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_Approximate Methods for 3D Overall
Calculations on Light Water Reactors

by

Hans Larsen
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Research Establishment Rise
Reactor Physics Department

Abstract

The applicability of the different appraximate methods used for the
solution of the three-dimensional diffusion equation is dircussed, The flux
gynthesis program SYNTRON has been coupled with hydraulics and quasi-
stationary burn-up treatment to be used for boiling water reactor calcu-
lations. Test calculations are presented.

This report was written in partial fulfilment of the requirements for
obtaining the Ph,D. (lc. techn, ) degree.
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1. INTRODUCTION

Three-dimensional overall calculations on light water reactors are
normally performed as few-group diffusion theory calculations. The most
straightforward and most reliable method for the solution of the diffusion
equation is the difference equation method. However, for many applica-
tions this exact solution technique is unfavourable, as too many flux points
and thereby too long computation times are necessary. Different approxi-
mate solution methods may be used, for example the nodal method or the
flux synthesis method. In this report a discussion of the applicability of
the different solution techniques is given.

A three-dimensional flux synthesis program SYNTRON has been con-
structed. The program has been coupled with routines for the calculation
of burn-up, void and temperatures to form the SYNTRON/VOID program.
The cross section representation is based on the interpolation principle.

A Doppler cogrection method has been implemented.

Several test calculations have been performed with the SYNTRON pro-
gram both as static {lux synthesis calculations and as coupled boiling water
reactor calculations, Investigations have been carried out concerning the
optimal coupling between the hydraulics and the power calculations.
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2, SOLUTION OF THE THREE-DIMENSIONAL DIFFUSION EQUATION

Three-dimensional overall calculations of the flux and power distribu-
tions in light water reactors are normally restricted to few-grovp diffusion
theory calculations, As the structure of the reactor core is rather complex,
the solution of the diffusion equation must be periormed by use of some sort
of numerical method.

The diffusion equation in multi-group formulation hag the following
form:

D) v2 o8 + zBE) £ -

1)

3

&8 @) + x8@Er v @) of ) .

o

where

g = energy group index
NG = number of energy groups
¢B(F) = flux in group g at space position ¥ and
D(E), s5@), 2E¢E'E), xEG) andvs BE) are:
diffusion coefticient, absorption cross séct:lon, scattering

cross section from group g' to g, fission spectrum and pro-
duction cross section. All at space position F.

When the diffusion coefficients and the cross sections and their spatial
distributions are known, the problem is how to find the group flux distribu-
tion from equation (1).

In practically all reactor physical cases the spatial distribution of the
cross sections and the diffusion coetfficients are determined before the dif-
fusion equation for overall caloulations is set up. For that reason the spatial
dependence of the cross sections is suppressed in the following treatment,
When the source term at the right-hand side of equation (1) is called Q¥(F),
eq, (1) is replaced by:



-dH -
-DE v of(F) + £8 o8(F) = QE(F), (2)

which is the equation to be discussed in detail in the rest of this report,

Direct solution of the diffusion equation in the form of eq. {2) is only
possible if the macroscopic cross sections and the diffusion coefficients
represent a critical reactor system. In situations where this is not the
case, it is necessary to introduce some sort of eigenvalue, in order to
artificially make the system critical.

The classical eigenvalue method is the k. method, where an ejgen-
value A is associated to the production cross sections v !:f. all over the
reactor. The source term in eq. (2) is then:

NG
QE(F) = z (8 +8 4 a8 viB) o8'(F) . (3)
gr=1

It is possible to solve the diffusion equation for many different eigen-
values, but normally only the solution for the largest positive eigenvalue is
founa' 2),

From a mathematical point of view an eigenvalue associated with the
production cross sections is only one of the possibilities. Another method
is to introduce a Jpoison cross section EE, The polsoning - zg is then
added to the absorption term and eq. (2) is then

-DE 7% ¥8@) + (28 + A 2E) o6 (F) = QF(E). @

The poison cross section may either represent real homogeneously
distributed poison, boron patson, or some sort of leskage, I = DE B2,
where B2 is the buckling.

It is also possible to associate the eigenvalue to the dimensions of the
system and thereby find the critical dimensions of the system.

As the found flux distribution is strongly dependent on the eigenvalue
method used,it is of great importance in each case to use that eigenvalue
method which best possible simulates the behaviour of the practical reactor
operation. _

The diffusion equation (2) is a second-order differential equation, and
by appropriate chol ce of boundary conditions the equations could be solved
Amlyﬁc'lnjr"in each homogenecus region. For practical reactor calculations



where the structure of the system is quite complex the analytical method is
unprofitable and in many cases impossible, especially in three-dimensional
calculations without separability between the three directions, Therefore
numerijcal meéthods must be used for the general approach to the three-di-
mensional flux distribution, -

2. 1. Difference Equation Technique

The most straightforward numerical method ie the difference equation
method. In this method the reactor is divided into some subregions called

mesh and the diffusion equation is integrated over the volume of each mesh:
1-—-_\ .

f -DB V2 o&F) dv + f 18 oB(F) dv = f QE()- dv. (5)
v

v v
The leakage term is transformed into a surface integral
f _p& v? "o8(F) dv = f -DEVeE(F) ds.

It we look at the sxmple case of one-dimension slab geometry and one
energy group.eq. (5) wﬂl he°

[P wrass [ toomas [ama (6)
8 v

v
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- =1 % 02 _ . |
Fig 210 One-dimomionot mesh division

<. Ons 110 poit 1n chomen in apch meah. Tha two most widely uwed posi-
tions for selection flux points are in the middle of the mesh and at the in- _
terfpass betwoen the adiscent. mesh. I the following treatmegt the fiux
Polgh is chosen in the middle of each mesh. 1et us logk at mesh point i,

- e Tie Jegkage term An oq. (¢} is treated in the following wey:. Tha Qﬂ'ﬂ-
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tribution to the leakage term from the interface at position x; is:
d - v, -
D& | ex)ebD. il

x (E*'Exi-l ,]2 )

As the diffusion coefficient D = 1 /(32 tp)y Where I, is the transport
cross section, the effective diffusion coefficient D between point i and

i-1 could be calculated in this way, where I, = (Ax, ztri +ax , 2tri-1 )2,
2- D =1/(3%, ) = 2/(3(ax, - T, + A - I )
Bx, ¥ Ax ) %r R B a1
- 2
(“1 . "‘i-r) ]
-5; i-1

E - 2 = 0 = .
1§ 4 DDi = W and Ai !:ai Axi and Ki Q]. Axi ’
we get the following difference equation for the flux at point i:
-DD; #;_y - DDy #349 + (Aj+DD;+ DD, ,) - 95 =K. )

In the genera] three-dimensional xyz geometry multi-group cas= the
leakage contributions from all six neighbouring mesh points are taken into
account, and the difference equation looks as follows;

ij=1.h) z
Slithi.h) x
M

- Fig.21.b. 3D mesh point grid.
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where
E = . . . 8
Ai,j.h Axi ij Azh l:a
and

NG
Kig,j,h= Axi-ij-Azh-( z (ng""+ l:‘-n:fg') .g')_ (9)
g'=1

One such difference equation is necessary for each mesh point chosen,

In order to solve the three-dimensional difference equation system (8),
an iteration scheme of the following form could be useds’. The iterations
are separated into inner and outer iterations. In the outer iteration the
source distribution is calculated in accordance with equation (9). In the
innex iterations the flux distribution is found on the basis of the previcusly
determined source distribution, The imner iterations could be repeated until
& certain convergence of the flux distribution is established.

