards 0 ~1 

prevents the negative effect from developing owing to the increased influence 

of the cold-end boundary-layer contribution, and enhances the maximum, 

which then occurs at ^ close to one (but nevertheless at G ( 0 ), because 

diffusion into a stream is felt more strongly when this, the cold stream in 

this case, is small. 

Fig. 3. S shows the effect of the width of the orifices compared to the 

tube diameter on the separation curves; it was found in ref. 1 that the nu

merical values of both the maximum and minimum increase with decreasing 
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Fig. 3. 8. Influence of ratio of exit radii to tube radius. Calculated gaa 
separation dN as a function of "hot" flow fraction 1. ?c/r = r i . /rn v*r**d 
from 1.5/10 to 4/10. Other data as in fig. 3.7. 

orifice diameters until a certain point below which the trend is reversed. 

The interpretation, based on the resul ts of ref. Ill, is that the maximum 

tangential velocity, located close to the exit radius {see above), moves in 

with decreasing exit diameter, while at the same time its absolute value 

increases until the orifices are so narrow that their flow capacity becomes 

the limiting factor for the throughput; this leads to a drop in inlet nozzle 

velocity below sonic and then to a drop in tangential velocity level in all 

parts of the tube. 

Fig. 3. 9 reproduces the result reported in ref. 1 that the tube length 

has a profound effect on the separation curve. The most efficient separa

tion is found in comparatively ->hort tubes. This is , according to the model, 

to be attributed to the change in velocity profile mentioned in section 2. 2, 

i. e. to an increase of n, where v cc r11, with increasing tube length, a 

change that eventually leads to a considerable drop in the tangential velocity 

at intermediate radii. In long tubes the typical effect curve pattern disap

pears ; in fig. 3. 9 this change is brought into relation with the concomitant 

reduction of the pressure-gradient at intermediate radii (towards that co r r e 

sponding to the forced vortex) through a suitable reduction of the exponent m. 



Fig. 3.9. Influence of ratio {fa) of tube radius to tube length. Calculated 
gas separation dN as a function of "hot" flow fraction 6. fn (• *J*0) 
varied from 1/7 to 1/27- r c / r p = r h /r p = 1/10; rp * 0. 5 cm. 

on the ground that a low radial pressure gradient tends to produce an outflow 

that is uniformly distributed across the exits; the evidence in the figure for 

this interpretation is# however, inconclusive. It seems more likely, as 

discussed in section 5. 3, that the axial flow pattern changes and becomes 

much more diffuse when the tube becomes long enough. 

A quantitative test of the present theory is described in ref. III. 
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4. THE TOTAL TEMPERATURE DISTRIBUTION 

AND THE ENERGY SEPARATION 

Numerous investigations of the vortex tube as a temperature separator 

has been published over the years; a detailed account of the early history 

has been given by Fulton, 1 950, while the two bibliographies, Westley, 1 954, 

and Dobratz, 1 964, cover the period up to 1 963; later references are given 

below and in section 6. 3. 

The widespread interest in the tube has prompted several detailed ex

perimental investigations of the temperature distribution within the tube, as 

well as a number of theoretical treatments. 

It was early recognized that both transport of heat by conduction and 

transport of kinetic energy by friction might contribute to the energy separa

tion represented by the net temperature difference detected between the out

going s t reams. It was also early recognized that without turbulence in the 

tube there would not be sufficient time for any appreciable separation to take 

place. The turbulent energy equation should therefore form the basis for 

discussion and cumulations. In order to make the problems in connection 

with the solution of this equation tractable it has been necessary to reduce 

its complexity. This has been done either on the basis of analogies to the 

laminar case, replacing laminar by turbulent parameters, or (Reynolds, 

1961, and Bruun, 1967, 1 969) through an order of magnitude analysis of the 

different turbulent t e rms . In the latter case, to make the equation amenable 

to calculations, it has been necessary to interpret the remaining turbulent 

contributions in terms of turbulent viscosity and turbulent thermal diffusivity. 

The results of the two approaches may therefore be closely related, as is 

true of the Deissler and Perlmutter equation in section 4.1 and the energy 

equation in 4. 2. 

The interpretation of the remaining turbulent contributions is not un

ambiguous. Kassner and Knoernschild, 1 948, were the first to discuss 

these problems in connection with the vortex tube. The most important 

questions to settle are the shapes taken by the radial equilibrium gradients 

of tangential velocity and of static temperature in a turbulent tube. As r e 

gards the first problem, it has been generally accepted (and was tacitly so 

in chapter 2) that the turbulent transport of momentum, i. e. transport 

through the motion of fluid lumps in the velocity field, is sufficiently akin to 

the molecular process in the laminar case that the same equilibrium gradi

ent, i. e. a forced vortex (with v cc r) , is approached in both cases; exper

imental vortex tube resul ts , as discussed in the various parts of the present 
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work, certainly all point in that direction. The problem in case of the tur

bulent transport of thermal energy is not so clear, because pressure changes 

in a gas are necessarily accompanied by temperature changes. Kassner and 

Knoernschild, 1 948, appear to have been the first to argue that the radial 

equilibrium gradient of static temperature in the turbulent case is the adia-

batic gradient and not the isothermal gradient found in the laminar case. 

This point of view finds support in meteorological observations of large-

scale turbulence in air. The evidence in case of the vortex tube cannot be 

said to be conclusive, though in the calculations to be described in section 

4. 2 (ref. IV), it was found difficult to reconcile experiment and calculated 

results with the use of an isothermal equilibrium condition; however, the 

accuracy obtained was limited, owing to the influence of the badly determined 

radial flow. 

Previous treatments have focussed on different aspects of the develop

ment of the temperature separation. The purely two-dimensional approach, 

analogous to the treatments in sections 2. 1 and 3 .1 , is here represented by 

the work by Deissler and Perlmutter, t 960; it will be described briefly in 

4 . 1 . Most other studies have attempted to account for the axial develop

ment (presumed to exist or measured) in one of two ways: 1) Either by 

viewing the tube as a concurrent system in which it is possible to trace the 

path of the a i r s tream filling the space between centre and periphery, and 

moving in a spiral away from the nozzle region. The point of view is Lagran-

gian, and the methods known from channel flow may be applied (Kassner and 

Knoernschild, 1 948, Fulton, 1 950, Hartnett and Eckert, 1 957, Lay, 1 959, 

Sibulkin, 1 962, Takahama, 1 965). 2) Or, by viewing the vortex tube as a 

counter-current system akin to a heat exchanger (Gulyaev, 1 966, Scheper, 

1 951, Suzuki, 1 960, and ref. IV). 

The Lagrangian point of view has sovere limitations owing to the exist

ence of a significant counter flow in the core region in all cases; the same 

difficulty arises in the mass separation case discussed in section 3. 3, The 

i mter-current concept has a better prospect of success, the more so as 

concurrent phenomena may be included simply by changing the sign of ce r 

tain parameters. The subsequent discussion will therefore be based on this 

concept. 

It is clear from what was said above that any treatment, in order to be 

successful, must take into account the transport of both heat and kinetic 

energy. Some of the previous counter-current descriptions have been in

complete in this respect. Furthermore, some have failed to recognize that 

tht equilibrium condition is not total-temperature equality between the two 

streams. 
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In order to reduce the complexity of the computations, some kind of 

integral procedure is desirable. This has been set up in some cases by 

ascribing to each stream a mean total temperature (or, less satisfactorily, 

just a mean static temperature) and by making estimates of o r assumptions 

on the rate of heat (and kinetic energy) transfer across the boundary be

tween the s t reams. In this way the mathematical treatment becomes ident

ical to thai valid for a heat exchanger or rather, in the correct approach, 

a chemical column system such as a distillation column (see fig. 4. 3). This 

method as applied to mass separation was used in ref. Ill (see chapter 3. 3). 

In ref. IV an integral equation of a different kind was obtained. It i s 

based on an approximate solution to the energy equation that eliminates the 

radial coordinate according to a procedure previously employed for mass 

separation in two-component gas mixtures in rotating flow (Cohen, 1 951). 

The resultant equation i s a first order differential equation in the axial co

ordinate with the total-temperature as the dependent variable; the form, of 

the equation is found to be identical to that of the governing equation for a 

distillation column (and equivalent to the corresponding equation for a heat 

exchanger), but the parameters in it have a more complex meaning. The 

advantage of the method, as it i s developed in ref. IV, i s that sufficient 

information is embodied in the first order differential equation so that an 

approximation not only to the axial but also to the radial total-temperature 

gradients is obtained as a result of the calculations. A discussion of the 

solution with interpretations of experimental results on temperature distr i 

butions will be carried out in section 4. 2. 

The possibility of predicting the net temperature effects measured be 

tween the outgoing s t reams on the basis of the model in section 4. 2 will be 

briefly treated in section 4. 3. 

4 . 1 . The Radial Distribution of Total Temperature 

Deissler and Perlmutter have based their two-dimensional treatment 

of the temperature separation on their study of the tangential velocity distr i 

bution described in section 2 .1 , with the use of the same simple radial flow 

function as was employed there. Their energy equation reads 

our € + Pur J - &• = J - Lr.isu(-£ - -L £ ) + E'C JL ( $ £ - £ ) ] (4.1) 
P P P 

where Tf is the static temperature, and e, and £ are turbulent diffusivities. 

This in non-dimensional form becomes 
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(4.2) 

The notation of chapter 2 has been used with the addition thai t =: ?/TM , 

wliere TM i s the tempera ture (total temperature) of the supply gas before 

expansion and accelerat ion. Re, Ti = F / ( > e . t ) = F / f ae r I'll (where F h e r e 

is based on mass flow, ra ther than on volume flow as in chapter 2; * i s 

changed accordingly) i s the thermal Reynolds number (Pec ié number) . 

Kc= v2 / ( c T ) i s an Eckert number, which is a m e a s u r e of the fraction of 
po'* pT» ' * 

internal energy converted into kinetic energy. 

The calculations provide radia l distribution curves of to ta l - tempera ture 

which a r e the resul ts of a balancing between t ransport of total enthalpy by 

radia l inflow and by outward turbulent diffusion. De i s s l e r and Per lmut te r 

tested their theory on the data of Hartnett and Eckert and found it sa t i s fac

tory. The fitting provided a most -probable value for the the rmal Reynolds 

number, which was compared with the value of the corresponding Reynolds 

number obtained by fitting the authors ' theoret ical tangential velocity profile 

to Hartnett and Ecker t ' s experimental data (see chapter 2.1) . The s ame 

procedure was used in ref. IVc on the same data, and with an equally r eason

able resul t . Admittedly, the discrepancies found in the two cases went in 

opposite direct ions, although the t rea tments , at the cold flow fraction in 

question, a r e not much different; the use of different rad ia l flow functions 

(zero core flow in Deiss ler and P e r l m u t t e r ' s case) have undoubtedly caused 

this disagreement. 

4 . 2. The Three-dimensional Distribution of Total Tempera ture 

It i s a general feature of the to ta l - tempera ture distr ibutions obtained 

experimentally by various authors that they can be represen ted by å se r i e s 

of smooth radial curves shifting in a uniform manner along the tub* (see 

figs. 4. l b and 4. 2b). It i s fur thermore a charac te r i s t ic feature that the 

cold flow fraction to a large extent determines the pattern, so that curves 

with steep radial gradients and lit t le axial variation in the outer par t of the 

tube appear when [i i s smal l , while r a the r level curves with an appreciable 

axial shift a r e produced when the cold flow fraction is increased sufficiently 

(n ) 0. 5). The origin of this effect has already been mentioned in the in t ro 

duction (chapter 1); in the present section it will be discussed in more detail . 





a b 

Hf. 4-1. Total tamparatar« T aa a faactfoa of radiaa (ft • r / r j . Cem-
pariaoa of calculated aadanarinwtaldiBlrlbotionB at cold flow fraction 
d?o . ior t-o.0C(i). l - 0 . « ( J ) , t t < l t ' I . W . From ret IV (flf »>. 
Bceale. c te<MD to **»• nm9 mma •ajBUwriam total-temperature eradicate 
gradianta (daahed liaaa) in fignre a aad b. Pr*1, Batlo of tab« radlaa to 
length of region I, Ve"> 1/12 (cf. fig. 2.S). 
a. Calc. caaa 3*2; » - 0.02. 
Rejmolde number Re.V* " 20; ratio of radial flow within region. I (at i -surface) 
to total flow Re^R* ,^-0 .12 ; / y - 0 . 5 « . 
b. Eap. caat I, Hartaatt and Eckert, I9S7; data aa ia labia 2.1, with 2*F -
SSOg/aacaod Ec-0.20. 
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I I - I I -

Fig. 4.2. Compariaon of calculated and experimental diatributioiia at 
a -0 .49 for I * 0.17(1), t-0.59(j), and t -1.0(k). Daaned linea indicate 
mean equilibrium total-temperature gradienta (adjuated aa in Hg. 4.1). 
From ref. IV (fig. II). /o • 1/14.5. Pr " 0. 7. 
a. Calc. c u e 490, 4Th(- T^IJ-T,,) - (A-curvee) 0.01, - (B-curvea) 0. 
RehVå "3.5; "»1,,/Re,,/« -0 .10 . '/5^ • 0.63. 
b. Exp. caae VIII, Scheller and Brown, 1957; data aa in table 2.1, (p. 32) with 
2»F * Mg/aec and Ec - 0.15. 
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4 . 2 . 1 . The Approximate Energy Equation 

It i s clear from the above introductory remarks on the experiments 
that the two-dimensional theory of the previous section does not suffice 
when n is large and appreciable axial gradients exist. It then becomes 
necessary to include axial flow terms in the energy equation. This was 
done in ref. IV on the basis of the turbulent energy equation and by use of 
the results of Reynolds, 1961, and Bruun, 1967, 1 969, who has investigated 
the relative importance of the various terms in that equation under specified 
conditions; the resultant equation reads (in non-dimensional form) 

%%-%%--h^«** -'W*n (4-3) R e / a 

where 

S T „ / * 1 • Ec [a? + ((1-Pr)/2) x i,a«?/ a , ] . (4.4) 
eq 

Here u is the nor-dimensional angular velocity based on w = v ^ 7 r . Pr 
is the turbulent Prandtl number, T is the non-dimensional total tempera
ture T = T/T,,,,, which on the right side of eq. (4. 3) is approximated by 

T = Y/T^ + E c / 2 x ( ? / v p / # (4.5) 

an approximation, which amounts to neglecting in T both the kinetic energy 
of the secondary motion and that in the turbulent modes. The error may 
become serious, close to the axis when the cold flow fraction, \i, is large, 
otherwise it should be at most a few per cent, 

Eq. 4. 3 could also have been obtained in way similar to that employed 
by Deiesler and Perlmutter for the derivation of eq. {4. 2) in section 4 .1 . 

