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1. INTRODUCTION 

Three-dimensional overall calculations on light water reactors are 
normally performed as few-group diffusion theory calculations. The most 
straightforward and most reliable method for the solution of the diffusion 
equation is the difference equation method. However, for many applica
tions this exact solution technique is unfavourable, as too many flux points 
and thereby too long computation times are necessary. Different approxi
mate solution methods may be used, for example the nodal method or the 
flux synthesis method, m this report a discussion of the applicability of 
the different solution techniques is given. 

A three-dimensional flux synthesis program SYNTRON has been con
structed. The program has been coupled with routines for the calculation 
of burn-up, void and temperatures to form the SYNTRON/VOID program. 
The cross section representation is based on the interpolation principle. 
A Doppler correction method has been implemented. 

Several test calculations have been performed with the SYNTRON pro
gram both M static flax synthesis calculations and as coupled boiling water 
reactor calculations. Investigations have been carried out concerning the 
optf mal coupling between the hydraulics and the power calculations. 
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2. SOLUTION OP THE THREE-DIMENSIONAL DIFFUSION EQUATION 

Three-dimensional overall calculations of the flux and power distribu
tions in light water reactors are normally restricted to few-group diffusion 
theory calculations. As the structure of the reactor core is rather complex, 
the solution of the diffusion equation must be performed by use of some sort 
of numerical method. 

The diffusion equation in multi-group formulation has the following 
form: 

-D*(?)*2 «pe(r)+ zf(r) ,S(f) = 

0) 
NG 
V fcf-gl(r)+ xHi)'*zf(*))**'&) . 
g*-I 

where 

g * energy group index 

NG - number of energy groups 

•*(f) * flux in group g at space position f and 

Dg{r), £f(r). E««-*'£), x*(r) andvLfff) are: 

diffusion coefficient, absorption cross section, scattering 
cross section from group g1 to g, fission spectrum and pro
duction cross section. All at space position r. 

When the diffusion coefficients and the cross sections and their spatial 
distributions are known, the problem is how to find the group flux distribu
tion from equation (1). 

In practically all reactor physical cases the spatial distribution of the 
cross sections sad the diffusion coefficients are determined before the dif
fusion equation for overall calculations is set up. For that reason the spatial 
dependence of the cross sections is suppressed in tile following treatment. 
When the source term at the right-hand side of equation (I) is called Q*{r), 
eq, (1) is replaced by: 
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-D« V2 *«(f) + I f e*(r) = Q*(f), (2) 

which i s the equation to be discussed in detail in the rest of this report. 

Direct solution of the diffusion equation in the form of eq. (2) is only 
possible if the macroscopic cross sections and the diffusion coefficients 
represent a critical reactor system. In situations where this is not the 
case, it is necessary to introduce some sort of eigenvalue, in order to 
artificially make the system critical. 

The classical eigenvalue method is the k - , method, where an eigen
value X is associated to the production cross sections v E? all over the 
reactor. The source term in eq. (2) is then: 

NG 

Qg(r) « £ (Ef **gl + X- Xg- »if)- f g ' ( r ) . (3) 
gt=1 

It is possible to solve the diffusion equation for many different eigen
values, but normally only the solution for the largest positive eigenvalue i s 
found1'2*. 

From a mathematical point of view an eigenvalue associated with, the 
production cross sections i s only one of the possibilities. Another method 
U to l*roduce . ^ t t o n c r o » .«<*« . I«. The pd-ortng X - 1 | 1. then 
added to the absorption term and eq. (2) is then 

-D* V2 t*(r) + (Sf + XS«) 9«{r) - Q*(f). (4) 

The poison cross section may either represent real homogeneously 
distributed poison, boron poison, or some sort of leakage, E* • D*« B , 

2 ^ 
where B is the buckling. 

It is also possible to associate the eigenvalue to the dimensions of the 
system and thereby find the critical dimensions of the system. 

As the found flux distribution is strongly dependent on the eigenvalue 
method used^t is of great importance in each case to use that eigenvalue 
method which best possible simulates the behaviour of the practical reactor 
operation* 

The diffusion equation (2) is a second-order differential equation, and 
by appropriate choice of boundary condition« the equations could be solved 
analytically in each homogeneous region. For practical reactor calculations 
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where the structure of the system is quite complex the analytical method is 
unprofitable and in many cases impossible, especially in three-dimensional 
calculations without separability between the three directions. Therefore 
numerical methods must be used for the general approach to the three-di
mensional flux distribution. 

2 . 1 , Difference Equation Technique 

The most straightforward numerical method is the difference equation 
method. In this method the reactor is divided into some subregions called 
mesh and the diffusion equation is integrated over the volume of each mesh: 

f -D g v2
 f6(p) dv+ f E | •*(?) dv = f Qg(r)-dv. (5) 

The leakage term is transformed into a surface integral 

•f -D g V2 •*<?) dv * [ _D*v>S(p)ds. 
v 's 

If we look at the simple case of one-dimension slab geometry and one 

energy group.eq. (S) will be: 

- | D ^L f(x) ds + J sf t • W dx * J Q(x) dx. (6) 

0 

* ! - ! 

A«: A* *i« 
• — . 

•i-1 
XL X. . X. . 
I Ml |«2 

Fig. 2.1.a. One-dimensional mesh division. 

,L One flux point i s chosen in each mesh. The two most widely used posi
tions for selection flux points are in the middle of the mesh and at the in-
t«rft«*s between the adjacentmesh. In. the following treatment t h s Q m 

pt^ i» ot^f^^t^ ad4dy» d ewh xa^h. Let us look at jnefh^oUrt i, 
.. WJ&? leakag* term in**. (9) Is treated in the following way: The con-
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tribution to the leakage term from the interlace at position x. is ; 

d . .,„, _ ^ f i " Vi 
Bx 

I *(x) = D • 
*i 

(A^+A^J/2 • 

As the diffusion coefficient D = 1/(32 ), where t^ is the transport 
cross section, the effective diffusion coefficient D between point i and 
i-1 could be calculated in this way, where S = (Ax. Z^ + A x. , I . )/2, 

^ ; Å x L _ 1 ) s , / ( 3 ^ ) - 2/(3(Ax. • X ^ + A V l • E ^ ) ) 

D - 2 1 1 P P i * ( o x ^ A x ^ , ) and A i ' U ^ - ax. and K. » Q. • Ax. . 

we get the following difference equation for the flux at point i: 

•DD.f^ - DDi+1 f i + 1 + ( V 0 0 ! * DD i+ l> ' V * l (7) 

In the general three-dimensional xyz geometry multi-group case the 
leakage contributions from aU six neighbouring mesh points a re taken into 
account, and the difference equation looks as follows: 

(i.LM) 
ij-1.h) 

CWJ.H) 

* J J M > 

A. 
Fig, It.b. 3D mesh point grid. 
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6 
D D X + < A £j .h + I DDS*f.ih-Kf,j.h-

n=l 
(«) 

where 

Au.h"*vAY4v"f 
and 

NG 

4,g.h= A v * y j - A v ( 1 <Ef**' + x *• ^g,> **') • « 
g'*1 

One such difference equation is necessary for each mesh point chosen. 
In order to solve the three-dimensional difference equation system (8), 

3) 
an iteration scheme of the following form could be used '. The iterations 
are separated into inner and outer iterations. In the outer iteration the 
Bource distribution is calculated in accordance with equation (9). In the 
inner iterations the flux distribution is found on the basis of the previously 
determined source distribution. The inner iterations could be repeated until 
a certain convergence of the flux distribution is established. 