If the flux distribution in the inner iteration is found line by Hne, for
example in the x-direction, the mairix equation to be solved for each Hne

looks as follows:

i Aaf . pD§ : 7 ",g 7 -s‘,‘ 7
-DD§ AA§ - DDE O ok s$
NN N

x lof =18 |ao

! -DD§p asky | L"’ftx L"m

where the source terms on the rlght-hm lide mincl‘udﬁﬁe "leaknge in"
from the adjacent mesh in the y~ and z-directions. AAfrcpﬂlmlblorpuon,
up- and down-scattering from the group and ienkage to all nefghbouring mesh;



m)ig represents the leakage between mesh (i, j, h) and (i-1,j,h). The total

number of mesh points in the x-direction is MX. The matrix equation (10)
is solved directly by use of a forward eliminating and backward substituting
method as described in refs. 4 and 5.

Each outer iteration is succeeded by an eigenvalue calculation which is
set up by use of some sort of power method or a neutron balance equation

To speed up the convergence of the iterations numerous different
methods have been used: alternating direction iterations, coarse-mesh re-
balancing, overrelmtions), ex:l:rnpohtions,. Commeon to all these methods
is that several iterations are necessary. The number of necessary itera-
tions is naturally dependent on the problem, but 25 iterations are a low
estimate.

On a Burroughs B6700 computer each point iteration takes about 2 msec
and for a 30 x 30 x 30 mesh problem two energy groups the computing time
is at least 45 min.

‘The accuracy of difference equation calculations is rather problematic,
In one dimension and one energy group, simple Taylor expansions of the flux
could be uied to get an estimate of the exrror introduced by the discretisation.
Such investigations show that 2 mesh size not much greater than the free
mean path is necessary, i.e. for light water reactors 2-3 cm. However,
in three-dimensiomsl calculatione where the space is divided into a three-
dimensional grid also corner errors are introduced originating from the
fact that only the six nearest neighbours are taken into account. Especially
when small mesh 8izes are used this could cause great errors. In the gen-
eral case the problem is how great a mesh size it is possible to use without
fntroducing too great errors. Such answers only practical experiments
can give. Several investigations seem to show that a mesh size of about
2 -4 cm in the reactor and 2 cm in the reflector only introduces an error
in the flux distribution of a few per cent and in the eigenvalue of a few per-
mil, for a typical light water reactor configuration when the mesh point is
chosen in the middle of the mesh,

Another difficulty in the difference equation technique is where to select
the flux points: in the middle of the mesh or at the interface between the ad-
jacent mesh, These two different discretisation methods should naturally in
the Hmit with very small mesh sizes converge against the same result. In
practical multi.dimensional calculations with finite mesh size these two
methods give different results, at worst quite different results. Which of
the methods gives the most accurate result depends on the mature of the
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problem. The method with flux points at the interfaces gives the most ac-
curate determination of the leakage terms whereas the absorption and
source terms are worse determined and vice versa,

Some practical experiments in this field have been performed by G. K.
Kristiansen at the Reactor Physics Depariment at Risos). He has per-
formed several two-dimeasional xy geometry test calculations on a math-
ematical example simulating a quarter of a reactor core, where two energy
groups were used. Two difference equation codes were used, DC47) with
the flux points chosen at the interfaces and TWODIM®) with the flux points
chosen in the middle of the mesh.

On this mathematical example numercus calculations with these two
codes have been accomplished with different mesh sizes. This was done to
get an estimate of the discrepancy between discretisation methods used as
a function of the mesh size, _

The essence of these investigations is that the eigenvalue is rather
well determined even in coarse-mesh calculations for both these codes,
whereas the flux distribution is very sensitive to the mesh size used, For
a calculation with 30 x 30 mesh the deviation between the results of the two
codes was ag much &s 10 per cent for thermal flux in the middle of the
reactor core. For the thermal flux peak in the reflector the results were
even worse, It was not possible to get the deviation between the two codes
below about one per cent even for calculations with 100 X 100 mesh, i.e.

10* mesh points in each energy group. '

As a two energy group calculation with 100 X 100 mesh takes about 14
hours on the Burroughs B6700 computer at Rieg it ig clear that three-
dimensional caiculations of o high an acecuracy is imposeible,

To compare different calculation methods for three-dimensional over-
all calculations on light water reactors, a three.dimensional mathematical
Benchmark Problem was set up®).

- . The intention with the Benchmark Problem was to set up & mathematical
test example, which best possible simulates a guarter of a modern pressur-
Azed water reactor with varying enrichment zones and different insertion of
the control rods, The reactor core was surrounded by a light water reflec-

- 'The Benchmark Problem was calculated by several three-dimensional
codes from all over the world, both with difference equation codes and with
approximate codes 28 €.g. nodsl codes and flux syntheses codes.. In advance
of seiting up.the Benchmark caleulation it was our hope that the dispersion of



- 11 -

the results from the exact difference equation codes would be less than those
of the approximate codes, and in this way ensble us to find out what was the
right answer to the problem, Unfortunately, this was not the case; the devi-
ations between tﬁe exact codes appeared to be just as great as those of the
approximate codes, in the worst case about 2 per cent at the eigenvalue and
25 per cent at the thermal flux distribution ingide the reactor core.

The conclusion of all thege considerations cohcerning three-dimensional
difference equation technique is that this exact technique is prohibitive. Exact,
taken in the sense that the result moves towards the correct diffusion theory
result as the mesh size decreases. Especially for calculations of repetitive
nature, as for example overall burn-up calculations or void iterations, the
coBt in computing time on nowadays computers i8s enormous.

From the previous considerations it is clear that some sort of approxi-
mate method i8 necessary. By utilizing beforehand knowledge of the result
of the problem in the form of experimental data, previocus exact calculatinns
on similar examples or two-dimensional calculations on the actual problem,
it is poasible to set up approximate calculation schemes which give better
resulis than does a coarse-mesh difference equation calculation for the same
consumption of computer time.

The two most significant approaches to approximate overall diffusion
theory methods is the nodal method and the flux synthesis method. These
two methods are discussed in the following sections of this report.

