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1. INTRODUCTION 

In the theory of magnetism the operator equivalents method is well 

established. Stevens was the first to invent the operator equivalents method 

in crystal field calculations and he introduced a set of operators which have 

been widely used. These Stevens operators, denoted O? , have the disadvan

tage of not having systematic transformation properties under rotations of 

the frame of coordinates. Another set of operators, the Racah operators, 

denoted oY , are tensor operators and they therefore have systematic 

transformation properties. Both sets of operators are expressible as angular 

momentum operators. They are treated in chapter 2 together with relations 

connecting the two se t s of operators. 

In magnetic s y s t e m s it i s convenient to use the Holstein-Primakoff 

transformation to express the angular momentum operators in Bose operators. 

The angular momentum operators are tensor operators of rank one. The 

Hoistein-Primakoff method is a cumbersome way to calculate tensor operators 

of rank higher than one in t erms of Bose operators expressions. Therefore 

in chapter 3 we use another method to express the Racah operators in terms 

of Bose operators by formally expanding the Racah operators in a well ordered 

Bose operator ser i e s and match the matrix elements between corresponding 

s tates . 

The magnetic properties of the heavy rare earths metals are described 

by the combination of indirect exchange interaction and crystals field effects. 

Because of their large orbital moments, the heavy rare earth-metals display 

large magnetostriction effects, that modify the magnetic anisotropy caused by 

the crystal field. In chapter 4 we perform a spin wave calculation of the t em

perature dependence of the single ion anisotropy and the single ion magneto

striction. 

The anisotropy forces of the heavy rare earth metals cause the acoustic 

spin wave dispersion relation not to approach zero in the long wave length 

l imit . This spin wave energy gap is temperature dependent. In chapter 5 the 

temperature dependence of the energy gap has been deduced from the tem

perature dependence of the spin wave spectrum and in chapter 6 the tempera

ture dependence has been treated by means of a resonans theory. 

On the basis of the microscopic calculations in chapter 4 of the tempera

ture dependence of the single ion anisotropy and of the single ion magneto

striction the temperature dependence of the macroscopic- anisotropy constants 

of the heavy rare earths has been calculated in chapter 7. By means of 

» e l a s t i c neutron scattering experiments performed at Rlsff a numerical cal

culation of the temperature dependence of the macroscopic anisotropy con

stants of terbium has been carried out in chapter 8. 
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2. QUANTUM MECHANICAL OPERATOR EQUIVALENTS 

2 .1 . Introduction 

The Operator Equivalents Method was developed by Stevens , when he 
determined the matrix elements of crystal field potentials for some rare 
earth ions. The eigenfunctions of a rare earth ion can conveniently be written 
a e ^ l * ! L S J J > . n being the number of 4f-electrons. L the total orbital 
angular momentum, S the tola! spin angular momentum, J = L> + S the total 
angular momentum and J the z-component of J. A direct calculation of the 
matrix elements of the crystalfield potential W (x.y.z) requires a decompo
sition of the eigenfunctions in determinantal product states of 4f one electron 
states. This is a tedious procedure and instead of doing so the operator 
equivalents method is used. Given the crystal field potential in Cartesian 
coordinates the operator equivalent of W (x, y, z) is found by replacing x, y, z 
by the respective Cartesian components of J*! Jx, J , J2 taking into account 

the noncommutation of J , J and J . In this way an operator is formed with x' y z J 

the same transformation properties under rotation as the potential. The 
method depends on the fact that within a manifold of states for which J is 
constant there are simple relations (multiplicative factors) between the matrix 
elements of the crystal field potential calculated directly and by use of the 
angular momentum operators. These multiplicative factors are determined 
by returning to the direct integration method using single electron wave-
functions by using fractional parentage coefficients. The Stevens method 
of obtaining the operator equivalents are thus difficult. A more direct deter
mination of the operator equivalents can be given on the basis of the tensor 
operator formalism developed by Racah . 2 ) 

2.2. Racah Operator Equivalents, 0 „ 
— £ i 3 

A set of irreducible tensor operators are defined through their trans
formation properties. The Racah operators are irreducible tensor operators, 
which means that the set of 2K + 1 operators ( L (q - K, K-1, K-2, -K) 
transform under rotations of the frame of coordinates (through the Euler 
angles a, 0 , Y ) " U j ^ r j times the spherical harmonics, I „ (a , s ) 
namelv ' namely 

toff) 6*lt 3X*tft,p'1*!r 6« $(«.M) 
X) 

J is here used to denote a generalized angular momentum 

(2.1) 
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The matrix elements of the rotation operator D(a,f,Y> are 

(2.3) 

(the summation is over all positive o such that the factorial terms are non 
negative). 