Eq. (4. 3) equates the net transport of total-enthalpy carried into a vol
ume element by the secondary flow with the net accumulation of total en
thalpy in the element due to radial turbulent diffusion. Axial diffusion terms 
are neglected because they are found to be of minor importance, even in 
cases with appreciable axial gradients. 

The second term on the right side of eq. (4. 3) is written JT J)i) to 
eq 

denote that this term determines the equilibrium total-temperature gradient, 
i. e. the gradient in the (hypothetical) case that the secondary flow has no 
influence on the total-enthalpy transport. 
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A test of the energy equation (4.3) is possible when all terms are known 
from experiment. Such tests were carried out in connection with the work 
presented in ref. IVc, for selected tube cross-sections, of which one ex
ample is shown in the report. The fit is by no means perfect, but this i s 
not surprising in view of the serious approximations made. Two errors 
may, as discussed in ref. IVc, cause the discrepancy: 1) the radial diffu
sion term on the right side of (4. 3) does not cover all total-enthalpy trans
port by turbulent diffusion near the centre, and 2) the turbulent transport 
of fluid in the radial direction is not wholly adiabatic, but some exchange 
of heat takes place during the turbulent displacement of a fluid lump. The 
test when applied to the data of Bruun, 1 967, in a cross-section near the 
nozzle, was even less satisfactory than the above-mentioned example; how
ever, conditions there were peculiar for other reasons also, as mentioned 
in the discussion of fig. 1 in ref. IVc. 

4. 2. 2. The Method of Solving the Equation 

In order to proceed with the calculation, the fact that the total enthalpy 
is preserved within the tube must be introduced; this was done in ref. IV 
through the following energy balance equation (in non-dimensional form) 

/ jaT/andTi - / - j ^ | _ ar/a M, = + n ( V V • {4-6) 

o o jj H 

-* n is the hot flow fraction; T is the total temperature at the periphery 
of the cross-section; and T. is the total temperature of the hot gas. It has 
been assumed in eq. (4. 6) that diffusion through the peripheral boundary of 
the region considered (region I, fig. 2. S) can be neglected. The equation 
expresses the fact that the total enthalpy is preserved within the cylinder 
a-a (fig. 2. 5) limited by an arbitrary tube cross-section, the periphery, 
and the hot end of the tube. 

The second term on the left of (4.6) is the contribution from axial dif
fusion of total enthalpy through the cross-section; this is of minor import
ance and is included only in order to enable a discussion later of certain 
limiting cases (a possible deviation of Pr from one has been neglected in 
this term). 

In solving equations (4.3) and (4. 6), it was assumed in ref. IV that the 
secondary flow functions and the tangential velocity distribution were known 
as functions of i) and £. In the computations the distributions devised and 
calculated in ref. IV (see chapter 2. 3) were used. The exact form chosen 
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for these functions i s found not to be very important in the present context, 
since the solution obtained does not contain higher than first order deriva
tives. Thus, the fact that the calculations in section 2.3 refer to incom
pressible flow while the present study necessarily involves compressibility 
effects i s not of primary importance here. 

The energy equation, with the secondary flow and tangential velocity 
functions introduced and i kept constant, may be written as a first order 
differential equation in iJT/4i|, which has the following formal solution 

*-£= *<->>i- oT^jT<- , /2 R eh• a£ !T-£' ,- ?Vl'1 'T^a-»d: '5(4.7) 

where 

*<l) s exp i / l R e h . r a / ( 2 * ) * H ^ dn' } (4.8) 
o n 

and where the boundary condition (lOT/ * I ) - - - = 0 has been introduced 
This solution may be used to eliminate 31/dn in (4. 6). In the resultant 
equation only 3T/3£ and T remain undetermined. 

As a ite^t step in the procedure a reasonable assumption about the radial 
dependence of dT/<H has to be made, so that, with this introduced, integra
tion with respect to the radial coordinate can be carrAtu out; Cohen, 1 951, 
in the mass separation case, took 3N/H to be independent of t), here a 
linear relationship is assumed, i. e. 

ar/as = [i + E(i-n)3 dTJdt, (4.9) 

where dTWd t is the axial gradient of total temperature at the periphery. 
E it a constant, which has to be determined by some averaging procedure. 
Reference to experiment, which generally shows aT/OS to depend on i) in 
quite a regular and uniform manner, shows expression {4. 9) to be a promis
ing one from the physical point of view. As the computations show (see ref. 
IVb, fig. 1), the expression is quite satisfactory from the mathematical 
point of view as well, i. e. the inconsistency introduced by assumption (4.9) 
is quite small in many cases. 

Introduction of (4, 9) into the above mentioned combination of 4. 8 and 
4.6 leads to a first order differential equation in T with E, as the indepen
dent variable, as follows 

d<Tp-Th)/dt * - S (Tp-Th) + ! l (4.1 0) 
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where c- and c. are functions of '. only (see ref. IV, eqs. (26), (27), and 
(28)); in the special case that both * and u are independent of "., i. e. that 
the radial flow and the axial tangential velocity gradient are both negligible. 

Ec x / ^ do (4.11) 

Re. ,'o 1 
"h i [/" fed + E(1 - .|')dT]d, 

o 1 o iTi 

(4.12) 

+ -rfg- / (1 + E(1 -r)))di) 
h o 

In this simple case, the solution of (4.10) is straight forward, leading to 

T p - T h = i ' " e x p { 0 _ i ) V c 5 } ] c l / ' l 'h ( 4-1 3 ) 

where, as an example, the boundary condition T (1) - T h • 0 has been 
introduced. Any value selected for T (1) is in fact acceptable from the 
mathematical point of view, so that T (1) - T h may be used as an adjust
able parameter to make theory fit with experiment. 

Provided an acceptable value for E can be found, equation (4.13) (or 
the complete vei-sion in ref. IV) is seen to render possible a calculation of 
the peripheral total temperature along the tube. On the same condition and 
by means of the expression for i <3 T/d n, T in any part of the tube may be 
determined. Thus, if the mathematical solution is to be acceptable, it is 
necessary that the axial total-temperature gradients found in this way match 
"reasonably" well those determined by (4. 9); in ref. IV it was argued that 
this correspondence may be ensured by setting 

/ [ $ ) . ( « , ]d , 
0 a 1 E=1 8 1 1=0 

E v'-V' (4-,4) 
It should be noted that even when this approximation is successful from 

the mathematical point of view, there is still no guarantee that the solution 
will also be of physical interest; the reason is that the method leaves no 
possibility of specifying the radial temperature distribution at the axial 
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boundaries in any detail nor the temperature gradient at the peripherey. 

However, it was generally found in the computations of ref. IV that the 

resultant boundary functions are quite closely related to experiment. Fur

thermore, that a meaningful comparison may be made, even though the set 

of boundary conditions derived in the calculations does not exactly match 

those of the experiments. 

Analytic details are presented in ref. iVb. 

4. 2. 3. The Distillation Column Analogy 

It i s helpful for the understanding of the functioning of the vortex tube, 

as already mentioned in the beginning of the present chapter, to recognize 

that the tube may be viewed as a generalized type of heat exchanger with 

total enthalpy transported and conserved. A special feature of the transport 

i s , as also mentioned, that equilibrium between the two streams does not 

imply temperature equality but a total temperature difference determined 

by the pressure gradient (the tangential velocity). The system therefore 

resembles chemical separation units such as distillation columns (see fig. 

4. 3). This fact is emphasized in the solution represented by eq. (4.10) 

which has the same form as the corresponding differential equation for a 

distillation column. In ref. IV it was shown that the column parameters 

equivalent to c, and c , read (see fig. 4. 3 for the meaning of the symbols) 

Fig. 4. 3. Diagrams of counter-current cysteine, a. Distillation column; 
b. heat exchanger or extraction column. 
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cf Sup (4.15) 

c* == uG/K (4.16) 

p is a measure of the equilibrium condition, (N' - N") = p, and G/K 
measures the ratio of flow rate to specific rate of transverse diffusion. 

Thus, using the analogy with the vortex system, we may write for the 
cases shown in fig. 4. 3 (compare eq. 4.13) 

N" - N h = ' L e x p { ( z - z 0 ) | i=H-} - U T T J P (4-17) 

This equation could have been derived (as shown in ref. IV) from the fol
lowing two equations, corresponding to (4. 3) and (4.6), respectively 

G T z " * -K[(N" - N - J - p j . (4.18) 

and 

N" = N1 ii+ 0-n)Nh (4.19) 

Furthermore, either of these equations, together with (4.17), may be used 
to obtain N' as follows 

N1 - Nh = [exp i(z-z0) § l j ± } - 1 ] ylj- p (4. 20) 

The last step corresponds closely to that made in the vortex tube case, 
when the radial distribution of total temperature is calculated on the basis 
of (4. 7) and (4.1 3). 

4. 2.4. Discussion of the Calculations 

With the equivalence between the two systems established, conditions 
in the vortex tube, as determined by various pertinent parameters, may be 
discussed in terms of the corresponding column parameters. 

As regards c( = up (equivalent to c. , eq. (4.11)) it is immediately 
clear by inspection of eqs. (4.17) and (4.18) that both the transverse It-
difference and the longitudinal gradient of N are proportional to c? (and 
to p). This implies that all gradients vanish when p is zero; conversely, 
that the concentration jump p ( f 0) across the boundary between the two 
streams at equilibrium is a necessary condition if separation is to take 
place. The same is true of the total-enthalpy separation in the vortex tube 
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as regards Ec, to the extent that cemrifugation is the cause of all separa
tion. On the other hand, the total-temperature gradients in the tube do not 
have to be proportional to Ec (as erroneously stated in ref. IV), the reason 
being that the proportionality in the distillation case results because the 
boundary condition used in (4.17), N"(1 )-N. - 0, is a necessary choice for 
a single distillation column, while the difference between T (1) and Th in 
case of the vortex tube i s an adjustable parameter, which can be used to 
take into account any further separative treatment the gas may undergo out
side the region under consideration. 

Nevertheless it is to a large extent true that cf (Ec multiplied by an 
integral which takes into account the effect of the interplay between axial 
flow and tangential velocity distribution on the peripheral total-temperature 
change) governs the absolute level of the total-temperature separation poten
tial of the tube, so that the value of Ec has little qualitative influence on the 
results. 

c- - G/K in the distillation case determines the rate of transverse 
transport compared with the longitudinal flow rate, and, as such, governs 
the concentration change along the column (eq. (4.17)). In the vortex tube 
case, c 5 is in principle as stated,through the influence of Re. (see eq. 
(4.12)), but at the same time it i s a complex function of v that takes into 
account the influence of the shape (but not the absolute magnitude) of the 
radial and axial total-temperature gradients throughout the tube on the total-
temperature change at the periphery. 

In the limit, in eqs. (4.17) and (4. 20) when G/K - 0, the exponential 
goes to zero and N"-N' = fl obtains except at z = z (axial diffusion is neg
lected). In the equivalent vortex tube case with Re. - 0 because the sec
ondary flow (in the general case both axial and radial) decreases relative to 
the turbulent diffusion, the equilibrium distribution :/T j.i\ is approached 
everywhere except at F., = 1 (eq. (4.4)), as far as permitted by the axial 
diffusion represented by the second term in (4.12). 

Conversely when G/K - =* in the distillation column, both N"-Nn and 
N'-Nn go to zero. Exactly the same happens in the vortex tube when Re. 
goes to infinity and the secondary flow becomes of dominating influence, so 
that Anally there is hardly any total-temperature change in the tube. 

With G/K of intermediate magnitude, the "cold" flow fraction «i be
comes a governing parameter in eq. (4.17) through the factor •&— •* in the 
exponent. Similarly, in the vortex tube case, with Re. in the experiment
ally interesting range, the total-temperature distribution becomes strongly 
influenced by the value taken by \x. 
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Thus, it is seen that with .: - 0, the exponentials in eqs. (4.17) and 

(4. 20) for the distillation case go to zero except at z s z (the "hot" end); 

the over-all axial changes approach the limits N"(0)-Nn = 0 and N'fOJ-Nj^ 

-p, while N"-N' - p at all z except close to z where N' = N" = Kh. In the 

vortex tube case when the flow in the core towards the cold exit is small 

compared to that in the outer annulus, this means that even a large total-

temperature change with ^ in the core involves only a small amount of (net) 

total-enthalpy transport across the boundary j = -\ and therefore only little 

change at the periphery, see fig. 4 . 1 . Furthermore, with .- - 0, a total-

temperature distribution close to what may be termed the pseudo-equilibrium 

distribution, as determined by the radial flow (see below for a definition of 

this term), can be easily established and maintained along the tuoe. The 

steep axial gradient seen in the distillation case in the "cold" stream as 

z z may or may not have its counterpart in the vortex tube case, since 

in eq. (4. 20) it is caused by the str ict boundary condition N(1 )-N_ = 0. 