2.2, Coarse-Mesh J/Légpds

As meniioned in the previous section one of the methods for speeding up
multi-dimensional diffusion theory calculations is to modify the difference
equation scheme to allow greater mesh. This reformulation could be done
rigorously without taldng advantage of any beforehand knowledge of the sol-
ution of the specific problem by using for example polynomial expa.nsi'ons in-
side the mesh. Another type of coarse-mesh methods takes advantage of all
sorts of beforehand knowledge of the specific problem in the form of experi-
mental data or results from previous exact calculations op similar problems.
The latter type of coarse~mesh approximation theory is normally called no-
dal theory,

2.2.1, Nodal Theory

In the nodal theory one takes advamtage of the fact that in a great modern
light water reactor the different regions are only weakly coupled. The re-
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actor is divided into a coarse grid of nodes, in the horizontal plane properly
one node per fuel bax; further the calculations are facilitated by iterating
on the source distribution instead of the multi-group flux distribution. The
source terms in the nodes are linked together by some coupling coefficients.
These coupling coefficients could be calculated more or less sophisticatedly
by use of one-group datz or multi-group data. The neuiron transport be-
tween the nodes ig then represented by the coupling coefficients. Common
to the different methods for calculation of the coupling coefficients is the
fact that the coupling coefficients are not universal, but require some
problem-depending fitting parameters, g-factors, determined outside the
nodal program.

2.2,1.1. The Flare Model One of the fi~st and best documented nodal
programs is the American program Flare?). A brief survey of the methods
used in this program is given here to illustrate the principles of the nodal
model.

The Flare program is based on a aone-energy group model. The bagis of
this model is a transport kernel which looks as foliows: ‘

] M M
W, = (1-8) ;%m + g ?1; . (11)

Wi, Tepresents the probability that a neutron born at node 1 is absorbed
at node m, Mz is the migration area, thediatance between the centre of
nodel and m, andgisag-hctororadjus‘unentplrametertobedetennined
outside the program.

The non-leakage probability from node 1 becomes

Wy =1 -(6-a) Wy & (32)

where o is the albedo,

The reflector is treated by an albedo concept and the albedo values must
be determined outside the program. % in the non-leakage probability term
is zero if none of the adjacent nodes is replaced by reflector.

The tission source term Blmdtheahlorpuonﬁmmtogmw
the infinite multiplication factor k

Bl- -I'A’. . U’)
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On the other hand, the absorption rate at node 1 can be written as:
6

A= ZsmW'ml+ 8, Wy (14
m

where 6 indicates summation over the six nearest neighbours. Combining
eqs. (14) and (13) one obtains:

6
ke Y s,
"1 m ml

= m
5 ITE.I Wy ’ (19)

This is the basic equation linking the source term in a node together
with the sources in the six adjacent nodes. The equation system is solved
in a way similar to the difference equation scheme, by introduction of an
eigenvalue,

In this nodal model only two fitting parameters are introduced, the g-
factor in the coupling coefficients and the albedoes.

2.2.1.2, The Trilux Model A more sophisticated nodal model is used
in the Trilux nodal program '9), which is also the basie of the Swedish
POLCA program. The Trilux program is based on a two energy group model,
The fate of the neutrons is rescribed in a much more nuanced way by the in-
troduction of several coupling coefficients for reflection, absorption in near-
est neighbours and transmission to more distant nodes,

The following assembly of coupling coefficients is used in the Trilux
model;

!‘,.j = the fraction of neutrons leaving node i and entering node j
. = the probability thet a neutron born in node i is absorbed in

node 1

Pij " the probabili ty that node j directly reflects a neutron enter-
ing from node 1

Py j = the probability that node j absorbs a neutron entering from
node 1

'i.j " 1-py 4By " the probability that a neutron entering node j
from node 1 behaves like neutrons born in node j

{by this term tranemission of neutrons from node i to a distant node is
possible). '



- 14 -

In accordance with this set of coupling coefficients a source iteration
scheme in principle similar to that of Flare, but more complicated, is used,
As all these different coupling coefficients could only be calculated
approximately the need of g-factors is greater than in Flare, perhaps three

or four are necessary.

2.2.1,3. Determination of the g-Factors, Correlations Nodal codes
would give correct answers fo a given problem if sufficient g-factors are
used and if proper values of these are selected. However, in realistic nodal
codes a8 Flare and Trilux only a few g-factore are available and the question
is whether a set of g-factors is able to cover a range of similar problems or
only the specific problem. Troubles in this field have been reported '),

. nevertheless nodal codes are widely used especially for boiling water reac-
tor calculations. But this is only adequate by careful use of test calculations
with exact three-dimensional methods and feedback from experimemnts,
and only for a narrow range of calculations at the same reactor type. If such
feedback is available, nodal theory seems to be profitable., To overcome
these difficulties it seems to be possible to construct some sort of correla-
tions for the g-factors on the basizg of the macroscopic cross sections and
the geometric configurations. When the empirical selection of g-factora is
replaced by more systematic methods it is easier to select proper g-factors
for a specific problem.

2.2,2, Other Coarse-Mesh Methods

A rather new and promiging method, but not yet widely used, is the 8o~
called finite element method ' 1%), In the finite element method the detailed
flux inside each mesh is approximated by polynomial expansions, for ex-
ample Hermite polynomials. This is done to minimize the number of necess-
ary mesh points. Application of polynomial representation inside each mesh
is simple for one-dimensional problems, but complicated for multi-dimen-
siousl problems. This is discussed in detail in ref. 12,

Anahercmomhlchemamluuutedbynmm's) and
used in the Norwegian PRESTO code. Tmmethodilnmoﬂlﬁedtwo-poup
difference equation scheme. Only the fast flux is found iteratively utilizing
the fact that the fast flux is more smooth and then easier to find than the
therma) flux. The thermal flux is found by the asymptotie expression
9y " Sp/t, 11" 4+ AS boundary conditions an albedo concept is used.
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2, 3. Flux Synthesis Methods

Another approach to approximative three-dimensional flux distribution
calculations is the flux synthesis method. In the flux synthesis method the
number of flux points is not minimized, but the fact that in many practical
reactor calculations a certain separability between the vertical and the
horizontal fluxes exists is utilized.