If the flux distribution in the inner iteration is found line by line, for 
example in the x-<Rreett<mt the matrix equation to be solved for each line 
looks as follows: 

AAj - DD§ 

-DD| AAg - DD| 

-DDf AAf - DDf+, 

\ \ N 

-DDf, 

D DfdX 

X 

•T 
*f 

*f 

*SK 

X 

•f 
* ! 

*f 00) 

where the source terms on the right-hand side now include the "leakage in" 
from the adjacent mesh in fhe y- and z-directions. AAf represents absorption, 
up- and down-scattering from the group and leakage to all neighbouring mesh; 
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DDf represents the leakage between mesh (i, j , h) and (i-1, j , h). The total 
number of mesh points in the x-direction is MX. The matrix equation (10) 
is solved directly by use of a forward eliminating and backward substituting 
method as described in refs. 4 and 5. 

Bach outer iteration i s succeeded by an eigenvalue calculation which is 
set up by use of some sort of power method or a neutron balance equation 

To speed up the convergence of the iterations numerous different 
methods have been used: alternating direction iterations, coarse-mesh re
balancing, overrelaxation ', extrapolation '. Common to all these methods 
is that several iterations are necessary. The number of necessary itera
tions is naturally dependent on the problem, but 25 iterations are a low 
estimate. 

On a Burroughs B6700 computer each point iteration takes about 2 msec 
and for a 30 x 30 x 30 mesh problem two energy groups the computing time 
is at least 45 min. 

The accuracy of difference equation calculations is rather problematic. 
In one dimension and one energy group, simple Taylor expansions of the flux 
could be used to get an estimate of the error introduced by the discretisation. 
Such investigations show that a mesh size not much greater than the free 
mean path is necessary, i . e. for light water reactors 2-3 cm. However, 
in three-dimensional calculations where the space i s divided into a three-
dimensional grid also corner errors are introduced originating from the 
fact that only the six nearest neighbours are taken into account. Especially 
when small mesh sizes are used this could cause great errors. In the gen* 
eral case the problem is how great a mesh size it i s possible to use without 
introducing too great errors. Such answers only practical experiments 
can give. Several investigations seem to show that a mesh size of about 
2 - 4 cm in the reactor and 2 cm in the reflector only introduces an error 
in the flux distribution of a few per cent and in the eigenvalue of a few per-
wHl, for a typical light water reactor configuration when the mesh point i s 
chosen in the middle of the mesh. 

Another difficulty in the difference equation technique is where to select 
the flux points: in the middle of the mesh or at the interface between the ad
jacent mesh. These two different discretisation methods should naturally in 
the limit with very small mesh sizes converge against the same result. In 
practical muW-dlmensional calculations with finite mesh size these two 
methods give different results, at worst quite different results. Which of 
the methods gives the most accurate result depends on the nature of the 
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problem. The method with flux points at the interfaces gives the most ac
curate determination of the leakage terms whereas the absorption and 
source terms are worse determined and vice versa. 

Some practical experiments in this field have been performed by G. K. 
Kristiansen at the Reactor Physics Department at Risø . He has per
formed several two-dimensional xy geometry test calculations on a math
ematical example simulating a quarter of a reactor core, where two energy 

71 groups were used. Two difference equation codes were used, DC4 ' with 
the flux points chosen at the interfaces and TWQDIM ' with the flux points 
chosen in the middle of the mesh. 

On this mathematical example numerous calculations with these two 
codes have been accomplished with different mesh sizes. This was done to 
get an estimate of the discrepancy between discretisation methods used as 
a function of the mesh size. 

The essence of these investigations is that the eigenvalue is rather 
well determined even in coarse-mesh calculations for both these codes, 
whereas the flux distribution is very sensitive to the mesh size used. For 
a calculation with 30 x 30 mesh the deviation between the results of the two 
codes was as much ad 10 per cent for thermal flux in the middle of the 
reactor core. For the thermal ftux peak in the reflector the results were 
even worse. It was not possible to get the deviation between the two codes 
below about one per cent even for calculations with 100 x i Q0 mesh, i. e. 

4 10 mesh points in each energy group. 
As a two energy group calculation with 100 x 100 mesh takes about 1 i 

hours on the Burroughs B6700 computer at Risø it is clear that three-
dimensional calculations of so high an accuracy is impossible. 

To compare different calculation methods for three-dimensional over
all calculations on light water reactors, a three-dimensional mathematical 
Benchmark Problem was set up *. 

The intention with the Benchmark Problem was to set up a mathematical 
test example, which best possible simulates a quarter of a modern pressur
ised water reactor with varying enrichment zones and different insertion of 
the control rods. The reactor core was surrounded by a light water reflec
tor. 

The Benchmark Problem was calculated by several three-dimensional 
code* from all over the world, both with difference equation codes and with 
approximate codes as e.g. nodal codes and flux syntheses codes. In advance 
of felting up the Benchmark calculation it was our hope that the dispersion of 
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the results from the exact difference equation codes would be less than those 
of the approximate codes« and in this way enable us to find out what was the 
right answer to the problem. Unfortunately, this was not the case; the devi
ations between the exact codes appeared to be just as great as those of the 
approximate codes, in the worst case about 2 per cent at the eigenvalue and 
25 per cent at the thermal flux distribution inside the reactor core. 

The conclusion of all these considerations concerning three-dimensional 
difference equation technique is that this exact technique is prohibitive. Exact, 
taken in the sense that the result moves towards the correct diffusion theory 
result as the mesh size decreases. Especially for calculations of repetitive 
nature, as for example overall burn-up calculations or void iterations« the 
cost in computing time on nowadays computers i s enormous. 

From the previous considerations it is clear that some sort of approxi
mate method is necessary. By utilizing beforehand knowledge of the result 
of the problem in the form of experimental data, previous exact calculations 
on similar examples or two-dimensional calculations on the actual problem« 
it is possible to set up approximate calculation schemes which give better 
results than does a coarse-mesh difference equation calculation for the same 
consumption of computer time. 

The two most significant approaches to approximate overall diffusion 
theory methods i s the nodal method and the flux synthesis method. These 
two methods are discussed in the following sections of this report. 

2.2. Coarse-Mesh Methods 

As menL*oned in the previous section one of the methods for speeding up 
multi-dimensional diffusion theory calculations is to modify the difference 
equation scheme to allow greater mesh. This reformulation could be done 
rigorously without taking advantage of any beforehand knowledge of the sol
ution of the specific problem by using for example polynomial expansions in
side the mefrh. Another type of coarse-mesh methods takes advantage of all 
sorts of beforehand knowledge of the specific problem in the form of experi
mental data or results from previous exact calculations on similar problems. 
The latter type of coarse-mesh approximation theory is normally called no
dal theory. 