An increase in n will, in the distillation case, have the following three 

effects: 1) It will make the two axial gradients approach one another by 

gradual increase of the gradient in the outer stream and decrease in the 

inner stream; 2) cause a decrease of N"-N', i. e. a departure from the 

equilibrium condition; 3), depending on the value of G/K, make the axial 

gradients independent of z. In the vortex tube case this means that with 

increasing j*, 1) an increasing amount of total enthalpy has to diffuse from 

the core stream to the annular stream in order to change the temperature 

of the former; 2) non-equilibrium conditions with the radial temperature 

gradient rather small at intermediate „-values and even at low , , become 

more probable, with the result that a substantial amount of total-enthalpy 

pasees the boundary between the two streams at all , (fig. 4. 2); 3) as a 

direct result of this diffusion the axial gradients tend to be large and, de

pending on the value of Re, (fig. 4. 5, see also ref. IV p. 1 78^ independent 

of axial position. 

In the limiting case, in the distillation column (eqs, (4,1 7) and (4. 20)) 

when •- goes to one, the axial change in both streams become linear in z, 

while N"-N' - 0 at all values of z; the amount of "hot" gas goes to zero 

while the limiting value for the over-all axial change, 

« " « » - N h - - « 0 § ( > . - « 0 c » / c « . (4.21) 

is approached. In the vortex tube case this means that, when ,i-» 1, the 

amount of total enthalpy transferred may well continue to increase but, as 
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Fig. 4.4. Total temperature T as a function of radius ( /Tj» r/r ) (A-corves); 
with pseudo-equilibrium distribution, referred to peripheral total tempera
ture T (B-curvea); and equilibrium distribution, f1 (W^jayjdV, referred 
to unity at the periphery (C-curves); at axial positions Q> * / t ) = 0 and 1. 
From ref. IV (fig. 5). 

C u e 495, cold flow fraction * » 0. 23, Reynolds number Be^/a • 6. 2; ratio 

of radial flow within region I (i)0-suridce) to total flow Refc /Re. /o - 0.16; 

Vfe -0 .63; Ec« 0.11. 

most of the gas is returned in the core, the net amount goes to zero. At 

the same time the axial temperature change approaches a maximum, deter

mined by c . / cg . 

The radial flow has no counterpart in the distillation column analogy. 

It acts through the term {o-\>/c £)( ;T/ J T) in eq. (4. 3) as a kind of net diffusion 

term, which counteracts, in case of inflow, the effect of the pressure gradi

ent (the tangential velocity), with the result that the apparent equilibrium 

gradient on the average i s smaller than the equilibrium gradient 2T }'. ,j 
eq 

(see fip. 4.4). In agreement with this interpretation it is found (fig. 4. 6) 

that radial flow reduces both the radial and the axial total-temperature 

gradients. It is clear that the effect of the radial flow must be felt strongest 

at small A , where a balancing with the diffusion is easily established. 
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Fig. 4. S. Influence of Reynolda number. Total temperature am a function 
ofradiuaat t - 0 , l /2and1. From ref. IV (fig. T). Caac 495; A-curvea 
RCL/O ' 3 . 1 , B-curvca Re./e' • 9.3; other data a« in fig. 4.4. 

The d irect influence of the radial flow at higher cold flow fract ion i s 

correspondingly l e s s . However, it should not be forgotten that the total 

radial flow into the core necessarily is equal to the total axial flow through 

the cold exit; furthermore, that the fairly level radial total-temperature 

distributions formed at higher ,i result from the convective redistribution 

of total enthalpy (caused by diversion of the flow (section 2.4) along the tube 

coupled with counter flow in the core) and thus may be said to be the effect 

of a strong mean radial flow in the sense this term is used in section 2.4. 

On the other hand it should be noted that this, essentially two-dimensional, 

point of view is not sufficient for the description of the separation process 

as it does not give credit to the fact that a well-developed axial counterflow 

system is favorable for the creation of a large axial total-temperature 

gradient and thereby of a large net temperature effect (similar arguments 

apply to the mass-separation case in section 3. 3). 

The presence of an axial total-temperature gradient at low i , which 

above was ascribed to the nature of the axial boundary condition at = 1, 

may also be the effect of the tangential velocity decay along the tube. This 
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Fl*. 4. t. Influanee of radial Hov. Total tamperatara u» a raacttoit af 
radiaaat f a . 1/2 ami 1. From ret IV (Bf. i ) . Caaa4M; Ra^/Ha^.'a 
(A-carv«a) • 0, (B-cuma) « 0.32; othar data aa ia lig. 4.4. 

decay leads to a decrease in the radial equilibrium gradient of total tem
perature with axial position, with the result that non-equilibrium at low £ 
is established followed by an increased outward radial diffusion of total 
enthalpy and therefore an enhanced axial gradient (see fig. 4. 7). 

Two factors besides those discussed above influence the total-tempera
ture distribution. The most important is the shape of the radial tangential 
velocity distribution since u2 enters into the expression for the equilibrium 
gradient. It might be expected from an inspection of eqs. (4.13) and (4.11) 
that a velocity distribution as close as possible *o the free vortex in the 
outer part of the tube would be highly desirable; however, this necessarily 
would mean an increase of Re. (see section 2. 4), so that the end result 
would not be obvious. These problems will be discussed in section 6.1. 

The other factor of some interest i s the turbulent Prandtl number Pr, 
since this has a modifying influence on the radial tota.-temperature gradients 
through the term 0»2 /9T) in eq. (4.4). The influence is most pronounced 
near the periphery (ref. IV, fig. 10), where 3u*/Ji) normally is numerically 
large and negative, but even there the effect is not decisive. This is fortu-
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Fig. 4.7. Influence of axial gradient of «^"iir velocity or circulation (r ( , ) . 
Total temperature as a function of radius at £ = 0 and t* 1. From ref. IV 
(fig. 6.). Case 495; A-curves rf1 =0; B-curvea, (^j).«* * 0.76; other 
data aa in fig. 4.4. 

nate, because, as mentioned also in section 3 .1 , the concept as such has a 

weak theoretical foundation. Values of either 0. 7 or unity was used in ref. 

IV in accordance with the experimental evidence avialable. 

4. 2. 5. Comparison with Experiment 

A comparison of computed curves with experiment was carried out in 

ref. IV from which examples are shown in figs. 4.1 and 4. 2. Essential 

features were reproduced in all cases, as might be anticipated since the 

general description of experimental results given at the beginning of this 

section agrees with the above discussion of the model. 

Most experiments pertain to cases where the cold flow fraction has been 

zero. As explained above, the distribution is likely, under these conditions, 

to be the essentially two-dimensional distribution described in section 4 . 1 , 

with any axial gradient of total temperature caused at least in part by the 

axial decay of the tangential velocity. Fig. 4.1 a is an attempt to reproduce 
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the experimental distributions shown in fig. 4. lb; the overall equilibrium 

total-temperature difference, / T /?. ,d7] is derived from experiment, 

while the Re. -value and the level of radial inflow are derived from the study 

of tangential velocity decay, described in section 2. 3. The axial flow func

tion employed has two points of flow reversal (see fig. 4. 1 a); thus the centre 

flow is directed towards the hot exit, as is often found experimentally. 

One interesting feature, which is well-reproduced in the calculated 

curves, is the negative axial total-temperature gradient at the periphery. 

The reason for this cross-over phenomenon is , according to the model, that 

the outer part of the tube acts as a concurrent system in which the axial 

gradient at intermediate radii (but still at ^ ' -j ) and the gradient near the 

periphery have opposite directions, as the two streams in a concurrent 

distillation system must have; this situation is made possible by the pres 

ence of the radial total-temperature gradient. Mathematically it is ex

pressed by c. becoming negative, as would c. (eq. (4.1 5)) in a concurrent 

distillation column, where n is negative (fig. 4. 3). 

The fit of the calculated curves to the experimental results in fig. 4.1 

is by no means perfect at low : j , especially close to -", = 1. The reason 

may be partly that the axial boundary conditons at z = 1 a re not identical 

in the two cases, while at low ^-values quick adjustment to quasi-equilibrium 

leads to better agreement. Partly that the radial inflow increases with axial 

position (a possibility excluded in the present model), so that, in agreement 

with the two-dimensional discussion in section 4 . 1 , the quasi-equilibrium 

gradient tends to become less step with ;. 

At r-= 0, 5, conditions are entirely different as shown in fig. 4. 2. As 

expected, the radial gradients have become small and the axial gradient at 

all i) appreciable. At the same time the magnitude of the axial gradients 

has become sensitive to the value of Re h (see ref. IV, fig. 12). It is there

fore worth noting that the value used for the curve system in fig. 4. 2a is 

close to both that to be derived in section 5. 2 and to the Re-value found in 

ref. IVa (section 2. 3). This quantitative agreement, as well as the qualita

tive correspondence between experiment and calculations, are very sa t is 

factory, the more so as the agreement extends to the values of the boundary 

parameter, T (1 )-Th) (a point that is further discussed in ref. IV). 

The relative significance of the turbulent transport of heat and of kinetic 

energy has been discussed in the li terature on several occasions. The r e 

sults in ref, IV (fig, 1 3) throw some light on the problem. It is concluded 

there that the kinetic energy diffusion contributes most to the total-tempera

ture separation at radii close to the periphery, while heat diffusion dominates 
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near the centre axis, a conclusion also reached by Reynolds, t 961, in his 

analysis. 

4. 3. The Over-all Temperature Separation 

The over-all temperature separation as calculated from the above ex

amples and its variation with the cold flow fraction are of interest since 

tln.s is the effect which is most important for the practical utilization of Uit-

tube. Results of this type, as calculated on the basis of a set of consistent 

parameters, a re shown in fig. 4. 8 together with an experimental curve 

from Hilsch, 1946. 

^ > " --' 
too^ ~~' 

05 u 

Fig. 4.9. Temperature aeparation a* a function of cold flow fraction i 
From ref. IV (fig. 14). 
a. Calculated curve. 
b. Data from Hilach, 1946. 

At high cold flow fraction, the trend is , as might be expected, quite 

realistic; the upward concave tendency of the curves is readily explained 

by the theory as being the feature common to all counter-flow systems of 

the distillation column type that maximum separation occurs when the 

"reflux ratio" goes to one (i. e. „ - 1). 
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A d o s e fit at low ji i s not found nor expected in view of the lack of 

agreement discussed in section 4. 2 between the calculated and experimental 

distribution-. Only the typical, reduced performance of the tube as i ap

proaches zero is reproduced quite well. This is achieved by permitting a 

central flow into the tube proper through the cold end orifice (fig. 4.1 a). 

Sue a reversed flow on the axis is known to exist under these cunditiuns; if 

it is strong enough compared to the net flow out of the cold exit, the cold 

stream temperature will r i s e close to the inlet temperature, because the air 

drawn-in will have a higher temperature than the outward flow, so that a 

counter-flow system with heat diffusion towards the periphery of the duct 

takes place. The influence of the rotation may be felt as well, though it 

will probably be small at the down-flow end of the duct. 
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5. THE SEPARATIVE WORK AND THE AVAILABILITY 

The separative work concept, first described by Cohen, 1 951, has been 

found most useful in connection with gas centrifuge development. In view 

of the close similarity between the mass separation processes in the centri

fuge and the vortex tube, it is not surprising that the concept applies equally 

well to the performance of the tube, as was shown to be the case, in the 

work by Mtirtz and Noller, 1 961, and in ref. I. 

An equivalent concept applicable to the total-enthalpy separation in the 

tube was developed in ref. IV (with IVc) and shown to be an approximate 

availability function, as is in use for the description of the cooling efficiency 

of refrigeration machines. 

In section 5.1 the separative work function will be derived by the method 

used in ref. IV for the approximate availability, and the relation between the 

two concepts will be discussed. 

As briefly described in ref. IV (and in more detail in ref. IVc) the avail

ability function may provide the turbulent diffusivity in the vortex tubes to 

which it is applied, through estimation of the turbulent thermal Reynolds 

number (the turbulent Peclé number) Re, . The magnitude of this parameter 

cannot be obtained with any accuracy directly from a fitting of calculated 

total-temperature curves to experiment, especially not when :J is small 

(section 4. 2}. The availability method was therefore adopted in ref. IVc, 

and the thermal Reynolds number obtained in some cases for which the 

corresponding Reynolds number. Re, as derived from the axial decay of 

tangential momentum (section 2. 3), was available. These results will be 

discussed in section 5. 2. 

As previously noted, the models employed in case of total-enthalpy 

separation (section 4. 2) and mass separation (section 3. 2) lead to expres

sions in total temperature and concentration, respectively, that are almost 

identical in form (compare eq. (3. 6) and eq. (4. 3)). The analogy even ap

plies to the driving forces or, what amounts to the same, the equilibrium 

gradients in the two cases, which have essentially the same functional de

pendence on the velocity field of the tube (near-proportionality to the angular 

velocity squared, u7: ). In the approximation that the turbulent Prandtl num

ber P r is unity and on the assumption that the quantity N(l-N)/t is constant 

within the tube(simplifications that have little effect on the resultant dis t r i 

butions) the two expressions become identical in form except for the de

pendence of Co in eq. (3. 3) on the turbulence level. In view of this close 

analogy it is of considerable interest to compare the available mass and 



- 73 -

temperature separation data and to test how well the correlation between 

separative work and availability exposed in section 5.1 fits into the experi

mental picture; this problem will be treated in section 5. 3. 