The three-dimensional flux distribution is approximated by a product
of a radial solution and an axial solution:

ofx.7.2) ~ o8(x,7)- oB(2), (16)

where (x,y) represemts the radial direction and (z) the axial direction,

2.3. 1., Ordinary Flux Synthesis

In simple cases, for example a homogeneous cube, full separability
exists between the radial and axial solutions, Numerous mathematical
exampleg with the same properties could be constructed. But also in many
realistic reactor calculations the assumption of separability between the
vertical and the horizontal solutions is a good approximation, In pressurized
water reactors with the control rods either fully inserted or fully withdrawn
the flux distribution in the axial direction is well approximated by a sin(z).
In such cases the overall calculations could be performed in only two di-
mensions, In the general case, without full separability between the {lux
solutions in the vertical and the horizontal directions, it is often possible
to divide the reactor into some axial zones with no material variations in
the axial direction in each zone. In fig. 2. 3. 1.8. a reactor configuration
with some partially inserted control rods is shown. I the unrodded fuel
zone is treated as a homogeneous medium, this reactor could be divided
into three axial zones on the basis of the control rod positions. In each of these
axial zones a two-dimensional difference equation calculation could be per-
formed. By use of these radial flux solutions Thx-weigh*ed cross sections
and radial leakage terms are calculated in each axial zone. On the basis of
these effective cross sections a one-dimensional vertical calculation is per-
formed. The three-dimensional flux distribution is then simply predicted in

the following way:

¥ix,y,2) = 9¥2)- ofix, y), (17
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Fig. 2.3.1.a. Axial zone division of a reactor
for flux synthesis ireatment.
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where #£(x,y) is the radial flux solution belonging to the different axial
zones, and Qg(z) is the one-dimensional vertical solution.

The radial flux distributions used are normazally called trial functions.
On the basis of the one-dimensional flux solutions axial leakage terms could
be calculated for each axial zone to give suitable axial bucklings for the
trial function calculations, Iterations between the axial and the radial cal-
culations could be established. This "stack" synthesie method described
here is the classical single channel flux synthesi® method, compare ref. 14.
Synthesis programs based on this method have been used widely by, for
example, General Electrics.

An extension of this method is the multi-channel flux synmthesis meth -~
od 150, In ths method the reactor is divided into some vertical channels
besides the axial zones. A one-dimensjonal flux calculation is performed
in each channel. A rather complicated scheme for the leakage coupling be-
tween the different channels and the different trial function calculations is
used.

2. 3.2, Variational Flux Synthesis

In the variational flux synthesis the radial flux distribution at each
vertical point is found by combining some precalculated trial functions to
give the actual flux shape. The foundation of this method is described in
ref. 16. The three-dimensional flux distribution is given by the following

expansion;

Kg R
v8ix,y,2) = z‘ 28 (z)-1f(x,y) , (18)
k=
where
K g = pumber of trial functions in group g

Hﬁ(x,y) = trial function number k in group g
2f(z) = mixing function number k in group g.

The trial functions are radial flux distributions representative of the
radial flux distribution throughout the reactor. The trial functions are as-
sumed to be precalculated in advance of the synthesis calculation. At each
z-point the mixing functions represent the blending coefficients of the trial
functions, '
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We have the diffusion equation:

NG
. -DEvZ o84 £ oE - z SEEE. o - (19)
g'=1 .
where SE€8' ig the scattering and fission contribution to group g from

group g'.
In order to find the mixing functions the flux expansion eq. (18} is
substituted into the diffusion equation®

K NG K_,
Z‘ (-08v? +18). 28 o) B &x, ) = Z sE€E 28'z). v (x,y) .
k=1 g'=1 =]

(20

A set of weighting functions, ng(x, y), is used to solve eq. (20). As
weighting functiong the trial functions themselves or the adjoint trial func-
tions are normally used. If eq, (20) is multipied by the weighting function
and an integration over the radial direction i8 performed we get the follow-

ing equation:

K
[ | ooy sﬁ)-(zg 28(e) - B(x,7) - WE (x,3) )dy dx -
Xy k=1

(21)
NG K

f f Z f SE€E 28') Hf'(x'vl'wj‘(x-y)dydx .
XYy !_"1 i=1

When these integrations have been accomplished the one-dimensional mix-
ing function equation is found: |

K

L (-(D‘)Hf:-r 2Dy ig(z) -

| 2i (8‘*")1’-21"(2)
gl. ]

_j.laoo K‘ K}

(22)°
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where (D® )kj ie the diffusion constant radially integrated by trial function
number k and weighting function number j in group g. The integrated term,
{Ef) ., is now inclusive of the radial leakage term D% v2 . The source
term (qu-.g‘ >1J is integrated by trial function number i ’g group g' and
weighting function number j in group g.

Eq. (22) is the basic equation to be solved in order to find the mixing
functions ZE(z). The equation system is in principle one-dimensional, but
it is more complicated than the one-dimensional difference equation; approx-
imately Kg x Kg terms are to be handled for each space point. Moreover
the trial and weighting finction integration is rather complicated and time
consuming, especially the computation of the radial leakage terms. The flux
synthesis method described above is normally called variational 8ingle
channel flux synthesis with continuous trial functions, i.e. the same set of
trial functions are used throughout the whole reactor. Several computer pro-
grams have been constructed on the basis of this method 5,11, 18).

An obvious extension of the method is to allow different sets of trial
functions to he used in the different axial zones, This method is called vari-
ational flux synthesis with discontinuous trial functions ' 29), The mixing
function equation is further complicated by the discontinuities and discus-
sions are still going on about the coupling between the different axial zones.
Another extension of the variational synthesis method is to use it for multi-
chamnel flux synthesis, but this method i8 so complicated that the straight-
forward ordinary three~dimensional difference equation technique is more
advantageous,

2.4. Discussion of the Different Approximative Methods

In order to choose the approximative method which best fulfils the re-
quirement for three~-dimensional overall calculations at Rise the following
arguments must be taken into account, For calculations on a selected re-
actor for which lots of measurements are available the nodal method and
the other coarse mesh methods may give good results. However, for cal-
culations on different reactor types with only few measurements avaijlable
this method seems less attractive. The variational flux synthesis method
is a more straightforward extension of the two-dimenaional difference
equation method, but naturally it is a drag that there is no possibility for
taking advantage of available measurements. The method with discontinuous
trial functions is mathematically complicated and time consuming and it is



difficult to predict which trial functions ought to be used, and where. For
these reasons the variational single channel flux synthesis method was
chosen as the method which best fits the type of calculations normally per-

formed at Rise.
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3. THE THREE-DIMENSIONAL FLUX SYNTHESIS PROGRAM SYNTRON

As mentioned in the previous chapter, the variational single-channel
flux synthesis method has been selected as the approximative method best
suited for the type of calculations usually performed at Riss. Based on
this method a computer program called SYNTRON has been constructed.
Originally the program was written for the IBM 7094 computer at NEUCC,
compare ref. 5. Later the program has been converted for the Burroughs
B6700 computer at Rise. In addition the program has been extended by dif-
ferent criticality search options. In this chapter a survey of the main fea-
tures of the program i given.

3. 1. The Principles for the Construction and the Solution of the Flux
Synthesite Equation

The flux synthegis program SYNTRON is described in detail in ref, 5,
Here only a survey of the main principles for the construction and the sol-
ution of the flux synthesis equation i8 given. A flux synthesis calculation
could be divided into three main parts: the generation of a suitable set of
trial functions; the comstruction of radially integrated cross sections and
leakage terms and therebythe construction of the matrix elements for the
synthesis equation; and last the solution of the synthesis equation to give
the mixing functions and the eigenvalue.