2.2,1. Nodal Theory 

In the nodal theory one takes advantage of the fact that in a great modern 
light water reactor the different regions are only weakly coupled. The re-



- 1 2 -

actor ia divided into a coarse grid of nodes, in the horizontal plane properly 
one node per fuel box; further the calculations are facilitated by iterating 
on the source distribution instead of Hie multi-group flux distribution. The 
source terms in the nodes are linked together by some coupling coefficients. 
These coupling coefficients could be calculated more or less sopMsticatedly 
by use of one-group date or multi-group data. The neutron transport be
tween the nodes is then represented by the coupling coefficients. Common 
to the different methods for calculation of the coupling coefficients is the 
fact that the coupling coefficients are not universal, but require some 
problem-depending fitting parameters, g-factors, determined outside the 
nodal program. 

2 .2 .1 .1 . The Flare Model One of the first and best documented nodal 
programs is the American program Flare . A brief survey of the methods 
used in this program is given here to illustrate the principles of the nodal 
model. 

The Flare program is based on a one-energy group model. The basis of 

this model is a transport kernel which looks as follows: 

1111 2. r. rr * r l m ^ m 

W, represents the probability that a neutron born at node 1 is absorbed 
at node m, AT is the migration area, 1*^ the distance between the centre of 
nodel and m, and g is a g-factor or adjustment parameter to be determined 
outside the program. 

The non-leakage probability from node 1 becomes 

W u - 1 - ( « - « ! > ' W j ^ . (12) 

where «u i s the albedo. 
The reflector is treated by an albedo concept and the albedo values must 

be determined outside the program, a. ia the non-leakage probability term 
is zero if none of the adjacent nodes is replaced by reflector. 

Tte fission source term Sj and the absorption A are linked together by 
the Infinite multiplication factor km : 
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On the other hand, the absorption rate at node 1 can be written as: 

6 

V ISmWml+ hWW <"> 
m 

where 6 indicates summation over the six nearest neighbours. Combining 
eqs. (14) and (13) one obtains: 

6 

^ I S m W m l 
V i-k^w-n <,5) 

This is the basic equation linking the source term in a node together 
with the sources in the six adjacent nodes. The equation system is solved 
in a way similar to the difference equation scheme, by introduction of an 
eigenvalue. 

In tins nodal model only two fitting parameters are introduced, the g-
factor in the coupling coefficients and the albedoes. 

2 .2 .1 .2 . The Trilnx Model A more sophisticated nodal model is used 
in the Trilmc nodal program10), which i s also the basis of the Swedish 
POLCA program. The Trilnx program i s based on a two energy group model. 
The fate of the neutrons i s described in a much more nuanced way by the in
troduction of several coupling coefficients for reflection, absorption in near
est neighbours and transmission to more distant nodes. 

The following assembly of coupling coefficients i s used in the Trilux 

P x j • the fraction of neutrons leaving node i and entering node j 

• 4 * the probablUly that a neutron born in node i is absorbed in 
node i 

P j x • the probability that node j directly reflects a neutron enter
ing from node 1 

0£ * * the probability that node j absorbs a neutron entering from 
node i 

* i i " ' • ' r j ' P i j " the prcbaWUty that a neutron entering node j 
from node 1 behaves like neutrons born in node j 

(by this term transmission of neutrons from node i to a distant node Is 
possible). 
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Ih accordance with this set of coupling coefficients a source iteration 
scheme in principle similar to that of Flare, but more complicated, i s used, 

As all these different coupling coefficients could only be calculated 
approximately the need of g-factors is greater than in Flare, perhaps three 
or four are necessary. 

2.2.1.3. Determination of the g-Factors, Correlations Nodal codes 
would give correct answers to a given problem if sufficient g-factors are 
used and if proper values of these are selected. However, in realistic nodal 
codes as Flare and Trilux only a few g-factors are available and the question 
is whether a set of g-factors is able to cover a range of similar problems or 
only the specific problem. Troubles in this field have been reported ' ', 
nevertheless nodal codes are widely used especially for boiling water reac
tor calculations. But this i s only adequate by careful use of test calculations 
with exact three-dimensional methods and feedback from experiments, 
and only for a narrow range of calculations at the same reactor type. If such 
feedback i s available, nodal theory seems to be profitable. To overcome 
these difficulties it seems to be possible to construct some sort of correla
tions for the g-factors on the basis of the macroscopic cross sections and 
the geometric configurations. When the empirical selection of g-factors is 
replaced by more systematic methods it i s easier to select proper g-factors 
for a specific problem. 

2.2.2. Other Coarse-Mesh Methods 

A rather new and promising method, but not yet widely used, i s the so-
called finite element method1 '*12*. In the finite element method the detailed 
flux inside each mesh is approximated by polynomial expansions, for ex
ample Hermite polynomials. This is done to minimize the number of necess
ary mesh points. Application of polynomial representation inside each mesh 
i s simple for one-dimensional problems, but complicated for multi-dimen
sional problems. This Is discussed in detail in ref. 12. 

Another coarse mesh scheme was suggested i y Berresen ', and 
used in the Norwegian PRESTO code. This method is a modified two-group 
difference equation scheme. Only the fast flux i s found iterettVely utilizing 
the fact that the fast flux i s mere smooth and then easier to find than the 
thermal flux. The thermal flux i s found by the asymptotic expiessluu 
* n " S B S £ S lb* "f * ** DOqnd*py conditions an albedo concept i s used. 
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2.3. Flux Synthesis Methods 

Another approach to approximative three-dimensional flux distribution 
calculations is the flux synthesis method. In the flux synthesis method the 
number of flux points i s not minimized, but the fact that in many practical 
reactor calculations a certain separability between the vertical and the 
horizontal fluxes exists is utilized. 

The three-dimensional flux distribution is approximated by a product 
of a radial solution and an axial solution: 

•gC*.y»*) » fgC*.y)• • e(»). (is) 

where (x, y) represents the radial direction and (z) the axial direction. 

2 .3 .1 . Ordinary Flax Synthesis 

hi simple cases, for example a homogeneous cube, full separability 
exists between the radial and axial solutions. Numerous mathematical 
examples with the same properties could be constructed. But also in many 
realistic reactor calculations the assumption of separability between the 
vertical and the horizontal solutions is a good approximation. In pressurized 
water reactors with the control rods either fully inserted or fully withdrawn 
the flux distribution in the axial direction is well approximated by a sin(z). 
In such cases the overall calculations could be performed in only two di
mensions. In the general case, without full separability between the flux 
solutions in the vertical and the horizontal directions, it is often possible 
to divide the reactor into some axial zones with no material variations in 
the axial direction in each zone. In fig. 2.3.1.a. a reactor configuration 
with some partially inserted control rods is shown. If the unrodded fuel 
zone is treated as a homogeneous medium, this reactor could be divided 
into three axial sones on the basis of the control rod positions. In each of these 
axial zones a two-dimensional difference equation calculation could be per
formed. By use of these radial flux soluttcae fhzz'Weigh^ed cross sections 
and radial leakage terms are calculated in each axial zone. On the basis of 
these effective cross sections a one-dimensional vertical calculation is per
formed. The three-dimensional flux distribution i s then simply predicted in 
the following way; 

•*(*.*,*) • •*(*>• ?fC*,y). (17) 
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Vertical section Axial zone no. 