The use of the two functions for the determination of separation per 

formances of the vortex tube will be treated in chapter 6. 

5.1. The Derivation of the Functions 

The separative work concept was developed in the 1 940*s in order to 

facilitate the design of separation plants for stable isotopes. In case of 

plants based on the gas centrifuge, the introduction of the separative work 

function provides in a simple way the minimum number of centrifuges that 

has to be placed in parallel and in ser ies for given production rates of (par

tially) separated material. The treatment necessarily includes an a s ses s 

ment of the value of a single centrifuge in the plant - a parameter called, 

among other things, the separative work capacity or potential of the centri

fuge. It is established by attaching to any stream of gas a value U that i s 

the product of a specific value-function V and the amount of gas G in the 

stream, where V is a function of the mole fraction of the stream. * n 

5 . 1 . 1 . The Value Concept 

The value of a centrifuge, AU, may then be expressed as the value in

crease experienced by the gas s treams passing through thd centrifuge, as 

follows 

AU = nGVn(W) + (1 -n )GVn<N") - GVn(NQ) (5. 1) 

Here, G denotes the total mass flow rate through the centrifuge, while n 

and (1 HA ) denote the two fractions into which the gas mixture is divided. W, 

N", and N are the mole fractions of the two products and the feed, respec

tively. 

V is so specified that the value increase per centrifuge becomes inde

pendent of position in the separation plant; this definition is chosen in order 

to ensure that the value increase has a unique relation to the economic 

parameters of a given type of centrifuge. 

In the vortex tube, when i t is used as a mass separator (e. g. of isotopesi, 

the problem is exactly the same and equation (5.1) applies, as follows 

OJ/2*F * nVn(Nc) + 0- | i )V n (N h ) - Vn(NQ) (5-2) 
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The approximate availability concept, developed in ref. IV for the total-

temperature separation in the tube, can also be derived on the basis of econ

omic criteria as the above and by the same method; thus, it is not surprising 

that an economically interesting function results from the seemingly ad hoc 

mathematical procedure adopted in ref. IV. 

Conversely, the method in ref. IV may equally well be applied to the 

derivation of the separative work concept. Since this leads directly to the 

expression of interest here, a short account of the procedure will be p re 

sented below. 

5 .1 . 2. ThR Value Increase across a Tube Region (the Separative Work 

Potential and the Availability) 

The value increase for mass separation across an arbitrary volume 

within the tube is , according to the definition of the value function (compare 

ref. IV eq. (46)), 

AU =.<0Vn(N)<5 - da = .*.Vdiv(V G)dT, (5.3) 

where the first integration is carried out over the surface of the volume, 

with G • dl; the mass flow normal to and through the Surface element da; 

while the second set of integrations is the corresponding volume integral. 

Since the flow is stationary, 

div6 = 0 (5.4) 

For comparison with ref. IV eq. 48 we can write 

dU = div(V G*)dr, so that all = '_'/dU (5.5) 

When the whole tube is considered, (5. 3) or (5. 5) becomes identical with 
(5.2). 

It follows from (5.4) that 

div(VnG*) = (G*- grad)Vn = dVn/dN(G • grad)N = dVn/dN- div(NG)(5. 6) 

div(NG)dT is the net transport of the one component by secondary flow 

out of the volume element d i . According to the diffusion equation (3. 6) in 

section 3. 2, this is equal to the accumulation by turbulent diffusion of the 

component in the volume element, so that we may write (compare ref. IV, 

eq. \o0) and ref. IVc, eq. (8)). 
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dV ON 

n' n 
(5.7) 

with 

3Neq/*il = *jp N(1-N) U
S (5.8) 

Insertion of this expression into (5.5), referred to the whole of region i 
(fig. 2. 5), and partial integration lead to (ref. IV, eq. (51) and ref. IVc 
eq- (10)) 

«/«.V<v*o>- A ' . £ i ^ S ? - ^ * " 
n 

(5.9) 

J J d2Vn U i « * * . . . 
o o d N a 2 R e n d ' 

(with the integration over the angular co-ordinate carried out). 
(d. -d ) is a measure of the value changes caused by diffusion through 

the axial boundaries of region 1 (see ref. IVc, eq. (12)); considering the 
small axial concentration gradients usually encountered, this contribution 
is unimportant and consequently the term will be neglected. The term d 
measures the contribution from diffusion through the periphery of region 1; 
it is most unlikely to be of any importance in tubes of the usual designs and 
d may therefore be neglected. 

The last term on the right side of (5. 9) is the contribution from axial 
diffusion within region 1. Since the term is always negative and the value 
increase, with ordinary boundary conditions, is a quantity greater than zero, 
it is seen that axial diffusion reduces the amount of useful mass diffusion. 
The contribution from this term, though important in centrifuges, is negli
gible in the vortex tube because of the high throughput. 

5 .1 .3 . Definition of the Value Function 

Eq. (5. 9) and the equivalent expression for the total-temperature case, 
ref. IV, eq. (51), are valid regardless of the form chosen for the functions 
V (N) and V(T). In case of total-enthalpy separation, the simplest choice 
was made 
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il-V/dT'- 3 1 (5.10) 

which, integrated twice and with suitable integration constants^ gives 

V = 1/2 ( T - l ) a (5.M) 

(ref. IV eq. (52)). 

In the mass separation case, the same choice would be suitable for 

comparison with the total temperature data, as N(1-N) in .)N y&T with 

sufficient accuracy is constant in the present case. The customary defini

tion i s , however, to set 

d2V(N)/dN2 5 ' (5.12) 
n N ^ l - N ) 2 

since this leads to the desired invariance of -iU per unit of equipment (i. e. 

centrifuge or vortex tube) in a larger plant with many units and a major 

change in mole fraction N up through the plant. This is true because both 

*3N/3i} and J N / H , as seen from the mass diffusion eq. (3. 6), must be pro

portional to N(l -N), s inte oN-„f3^ contains that as a factor. (It is here 

assumed that the velocity field is independent of N; an approximation which 

is reasonable at least when the relative molecular mass difference is small). 

By choosing the following integration constants 

Vn(0. 5) M d V n / d N ) N = 0 5 = 0 . (5.13) 

the usual value function for mass separation obtains 

V n = (2N-1)ln(N/1-N)). (5.14) 

The total-temperature equation equivalent to (5. 9) with eq. (5.11) in

serted will be discussed in section 5. 2 (see eq. (5. 34)) on the basis of the 

work described in ref. IVc. Eq. (5. 9) (with (5.14) inserted) has had little 

use since few data exist on concentration distributions within the tubes. 

The insertion cf (5.11) into the expression for the value increase of the 

tube based on total temperature (ref. IV, eq. (45), equivalent to eq. (5. 2)) 

leads to the simple equation 

i A / 2 * F = li1/2(Tc-1)2 + (1 -n)1/2(Th-t)a (5.15) 
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£A/2<iF = 1 /2n tW)(T h -T c ) 2 (5.1 G) 

This expression may be compared with the availability of a cooling 

machine, which is written, when the temperature drop is not too large, 

where t and t are the temperatures of the gas before entering and after 

leaving the machine, respectively. As the vortex tube acts both as a cooling 

machine and as a heating machine, it is appropriate to call the value in

crease AA/2reF in eq. (5-1 5) the availability of the tube and use it as such 

for a comparison of vortex tube performance with other refrigerating devices 

(as done in chapter 6). 

The use of eq. (5.14) in (5. 2) would appear to lead to a more complex 

equation than (5.16); however, since the concentration change is small within 

the tube, a Taylor's expansion of V from N , carried to second order, 

provides V with sufficient accuracy; thus, after use of the mass balance 

equation 

*NC + (1-n)Mh = NQ (5.18) 

and introduction of (5.12), we may write eq. (5. 2) as 

N.-N 2 

(see ref. 1). 

5 .1 .4 . Maximum Value Increases 

From eq. (5. 9) and the equivalent total-temperature expression (5. 34) 

it is a simple matter to find upper limits to both the separative potential 

and the availability of a tube with given tangential velocity field. The con

ditions to be satisfied a re (in the first case) that, in all par ts of the tube, 

(dN/dt)2 is equal to zero and dN/an (*N />>n - WT/dij) is at a maximum. 

The second condition requires (see eqs. (5. 8) that 

1 ^ - 1 / 2 ^ 3 i | / i | ° N(1 -N)w8 (5. 20) 
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everywhere in the tube. Similarly, in case of the availability the second 

condition leads to (eq. (4.4)) 

aT/JT] = 1/2 aT /On = 1 / 2 E c [ ^ + (( l-Pr)/2x i)9Lia/3r))] (5.21) 
eq 

From eqs. (5. 9) and (5. 20) we obtain 

^55= &.f ! B (5.22) 

and from eqc. (5. 34) and (5.21), with Pr = 1, 

• n g ^ E c * — ! — B (5.23) 
^ 2Reh'rt 

-1 ,' * 
where B = ; / u4i)dndt (5.24) 

or, introducing dimensional quantities (see section 3.1, eq. (3.3) and sec
tion 4 .1 , eq. (4.2)) 

_r* M0-M. 
* W " T P ^ t - ^ T ^ ' B (5.25, 

pe and pe, are related through the turbulent Prandtl and Schmidt 
numbers as follows 

<?«„)/<?*„) " Sc x p r (5.27) 

In the simple case that o> may be considered as constant throughout the 
tube, we can write 

B - 1/2 (5.28) 

It is useml to introduce the velocity of sound 
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into the above equations, because v /c„ can be brought into an empirical 
relation with the Mach number in the inlet jet (see section 2.4). Then eqs. 
(5.25) and (5. 26) read 

o r i M,-M. , v T 
(5. 30) 

and 

i A m a x = " ; p t h * - ' > < ^ » 2 ]E B (5- 3') 

Eqs. (5. 25) and (5. 26) (or (5. 30) and (5. 31)) provide maximum valuta 
for the separation potentials of the tube exclusively in terms of the tangential 
velocity field and pertinent tube parameters. 

The actual separation, as measured by the value increase according to 
eq. (5. 9) or (5. 34), is necessarily reduced by the influence of the secondary 
flow. Typically, the experimental value-increases are found to be a factor 
of about 3 to 5 less than the maximum values (see section 6.1). Since the 
overall effect of the secondary flow is fairly invariant to changes in certain 
of the tube parameters, it is often adequate to use the maximum values as 
guides for evaluation of the tube performance (see section 6.1). 

5. 2. The Turbulent Diffusivity from Availability Estimations and Comparison 
with Corresponding Data from the Tangential Velocity Study (Section 2. 3) 

According to the definition of the approximate availability function in ref. 
IV (eq. (48)) we may write for the value increase across region 1 (fig. 1.1) 

&A/2T:F = [A(1) - A(0)]/2rJF (5.32) 

4A(0/2,-.F= [ - / | i i (T-I)»dnj, (5.33) 
O ' * 

For the same region the availability expression ref. IV eq. (51) equiv
alent to eq. (5. 9) provides the alternative expression 

iA/2*F = - // - 2 1 _ »TjJT %£3w (5.34) 
0 o Ren 'a 

Only the latter equation contains Re_. Thus, in cases where sufficient 
temperature and velocity data are available, (5.32) and (5. 34) combined 
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may provide e s t i m a t e s of Re. and thereby of the turbulent thermal diffusivity. 

Kq. (5 .32) rather than (5 .16 ) should be employed because value changes 

outside region I may take place. Furthermore , because a t e s t of the quality 

of the relat ion between the two availabil ity e s t i m a t e s can be eas i ly made by 

performing the integration with r e s p e c t to the axial co -ord inate leading to 

(5 .32) from t = 0 to a variable t. (Ref. IVc, fig. 1 shows the resul t of a 

particular success fu l tes t of this type). 

Ku l ima tes of turbulent thermal Reynolds numbers by the method outlined 

above have been made in five c a s e s a s shown in fig. 5 . 1 . Equivalent r e s u l t s 

Fig. 9.1. Correlation of thermal Reynold« number* Re^ from temperature 
dtstrJmtfo* (Motion 5.2) with Reynolds numbers Re from aaial gradient of 
drenUtton (section 2. >). Roman numerein refer to data in table 2.1, p. 92, 
and below. 
Caee m VII VW IX X 
Ee O.M 0.11 0.19 O.I0 0.10 

Solid pointe, Refa bated on availability; open pointe, Re^ based on energy 
equation. Circles around points indicate range of values obtained. The line 
drawn is based on a turbulent Prandtl number of 0.7. 
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obtained on the basis of a quantitative analysis of the energy equation (4. 3) 

(see section 4. 2), which must also involve the determination of a most-

probable Reh-value in each case, are also shown in the figure. The two 

sets of estimates (4 cases) are seen to agree within a factor of two. 

The abscissa in fig. 5.1 is the Reynolds number, Re, as obtained in 

section 2.3 from the axial decay of tangential velocity. The line is drawn 

on the assumption that the turbulent Prandtl number is 0. 7. The quite sa t is 

factory correlation obtained in this way between estimates of turbulent dif-

fusivities by entirely different methods would appear to lend some support 

to the theories behind, and thereby to the description given in both section 

2. 3 and section 4. 2. 

5 .3 . Comparison of Gas Separation and Temperature Separation Data 

Very little has been done experimentally in the way of correlating the 

mass separation and total-enthalpy separation, the reason being that few 

papers on the gas separation effect (in the sense meant here, i. e. a net 

concentration difference between the two gas streams leaving the vortex 

tube) have been published. Tfc- only attempt known to the author is the 

short discussion in ref. I. There it was found that a large temperature ef

fect in general is associated with a small or negligible concentration effect 

and vice versa. More specifically i t was found that long tubes with weak 

mean radial inflow, related to the traditional Hilsch type, gave a satisfac

tory temperature effect but no concentration effect; while short tubes with 

a strong radial inflow, related to the type investigated for gaseous nuclear 

rockets, gave hardly any temperature effect but maximum concentration 

change. 