The trial functions and the weighting functions are calculated by use of
ordinary difference equation technique. The flux point is chosen in the middle
of the mesh. The routine used for the calculaticn of these functions is dé-
scribed later in this report,

In section 2, 3, 2, equation (22), the mixing function equation,. is shown.
The coefficients in this equation consist of radially integrated cross sections
and leakage terms, The cross sections are just integrated weighted by the
trial and weighting functions. As an example the absorption cross section
integration looks as follows

sfm = [ [ s8-miey) Wiy ax ey . (28)
y X

The index (z) i.ndieatei that the integration ought to be performed at
each axial flux point, In principle the integration of the diffusion coefficients
and of the scattering cross sections is performed in the same fashion.
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The calculation of the radial leakage term, called DBzgj(z), is more
complicated as the V3 operator is involved. The leakage term is calcu-
lated by the following expression:

2
pBz )= [ [ of-wWhe,y) 2 Hmy ey . (24)
¥y x

It ought to be mentioned that the coefficient (I g )kJ is inclusive of the
radial leakage term, i.e. defined as:

Ey - A ., g
(::a)k:i A+ DBZy, . (25)

How these integrations are carried out in practice is described in ref. 5
One thing which can diminish the number of necessary integrations is the fac
that onlv one set of integrations 18 necessary for each axial zone. For the
configuration shown in fig, 2.3. 1.a, for example, only three sets of inte-
grations are necessary even if perhaps 50 mesh points are used in the axial
direction.

When the radial integrations are performed and thereby the toefficients
for the mixing function equation are found the problem is how to solve this
equation. The equation ig in principle one-dimensional; however, it is
more complicated than the one-dimensional difference equation. Appraoxi-
mately Kg X Kg points, where Kg is the number of trial functions in group
- g, are to be handled for each mesh point in the axial direction. The methods
used for the solution of the mixing function equation in the SYNTRON prog-
ram are described in ref, 5. Here only the structure of the matrix equation
is discussed,

As described in ref, 5, equation (22) is z-integrated to transform the
equation into a difference equation system:

DM¥(z-1)-Z8(z-1) + AA E(z) -zltz) - DMB(z).- ZB(z+1) = GB(z) ,
(26)
where

M‘(z-l) = a square matrix of the degree K‘x K _ representing
the leakage between mhpolnt z and z-1 and vice
versa
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AA ()

a square matrix of the degree Kgx l{g representing
the total absorption in mesh number z inclusive of
radial and axjal leakage out from the mesh

Q) a vector of the degree K, representing the source

terms at mesh namber =

Z &)

a vector of the degree Kg representing the values of
the different mixing functions at mesh namber z

As an illustration the full matrix equation to be solved is shown in
fig. 3.1.a for an example with three trial functions in each group. The
group index is omitted as the structure is the same in all groups. The mum-
ber of mesh points in the z-direction is N. The square matrix is similar to
that of one-dimensional differencé equation technique, omnly the elements in
the matrix equation are now submatrices. If the eigenvalue is associated to
the source terms, the left-hand side square matrix is unchanged during the
iterations. For that reason it is possible to invert the diagonal submatrices
ance, before the iterations are started. The solution method used, cf. ref. §,
ig very fast compared to the cross section integration and the calculation of
the trial functions. By use of this iteration scheme the different enexrgy
groups are linked together through the source terms. In order to solve the
equation system it i8 necessary to introduce an eigenvalve, for example the
effective multipHeation factor k .. The eigenvalue is calculated by an over-
all neutron balance equation.

3.2, The E‘lggnvalue, Different Critica]ig Options

Different criticality options are implemented in the SYNTRON program.
An eigenvalue A could be associated to the production cross section v Z,.

In this way the system is held critical artificially and the effective muliipli-
cation factor k. is found as 1/A. Moreover,it is possible to associate an
eigenvalue A to a macroscopic poison cross section zp and in this way find
the critical poison distribution in the reactor core. These two methods are
standard methods well suited for both flux synthesis and difference equation
technique.

The special flux synthesis treatment is utilized for the calculation of
the critical dimensions in the axial direction. The method for direct iter-
ation on the dimensions is described in ref. 21, Two dimension coutrol
search options are implemented: one for iteration on the dimensions and
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one for internal boundary displacement with fixed outer dimensions {control
rod movementi). For these dimension search .nethods an eigenvalue is as-
sociated to the length of the selected axial zones. With a fixed set of trial
functions no repetition of the cross section integrations are necessary during
the iterations; only a few repetitions of the solution of the mixing function
equation are necessary. However, as this solution routine is very fast the
extra cost in computation time iz modest.

3.3. The Selection of the Trial Functions

One of the main problems in the flux synthesis is how to select the
trial functions. No definite answer can be given to this problem. The
SYNTRON program is not bound to use any fixed strategy for the generation
of a proper set of trial functions. However, in most cases the trial func-
tions are generated in the following way: characteristic axial zones are
selected and two-dimensional difference equation calculations are performed
on each of these zones. If the structure of the reactor configuration is com-
plex it may be difficult to select such characteristic axial zones. R is neces-
sary to restrict the mumber of trial functions as the flux synthesis method is
only favourable in comparison with the ordinary three-dimensional difference
equation technique if only a few trial functions are used in each energy group
(less than about 6), One thing which can diminish the mumber of trial function
calculations - for calculations of a repetition nature - is that the same set
of trial functions may be used for several synthesis calculations.

In the SYNTRON program it is possible to use two different sets of
weighting functions: the trial functions themselves or the adjaint trial func-
tions, Normally the trial functions themselves are used,as the extra accuracy
gained by using the adjoint functions is modest in comparison with the com-
outer time used for the calculation of the adjoint functions.

One thing which cught to be mentioned is that the set of trial functions
used must be linearly independent. I this is not the case, the matrix equation
will be singular, In the SYNTRON program it is left to the user of the prog-
ram to construct a linearly independent set of trial functions.

8. 4. The Calculation of the Trial Functions

As previously mentioned the SYNTRON program is sel-supplying with
trial functions. In the program a two-dimensional difference equation routine
is inchided. The difference equation routine is to a certain degree analogous
to the TWODIM program described in ref. 3. The flux point is chosen in the



middle of the mesh, The line-difference technique is used. However, the
difference equation routine in SYNTRON is restricted to xy geometry as
this is the only geometry of interest for the synthesis calculatione. To
speed up the convergence of the iterations ap extrapolation technique simi-
1ar to that of TWODIM is used. Furthermore,a simple line-overrelaxation
techmique is implemented. The boundary conditions may either be represented
as extrapolation lengths or gamma-matrices. The routine calculates auto-
matically the adjoint trial functions if the method of adjoint weighting func-
tione i2 chosen. Two criticality methods are implemented: keﬂ and crit-
ical poison distribution. The trial function calculation starts with a guessed
flux distribution or with the previous trial function calculated on the same
configuration if the trial function calculations are repeated. The calculated
trial functions are stored on a disk file to be used in later synthesis calcu-
lations.