Horizontal section 

r Control rod 

Fuel region 

Fig. 2.3.1. a. Axial zone division of a reactor 
for flux synthesis treatment. 
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where t f (x,y) ie the radial flux solution belonging to the different axial 
zones, and v*(z) is the one-dimensional vertical solution. 

The radial flux distributions used are normally called trial functions. 
On the basis of the one-dimensional flux solutions axial leakage terms could 
be calculated for each axial zone to give suitable axial buddings for the 
trial function calculations. Iterations between the axial and the radial cal
culations could be established. This "stack" synthesis method described 
here is the classical single channel flux synthesis method, compare ref. 14. 
Synthesis programs based on this method have been used widely by, for 
example. General Electrics. 

An extension of this method is the multi-channel flux synthesis meth -
od '. In this method the reactor is divided into some vertical channels 
besides the axial zones. A one-dimensional flux calculation is performed 
in each channel. A rather complicated scheme for the leakage coupling be
tween the different channels and the different trial function calculations is 
used. 

2. 3.2. Variational Flux Synthesis 

In the variational flux synthesis the radial flux distribution at each 
vertical point is found by combining some precalculated trial functions to 
give the actual flux shape. The foundation of this method is described in 
ref. 16. The three-dimensional flux distribution is given by the following 
expansion: 

?g(x.y,z) = Y 2£(z).HJ[<x,v) . (18) 
k^l 

where 

K • number of trial functions in group g 

H*(x,y) • trial function number k in group g 

z][ (z) • mixing function number k in group g. 

The trial functions are radial flux distributions representative of the 
radial flux distribution throughout the reactor. The trial functions are as
sumed to be precalculated In advance of the synthesis calculation. At each 
z-pobrt the mixing functions represent the blending coefficients of the trial 
functions. 
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We have the diffusion equation: 

NG 
. - D * * 2 t * + L f t g = £ S * < * ' . v « \ 09) 

g-1 

where S^*"g is the scattering and fission contribution to group g from 
group g'. 

In order to find the mixing functions the flux expansion eq. (18) is 
substituted into the diffusion equation: 

*g NG Kjf 
Y (-Dgv2+l|).z|(z)-H«(x,y)» V 2 SÉ^zfw.-lffe.y) 

(20) 

A set of weighting functions, W?(x,y), is used to solve eq. (20). As 
weighting functions the trial functions themselves or the adjoint trial func. 
tions are normally used. If eq. (20) is multiplied by the weighting function 
and ah integration over the radial direction is performed we get the follow
ing equation: 

j j (-D*v2 + S f ) . ( £ Z«(z) -Hj[{*,y) * W« (x,y))dy dx = 
x y k*1 

(21) 
NG ^g« 

/ / 1 L s8^g'zf«2)^'^y)'W8(x,y)dydx . 
x y g'*1 i«1 

When these integrations have been accomplished the one-dimensional mix-
ing function equation is found; 

I 
k-l 

i*<-<I^>«^+<I!(>kj'
zfw-

s«1 
(22) 

2 Y <««^g,>ir2f,(z) 
gi«l i«i 

J " l . . . Kg , 
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where { D* >.. is the diffusion constant radially integrated by trial function 
number k and weighting function number j in group g. The integrated term, 
(E*») , is now inclusive of the radial leakage term D* v . The source 

term is integrated by trial function number i in group g1 and 
weighting function number j in group g. 

Eq. (22) i s the basic equation to be solved in order to find the mixing 
functions Z?(z). The equation system is in principle one-dimensional, but 
it is more complicated than the one-dimensional difference equation; approx
imately K x K terms are to be handled for each space point. Moreover 
the trial and weighting fraction integration is rather complicated and time 
consuming, especially the computation of the radial leakage terms. The flux 
synthesis method described above is normally called variational single 
channel flux synthesis with continuous trial functions, i. e. the same set of 

trial functions are used throughout the whole reactor. Several computer pro-
5 17 181 grams have been constructed on the basis of this method ' * '. 

An obvious extension of the method is to allow different sets of trial 
functions to be used in the different axial zones. This method is called vari-

19 201 ational flux synthesis with discontinuous trial functions * '. The mixing 
function equation is further complicated by the discontinuities and discus
sions are still going on about the coupling between the different axial zones. 
Another extension of the variational synthesis method is to use it for multi
channel flux synthesis, but this method is so complicated that the straight
forward ordinary three-dimensional difference equation technique is more 
advantageous. 

2.4. Discussion of the Different Approximative Methods 

In order to choose the approximative method which best fulfils the re
quirement for three-dimensional overall calculations at Risø the following 
arguments must be taken into account. For calculations on a selected re
actor for which lots of measurements are available the nodal method and 
the other coarse mesh methods may give good results. However, for cal
culations on different reactor types with only few measurements available 
this method seems less attractive. The variational flux synthesis method 
Is a more straightforward extension of the two-dimensional difference 
equation method, but naturally it is a drag that there is no possibility for 
taking advantage of available measurements. The method with discontinuous 
trial functions i s mathematically complicated and time consuming and it is 
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difficult to predict which trial functions ought to be used, and where. For 
these reasons the variational single channel flux synthesis method was 
chosen as the method which best fits the type of calculations normally per
formed at Risø. 
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3. THE THREE-DIMENSIONAL FLUX SYNTHESIS PROGRAM SYNTRON 

As mentioned in the previous chapter, the variational single-channel 
flux synthesis method has been selected as the approximative method best 
suited for the type of calculations usually performed at Risø. Based on 
this method a computer program called SYNTRON has been constructed. 
Originally the program was written for the IBM 7094 computer at NEUCC, 
compare ref. 5. Later the program has been converted for the Burroughs 
B67O0 computer at Rise. In addition the program has been extended by dif
ferent criticality search options. In this chapter a survey of the main fea
tures of the program is given. 

3.1. The Principles for the Construction and the Solution of the Flux 
Synthesis Equation 

The flux synthesis program SYNTRON is described in detail in ref. 5. 
Here only a survey of the main principles for the construction and the sol
ution of the flux synthesis equation is given. A flux synthesis calculation 
could be divided into three main parts: the generation of a suitable set of 
trial functions; the construction of radially-integrated cross sections and 
leakage terms and thereby the construction of the matrix elements for the 
synthesis equation; and last the solution of the synthesis equation to give 
the mixing functions and the eigenvalue. 

The trial functions and the weighting functions are calculated by use of 
ordinary difference equation technique. The Onx point is chosen in the middle 
of the mesh. The routine used for the calculaticn of these functions is de
scribed later in this report. 