In view of the close similarity between the mathematical expressions 

for mass and total-enthalpy diffusion as emphasized throughout the present 

work and in particular in section 5.1 these results would appear rather 

paradoxical. Certainly, if the ratio of turbulent to laminar diffusivity were 

constant throughout the tube volume, the theories in sections 3.3 and 4, 2 

for mass and total-enthalpy separation would fail, since they would then 

predict proportionality between all equivalent pairs of gradients (neglecting 

the minor effect of a turbulent Prandtl number different from one, and cer

tain small temperature effects); see also discussion in section 3 . 3 . Thus, 

in order to reconcile the two sets of results in ref. I it is necessary to show 

that the variation in turbulence level may account for, in a satisfactory 

manner, the pronounced lack of correlation found. 
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5. 3 .1 . The Correlation Found in Special Cases 

To start with, it is important to note that a correlation close to propor
tionality is after all established in special cases, viz. in the very shortest 
tubes employed in ref. I, as seen in fig. 5.2. As a whole the trend in the 
curves gives the impression of two independently created temperature ef
fects competing with one another, where the one, correlated with the con
centration effect, dominates in short tubes ( l / r - 2-5). The other contri
bution, which becomes the dominant one when l / r exceeds 10-1S, has a 

' P 
dependence on "cold" flow fraction of the same kind as displayed by typical 
Hilsch vortex tubes. It is therefore a very plausible conclusion that the 

,-10 

Fig. 5.2. Comparison of gas separation, dN (solid points), with temperatur« 
••paratton (open points). Ordinate«, mole fraction difference (left) and tem
peratur« difference (right) ("not" minus "cold" stream (fig. I. I d)), measured 
downstream of exit duct«. Abscisse "not" flow fraction tf«1 - a). Ratio of 
tab« radius to length fa > (circles) 1/3.3, (sqoarea) 1/11.7, and (triangles) 
1 /M; r • 0.3 cm; rc • rfc • 0.075 cm. From rcf. I (fig. »). 
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latter is created in the outer part of the tube, while the concentration-cor

related effect has its origin in the cort region in agreement with the conclu

sions, reached in section 3 .3 , concerning the gas separation results. It was 

shown there that the symmetry of the secondary flow in the core region, i. e. 

the independence of the flow on nozzle position, gives r i se to the character

istic pattern with both normal and reverse effects, though a peripheral stream, 

preserving its identity, at the same time finds its way to the "hot" exit at all 

"cold" flow fractions. The work by Martynovskii and Alekseev, 1 957, em

phasizes the importance of the symmetry criterion in that a reverse temper

ature effect was obtained in a Hils c h type tube that was made almost sym

metrical about the nozzle plane by the use of a particularly large "cold" 

orifice; the reverse effect appeared at low "cold" flow fraction, as is the 

case with the reverse gas separation effects in section 3. 3. Dubinskii, 1 955, 

has also, with completely symmetrical tubes, obtained symmetrical tem

perature effect curves. 

5. 3. 2. The Turbulent Piffusivity 

As turbulence supports the total-enthalpy separation but may be detri

mental to the mass separation, the discussion in the previous section leads 

to the conclusion that the effective turbulent diffusivity decreases towards 

the centre axis, at any ra te in tubes with strong radial inflow. This would 

appear to be a quite likely proposition, and it is in agreement with the view 

expressed for example by Kendall, 1 962, that the turbulence is created 

mainly at the peripheral wall. On the other hand, it is difficult to find quan

titative confirmation of this assertion as few data exist; thus, in the formal 

definition of the turbulent viscosity c (ref. IV, eq. (1 2)) 

u'v' = c(v/r - dv/or) , 

u'v1 appears to have been measured as a function of radius in one case only 

(Ross, 1 964b). In this experiment a porous tube was inserted into the centre 

and torque balance determinations were made. The measurements show an 

increase of u'v* with decreasing radius, a result which cannot be reconciled 

with a decrease in c, since also (v/r - a v/dr) was found to decrease with 

decreasing radius. However, the presence of the porous tube, which un

doubtedly enhances the axial convection in the vortex tube, as mentioned in 

section 2. 3, and probably at the same time supports the generation of turbu

lence, makes the results less applicable to the tubes considered here. 

Better known are the mean square fluctuations u1 , w' z , and v , z 



- 84 -

(Kendall, 1 962, Schowalter and Johnston, 1 960), which in fact do show a 

tendency to decrease, in per cent of mean velocity squared, with decreasing 

radius (Sibulkin, 1 962, finds a change from 7% at the periphery to 3% on the 

axis; see also Kerrebrock and Keyes, 1959, McFarlin, 1965); however, 

this does not necessarily mean that e decreases as well, because e depends 

on the functional dependence of both the correlation factor and (v/r - ; v / - r ) / \ £ 

on radial position. Of these, the correlation factor is unknown; probably it 

is a function of the history of the flow, because dissipation outweighs produc

tion (Kendall) so that conditions cannot be determined by a Prandtl mixing 

length argument with u'v' simply related to u1* and v'". Furthermore, 

sufficiently accurate tangential velocity data are not available for the deter

mination of the other factor. 

In addition to this lack of experimental evidence there is the complication 

that it seems likely that the turbulent diffusivity does not decrease in a reg

ular manner towards the centre, as is assumed above. Instead, as was con

cluded in section 3. 3 on the basis of flow visualization experiments, this 

parameter appears to be a more complex function of the radial position, 

determined by the secondary flow with axial streams at intermediate radii 

that preserve their identity along the tube but appear well-mixed internally. 

5. 3. 3. An Estimate of the Radial Gradient of the Turbulent Diffusivity 

Although direct estimates of e are not available at present, some in

direct experimental evidence for the idea that the effective turbulent dif

fusivity decreases towards the axis can be obtained from the very data under 

discussion (ref. I) by the following argument (where it is taken for granted 

that both mass and temperature separation may be treated as in section 5.1). 

The ratio of maximum separative work to maximum availability may, 

according to section 5.1, eqs. (5. 25) and (5. 26), be written (with Sc x P r = 1) 

max _ 1 , 2 i k w , m • /E. „ _ . 
T T r— I z — TTTT ~z~ * ; (5.35) 

max L(pen)/(PD) 'f 2M t 

while, according to eqs. (5.1 9) and (5.1 6), the ratio of the actual perform

ances is 

^ = < ! ! S > £ / ( V T C > J - <5-36) 
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Furthermore, if the crude approximation of section 3. 3 that the gradients 

of N are negligibly small is made and if this idea is extended to the gradients 

of T (probably permissible in the tubes considered here), the mass diffusion 

and energy equations give the following ratio for the separation effects 

Nh-NC . W 1 -W» r M 2 - M l k t . n 

where P r = 1 and Sc = 1, as above. 

Comparison of eq. (5. 35) with eqs. (5. 36) and (5. 37) (for AU /AA 

~ AU/AA) shows that the same result is obtained at both extremes; the rela

tions may therefore be used with some confidence. All parameters are ex

perimentally available in these expressions except the ratio of turbulent to 

laminar diffusivity, which may therefore be calculated from the data; for 

the 1 cm-tube in fig. 5. 2, (P*)/(PD) ~ 3 is found. This is a low figure 
4 compared with the value of the order of 20 (with Re t - 3 10 ) obtained 

from fig. 2. 2. Since the data in the latter figure are based mainly on con

ditions in the outer tube region, this result points quite convincingly to the 

conclusion that a radial gradient of the effective turbulent diffusivity is in 

fact present in the tubes under consideration. 

Additional information on the turbulence in the longer tubes of fig. 5. 2 

is scarce. From fig. 2. 2, one would predict the turbulent diffusivity in the 

outer part of the tube to increase somewhat with increasing tube length, be

cause the tangential velocity level near the nozzle increases by this change 

(and approaches the velocity in the inlet jet). 

5. 3.4. Interpretation of the Experimental Results 

For the description of the relation between the two types of separation, 

mass and total-enthalpy, the following distinct features discussed in section 

2.4 are of importance: 1) The tangential velocity in short tubes increases 

towards the centre in the outer annulus, while at the same time the large 

pressure gradients at intermediate radii accompanying this distribution 

tend to produce a well-developed axial flow system near the radius of the 

exit duct(s); 2) the tangential velocity in longer tubes decreases towards 

the centre, and the comparatively small pressure gradients necessary for 

this type of distribution at intermediate radii produce a much more diffuse 

axial flow system with correspondingly less flow carried in the end wall 

boundary layer near the nozzle. 

Returning to the relation between concentration effects and temperature 

effects, the picture that emerges is as follows. 
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In medium-long tubes (*/r » 5-10) conditions are somewhere in be

tween the above extremes, 1) and 2). Flows, both directly from the outer 

region and by way of the intermediate axial s treams, find their way to the 

exits. Total-enthalpy separation takes place in both inner and outer region, 

in the core owing to high velocity, in the annulus owing to high diffusivity; 

the first effect varies strongly with "cold" flow fraction while the second 

effect contributes a fairly constant positive amount to the net temperature 

effect. On the other hand, the mass separation effect comes almost exclus

ively from the core region where both high velocity and low turbulence fa

vour its formation. 

By a change to long tubes (*/ r
D = 15 ref. I), the centre region separa

tion is destroyed both because the tangential velocity there is reduced in 

magnitude, and because the axial flow system loses its characteristic coun

ter-current pattern, so that what remains tends to contribute normal effects. 

A small and fairly constant concentration effect (i. e. one independent of cold 

flow fraction) results. On the other hand, the temperature effect is enhanced 

because of the increased contact time in the longer tube, because of the 

higher peripheral velocity (at least near the nozzle), and, probably, because 

of the higher turbulent diffnsivity. 

By a change from medium-long to short tubes the situation is reversed. 

The tangential velocity in the centre region increases drastically, while that 

at the periphery drops somewhat. Both the total-enthalpy and the mass 

separation in the centre region are therefore accentuated; (since the time for 

contact is reduced, when the length is reduced, it may be the net effect per 

cm tube length rather than the effect itself that increases). At the periphery, 

temperature separation tends to drop somewhat. Furthermore a well-defined 

axial flow at intermediate radii precludes the penetration of a flow of any 

strength directly from the annulus to the exit, with the result, discussed 

earlier in this section, that a close correlation between the two types of 

separation is formed. 
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6. THE EFFICIENCIES OF THE GAS AND ENERGY SEPARATION 

In the present chapter the performance of the vortex tube as a mass 

and energy separator i s discussed on the basis of the separative work and 

availability functions derived in chapter 5. 

In section 6.1 the question of the efficiency as measured by the ratio of 

the actual performance to the maximum value increase i s briefly mentioned, 

while the remainder of the section is devoted to a discussion of the functional 

dependence of the maximum performance on pertinent tube parameters, and 

the prospects of improvement. 

In section 6. 2, the efficiency of the tube as a mass separator is dis

cussed in relation to that of two other devices for mass separation, the gas 

ultracentrifuge and the nozzle separator. 

In section 6 .3 , the efficiency of the tube as an energy separator is r e 

lated to that of ordinary cooling devices. 

6 . 1 . The Performance Criteria 

It seems likely that the actual performance of the tube as measured by 

the value increase (eq. (5.1 9) or (5,16)) bears some quite constant relation 

to the maximum value increase (eq. (5.22) or (5. 23)) under varying condi

tions, as long as the secondary flow in the tube does not deviate radically 

from the reference conditions. In the present context, where optimum per

formance cri teria are sought, this requirement is likely to be obeyed at 

least with respect to the cold flow fraction, which in practice remains within 

an interval from about 0.3 to 0. 7 because of the penalty for exceeding this 

range expressed by the factor fi (1 -p) in eqs, (5.19) and (5.16). 

6 . 1 . 1 . The Relation between Actual and Maximum Value Increase 

It was estimated in ref. IV, part 4, that the efficiency, as regards 

temperature separation was of the order of 1/5 to 1/3 (when measured as 

the above ratio of actual to maximum availability) in the few but typical 

cases studied. The corresponding figure for typical mass separation cases 

can be obtained by use of the result in section 5. 3 which says that the tur

bulent diffusivity is three times the molecular diffus i vity at intermediate 

radii; then, on the basis of the data in refs . I and II, the efficiency in ques

tion is found from eqa. (5,19) and (5. 25) to be of the order of 1 /6 to 1 / 3 . 

Incidentally the upper limit, 1/3, is so high that the assumption in section 

3.3 that the radial concentration gradient remains negligible in the tubes, 

i s somewhat in er ror ; however, this inconsistency is not so large as to 
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invalidate the discussion in section 3. 3. 

The above figures should be viewed in relation to the fact that at most 

60-70% of the maximum value increase can be obtained in practice even 

with the most favorable secondary flow. Consequently, It would appear 

improbable that any marked improvement in performance, of either type 

of separation, is possible through optimization of the secondary flow. 

6.1.2. The Separative Work Potential and the Availability Expressed 

in Terms of Pertinent Tube Parameters 

Thus, the tube performances are quite adequately discussed in terms 

of the two functions for maximum value-increase, AU and A A . Often 
' max max 

the efficiency in relation to energy requirements is of primary importance 

in which case it is useful to use either eqs. (5. 22) and (5. 23) o r the following 

two equations (derived from (5.30) and (5, 31)) (Pr = 1) 

1 pp r
 M 2 ' M 1 k f , ^ £ 0 . 4 T « a 4 

max _. i. 
2«P W P « h l k - 1 ] * ( ^ ) 4 M * B (6.2) 

where M- is closely related to the jet Mach number. 