3.5. Static Test Calculations

Several test calculations have been performed with the SYNTRON prog-~
ram to check the code and to estimate the error introduced by the symthesis
approximation. Such calculations have been performed in two as well as
three dimensions.

In ref. 5 a three-dimensional two.group test example is reported cal-
culated both by SYNTRON and by the three-dimensional difference equation
code Whiklaway 22), Whirlaway takes the flux point at the interface between
the mesh, The mumber of mesh points used was only 15 x 15 x 15, The size
of the problem was determined by the capacity of Whirlaway on the IBM 7094
computer at NEUCC. However, since the geometry of the test problem was
rather simple the agreement between the results appeared satistactory.

Some two-dimensional test calculations are presented in ref. 21. A
compari son was made between two-dimensional SYNTRON synthesie calculationd
and SYNTRON difference equation calculations. No discretisation errors were
involved in this comparison as the discretisation method used was the same
in both calculations; moreover, fine-mesh calculations were possible, Both
ke search calculations and control search (internal boundary displacement)
calculations were performed. In both cases an peceptable agreement between
the results was observed. | .

In the three-dimensional international Benchmark Problem ®) a comparison
was made between several three-dimensional codes from all over the world.
The Benchmark Problem sinmlates & quarter of a light water reactor with
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varying earichment zones and different insertion of the control rods. Al-
though the dispersion in the results obtained by the different codes was
great, the agreement between the SYNTRON results and the results ob-
tained by the three-dimensional difference equation codes using the same
discretisation method was excellent. The conclusion may be that the syn-
thesis error, for this special case, is less than the discretisation error.

In appendix A to this report a test example is shown calculated both by
the difference equation code DC4 L and by SYNTRON. However, from these
calculations it is impossgible to get an acceptable estimate of the synthesis
error as different discretisation methods are used in the two codes.

The conclusions drawn from these investigations may be that it is
difficult to get an acceptable estimate of the synthesis error as exact three-
dimensional fine-mesh difference equation calculations are very expensive
and in fact almost impossible on most computers. Comparisons between
measurements and synthesis calculations could neither give a definite esti-
mate of the synthesis error, as the errors from the cross sections and the
bax calculations are involved. However, naturally it i8 encouraging that
the effective multiplication factors calculated by SYNTRON for the differ-
ent start-up situations of the DRESDEN | reactor 25} do agree quite satis- -
factorily with the measured ones.

The conclusions drawn concerning the applicability of the flux synthesis
method are that for a wide range of reactor calculations the errors intro-
duced by the flux synthesis approximation are less than the errors intro-
duced by using coarse-mesh difference equation calculations consuming the
same amount of computer time. For all the test calculations discussed
above the SYNTRON calculations were sbout 10 times faster than the equiv-
alent difference equation calculations, Naturally the synthesis method ought
not to be used unrestrainedly as a bad set of trial functions introduces fur-
ther errors. For very complicated configurations the difference equation
techmique ought to be used.
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4. THE SYNTRON/VOID BURN-UP PROGRAM

In order to perform three-dimensional overall burn«up calculations the
flux synthesis program SYNTRON has been extended to include the following
facilities: cross section interpolation in a precalculated cross section
library, burn-up treatment, and xenon transient treatment. Moreover, to
be used for boiling water reactor calculations, routines for the calculation
of the void and temperature distributions are implemented, In the following
sections a brief description of the methods used in the different routines is
given,

4. 1. Cross Section Inferpolation

For static SYNTRON calculations all regions are supplied with either
macroscopic cross sections or boundarv conditions, However, in the burn-
up version of the program the burnable regions are supplied with macrosco-
pic croes gections generated inside the program on the basis of an inter-
polation in a cross section library constructed outside the program. The
program is able to handle a cross section lbrary tabulated ag a function of
& maximum of three parameters, Different libraries are aliowed for the dif-
ferent regions. The tabulation parameters may for example bes power
density, burn-up and void fraction; or average void fraction during the
burn-up, burn-up and actual void fraction. The actual cross sections for
the different regions are simply determined by a linear interpolation in the
croas section library. The cross section library is supposed to contain box
average homogenized macroscopic cross sections calculated on the basis
of detailed box calculations for example by use of the box program CDB ),
In ref. 23 an example of the construction of such a croas section Hbrary
is shown. Different libraries may be used for different types of fuel hoxes,
for example boxes with different enrichment or boxes with and without con-
trol rod inserted. The cross section treatment described here is similar
to that of the DBU program 3). '

4.2, The Burn-up Treatment

For the burn-up treatment the reactor is divided into a number of
burn-up regions, Each of the burn-up reglons is. supplied with a set of
interpolated macroscopic cross sections. On the basis of a detailed flux
synthesis calculation, the eneérgy released per fission and the total ther- .
mal power of the reactor, the average power density in the different burn-up
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regions are calculated. The burn-up in the different regions is simply
calculated on the basis of the following quantities: the average power den-
sity, the uranium density and the time step length, When the power density
is found the ncuti-un flux is normalized for the use in the xenon calculations.
In the coupled system the power density distribution is used a8 a basis for
the void and temperature calculations. Moreover the power and burn-up
distributions may be used for the determination of the cross sections for
the next time step.

4. 3. The Xenon Treatment

For boiling-water reactor calculations the following three cross sec-
tion interpolation parameters are used?‘a): average void fraction during
the burn-up, burn-up and actual void fraction, The box calculations per-
formed for the generation of the burn-up tables are carried out with a fixed
power level and therebyﬁ fixed equilibrium xenon contents. However, the
power level in the specific burn-up region in the three-dimensjonal caleu-
lation may be different from the reference power level of the box calcula-
tion. For that reason the xenon contribution included in the interpolated
cross sections may be wrong. This lack is accounted for in the SYNTRON/
VOID program by an equilibrium xenon correction term 23) :

82, = 9, xe* (Pxe. eq actual ~ ™Xe, eq ref’ * (27)

where AR a is a macroscopic absorption cross section added to the inter-
polated cross section; 'a,}f e is the microscopic Xe absorption cross sec-
tion; Dye, e qref is the xenon concentration calculated on the basis of the
reference power used for the box calculations; Nye, eq actual is the correct
actual equilibrium xenon concentration. The group index has been omitted.

This xenon treaiment is used because it is desirable to include the
majority of the xenon contents in the box calculations for the proper deter-
mination of the flux spectrum in the box,

Besides the xenon equilibrium treatment, the program contains a
routine for non-equilibrium xenon treatment 24). This routine could be
used for investigations of xenon-induced spatial power oscillations.