In section 2.3.2, equation (22Vthe mixing function equation,, i s shown. 
The coefficients in this equation consist of radially integrated cross sections 
and leakage terms. The cross sections are just integrated weighted by the 
trial and weighting functions. As an example the absorption cross section 
integration looks as follows 

AkVz)* / /ES-Hk^'y>-wf^y>dxdy • <23) 

y * 

The index (z) Indicates that the integration ought to be performed at 
each axial flux point. In principle the integration of the diffusion coefficients 
and of the scattering cross sections i s performed in the same fashion. 
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The calculation of the radial leakage term, called DBZf(z), is more 
complicated as the ^ operator is involved. The leakage term is calcu
lated by the following expression: 

DBZ*.(z)= J J DS.W«(x iy).V^ y l^{x,y)dxdy . (24) 

y x 

It ought to be mentioned that the coefficient ( £ * ) M i s inclusive of the 

radial leakage term. i . e. defined as; 

<£f>k j
 = A | j + D B Z ? i • <25> 

How these integrations a re carried out in practice is described in ref. 5 
One thing which can diminish the number of necessary integrations is the fac 
that only one set of integrations t s necessary for each axial sone. For the 
configuration shown in fig. 2 .3 .1 , a, for example, only three sets oi inte
grations are necessary even if perhaps 50 mesh points are used in the axial 
direction. 

When the radial integrations are performed and thereby the Coefficients 
for the mixing function equation are found the problem is how to solve tids 
equation. The equation is in principle one-dimensionalj however, it is 
more complicated than the one-dimensional difference equation. Approxi
mately K x K points, where K is the number of trial functions in group 
g, are to be handled for each mesh point in the axial direction. The methods 
used for the solution of the mixing function equation in the SYNTRON prog
ram are described in ref. 5. Here only the structure of the matrix equation 
is discussed. 

As described in ref. 5, equation (22) i s z-integrated to transform the 
equation into a difference equation system: 

-BM ? (Z-1)-"Z*(S-1) + 3A"'(S)-<Z*(B) - DM*(s)-'Z*(*M) - Qg(z) , 

(26) 

where 

DMg(z-1) « a square matrix of the degree K x K representing 

the leakage between mesh point z and %-\ and vice 

versa 
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AA^(s) = a square matrix of the degree K * K representing 
the total absorption in mesh number % inclusive of 
radial and axial leakage out from the mesh 

Q*<z) = a vector of the degree K representing the source 
terms at mesh number s 

*Z *(z) * a vector of the degree K representing the values of 
the different mixing functions at mesh number z 

As an illustration the full matrix equation to be solved i s shown in 
fig. 3. l .a for an example with three trial functions in each group. The 
group index is omitted as the structure i s the same in all groups. The num
ber of mesh points in the z-direction i s N. The square matrix is similar to 
that of one-dimensional difference equation technique, only the elements in 
the matrix equation are now submatrices. If the eigenvalue i s associated to 
the source terms, the left-hand side square matrix i s unchanged during the 
iterations. For that reason It iB possible to invert the diagonal submstrices 
once« before the iterations are started. The solntion method used, of. ref. 5, 
i s very fast compared to the cross section integration and the calculation of 
the trial functions. By s se ot this iteration scheme the different energy 
groups are linked together through the source terms. In order to solve the 
equation system it i s necessary to introduce an eigenvalue, for example the 
effective multiplication factor k ^ . The eigenvalue is calculated by an over
all neutron balance equation. 

3,2. The Eigenvalue, Different CrittcaHty Options 

Different criticaUty options are implemented in the SYNTBON program. 
An eigenvalue X could be associated to the production cross section » £_ 
In this way the system is held critical artificially and the effective multipli
cation factor kg« i s found as l/X. lforeover,it i s possible to associate an 
eigenvalue X to a macroscopic poison cross section t and in this way find 
the critical poison distribution in the reactor core. These two methods are 
standard methods well suited for both flux synthesis and difference equation 
technique. 

The special flux synthesis treatment is utilized for the calculation of 
the critical dimensions in the axial direction. The method for direct iter
ation on the dimensions i s described in ref. 21. Two dimension control 
search option« are implemented; one for iteration on the dimensions and 
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one for internal boundary displacement with fixed outer dimensions (control 
rod movement). For these dimension search jnethods an eigenvalue is as 
sociated to the length of the selected axial zones. With a fixed set of trial 
functions no repetition of the cross section integrations are necessary during 
the iterations; only a f w repetitions of the solution of the mixing function 
equation are necessary. However, as this solution routine is very fast the 
extra cost in computation time is modest. 

3.3. The Selection of the Trial Functions 

One of the main problems in the flux synthesis is how to select the 
trial functions. No definite answer can be given to this problem. The 
SYNTRON program is not bound to use any fixed strategy for the generation 
of a proper set of trial functions. However, in most cases the trial func
tions are generated in the following way: characteristic axial zones are 
selected and two-dimensional difference equation calculations are performed 
on each of these zones. If the structure of the reactor configuration is com
plex it may be difficult to select such characteristic axial zones. It is neces
sary to restrict the number of trial functions as the flux synthesis method i s 
only favourable in comparison with tbe ordinary three-dimensional difference 
equation technique if only a few trial functions are used in each energy group 
(less than about 6). One thing which can diminish the number of trial function 
calculations - for calculations of a repetition nature - i s that the same set 
of trial functions may be used for several synthesis calculations. 

In the SYNTRON program it is possible to use two different sets of 
weighting functions: the trial functions themselves or the adjoint trial func
tions. Normally the trial functions themselves are used,a£. the extra accuracy 
gained by using the adjoint functions is modest in comparison with the corn-
outer time used for the calculation of the adjoint functions. 

One thing which ought to be mentioned is that the set of trial functions 
used must be linearly independent. If this is not the case, the matrix equation 
will be singular. In the SYNTRON program it is left to the user of the prog
ram to construct a linearly independent set of trial functions. 

S. 4. The Calculation of the Trial Functions 

As previously mentioned the SYNTRON program is self-supplying with 
trial functions. In the program a two-dimensional difference equation routine 
is Included. The difference equation routine is to a certain degree analogous 
to the TWODIM program described in ref. 3. The flux point is chosen in the 
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middle of the mesh. The line-difference technique i s used. However, the 
difference equation routine in SYNTRON i s restricted to xy geometry as 
this is the only geometry of interest tor the synthesis calculations. To 
speed up the convergence of the iterations an extrapolation technique simi
lar to that of TWODM i s used. Furthermore,a simple line-overrelaxation 
technique is implemented. The boundary conditions may either be represented 
as extrapolation lywgfl« or gamma-matrices. The routine calculates auto
matically the adjoint trial functions if the method of adjoint weighting func
tions is chosen. Two criticality methods are implemented: k— and crit
ical poison distribution. The trial function calculation starts with a guessed 
flux distribution or with the previous trial function calculated on the same 
configuration if the trial function calculations are repeated. The calculated 
trial functions are stored on a disk file to be used in later synthesis calcu
lations. 