Since the operators of total angular momentum are multiples of the 
infinitesimal rotation operator«, we may replace the unitary transformation 

on the left by a commutator, giving for any component of angular momentum 
3) J u . Edmonds 

c i A * J - L åer <*r»i'*«> *«> 

Using the commutation relations of the components of the angular momenta 
J a we find the original definition of the irreducible tensor operators given 
by Racah 

[J*, 5M] - pk*ti-%mt) oK9u „.„ 

L%,o<|] • % ft* (2.6) 

The Hacah operators in terms of angular momentum operators J , J , J 
can be obtained from the [ J", 0 „ ] commutator relation if the operator 
with maximum q value, namely q = K, is known. The CX^operator is calculated 
using the Stevens equivalents method on the spherical harmonic l ~ ( l , f ) 
expressed in Cartesian coordinates. 
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For the spherical harmonic » K ^ 8 . ' ) *« f">d. Edmonds 

K*tø*)-">*P& PK
K(aaB)z KU£1 PK,,„*\ ."1 (n) 

According to Jahnke and Erode4' the associated Legendre functions P R (cose) 

give for q = K 

Introducing Cartesian coordinates we tind from the two relations (2.1) and 

(2.8) 

Multiplying bytf at + j a n d replacing " f
 l y by i^ + i J • 3 we find Ctøj 

flu - i£ fwi on K 
(2.9) 

The operators Ov are obtained by means of the relation 

<vf (2.10) 
0,,-,-";*&,. 

The Racah operators have earlier been tabulated for all values of K up to 
K ~ 6 by Buckmaster and Smith and Thorn lejr', and up to K - 7 by Buckmaster 
et al . In table (1) the Racah operators for all values of K up to K = 8 are 
tabulated based on calculations done by Danielsen and Lindgård8'. 

The matrix element of a Racah operator is determined within a system 
described by a state vector which is a simultaneous eigenvector of the angular 
momentum operators J and Jx. in Dirac's braket notation the eigenvector 
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is given by | J m >. The matrix element within a zuanifold of given angular 
2) 31 

momentum J is . Racah and Edmonds 

< Jml 6«,, I3m'> . (-1) (Z, J i)<Jlfii«l# (2.11) 

The factorization of the matrix element of the Racah operator in a reduced 
matrix element ( J | | 8 [ |J ) independent of m and a 3j-symbol containing the 
m-dependence or the rotational dependence of the matrix element is a conse
quence of the Wigner-Eckaft Theorem. It should be noted that a tensor oper
ator in general is characterized by its reduced matrix element, here 
( J | | O K [ .l>for the Racah operators. In appendix I it is shown that the reduced 
matrix element is 

(2.12) 

9) 
Numerical values of the matrix elements have been calculated by Hutchings 
and by Birgeneau . Two Racah operators either commute or they do not 
commute. If the operators are acting on different parts of the system, say 
spin and orbit, they commute. If they act on the same dynamical variable, 
the commutator relation is not in general zero. For two non-commuting Racah 
operators the commutator relation has been calculated in appendix 2. 

f^ifil<3ll6«.ii)»3XJI^O»3>gitf..r 
U"Jo»£V»»> •% {2 j3) 

here { } denote a 6 j-symbol. 
For two commuting Racah opera*';:--, we immediately have 

Co^o.S^øjJ-o (2.M) 
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A proper tensor algebra of the Racah operators also include tensor products, 
scaiar products and matrix elements or tensor products. The tensor product 
of two non-commuting Racah operators is defined by, Racah and Judd 

V-«*."** (2.15) 

and for »he scalar product of two non-commuting Racah operators we have 

ld?6?) = <-DK ft« (oa"otK,C <*..«> 
which means that the scalar product is proportional to the xero-order tensor 
product. The matrix element of the tensor product of two non-commuting 
Racah operators is 