4, 4. The Void and Temperature Calculations
In order to perform boiling water reactor calculations, routines for
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the determination of the vaid and temperature distributions are implemented >
The void-temperature problem is treated as a multi-channel problem. The
reactor is divided into a series of parallel charnnels, in the limit each fuel
box is handled a8 a separate chamnel, but ugsually more fuel boxes are com-
bined and treated as one void channel. On the basis of the calculated power
distribution and the kydraulic data of the core, the void routine calculates
the axial void distribution in each channel and the temperature routine the
axial temperature distribution, i.e, the moderator temperature, the cladding
temperature and the fuel temperature distributions. In the present version

of the routines the outer loop is neglected, i. e. the behaviour of the outer
loop is determined by the inlet subcooling and the inlet total coolant flow.

By use of such detailed vaid and temperature calculations the average void
fraction and the average fuel temperature in each burn-up region are de-
termined.

4,5. The Dojgpler Effect

The temperature varying most drastically throughout the reactor core
ie the fuel temperature, As mentioned in section 4. 3., the box calculations
for the generation of the cross section library are performed at a fixed
power level, and the 10-group cross sections for the pin-celis are calcu-
lated at a fixed fuel temperature. To account for the local fuel temperature
variations a Doppler correction trestment is implemented. The Doppler cor-
rection treatment is only implemented for two-groizp calculations, The fast
absorption cross sectiong and the removal cross sections taken from the
cross section library are adjusted by some polynomial expressions 23). The
polynomial coefficients must be determined outside the program, The poly-
nomials used are of the first degree for the burn-up and of the second de-~
gree for the void fraction, For the temperature dependence the standard
square root term is used,

4,8, The Conirol Red Treatment

No special control rod treatment is {mplemented in the SYNTRON pro-
gram. As mentioned in section 4.1. different cross section libraries are al-
lowed for the different biirn-up regions, i.e, for example for fuel boxes
with and without control rod inserted, For the generation of the cross sec-

ot braries box calculations are performed with and without control rod
inserted during the whole burn-up. This control rod representation is quite
satisfactory for fuel boxes with the control rod in the same position during

3,
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the whole three-dimensjional burn-up calculation, For boxes with the con-
trol rod alternatively inserted and withdrawn the representation is insuf-
ficient as the influence of the varying flux spectrum in the fuel box on the
isotope build-up is neglected,

An alternative method for the representation of the control rods is
simply to represent the control rods by an extra absorption cross section
added to the cross sections calculated on the basis of the unrodded fuel
bhox. However, by use of this method the spectrun: effect on the box level
of the control rods is completely missed.

4.7. The Time Step

Before each time step it is possible in the SYNTRON program to change
the composition of differemnt regions, i.e. to change the cross section repre-
sentation. In the SYNTRON program each region is supplied with a com-
position number. A composition number represents a set of cross sections,
and thereby different regions may be represented by the same set of cross
sections. The first possible change is to supply some of the composition
mumbers with new cross gections, which simulates the loading of new ma-
terials in the regions in question. Another possibility is to interchange two
composition numbers, which simulates a shuffling, The last possibility is
to change the cross section library used for some of the burnable regions;
this procedure simulates for example the insertion or the withdrawal of a
control rod in the regions in question.

4, 8. The Coupled Program

The routines described in the previous sections are coupled with the
synthesis routines to form the SYNTRON/VOID program, The coupled pro-
gram is schematically shown in fig, 4.8,a. For boiling water reactor
burn-up calculations the whole program is involved, For simpler calcula-
tions parts of the program may be by-passed, for example for static cal-
culations the synthesis routines may be used separately.

For boiling~-water reactor calculations iterations between power, void
and temperature are necessary as these quantitites are closely coupled.
Normally the calculation starts with a guessed power distribution or with
the power distribution from the previous burn-up step. On the basis of this
power distribution the void and temperature distributions are calculated.
Then & set of cross sections for each composition number is generated,

By use of these cross sections a flux synthesis calculation is performed to
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get a new flux and power distribution, This scheme is repeated until the
system is converged. Convergence cyiteria are put on the power distri-
bution, the void distribution and the k_,. When the system is converged
changes in the cross section representation of different regions may be
performed and a new burn-up step may be taken; if this is the case the
burn-up distribution and the average void fraction during the burn-up for
the different regions are calculated. Then again iterations between void,
power and temperature are performed and so on.

A strategy for the calculations of trial functions must be decided. The
necessary number of trial functions may be calculated once at the begin-
ning of the burn-up calculation, or a new get of trial functions may be cal-
culated at the beginning of each burn-up siep. Finally the trial functions
may be recalculated for each flux synthesis calculation during the void-
power iterations. Naturally the previous trial functions are used as start
- guess for the recalculations,

For the DRESDEN 1 calculations 23) the strategy of calculation of a
new set of trial functions at the beginning of each burn-up step was used.
However, in the succeeding chapter it is demonstrated that it seems to be
more favourable to recalculate the trial functions continuously.

Experience has shown that it is of great importance for the convergence
rate of the void-power iterations that some sort of underrelaxation is used
in the coupling of void and power. In the following section of this report this
is demonstrated by an example.

4.9, Optimal Calculation Strategy

In order to illustrate the behaviour of the void-power iterations in
boiling-water reactor calculations a series of test calculations has been
performed on a simple geometry. The geometry of the test example is
shown in fig. 4.9.a. The example i8 a two-dimensional xz geometry ex-
ample, The reactor is divided into four parallel hydraulic channels plus
one extra moderator channel. Ten void points are chosen throughout each
channel. No control rods are ingserted. A two energy group treatment is
used for the flux solution, Only two trial functions are used in each energy
group for the flux synthesis calculations, The trial functions are found by
one-dimensional difference equation calculations; one calculated at the top
and one at the bottom of the reactor, The cross sections used are DRES-~
DEN 1 initis] cross sections 2>, and also the Doppler parameters and the
hydraulic data are taken from the DRESDEN 1 calculations. For these cal-
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culations the power density and the total mass flow are adjusted to give a
reasonable outlet void fraction. For the flux solution 55 mesh points are
used in the x-direction and 36 mesh points in the z-direction, the synthesis
direction.

z(cm) Top reflector (~ 50% void)

Reflector (0% void)
| 2 3 4 /

295]
285

Symmetry plane—

& parallel channels

0 —_— —a x(cm)

0 50 100\ 150 200 210
Reflector (0. void)
Fig.4.9.a. Test reactor, description.

In fig. 4.9.b.the calculated axial power, void and fuel temperature
distributions in the four channels are shown. The total form factor was
found to be 2. 01. The power, void and fuel temperature are highest in
channel no. 1 and lowest in channel no, 4, as expected.