3.5. Static Test Calculations 

Several test calculations have been performed with the SYWTRON prog
ram to check the code and to estimate the error introduced by the synthesis 
approximation. Such calculations have been performed in two as well as 
three diinensions. 

In ref. 5 a three-dimensional two-group test example is reported cal
culated both by SYWTRON and by the three-dimensional difference equation 
code wnirlaway \ WMrlaway takes the flux point at the interface between 
the mesh. The number of mesh points used was only 15 x 15 x 15, The size 
of the problem was determined by the capacity of Whirlaway on the IBM 7094 
computer at NEtJCC. However, since the geometry of the test problem was 
rather simple the agreement between the results appeared satisfactory. 

Some two-dimensional test calculations are presented in ref. 21. A 
comparison was made between two-dimensional SYWTRON synthesis calculation 
and SYNTRON difference equation calculations. Mb discretisation errors were 
involved in this comparison tm the discretisation method used was the same 
in both calculations; moreover, fine-mesh calculations were possible. Both 
k̂ jy search calculations and control search (internal boundary displacement) 
calculations were performed. In both cases an acceptable agreement between 
the results was observed. 

In the thrne-dimensional international Benchmark Problem ' a comparison 
was made between several three-dimensional codes from all over the world. 
The Benchmark Problem simulates a quarter of a light water reactor with 
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varying enrichment sones and different insertion of the control rods. Al
though the dispersion in the results obtained by the different codes was 
great, the agreement between the SYNTRON results and the results ob
tained by the three-dimensional difference equation codes using the same 
discretisation method was excellent. The conclusion may be that the syn
thesis error, for this special case, is less than the discretisation error. 

In appendix A to this report a test example is shown calculated both by 
the difference equation code DC4 ' and by SYNTRON. However, from these 
calculations it is impossible to get an acceptable estimate of the synthesis 
error as different discretisation methods are used in the two codes. 

The conclusions drawn from these investigations may be that it is 
difficult to get an acceptable estimate of the synthesis error as exact three-
dimensional fine-mesh dUference equation calculations are very expensive 
and in fact almost impossible on most computers. Comparisons between 
measurements and synthesis calculations could neither give a definite esti
mate of the synthesis error, as the errors from the cross sections and the 
box calculations are involved. However, naturally it is encouraging that 
the effective multiplication factors calculated by SYNTRON for the differ
ent start-up situations of the DRESDEN 1 reactor ' do agree quite satis
factorily with the measured ones. 

The conclusions drawn concerning the applicability of the flux synthesis 
method are that for a wide range of reactor calculations the errors intro
duced by the flux synthesis approximation are less than the errors intro
duced by using coarse-mesh difference equation calculations consuming the 
same amount of computer time. For all the test calculations discussed 
above the SYNTRON calculations were about 10 times faster than the equiv
alent difference equation calculations. Naturally the synthesis method ought 
not to be used unrestrainedly as a bad set of trial functions introduces fur
ther errors. For very complicated configurations the difference equation 
technique ought to be used. 
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4. THE SYNTRON/VOID BURN-UP PROGRAM 

m order to perform three-dimensional overall burn-up calculations the 
flux synthesis program SYNTRON has been extended to include the following 
facilities: cross section interpolation in a precalculated cross section 
library, burn-up treatment, and xenon transient treatment. Moreover, to 
be used for bailing water reactor calculations, routines for the calculation 
of the void and temperature distributions are implemented. In the following 
sections a brief description of the methods used in the different routines is 
given. 

4.1. Cross Section Interpolation 

For static SYNTRON calculations all regions are supplied with either 
macroscopic cross sections or boundary conditions. However, in the burn-
up version of the program the burnable regions are supplied with macrosco
pic cross sections generated inside the program on the basis of an inter
polation in a cross section library constructed outside the program. The 
program is able to handle a cross section library tabulated as a function of 
a maximum of three parameters. Different libraries are allowed for the dif
ferent regions. The tabulation parameters may for example be? power 
density, burn-up and void fraction; or average void fraction during the 
burn-up« burn-up and actual void fraction. The actual cross sections for 
the different regions are simply determined by a linear interpolation In the 
cross section library. The cross section library is supposed to contain box 
average homogenized macroscopic cross sections calculated on the basis 
of detailed box calculations for example by use of the box program CDB '. 
In ref. 23 an example of. the construction of such a cross section library 
is shown. Different libraries may be used for different types <d fuel boxes, 
for example boxes with different enrichment or boxes with and without con
trol rod inserted. The cross section treatment described here is similar 
to that of the DBU program K 

4.2. The Burn-up Treatment 

For the burn-up treatment the reactor is divided into a number of 
burn-up regions. Each of the burn-up regions is- supplied with a set of 
interpolated macroscopic cross sections. On the basis of a detailed flux 
synthesis calculation, the energy released per fission and the total ther
mal power of the reactor, the average power density in the different burn-up 
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regions are calculated. The burn-up in the different regions is simply 
calculated on the basis of the following quantities: the average power den
sity, the uranium density and the tim« step length. When the power density 
is found the neutron flux is normalized for the use in the xenon calculations. 
In the coupled system the power density distribution is used as a basis for 
the void and temperature calculations. Moreover the power and burn-up 
distributions may be used for the determination of the cross sections for 
the next time step. 

4.3. The Xenon Treatment 

For boiling-water reactor calculations the following three cross sec
tion interpolation parameters are used ': average void fraction during 
the burn-up. burn-up and actual void fraction. The box calculations per
formed for the generation of the burn-up tables are carried out with a fixed 
power level and therebya fixed equilibrium xenon contents. However, the 
power level in the specific burn-up region in the three-dimensional calcu
lation may be different from the reference power level of the box calcula
tion. For that reason the xenon contribution included in the interpolated 
cross sections may be wrong. This lack is accounted for in the SYNTRON/ 
VOID program by an equilibrium xenon correction term ': 

ASa = *a,Xe * fnXe, eq actual " "Xe, eq ref> ' ( 2 7 ) 

where AE is a macroscopic absorption cross section added to the inter-
polated cross section; • „ . is the microscopic Xe absorption cross sec-
Uon; i u . is the xenon concentration calculated on the basis of the 

reference power used for the box calculations; n„ actual l s t h e c o r r e c * 
actual equilibrium xenon concentration. The group index has been omitted. 

This xenon treatment is used because it is desirable to include the 
majority of the xenon contents in the box calculations for the proper deter
mination of the flux spectrum In the box. 

Besides the xenon equilibrium treatment, the program contains a 
routine for non-equilibrium xenon treatment K This routine could be 
used for investigations of xenon-induced spatial power oscillations. 

4.4, The Void and Temperature Calculations 

In order to perform boiling water reactor calculations, routines for 
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2 
the determination of the void and temperature distributions are implemented 
The void-temperature problem is treated as a multi-channel problem. The 
reactor is divided into a series of parallel channels, in the limit each fuel 
box is handled as a separate channel, butt usually more fuel boxes are com
bined and treated as one void channel. On the basis of the calculated power 
distribution and the hydraulic data of the core, the void routine calculates 
the axial void distribution in each channel and the temperature routine the 
axial temperature distribution, i. e. the moderator temperature, the cladding 
temperature and the fuel temperature distributions. In the present version 
of the routines the outer loop is neglected, i. e. the behaviour of the outer 
loop is determined by the inlet subcooling and the inlet total coolant flow. 
By use of such detailed void and temperature calculations the average void 
fraction and the average fuel temperature in each burn-up region are de
termined. 