( 2 . U ) 

The entering reduced matrix element is 

ciro*'awfij>w-«>R{5^}^«,o><jio^ij> 
(2.18) 

The tensor product of two commuting Hac-ih operators is defined by 

(2 . IS) 

and the scalar product of two commuting Racah operators turns out to be 

~<M£<*> | _ , , , , * / „ „ . . /googut) ) * (o/wo'J;. MJVSS« {dMdf"f 0.« 
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The matrix element of the tensor product of two commuting Racah operators 

with the reduced matrix element expressed through a 9j-symbol: 

[-.si) 

2) All Sj- and 6j-symbols are calculated numerically by Rothenberg et al 

2 .3 . Stevens Operator Equivalents, d% 

The operator equivalents mentioned in the introduction defined by Stevens 
are related to the Racah tensor operators in essentially the same way as the 
tesseral harmonics are related to the spherical harmonics. The Racah oper
ators namely transform under rotations of the frame of coordinates as the 
spherical harmonics, whereas the Stevens operators transform as do the 

tesseral harmonics. The Stevens operators 0 » are expressed by the Racah 
8) operators, Danielsen and Lindgård 

(2.23) 

(2. 24) 

(2. 25) 
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^ f ø a re the normalization coefficients of the tesseral harmonics. The 

Stevens operators expressed as angular momentum operators are given in 

table (2) for all even values of K up to 8, and t h e J ( £ - c o e f H c i e n , s a r e &ven 

for K up to 8 in table (3). 

3. RACAH OPERATOR EQUIVALENTS EXPANDED IN BOSE OPERATORS 

3 . 1 . Introduction 

Until now the Racah operator equivalents have been expressed as angular 

momentum operators, table (1). When the operators are used for statistical 

mechanical calculations in quantum mechanical angular momentum systems 

such calculations are made difficult by the fact that the commutators between 

angular momenta are still operators, namely 

£V*J- ^ 

rvJ—J* 
Wrl- in 
(in units of h) 

The fact that the z-component of the angular momentum J can only take 

2 J + 1 values and because of the kinematical length condition J • J = J (J + 1) 

and the minimum equations (J ) =0 and (j") + ' = 0 together with the 

form of the commutation relation statistics of spin systems and thereby a 

systematical perturbation theory are difficult to establish, Fogedby1 3 ' . To 

avoid these difficulties the angular momentum operators are transformed 

into creation - and annihilation operators, (second quantization) ei ther Bose 

operators or Fermi operators that have well-established stat is t ics . In con

t ras t with the angular momentum operators the Bose and Fermi operators 

obey commutation relations that result in c-numbers, namely for 

Bose operators: 

ty,fliJ - ty ; ty^il- I^,aJj-o (3.4, 

(3.1) 

(3.2) 

(3.3) 
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and for 
Fermi operators: 

(3.5) 

(where [ , ] denotes commutator and { , } denotes anticommutator). 

3. 2. Angular Momentum to Bose Operator Transformations 

Ir. magnetic systems where the Hamiltonian is expressible in angular 

momentum operators the eigen states are in semi-classical terms described 

as spin waves whereas in a quantum language the eigen states - the normal 

modes - are described as magnons. Various collective modes occurring in 

many-particle systems are Boson modes, and among these are the magnons, 

obeying Boson commutation relations and Bose statistics. 

The idea of transforming an angular momentum operator into Bose oper-

ators was first carried out by Holstein and Primakoff '. Another transform

ation is the Dyson - Maleev transformation which in contradistinction to the 

Holstein - Primakoff transformation is non-hermit ian. In the following we 

are going to consider such angular momentum to Bose operator transform

ations. The original Holstein - Primakoff transformation is 

(3.6) 

(3.7) 

(3.8) 

The operator ft. is called the number operator and its eigenvalues iij are the 

spin deviations of the 1 atom in the many particle system . nj represents 

the difference between the z-component of the angular momentum of the 1 

atom and its maximum value. Thinking of the square roots of the transform

ation as given by their Taylor expansions we have 
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(3.9) 

(3.10) 

for which reason the commutation relation between J* and J j turns out to be 

K,:fl-££-j;£ 

2 *2c (3.11) 

which agrees with the angular momentum relation (3.3). The Holstein 

- Primakoff transformation is defined in the space of uigen-f unctions of the occu

pation numbers n, = 0 ,1 , 2, The subspace of functions of the occupation 

numbers n. * 2J + 1 is called the non-physical space. The physical states are 

those for nj = 0 , 1 , 2 , 5 , 2J . 