Several calculations on the example have been performed in order to
find the optimal calculation strategy. The method of continuous recalcula-
tion of the trial functions was used, i. e. new trial functions were calculated
for each void-power iteration. The influence on the computation time neces-
sary for the whole calculation of the following two quantities was investi-
gated: the value of the power underrelaxation factor REL; the degree of
convergence of the trial function calculations and the flux synthesis calcu-
lation at each void-power iteration, i.e. the maximum number of iterations,
MAXI, allowed for each flux solution. In fig. 4.9.c.the total computation
time for the problem versus the value of the relaxation factor for different
degrees of convergence of the flux solutions is shown. It is seen that for
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.Fig.l..9.b. Axial power, void and fuel temperature distributions
in the four channels of the test reactor.
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Fig.4.9.c. Computation time versus relaxation factor.
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each value of MAXI an optimal underrelaxation factor is found, Calcula-
tions with MAXI = 2 were also performed, but these calculations were very
slow as lots of void-power iterations were necessary; a relaxation factor
greater than one seems to be favourable. The power convergence criterion
in all these calculations was 10>,

The calculation with MAX] equal to 50 represents nearly full convergence
of the flux calculations at all void-power iterations. These investigations
show that full convergence of all flux solutions demand a low underrelaxa-
tion factor, whereas a loose convergence of the flux solutions only demand
a weak underrelaxation. In fig. 4. 9. d. the optimal relaxation factor versus
the degree of convergence of the flux solutions 18 shown. The convergence
of the power distribution represented by the form factor during the void-
power ‘iterations i8 shown in fig. 4. 8. e. For the high relaxation factor
damped oscillations are observed.

The most favourable calculation strategy seems to be to use a loose
convergence criterion for the flux solution, MAXI about 5, and a slight
underrelaxation on the power. Full convergence of all flux solutions is
less attractive as this method is slower and very sensitive to the relaxation
factor used.

Calculations with a fixed set of trial functions for all void-power iter-
ations were likewise carried out. However, this method is more sensitive
to the selection of the trial functions and not much faster than the method
of loose convergence of the flux solution,

4.10. Calculations Performed with the SYNTRON/VOID Program

A two-dimensional burn-up calculation without void has been performed
in order to check the accuracy of the flux synthesis method 21 ). The test ex«
ample was calculated both by SYNTRON and the difference equation burn-up
program DBU 3). which has a burn-up treatment equivalent to that of SYN-
TRON. The problem was calculated by use of different numbers of recalcu~
lations of the trial functions during the burn-up, and both with and without
adjoint trial functions. Only k oty VOTBuS the average burn-up was calcli-
lated. The accuracy of the synthesis calculations was found to be satisfactory
if the trial functions were recalculated once during the burn-up.

The SYNTRON/VOID program has been used for calculations on the
DRESDEN 1 reactor 23). No estimate of the synthesis error was possible
as no accurate three-dimensional program was available, However, the
calculated effective multiplication factors for different configurations of the
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cycle 1 of the reactor do agree satisfactorily with the measurements. The
errors observed in the calculated power distribution and the exposure
distribution at the end of cycle 1 originate from both the synthesis error,
the limited number of hydraulic channels used and the fact that only quarter
core calculations were performed.
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5. SUMMARY

The conclusions of these investigations regarding the approximative
solution of the three-dimensional diffusion equation are: for a widc range
of reactor calculations the variational flux synthesis method is favourable.
The errors introduced by the flux synthesis approximation are typically
less than the errors introduced by similar coarse-mesh difference equation
calculations consuming the same amount of computation time. Naturally it
is a drag for the synthesis methcd that there are no possibilities for taking
advantage of available measurements. For calculations on one selected re-
actor for which lots of measurements are available the gﬂa_l\me_tﬂod may
give better resulis. However, for calculations on different reactor types
with only few measurements available this method seems less attractive
than the synthesis method.
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APPENDIX A
TEST EXAMPLE FOR COMPARISON BETWEEN DC4 AND SYNTRON

In order to compare the results abtained by the difference equation code
DC4 ") and by the flux synthesis code SYNTRON, two test calculations were
performed on the reactor configuration shown in fig. A. 1, The test reactor
simulates a quarter of a core of a typical light water reactor with two en~
richment zones. In the whole core 26 control rods are partly inserted. The
core is surrounded by a 20 cm light water reflector. A fuel box i8 20 x 20
cm. One quarter of a core has: 14 fuel hoxes with high k., fuel, 27 fuel
baxes with low ke fuel without control absorber and s% fuel boxes with low
k. fuel with partly inserted conirol abscrber. The cross sections for the
different regions are shown in table A. 1. All neutrons are born in group 1.

Table A. 1

Two-~group cross sections for the test reactor

Region 1 2 3 4 L
p!  (cm) 1.5 1.5 1.5 2,0 [ 2.0
p?  (cm) 0.4 0.4 0.4 0.3 | 0.3
$l ey | oo 0. 01 0. 01 0 0

! zi em "y | o.08 0. 085 0. 130 0.01 | 0.055
N (cm™*) 0, 02 0,02 0. 02 0.04 | 0.04

| vE] (em™) 0 0 0 0 0
vi? (em™) IL 0.13145| 0,13145| 0.13145 0 | 0

The first calculation was performed with the control rods ingerted as
shown in lig. A.) (case 1), The DC4 calculation was set up with 28 x 28 x 28
flux pointa, However, in the DC4 code it i8 possible to take advantage of the
fact that the quarter of the core is symmetric. The DC4 calculation is then
performed a8 a 1/8 core calculation; by this the total number of flux paints
handled was nearly halved. The SYNTRON calculation was accomplished as a
full quarter core calculation with 27 x 27 x 25 flux points. Only two trial
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functions were used in each energy group. The trial functions were found
by two-dimensional difference equation calculations: one at the upper
rod-in zone, and one at the lower rod-out zZone.

Next the initial calculation, the critical position of the control rods
(the whole group) is calculated by use of SYNTRON, case 2. The method of
internal boundary search was used, see chapter 3 in this report. The eriti-
cal insertion of the contirol rods was found to be 269 cm, compare fig. A. 1.
A DC4 calculation was then performed with the new countrol rod position.
The number of flux points for this calculation was 28 x 28 x 31. In table
A. 2 the calculated values of keff and the computer tirne used are shown.

Table A. 2
Kk : Processor Total
eff time (min) time {min)
DC4 1.0188 35 59
Case 1
SYNTRON 1.0170 6.1 7.2
DC4 1. 0032 45 T
Case 2
SYNTRON 1. 0000 6.5 7.4

It might be mentioned that the computer times for the SYNTRON cal-
culations are inclusive of trial function calculations and printing of the re-
sults, The time used for the real synthesis calculation is only about 20% of
the total time. '

In fig. A.2-5 some selected axial flux distributions are shown. Only
the flux distribution in the axial direction is shown, as this is the synthesis
direction. This comparison ia no direct test of the synthesis approximation
as the deviations observed partly originate in the synthesis appraximation
and partly in the different discretisation methode used. The normaliration
was chosen in such a way that the maximum flux point was set equal to 10.
For that reason the deviations are greatest for the flux points in the outer
regions of the core. It might be menticned that neither the DC4 calculations
nor the SYNTRON calculations give the correct solution as the number of
flux points used is too small. Experience has shown that the correct sol~
ution is probably found somewhere between the two results,
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