4.5. The Doppler Effect 

The temperature varying most drastically throughout the reactor core 
is the fuel temperature. As mentioned in section 4 .3 . , the box calculations 
for the generation of the cross section library are performed at a fixed 
power level, and the 10-group cross sections for the pin-cells are calcu
lated at a fixed fuel temperature. To account for the local fuel temperature 
variations a Doppler correction treatment is implemented. The Doppler cor
rection treatment is only implemented for two-group calculations. The fast 
absorption cross sections and the removal cross sections taken from the 

23) cross section library are adjusted by some polynomial expressions . The 
polynomial coefficients must be determined outside the program. The poly
nomials used are of the first degree for the burn-up and of the second de
gree for the void fraction. For the temperature dependence the standard 
square root term is used* 

4.6. The Control Hod Treatment 

No special control rod treatment is implemented in the SYNTRON pro
gram. As mentioned In section 4.1. different cross section libraries are al
lowed for the different burn-up regions, i. e. for example for fuel boxes 
with and without control rod inserted. For the generation of the cross sec-

j p h libraries box calculations are performed Willi and without control rod 
Inserted during the whole burn-up^ Thi« control rod representation is quite 
satisfactory for fuel boxes with the control rod in the same position during 
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the whole three-dimensional burn-up calculation, For boxes with the con
trol rod alternatively inserted and withdrawn the representation is insuf
ficient as the influence of the varying flux spectrum in the fuel box on the 
isotope build-up i s neglected. 

An alternative method for the representation of the control rods is 
simply to represent the control rods by an extra absorption cross section 
added to the cross sections calculated on the basis of the unrodded fuel 
box. However, by use of this method the spectrum effect on the box level 
of the control rods i s completely missed. 

4. 7. The Time Step 

Before each time step it i s possible in the SYNTRON program to change 
the composition of different regions, i . e. to change the cross section repre
sentation. In the SYNTRON program each region is supplied with a com
position number. A composition number represents a set of cross sections, 
and thereby different regions may be represented by the same set of cross 
sections. The first possible change is to supply some of the composition 
numbers with new cross sections, which simulates the loading of new ma
terials in the regions in question. Another possibility is to interchange two 
composition numbers, which simulates a shuffling. The last possibility is 
to change the cross section library used for some of the burnable regions; 
this procedure simulates for example the insertion or the withdrawal of a 
control rod in the regions in question. 

4.8. The Coupled Program 

The routine*« described in the previous sections are coupled with the 
synthesis routines to form the SYNTRON/VOID program. The coupled pro
gram is schematically shown in fig. 4. 8, a. For boiling water reactor 
burn-up calculations the whole program i s Involved, For simpler calcula
tions parts of the program may be by-passed, for example for static cal
culations the synthesis routines may be used separately. 

For boiling-water reactor calculations Iterations between power, void 
and temperature are necessary as these quantities are closely coupled. 
Normally the calculation starts with a guessed power distribution or with 
the power distribution from the previous burn-up step. On the basis of this 
power distribution the void and temperature distributions are calculated. 
Then a set of cross sections for each composition number is generated. 
By use of these cross sections A flux synthesis calculation is performed to 
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get a new flux and power distribution. This scheme is repeated until the 
system is converged. Convergence criteria are put on the power distri
bution, the void distribution and the k „. When the system is converged 
changes in the cross section representation of different regions may be 
performed and a new burn-up step may be taken; if this is the case the 
burn-up distribution and the average void fraction during the burn-up for 
the different regions are calculated. Then again iterations between void, 
power and temperature are performed and so on. 

A strategy for the calculations of trial functions must be decided. The 
necessary number of trial functions may be calculated once at the begin
ning of the burn-up calculation, or a new set of trial functions may be cal
culated at the beginning of each burn-up step. Finally the trial functions 
may be recalculated for each flux synthesis calculation during the void-
power iterations. Naturally the previous trial functions are used as start 
guess for the recalculations. 

For the DRESDEN 1 calculations ' the strategy of calculation of a 
new set of trial functions at the beginning of each burn-up step was used. 
However, in the succeeding chapter it is demonstrated that it seems to be 
more favourable to recalculate the trial functions continuously. 

Experience has shown that it is of great importance for the convergence 
rate of the void-power iterations that some sort of underrelaxation is used 
in the coupling of void and power. In the following section of this report this 
is demonstrated by an example. 

4.9. Optimal Calculation Strategy 

In order to illustrate the behaviour of the void-power iterations in 
boiling-water reactor calculations a series of test calculations has been 
performed on a simple geometry. The geometry of the test example is 
shown in fig. 4.9. a. The example is a two-dimensional xz geometry ex
ample. The reactor is divided into four parallel hydraulic channels plus 
one extra moderator channel. Ten void points are chosen throughout each 
channel. No control rods are inserted. A two energy group treatment is 
used for the flux solution. Only two trial functions are used in each energy 
group for the flux synthesis calculations. The trial functions are found by 
one-dimensional difference equation calculations; one calculated at the top 
and one at the bottom of the reactor. The cross sections used are DRES
DEN 1 Initial cross sections \ and also the Doppler parameters and the 
hydraulic data are taken from the DRESDEN 1 calculations. For these cal-
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culations the power density and the total mass flow are adjusted to give a 
reasonable outlet void fraction. For the flux solution 55 mesh points are 
used in the x-direction and 36 mesh points in the z-direction, the synthesis 
direction. 

2(cm) J°P r»ftector (~ 50»/. void) 

295 
285 

Symmetry plane—»• 

Reactor core 
divided into 
4 parallel channels 

K> 

Reflector (0*/. void) 

•-x(cm) 

Reflector (0*/. void) 

Fig. A.9. a. Test reactor, description. 

In fig. 4. 9, b. the calculated axial power, void and fuel temperature 
distributions in the four channels are shown. The total form factor was 
found to be 2. 01. The power, void and fuel temperature are highest in 
channel no. 1 and lowest in channel no. 4, as expected. 

Several calculations on the example have been performed in order to 
find the optimal calculation strategy. The method of continuous recalcula
tion of the trial functions was used, i. e. new trial functions were calculated 
for each void-power iteration. The influence on the computation time neces
sary for the whole calculation of the following two quantities was investi
gated: the value of the power underrelaxation factor REL; the degree of 
convergence of the trial function calculations and the flux synthesis calcu
lation at each void-power iteration, i. e. the maximum number of iterations, 
MAXI, allowed for each flux solution. In fig. 4.9. c.the total computation 
time for the problem versus the value of the relaxation factor for different 
degrees of convergence of the flux solutions i s shown. It is seen that for 
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Fig.4.9b. Axial power, void and fuel temperature distributions 
in the four channels of the test reactor. 
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Fig.4.9.d. Optimal rekixation factor versus the degree 
of convergence of each iteration. 
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each value of MAXI an optimal underrelaxation factor is found. Calcula
tions with MAXI = 2 were also performed, but these calculations were very 
slow as lots of void-power iterations were necessary; a relaxation factor 
greater than one seems to be favourable. The power convergence criterion 

-3 in all these calculations was 10 . 