The parameters in these equations are, 1) the chemical nature of the 

gas (mixture), 2) the temperature level, 3) the peripheral velocity v , 

4) the tangential velocity distribution (expressed by the factor B), 5) the 

throughput 2«F, and 7) the length of the tube 1; (the factor (TJX)* is of 

order one and may therefore be left out of consideration). 

These parameters are not all external or independent of each other, 

and it is therefore convenient to study them on the basis of the following 

fundamental set: I) The chemical nature of the gas (mixture), i. e. a) the 

relative molecular weight difference (M. -M2)/M", b) the ratio of specific 

heats k, and c) the transport coefficients » and D, II) the temperature T^,, 

HI) the pressure of the supply gas p „ IV) the overall pressure ratio B„/p 

(where p s is the exhaust pressure), V) the ratio of nozzle diameter to tube 

diameter r - / r , IV) the ratio of centre exit diameter to tube diameter, 

r e / r , VII) the ratio of tube radius to tube length r / « = fa, VIII) the frac

tion of gas exhausted through centre exits, Q t / F , and IX) a typical length, 

e. g. the tube radius, r . 
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The functional dependence of the first set of parameters on the second 

set is extremely complex and a quantitative treatment is out of reach; how

ever, some insight into the problems may be gained by use of the results 

of chapter 2: First, that, in turbulent tubes, the turbulent diffusivities in 

the outer tube region are determined by 

c/v = C P<? PP P and Sc = Pr = 1, (6.3) 

Also, that at intermediate radii, when gas separation takes place there, we 

may write e
n/E> = C n (P D Q v r / ( p v ) ) ; w h e r e C ( C t a k e s in to accoun t t he 

d e c r e a s e in effect ive t u r b u l e n t di f fusivi ty t o w a r d s the c e n t r e ax i s a s w a s 

s h o w n i n s e c t i o n 5. 3 to o c c u r . 

Second ly , tha t the r a d i a l t a n g e n t i a l ve loc i t y d i s t r i b u t i o n m a y b e d e t e r 

m i n e d a c c o r d i n g t o the t r e a t m e n t by R o s e n z w e i g , L e w e l l e n and R o s s , 1 964, 

a s d i s c u s s e d in s e c t i o n 2. 2 and qua l i t a t i ve ly ex t ended in 2 . 4 to c o v e r long 

t u b e s wi th p e r i p h e r a l e x i t . Not ing tha t t h e t h roughpu t m a y b e w r i t t e n 

2 a F = * i jP j v j . ( 6 -4 ) 

w h e r e t h e s u b s c r i p t r e f e r s to cond i t i ons in the n o z z l e , w e m a y d e d u c e f r o m 

t h e e x p r e s s i o n s i n s e c t i o n s 2 . 2 and 2 . 4 tha t , i n bo th l a m i n a r and t u r b u l e n t 

c a s e s , t he f r e e v o r t e x i s f avoured 1) b y a s h o r t tube l eng th ( l a r g e r / f c ) , 2) 

by a l a r g e d e n s i t y r e d u c t i o n P J / P _ 0 ( w h e r e t h e g a s e n t e r s t h e tube ) , and 3) 

by a l a r g e ve loc i t y r e d u c t i o n , v . / v (at t h e s a m e loca t ion) ; f u r t h e r m o r e , 

i n l a m i n a r t u b e s an a p p r o a c h to the f r e e v o r t e x i s c a u s e d 4) by an i n c r e a s e 

in t h e a b s o l u t e l e v e l of p- and v . e x p r e s s e d by a n o z z l e Reyno lds n u m b e r 

R e . . T h e effects l i s t e d a s 2 and 4 a r e d i r e c t l y r e l a t e d to the effect of a 

l a r g e t h r o u g h p u t . The r a d i a l d i s t r i b u t i o n of t a n g e n t i a l ve loc i t y i s f u r t h e r 

m o r e a function of the r e l a t i o n b e t w e e n the wid ths of n o z z l e and c e n t r e 

ex i t ( s ) ( s e e be low) . 

Wi th t h e i n t r o d u c t i o n of e q s . (6. 3) and ( 6 . 4 ) , e q s . ( 6 . 1 ) and (6. 2) c a n 

b e w r i t t e n for the t u r b u l e n t c a s e 

and 
A A. 

Re. ^n Kpo p W c vj J 

(6 .6) 
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In the laminar case, which is of interest only for gas separation, introduc

tion of (6.4) into (6.1) with « = D leads to 

AUmax . 1 J D t r
 M 2 ' M 1 k , i .^go. « „ , „ ,R 7 , 

B (eq. 5. 24) is a function of the tangential velocity distribution, i . e, of 

the extent to which the free vortex is approached, and is as such a function 

of the parameters that governs this distribution, as listed above. 

Eqs. (6. 5)-(6.7) are expressed, in principle, in terms of basic param

eters with the exception of the jet "Mach number" M., the (laminar) nozzle 

Reynolds number Re. (= P v.r./(pv)), the velocity reduction v ^ / v . and the 

density reduction p /p- . The latter ratio is related to M- in such a way 

that when M, < 0. 9 (air) then f>DQ/Pi - U while when PDO/Pj < 1 then M- = 

0. 9. These parameters depend in a complex manner on almost all the 

basic parameters (1-1X), notably the overall pressure ratio. 

If a tube is to function properly either as a mass or as an energy separ

ator, it is necessary that a substantial part of the gas i s led to the centre 

region and exhausted through centre exits (as discussed in chapters 3 and 4), 

thus Q &/F should not be less than say 0.3 and, of course, in tubes of types 

d and e (fig. 1.1) it is always one. For this reason the diameter of the 

centre exit(s) is of decisive importance, as may be seen in the following 

way. The total pressure ratio can be factored into the number of pressure 

drops that the flow experiences on its way to and through the centre exit 

duct: 

R » / P S
 = fto/Pj * Pj/Ppo x Pp0/Pf x Pf/Pe * p e / p s ( 6 - 8 ) 

Here pw/p^ is the (almost) is entropi c pressure drop that provides for the 

acceleration of the gas into the nozzle; P J / P 0 *s the irreversible pressure 

drop (if any) from nozzle to periphery; VnJVr i s the pressure drop from 

the periphery to the characteristic radius r , (see below), P#/pe is a char

acteristic pressure drop into the centre exit duct with r» so chosen that 

Pf/Pe i-s a measure of the mean axial flow velocity in the centre exit duct; 

and P e /P s is the pressure drop from the exit duct to the surroundings (or 

to some reservoir). On the supposition that the aim is to achieve maximum 

separation potential with minimum waste of energy, it seems plausible that 

p,/p and Pf/p
 x Pe/P« should be kept close to one while ft^/p. and 

p / p - are made as large as possible. In order to hold Pf/pg low, the exit 
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duct must be so vride ( r g so large) that it can easily accommodate the mass 

flow to the core region. On the other hand, r should not be too large 

either lest the gas is exhausted into the peripheral region of the centre exit 

duct before it has contributed to the creation of an optimum radial tangential 

velocity gradient and before its temperature or concentration has had time 

to change. Thus, on the one hand the object is to match the centre exit 

diameter to the nozzle diameter allowance being made for the radial p res 

sure drop PD0/Pf» and on the other hand, to match the centre exit diameter 

to the tube diameter. Experience has shown that the best choices, in case 

of temperature separation, are the following 

r j / r c / r p = l / 2 / 4 - (6-9) 

A similar relationship exists for optimum mass separation as was shown 

in ref. I and further discussed in ref. Ill (see also section 3. 3). 

Now, if the overall pressure ratio is so adjusted that the desired sonic 

conditions exist in the nozzle and the value of p^/p^ therefore is at a maxi

mum and approximately equal to two, while at the same time allowance is 

just made for the radial pressure gradient and for the acceleration of the 

flow into the exit, M. is at a maximum and (>Jf*DO
 i s unity in eqs. (6. 5) 

and (6.6). The following questions may then be asked: What happens if a) 

the tube length is altered, b) the overall pressure ratio is further increased, 

c) the pressure level or d) the temperature level is shifted, and if e) another 

gas (mixture) is substituted? 

The influence of the tube length or rather V r
n has already been dis

cussed in section 5.3, and the criteria developed there are taken tc apply 

here. 

6 . 1 . 3. The Gas Separation Performance 

In case of mass separation at pressures at or above atmospheric p res 

sure the results of section 3. 3 apply. By increasing the overall pressure 

ratio, case b) above, we shall expect B to increase because necessarily the 

ratio Pi/PDO increases above the reference value, i. e. unity. However, if 

this is done by increasing p^, while keeping the exhaust pressure at atmos

pheric pressure, 1/Re? x P J / P D O * m decrease at the same time, and the 

overall effect on the performance (eq. (6. 5)) will be uncertain; in fact the 

effect was found to be small under the conditions of the experiments in ref. 

I (unpublished results). 
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Increased efficiency should result by a reduction of the pressure level 

(casu c above), since this is a change which increases the factor 1/Re* in 

eq. (6. 5); at the same time, laminar conditions are approached (see eq. 

(G. 3)), so that finally eq. (6. 7) applies. That an improvement does result 

has been confirmed experimentally by Mtlrtz and N611er, 1 961, and by 

Strmiu, bimic and Kuscer, 1 961 (see section 3. 2). 

The performance might also improve if the temperature was raised 

(through LiiL' {»ositive temperature coefficient of the diffusivity, which appears 

in the denominator of Re.}. 

Finally, improved performance would result if some way was found to 

make v /v . approach unity even in short tubes {cf. section 2.4); this is a 

problem that has been the subject of numerous fission rocket studies (see 

e.g. Kerrebrock and Lafyatis, 1958, Rosenzweig, Lewellen and Kerrebrock, 

1961, and McFarlin, 1965). 

For mass separation in general, a change in the chemical composition 

of the gas mixture leads to large effects associated with the change in 

(M, -M„/M) a , as has indeed been verified experimentally by Murtz and NG1-

ler, 1961, and in ref. I. 

6.1.4. The Temperature Separation Performance 

In case of energy separation, the results of section 4. 2 apply. By in

creasing the overall pressure ratio we shall expect B in eq. (6. 6) to increase 

for the same reason as in the mass separation case; on the other hand the 

effect cf this on the performance will be reduced by the concomitant reduc

tion in P /p . (eq. 6. 7)) and thus the overall effect on the performance is 

again uncertain; here, however, it is a well known fact that an increase of 

the net temperature effect with increasing overall pressure ratio takes place 

(as already noted by Hilsch, 1 946; see also section 6. 3); the results of Lay, 

1 959, on the velocity and total-temperature distributions at various gauge 

pressures , provide some, more detailed evidence, though it cannot be said 

to be conclusive because zero cold flow fraction was employed in the ex

periments. It i s to be noted that the amount of work spent in the system 

necessarily increases with the pressure ratio so that the efficiency as such 

may not increase; in fact, Gulyaev, 1 966, has found it to be almost constant 

(section 6. 3). 

The pressure level would appear to have no effect on the temperature 

separation (provided eq. (6. 3) is valid), while the temperature level enters 

primarily through the fact that T is a normalized temperature so that the 

actual temperature effects are proportional to the absolute temperature 
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level Tw, as indeed found by Gulyaev, 1 965. According to Brodyanskii and 

Martynov, 1 964, on the other hand, the prediction is only in qualitative 

agreement with experiment. 

Since vDO/v. apparently reaches its upper limit, i. e. unity (see section 

2.4), under the conditions of interest here, and no other factors remain 

free in eq. (6. 6), no further improvement seems possible. 

The use of different gases affects the performance through the factor 

(k-1)2 and, owing to minor pressure adjustments, B. The question has 

been investigated by various authors (Elser and Hoch, 1 950, Martynovskii 

and Alekseev, 1 957) and the impression reached is that (k-1 )2 is of prima t-\ 

though not of sole importance. 

6. 2. The Efficiency of the Gas Separation 

A number of investigations on mass separation in the vortex tube (see 

introduction to chapter 3) has been carried out in order to assess the tube's 

potential as a separator of heavy isotopes; it is therefore useful to consider 

its performance in relation to the following two systems, the gas ultra centr i 

fuge and the nozzle separator, both of which are being developed at the p res 

ent time for industrial use. 

The gas centrifuge i s a hollow cylinder spinning fast around its axis ' 

with special devices inside (scoops) that create a convective flow system. 

Gas is continuously fed into the cylinder and product s t reams are withdrawn 

at the two ends. Flow conditions are thus quite similar to those in the vor

tex tube except that the feed ra te to the centrifuge is orders of magnitude 

lower than that to the vortex tube. In the nozzle separator, the gas mixture 

is accelerated along a curved path (see e.g. Becker, 1 969, and Zigan, 1 962) 

into a slit nozzle, after which the jet s t ream is cut into two parts, an outer 

and an inner stream, by a knife edge placed opposite to the nozzle. The 

centrifugation of the gas along the curved path and the t ransverse expansion 

after the nozzle produce a transverse concentration gradient. The nozzle 

separator is therefore equivalent in its action to a short concurrent vortex 

tube. 

The gas centrifuge i s a complex expensive machine with a rather small 

power consumption, while the nozzle separator is a rather simple inex

pensive device with a large power consumption. 

6. 2 . 1 . Comparison with the Gas Centrifuge 

The equation for maximum separative potential (5. 25) is valid unaltered 

for the gas centrifuge; however, the step from (5. 2r) to (5. 30) is of no 
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riUvance; thv reason is that the peripheral velocity in the centrifuge is 

limited by the strength of the rotor material only. This means, that veloci

ties of the order of at least 400-500 meter per second may be, and apparent

ly have been attained in centrifuges with isotopic uranium hexafluoride (the 

gaseous uranium compound employed). On the other hand, the corresponding 

peripheral tangential velocity in the vortex tube, limited as it is to the vel

ocity of sound in uranium hexafluoride, cannot exceed 80-90 m/sec . Thus 

the efiicioncj of the tube is for Unit reason alone a factor of 5 = 600 times 

poorer than that of the centrifuge. 