The calculation with MAXI equal to 50 represents nearly full convergence 
of the flux calculations at all void-power iterations. These investigations 
show that full convergence of all flux solutions demand a low underrelaxa
tion factor, whereas a loose convergence of the flux solutions only demand 
a weak underrelaxation. In fig. 4. 9. d. the optimal relaxation factor versus 
the degree of convergence of the flux solutions i s shown. The convergence 
of the power distribution represented by the form factor during the void-
power iterations i s shown in fig. 4. 9. e. For the high relaxation factor 
damped oscillations are observed. 

The most favourable calculation strategy seems to be to use a loose 
convergence criterion for the flux solution, MAXI about 5, and a slight 
underrelaxation on the power. Full convergence of all flux solutions i s 
less attractive as this method is slower and very sensitive to the relaxation 
factor used. 

Calculations with a fixed set of trial functions for all void-power iter
ations were likewise carried out. However, this method is more sensitive 
to the selection of the trial functions and not much faster than the method 
of loose convergence of the flux solution. 

4.10. Calculations Performed with the SYMTRON/VOIP Program 

A two-dimensional burn-up calculation without void has been performed 
211 

in order to check the accuracy of the flux synthesis method ' . T h e test ex
ample was calculated both by SYNTRON and the difference equation burn-up 
program DBU \ which has a burn-up treatment equivalent to that of SYN
TRON. The problem was calculated by use of different numbers of recalcu
lations of the trial functions during the burn-up, and both with and without 
adjoint trial functions. Only k . , versus the average burn-up was calcu
lated. The accuracy of the synthesis calculations was found to be satisfactory 
if the trial functions were recalculated once during the burn-up. 

The SYNTRON/VOID program has been used for calculations on the 
DRESDEN 1 reactor '. No estimate of the synthesis error was possible 
as no accurate three-dimensional program was available. However, the 
calculated effective multiplication factors for different configurations of the 
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cycle 1 of the reactor do agree satisfactorily with the measurements. The 
errors observed in the calculated power distribution and the exposure 
distribution at the end of cycle 1 originate from both the synthesis error, 
the limited number of hydraulic channels used and the fact that only quarter 
core calculations were performed. 
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5. SUMMARY 

The conclusions of these investigations regarding the approximative 
solution of the three-dimensional diffusion equation are: for a wide range 
of reactor calculations the variational flux synthesis method is favourable. 
The errors introduced by the flux synthesis approximation are typically 
less than the errors introduced by similar coarse-mesh difference equation 
calculations consuming the same amount of computation time. Naturally it 
is a drag for the synthesis method that there are no possibilities for taking 
advantage of available measurements. For calculations on one selected re
actor for which lots of measurements are available the nodal method may 
give better results. However, for calculations on different reactor types 
with only few measurements available this method seems less attractive 
than the synthesis method. 
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APPENDDC A 

TEST EXAMPLE FOR COMPARISON BETWEEN DC4 AND SYNTRON 

In order to compare the results obtained by the difference equation code 
DC4 ' and by the flux synthesis code SYNTRON, two test calculations were 
performed on the reactor configuration shown in fig. A. 1. The test reactor 
simulates a quarter of a core of a typical light water reactor with two en
richment zones. In the whole core 25 control rods are partly inserted. The 
core is surrounded by a 20 cm light water reflector. A fuel box is 20 x 20 
cm. One quarter of a core has: 14 fuel boxes with high k„ fuel, 27 fuel 
boxes with low kno fuel without control absorber and 6-7 fuel boxes with low 
k„. fuel with partly inserted control absorber. The cross sections for the 
different regions are shown in table A. 1. All neutrons are born in group 1. 

Table A. 1 

Two-group cross sections for the test reactor 

Region 

D1 (cm) 

D2 (cm) 

Xl (cm"1 . 

4 (cm"1) 

^ (cm"') 

vc j (cm"1) 

v£j (cm -1) 

1 

1.5 

0.4 

0.01 

0.08 

0.02 

0 

1 0.13145 

i 

2 

1.5 

0.4 

0.01 

0.085 

0.02 

0 

| 0.13145 

3 

1.6 

0.4 

0.01 

0.130 

0.02 

0 

0.13145 

4 

2.0 

0.3 

0 

0.01 

0.04 

0 

° 

5 

2.0 

0.3 

0 

0.055 

0.04 

0 

° 
The first calculation was performed with the control rods inserted as 

shown in fig. A.1 (case 1), The DC4 calcuLation was set Up with 28 x 28 x 26 
flux points. However, in the DC4 code it is possible to take advantage of the 
fact that the quarter of the core is symmetric. The OC4 calculation is then 
performed as a 1/8 core calculation; by this the total number of flux points 
handled was nearly halved. The SYNTRON calculation was accomplished as a 
full quarter core calculation with 27 x 27 x 25 flux points. Only two trial 
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functions were used in each energy group. The trial functions were found 
by two-dimensional difference equation calculations: one at the upper 
rod-in zone, and one at the lower rod-out zone. 

Next the initial calculation, the critical position of the control rods 
(the whole group) is calculated by use of SYNTRON, case 2. The method of 
internal boundary search was used, see chapter 3 in this report. The criti
cal insertion of the control rods was found to be 269 cm, compare fig. A. 1. 
A DC4 calculation was then performed with the new control rod position. 
The number of flux points for this calculation was 28 * 28 x 31. in table 
A. 2 the calculated values of k , , and the computer time used are shown. 

Table A. 2 

^ ^ - - _ _ 

DC4 
Case 1 

SYNTRON 

DC4 
Case 2 

SYNTRON 

keff 

1.0198 

1.0170 

1.0032 

1.0000 

Processor 
time (min) 

35 

6.1 

45 

6.5 

Total 
time (min) 

59 

7.2 

77 

7.4 

It might be mentioned that the computer times for the SYNTRON cal
culations are inclusive of trial function calculations and printing of the re
sults. The time used for the real synthesis calculation is only about 20% of 
the total time. 

In fig. A, 2-5 some selected axial flux distributions are shown. Only 
the flux distribution in the axial direction is shown, as this is the synthesis 
direction. This comparison is no direct test of the synthesis approximation 
as the deviations observed partly originate in the synthesis approximation 
and partly in the different discretisation methods used. The normalisation 
was chosen in such a way that the maximum flux point was set equal to 10. 
For that reason the deviations are greatest for the flux points in the outer 
regions of the core. It might be mentioned that neither the DC4 calculations 
nor the SYNTRON calculations give the correct solution as the number of 
flux points used is too small Experience has shown that the correct sol
ution is probably found somewhere between the two results. 
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