6. '2, 2. Comparison with the Nozzle Separator 

However, the vortex tube is a very simple inexpensive device and it 

may therefore be of more interest to see whether its power consumption is 

exhorbitant in comparison Kith th?t of the nozzle separator. 

The data of Becker, Bier, Bier and Schtttte, 1963, (for a nozzle separ

ator of a soiaewhat older design than described above) provide a convenient 

basis for comparison. These data refer to uranium hexafluoride and it is 

therefore necessary to transform the vortex tube results in ref. I to suit 

that situation. Ih i s may be done on the basis of either the maximum sep

arative potential function, as stated in eq. (6.1), or the simple diffusion 

equation (3. T 0), valid if the system remains far from equilibrium. The two 

procedures are in agreement with one another provided the ratio of turbulent 

to laminar diffusivity can be written as some constant multiplied by the 

tangential Reynolds number (as in (6. 5)), and provided this constant is in

variant to the substitution of uranium hexafluoride for a i r . It is presumed 

that the tube and the overall pressure ratio remain unaffected by the t rans

formation and that the pressure gradients and therefore the secondary flow 

within the tube do not change appreciably; as discussed in ref, I, in con

nection with the results on different gases, this is indeed largely the case. 

The procedure as applied to optimum data from ref. I gives the fol

lowing separative work capacity for the vortex tube as a separator of the 

uranium isotopes U-235 and U-238 (cf. eq. (5.19)) 

flU/2wF = ̂  "O. 23x 0.77(6.9 x 1 0 " V « 4 .3 x 10~10 (6.10) 

3 
with 2*F of the order of 7. 5 10 moles/sec. 

The equivalent result for the nozzle separator is 

«J/2nF = ^ x o.23 x 0.77(3 * 10~3)* = 8.0 * 1 0 " 6 (6.11) 
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Tliis rosult, which may seem very high, can be analysed on the basis of an 

equation equivalent to eq. (3.10) with the modification that the integration 

over the angular coordinate, which tacitly has been carried out over the 

2«-range in eq. (3.1 0), here covers only the curved path, i. e. an angle 

less than 2*. The analysis shows that the very high performance of the 

nozzle separator is due primarily to a low specific throughput helped by 

laminar conditions in the jet, and to a Mach number greater than one in the 

active zone (compared with a value of about 2/3 in the vortex tube) (see 

Zigan, 1 962). 

These calculations take no account of the fact that the pressure in the 

nozzle separator used for the comparison has been very low (a factor of 

about 1 00 less than in the vortex tube) and that, in order to make the sep

arator attractive from the industrial point of view, it has been necessary 

to increase the pressure by a factor of about ten or more. A reduction of 

the efficiency of the order of ten to hundred times by this change may have 

resulted, unless the specific feed rate has been reduced at the same time 

and the onset of turbulence has been prevented. Some success in this direc

tion seems to have been achieved in recent years (Becker, 1 969) without 

causing the volume of the equipment to r i se excessively; thus it seems clear 

that the prospects of the vortex tube as a separator of the uranium isotopes 

are poor. - Unless a considerable increase in tangential velocity level is 

achieved along the lines suggested in section 6 .1 , and even then the tube 

might still be in a difficult position because of its very limited capacity per 

unit as compared to the nozzle separator. 

It should be added that a reduction of the pressure level in the vortex 

tube, as studied by MQrtz and N511er and Strnad et a l . , but with n at about 

0. 5 (a situation not investigated), would probably lead to a much improved 

efficiency; however, the volume of the necessary equipment for large scale 

separation would r i se to prohibitive levels. 

It may be appropriate to mention that a considerable improvement in 

the nozzle separator performance has been achieved by adding a surplus of 

a light car r ie r gas to the heavy uranium hexafluoride gas (Becker et a l . , 

1963) whereby the attainable velocity in the nozzle is much increased, and 

that the same may be done in the vortex tube case and with a similar result 

(personal communication with Becker). 

6 .3. The Efficiency of the Energy Separation 

Interest in the vortex tube as a cooling device has persisted over the 

years . Attempts in recent years to establish simple design criteria have 
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been made, notably by Russian and Japanese investigators (Gulyaev, I 966, 

Martynov and Brodianskii, 1 967, Suzuki, 1 960, Takahama, 1 965). 

Fulton appears to have been the first to present a thorough discussion 

of the pertinent criteria for the tube efficiency, and to s t ress that (at the 

time) the vortex tube performance compared to that of other cooling ma

chines was poor from every point of view. This situation has not changed 

radically since, as is not surprising in view of the conclusion reached in 

section (». 1. The best results claimed until t.ow a re probably those of 

Gulyaev shown in fig. 6. 2. The ordinate there and in fig. 6.1 is the nor

malised total temperature T based on T^, as used throughout the present 

work, and the abscissa is a non-dimensional entropy change (S-S^J/R, where 

Sou is the entropy per mole of the compressed gas before acceleration into 

the nozzle. 

As argued by Fulton, 1 950, and implicit in most studies of recent date, 

the tube is better viewed as a producer of cold air, than as a machine r e 

moving heat from a fixed depressed temperature level (at any rate, as the 

tube is usually employed; Blatt, 1 962, has described the function of a "cold 

finger" placed al^ng the axis from the cold end in a one-way vortex tube of 

type b; this design may be of interest in special cases where either a low 

capacity or a small temperature drop is sufficient). 

6. 3 .1 . The Reference Cycle of the Gas in a Cooling Machine 

A realistic measure of the efficiency is obtained by comparing the tube 

performance with that of a cooling machine which employs the following 

three steps (fig. 6.1): Adiabatic expansion from J to 6, with work spent 

(but not recovered) externally and some gain of entropy owing to i r r eve r s 

ible pressure losses. Isobaric heat exchange until the original temperature 

is reached, 4, where the heat returned to the gas during this step represents 

the cooling capacity and is given, in normalized form based on RT«,, by the 

area under the isobar from 6 to 4. Finally isothermal compression from 4 

to 1, where the work spent on the system is equal to the area below the iso

therm. Thus, the cooling efficiency (TJ.) can be described as the ratio of 

area (644"6") to area (144"1"). This efficiency definition does not, however, 

constitute a basic criterion (Fulton, 1 950); for thai purpose it is useful to 

define the efficiency in terms of the availability, which is the ability of the 

system to produce work after the expansion, i. e. 

a = / f (%o - *)dS. (6.12) 
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( S - y / R 

Fig. S. 1. Temperature-entropy diagram of flow processes. Vortex tube; 
•olid lines, total temperature of gas accelerating into nozzle I - 2, total 
temperature change« within tube, in hot stream 2 •* S and in cold stream 
2 * 3 , heat exchange with external systems or surroundings 5 - 4 and 3 - 4 ; 
dashed lines, corresponding static temperature changes. Reference cooling 
machine; dot-and-dtfh line, static temperature change on adiabatic expan
sion 1 -* S, iaobarlc heat exchange 6 - 4 . » * 0. 5. 

If this step is isobaric, we may write 

! / ? <T„ - t) i dt - cBX, (lntg-(tg-1)) (6.13) 
1 v " ~ "' 1 ~ "P"" 

which for 1 -tg (( 1 may be written (compare eq. 5.1 7) 

a'( = a/T„cp) = ^ . ( t 6 - ) ) ! (6.14) 

It is seen from inspection of figure 6. 2 that the availability a< is the area 

(6'46) multiplied by the factor R/(c M) = (1-k) 

by area (144"1") and efficiency 1 is obtained. 

(6'46) multiplied by the factor R/(c HJ = (1 -k). Thus by dividing this area 
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ii. 3. 2. The Corresponding Path of the Gas in the Vortex Tube 

The path of the gas through the vortex tube, as described in terms of 

static or total temperature, cannot be traced in detail in fig. 6.1 (because 

no unique time function can be defined). However, in general terms the 

patli is as follows: Adiabatic, more or less non-isentropic expansion with 

no change in total-temperature from 1 to 2 until the exit of the nozzle is 

reached (static temperature 7). Passage through the tube with separation 

of total enthalpy and necessarily a loss of stagnation pressure (entropy in

crease) until both streams are at ambient pressure (one atmosphere in the 

figure) and their velocities are negligible, from 2 (and 7) to 3 and 5 (the 

bends on the paths designate entrance into the exits). Then, the useful 

isobaric heat exchange with the surroundings from 3 to 4 and from 5 to 4 

(heat flows in opposite directions). Finally isothermal compression from 

4 to 1. The same overall pressure ratio is assumed as applies to the r e 

frigeration machine, so that the expenditure of energy is the same. Thus, 

area (344,,3"J or area (455"4n) compared to area (644"6") represents the 

relative goodness of the tube in terms of n- except for a factor M- or (1 -*i), 

respectively, which has to be added because the areas are given per unit of 

gas in a stream regardless of its strength. The two heat flows must necess

arily be of equal magnitude and of opposite signs since enthalpy is preserved 

within the tube. 

The availability as defined in section 5.1 is approximately 

AA/2*F r l(å x area (3'43) + (1-ti) x area (455') ](1-k) (6.15) 

(see eq. (5.19), compared with (5.1 5) and (5.16)), and thus the goodness of 

the tube in terms of i) is represented by the ratio of the weighted area 

within the brackets to area (6*46). 

6. 3. 3. Discussion of the Tube Efficiency 

It is quite obvious from fig. 6.1 why it is impossible to obtain a reason

ably high separation efficiency in the vortex tube. For one thing, the ac

celeration into the tube may be accompanied by quite an appreciable stagna

tion pressure loss (entropy gain), in particular when the peripheral pressure 

in the tube is below the critical pressure in the nozzle. Furthermore a loss 

of stagnation pressure in the tube, especially in the hot stream, i s inevitable, 

though it may be somewhat reduced by use of a diffus er (see Blatt, 1 962), 

Finally the very fact that the gas is divid',d into two streams of which only 

one, in most situations, is of practical value makes it most unlikely that 



efficiences in terms of n . much in excess of one tenth of the corresponding 

figure for a conventional cooling device can be obtained. 

This is true even though the vortex tube has one feature which places it 

in a better position than ordinary cooling machines, namely that the radial 

equilibrium gradient of total temperature, if it could be utilized, would give 

twice the is entropi c temperature drop (see eqs. (4.1) and (4.4)). 

As noted by f. ex. Gulayev and Takahama, the ratio of the maximum 

temperature drop in the cold stream (see fig. 4. 8) to the isentropic tem

perature drop based on the overall pressure ratio (i. e. the ratio of area 

(344"3") to (f>44"6") in figs. 6.1 ami 6. 2) is a parameter which is in

variant to various parameter changes. As this ratio multiplied by p. is a 

measure of the n,.-efficiency, and the cold iiow fraction in question apparently 

is fairly constant, this finding implies that also T>. is fairly invariant. This 

even applies in cases (fig. 6. 2) where the overall pressure ratio appears to 

<S-^/R 

Pif. 6,2, Ttmperature-antropy diagram of flow proceasea; data from 
Qulyaav, 19W. Solid and dashed tin«, total-temperature changes (cf. fig. 
6.1). Reference cooling machine, dot-and-daeh Una aa in fig. 6.1. i**0.2. 
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be in excess of what is needed for the various steps in the tube, so that an 

irreversible pressure drop probably takes place on passage from nozzle 

into tube. Admittedly, the extent to which this has happened in the case 

shown in the figure cannot be decided on the basis of the data available, be

cause, as discussed in section 6 .1 , a high pressui c ratio favours the crea

tion of a fret' vortex and with that a comparatively large radial pressure 

drop; thus the position of point 2 in fig. 6. 2 remains uncertain. 

In closing the discussion, it may be worth mentioning that the tube is 

really more of a heating device than a cooling device, provided the interest 

is simply the attainment of as large a temperature effect as possible. The 

explanation is that the asymmetry of the tube and the resultant secondary-

flow pattern, as in a counter-current column, provide for an "unlimited" 

temperature r i se along the tube, if this is made long enough (see eq. 4, 21) 

and if the hot flow fraction, 1 -n, is allowed to go towards zero at the same 

time. The cold temperature drop on the other hand cannot, as mentioned 

above, exceed twice the adiabatic overall drop. These considerations do 

not imply of course that the situation met with in practice ever approaches 

such ideal conditions. 
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APPENDIX 

The Gas Separation Model 

The nomenclature of ref. II! does not agree with that used in most 

chapters of the present work; in order to facilitate reference to ref. Ill, 

the old nomenclature, as given in fig. 3. 6, is retained here. 

According to the approximation leading to eq. (3.1 0) in chapter 3, the 

diffusion per cm tube length, u, of heavy component across the boundary 

between two streams may be written as the product of a constant and tin.' 

tangential velocity (at the boundary) squared, regardless of the previous 

history of the streams 

M2"M1 -a 
u s 2*pD — N(1-N)v2 (At) 

Rt 

or, for a length of tube åz (in non-dimensional form), 

^ K F Renfat 

compare eq. (3,10). On this basis , all transports in fig. 3. 6 can in prin

ciple be calculated from a knowledge of the radial distribution of tangential 

velocity (note that fig. 5 in ref. Ill (except Ilia) is incorrect in that, a non-

mixing condition between left and right s t reams is indicated contrary to the 

stipulation of the model). 

The following material balance equations may be written (see fig. 3. (i) 

for the case that 6 < 8 (where 9 is the hot flow fraction with both valves 1 o o 
open): 

Control volume aets; 

L' N' s L*N* + L*Nt + u z„ , (A3) 
c c c c c t c c * 

control volume fgyx: 

<Lc + W% + "\ - K + H>Nt + % V «A4> 

control volume ebgf: 



- 102 -

control volume abed: 

(NJj-NyLJ. + (N^-N^I^ = 0, (A6) 

where N' (IA + Li) is total throughput of heavy component minus content in 
direct end-wall flow; and finally 

control surface as: 

LJ. " L c
 + Le- (A7) 

The following expression for N'-N with L »N„ N*, and N! eliminated can 

be obtained from (A3)-(A7): 

H ĉ-'V=TTTTJ- uczc - rar Vh+ 777b Vh+ 7*777 u% c Ti e n L! + L L + Li, h c e h 

(A8) 

which, introducing 9'= 1^/(1^+LJ,) and 9K= L £ / ( L ^ + L*), may he written 

(T-e)L'(N|.-N0) = 9^ c z c - (1-e-)u h z h + 8*uhzh + (1-8 V ^ . (A9) 

The corresponding expression for the case that 9 ) 9 can be found in 
an analogous way; it reads 

(l-e'JL'INJ.-NJ,)* e>u cz c-(1-8'hihzh-8 I Iu c Z c-(1-8 , l)u ] tz c . (Al 0) 

When both valves of the tube are open (at 9 ) then 8K = 0 and u* = 0, 
and both (A9) and (Al 0) become 

(1 -e-JL'fNJ.-NJ,) = 9'uczc -(1 -9')uhzh . (Al 1) 

When 9 is either reduced below or increased above 9 corresponding to 
the range of validity of eqs. (A9) or (Al 0), respectively, 9* increases from 
zero and rapidly approaches unity; at the same time u increases to either 
un (eq. A9) or u (eq. A1 0). Thus, to a first approximation one may write 
when e is low 
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(1 - e»)L'(NJ.-N"0) = 6'(uczc + uhzh) (Al 2) 

and when 9 is high 

(1 - e'JL'tNJ.-N^) s -(I -6')(uczc + uhzh) . (A13) 

In order to complete the description the contributions from the end-wall 

boundary flows must be included, as explained in ref. Ill; the final equation 
reads 

N c - N o = ™ - [ 0 - « L . W c - W o ) + 8 ' W ^ c - V - < , - e ' > L h w < N h w N o > J 

(A14) 

where either (A9) or (AI 0) is , as the case may be, introduced. 
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LIST OF SYMBOLS 

Dimensional parameters 

u radial velocity 

u , u_, u x (in appendix) rate of diffusion per cm tube length 
across certain cylinder surfaces (fig. 3.6) 

w axial velocity 
% stream function, defined as in eq. (2. 5) or eq. (4. 2) 
v tangential velocity 
2'-f • 2nvr; circulation 
i«> = v/r; angular velocity 
f static temperature 
T total temperature 
h enthalpy 
h total enthalpy (enthalpy + kinetic energy) 
r radial coordinate 
z axial coordinate 
a surface element 
2*F total flow into tube, defined as volume flow when 4> is 

defined according to eq. (2.5), and as mass flow with 
* defined as in eq. (4.2) 

2'tQl volume or mass flow (see preceeding comment) into 
core region, i. e. met radial inflow across cylinder 
r=r ( i = a 1 where w changes sign, fig. 2.5; or 
across cylinder r=r , the exit radius (fig. 1.1) 

Dlvjl reference tangential velocity at periphery near nozzle 
(r=rtf z=0) (in ref. IVa and b written v j 

.. • v„_r_; reference circulation (in ref. IVa and b 
ipo po p* 

written r„) 
w = v /r_; reference angular velocity 
To, reference (total) temperature in compressed gas 

before acceleration into nozzle 
r tube radius 
r radius at which w changes sign according to model 

in fig. 2.5 
r_. rt.. and r exit radii, as in fig. 1,1 
C n e ° 

d , d., and d corresponding diameters 

po' 



- 113 -

« length of region 1 (fig. 2. S); in some cases taken to 

refer to tube length 
z (in section 3.3) length of tube 
G mass flow in a stream of gas 
L (in section 3.3 and appendix) as G 
p density 
D diffusion coefficient 
»(», ) kinematic viscosity 
G combined turbulent and molecular diffusivity for 

momentum 

e turbulent plus molecular mass diffusivity 

c, turbulent (plus molecular) thermal diffusivity 
M2-M, molecular weight difference 
M molecular weight (mean) 
R gas constant per gramme mole 
c heat capacity per gramme, at constant pressure 

P ./ ~ 

c«, = t kRtj/M; velocity of sound at reference temperature 

Non-dimensional parameters 

* = */ *s» where * i s a reference flow rate equal to F 

unless otherwise specified 
f (eq. (2.15)) stream function at ".=0 
f. 1 (eq. (2.15)) radial flow function (see ref. IVa) 

-Fwr wr* 
P = gpP or (in section 2.3)= - -jjf-; axial velocity 

function at £. =0 

v • v /v ; tangential velocity 
v v atr ,=0 

o ^ 
v . . = "3T» axial gradient of tangential velocity 
2nr = 2*?/r ; circulation 

I po' 
2r.ro (eq. (2.15)) circulation at i, =0 
2nr (eq. (2.15)); axial gradient of circulation 
M, • v . /c^ (chapter 6) 
u = w / u ; angular velocity 
, (eq. (4.8)) 

N mole fraction of heavy component in binary gas mixture 
dN (in section 3.3 and fig. 5. 2) = N h -N c 

N mole fraction in supply gag 
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1 - t/T. ; static temperature 

T = TfXci total temperature 
J T /'T (eq. (4.4)) equilibrium total temperature gradient 

eq 
in absence of secondary flow 

1 = ( r / r f; radial coordinate 

*l-t t) (in section S. 3) separation efficiencies 

'. = z / i ; axial coordinate 
= (»o/y 

3 angular coordinate, or (in shapter 3 and appendix) 

hot flow fraction (1 -r) 

P cold flow fraction 

-K = 1-it; hot flow fraction 

Re = F/(er ) (eq. (2.14)); turbulent Reynolds number 

Re = F/I.M r J (eq. (3.4)); turbulent Reynolds number 

for mass diffusion 

Reh = F/ (pc h r )(eq. (4.2)); turbulent thermal Reynolds 

number (Peclé number) 

Re/o, Re J o , and 

Re-.^a Reynolds numbers based on length of region I (fig. 2. 5 

Re and Re,_ corresponding radial parameters defined so that 

Re^Re' /o = ^ehr/^
ewf^ s Q £/**i radial flow fraction into core 

of region I (fig. 2.5) across cylinder surface r = r ; 

when i is the tube length, Q£/F is the fraction of 

flow through centre exits (equal to p. in tubes sf type 

b (fig. 1.1), equal to one in tubes of type d and e) 

Re. = P™v_„r /(pv); tangential Reynolds number; in 
x, p po po p* 

literature, incl. ref. IVa, 2r = d is used 
' P P 

Re. (chapter 6) nozzle Reynolds number 

Ro - F/(v r 2 ) (eq. (2.14)) Rossby number 

Co (eq. (3. 3)) pressure diffusion parameter 

Sc - pc_/(pe); turbulent Schmidt number 

Ec (eq. (4. 2)) turbulent Eckert number 

P r * p i / ( p t ) ; turbulent Prandtl number 

k = ratio of specific heats 

E (eq. (4.9)) 

É (eq. (4.14)) 



AT„ = T (1 )-T|.j total temperature at periphery and s = 1 
of region I (fig. 2. 5) minus temperature (ti>*al) of lu>t 
stream 

B (eo.. (5.24)) 

V and V (cos- (5.11) and (5.14)); value functions for energy and 
gas separation, respectively 

A/2"F (eq. (5.33)) specific value of a stream 

6A/2»F (eqs. (5.16) and (5. 34)) availability of tube or tube 
region 

•iU/2*F (eqs. (5.1 9) and (5.9)) separative work potential of 

tube or tube region 

iiU ax/Z-F (eqs. (5.23) and (5.22)) theoretical maxima of avail
ability and separative work potential, without con
sideration of secondary flow 

Subscripts 

s reference value 
p value at tabe periphery 
po value at tube periphery near nozzle (£=0) 

h value in hot end exit 
c value in cold end exit 
e value in exit 
j value in nozzle 
T'. r etc differentiation with respect to radial coordinate T) 

* oo 
TPv7 (in section 5. 3) fluctuation term 
N' and N" concentrations in specified streams 
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DANSK RESUME 

Til grund for nærværende arbejde ligger en række tidsskriftsartikler 

og rapporter om strømningsforholdene i vortexrør af forskellig type. Under

søgelserne, som har været af både eksperimentel og teoretisk art , har alle 

beskæftiget sig med samspillet mellem den sekundære strømning, der be

skriver gassens vej gennem røret, og de diffusionsprocesser, der sættes i 

gang af gassens rotation. 

Til indledning gives i kapitel 1 en beskrivelse af vortexrørets konstruk

tion samt en oversigt over, hvilke faktorer der bestemmer dannelsen af de 

karakteristiske temperatur- og koncentrationsforskelle mellem de to pro

duktstrømme fra røret . 

For at forstå virkningen af disse faktorer må også samspillet mellem 

den sekundære strømning og den tangentiale hastighedsfordeling klarlægges; 

dette er emnet for kapitel 2. Da de aksiale gradienter har vist sig generelt 

at være mange gange mindre end de radiære, e r det ofte tilstrækkeligt at 

betragte disse sidste; således finder man som diskuteret i kapitel 2 afsnit 1 , 

at et radiært Re> :olds tal bestemmer den tangentiale hastighedsfordeling 

ret eentydigt. Dette simple billede kompliceres dog af, at rørets endevægge 

ofte trækker en væsentlig del af den radiære strømning til sig, således at 

disse må inddrages i beskrivelsen; ligeledes finder man i lange rør med 

indmunding i den ene ende en betydelig reduktion af den tangentiale hastig

hed langs røret . Disse forhold, samt de faktorer af konstruktionsmæssig 

art der bestemmer dem, behandles i de t r e øvrige afsnit af kapitel 2. 

I kapitel 3 og 4 behandles koncentrations- og temperaturfordelingen i 

røret. Også for disse gælder det, at man under visse forhold kan se bort 

fra de aksiale gradienter; denne situation er behandlet i- afsnit 1 af de to ka

pitler. Imidlertid er en sådan beskrivelse under forhold, hvorunder røre t 

fungerer optimalt, ikke tilstrækkelig; hovedvægten i de to kapitler er derfor 

lagt på en tredimensional betragtning af problemerne, og det vises, at man 

derigennem kan nå til en tolkning af det foreliggende eksperimentelle mate

riale. 

I kapitel 3 afsnit 2 og 3 betragtes vortexrøret som en primitiv centri

fuge, der tillader en delvis adskillelse af en gasblanding efter molekylvægt. 

En sådan funktion er konstateret eksperimentelt i flere tilfælde. I en række 

forsøg beskrevet i kapitel 3 afsnit 3 fandtes således veldefinerede men små 

separations effekter. Da det har vist sig, at den sekundære strømning i dis* 

se tilfælde er meget kompliceret, har en detaljeret beskrivelse af koncen

trations for delingen ikke kunnet gennemføres; dog har det været muligt, som 
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også beskrevet i afsnit 3, at forklare det eksperimentelle materiale udfra en 

ret grov men ganske virkningsfuld teori . 

I kapitel 4 betragtes temperaturfordelingen i røret . Det vises, at den 

totale temperatur optræder i energiligningen næsten som koncentrationen i 

diffusionsligningen. Da den sekundære strømning i den type vortexrør, der 

har interesse i forbindelse med temperaturseparationen, er betydelig s im

plere end den, der ligger bag dannelsen af koncentrations effekterne, har en 

ret detaljeret løsning al energiligningen vist sig overkommelig; denne e r 

beskrevet i kapitel 4 afsnit 2. En ret tilfredsstillende reproduktion af eks

perimentelt bestemte aksiale og radiære gradienter af den totale temperatur 

under varierende betingelser har herigennem vist sig mulig. 

En beregning af den resulterende temperaturforskel mellem de to pro

duktstrømme udfra den teoretiske model giver, som beskrevet i kapitel 4 ' s 

sidste afsnit, en rimelig overensstemmelse med eksperimenterne. 

I kapitel 5 opstilles udtryk for rø re t s ydeevne, både hvad angår adskil

lelse af en gasblanding, og hvad angår skabelse af en temperaturforskel. 

Samme principper anvendes som ved bedømmelse af ydeevnen af en gas

centrifuge til adsKillelse af for eksempel en gas for mig blanding af isotoper; 

dette betyder, at begrebet separativt arbejde anvendes direkte på gassepa

rationen, medens et dermed analogt begreb udledes for temperatursepara

tionen. 

Det vises, hvorledes disse funktioner tillader en korrelation af gas

separations effekter og temperatureffekter. Temperaturfunktionen tillader 

desuden, som vist i kapitel 5 afsnit 2, en kontrol på, at beregningen af 

temperatureffekterne, hvori indgår en antagelse om turbulens niveau et i rø

ret , e r i overensstemmelse med tilsvarende resultater opnået på basis af 

studiet af den tangentiale hastigheds fordeling (kapitel 2).-

I kapitel 6 diskuteres rørets maksimale ydeevne på basis af de to funk

tioner udledt i kapitel 5, og disse vurderes ved sammenligning med ydeev

nen af tilsvarende apparatur henholdsvis til adskillelse af isotoper og til 

køling. 