The 2J + 1 physical states may either be expressed as angular momentum 

states or as deviation states. Starting with the ground state the angular 

momentum states | J, m ) are 

while the deviation states | n ) are 
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| 0 > i I 1 > , I 2 > , • • • l r x > , " • | 2J + 1> (3.i3) 

with the corresponding energy eigenvalues 

£„ < £1 < £ z <. • • • < £n <• • • < e ^ , (3.i4) 

The angular momentum operators act on the eigenstates, | .1, m ) 

J 2 | J , m > * m\J,m) j m- 7,3-1,7-2,— , - J <S..5) 

while the creation and annihilation operators acting on their corresponding 

eigenstates give 

1 l n > - / A T J / I - O ,3•,9, 

Because of the closure of the Holstein - Primakoff transformation via the 

square roots they a re expanded as a finite ser ies in powers of the occupation 

numbers. This approximate second quantization method is applicable if the 

average values of **>'•• occupation numbers, or spin rtevinffons are 

small. p o r J = | the expansion is inaccurate, Tyablikov . 

Expanding the Holstein - Primakoff square root we find: 
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and therefore the approximate transformation formulae lurn out to be 

3"* ffi(<-£<&-&«******—') (3-24' 
It should be noted that the transformation is Hermitian because (J ) = J and 

(J") =J+ . 
In the approximate second quantization method where the Holstein - PrimakoE 

square root is expanded in powers of a. a* all higher order terms contribute 
to terms of lower order in the expansion using the commutation relation 
between Bose operators. A well ordering of the Holstein - Primakoff square 
root, which means that all a. operators come in front of all the a* operators, 
involves a to the left commutation of all higher order terms. 

l/ "l a l 
It is possible to carry out the well ordering of the J 1 - j , , expansion 

of the Holstein - Primakoff transformation. We use the following relations 

n-1 

f»* 
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We find 

T (3.27) 

This expansion is exact and shows the correction terms from all order in 
I /J . Now the angular momentum operators are tensor operators of rank one. 
To use the Holstein - Primakoff method to calculate in terms of Bose oper
ators expressions of tensor operators of rank higher than one is very cumber
some. To overcome this we use later in this section a different method where 
we formally expand the Racah operators in a well ordered Bone operator 
series and require that the matrix elements between corresponding states are 

equal. 
In the Bose language terms with two Bose operators describe non-inter-

acting magnons and terms with more Bose operators describe interactions 

between the magnons. After the number of the Bose operators we talk of 
mult i scattering processes, for which reason four Bose operators describe 
a two-magnon interaction. 

The interaction between magnons divides into two parts: the kinematic and 
the dynamic interactions. The kinematic interaction is due to non- Bose 
properties of the operators which occur in the Hamiltonian, and is a conse
quence of spin statistics, namely that the maximum number of spin deviations 
that can occur at any atomic site in a many-particle system with angular 
momentum J is 2J. Take as an example spins of magnitude \ then clearly two 
spin deviations cannot reside at the same site# and the interaction that pre
vents this from occurring, the kinematic interaction, is a repulsive one. The 
dynamic interaction arises because -\ costs less energy for a spin to suffer a 
deviation if the spins with which it directly interacts have also undergone 
deviations from their fully aligned state; the dynamic interaction is attractive, 

I g\ 
Marshall and Lovesey . The terminology of kinematic and dynamic inter-

171 
actions was introduced by Dyson in his analysis of two spin-wave inter
actions in the Heisenberg ferromagnet. He showed that at low temperatures 
the kinematic interaction is small. 
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To avoid this difficulty when doing interacting magnon calculations we 
follow Dyson'7'. who says that the operators for a real spin system may be 
associated, in some hypothetical space, with "ideal spin wave operators", 
which possess Bose properties. Nearly independent excitations are meaning
ful only at low temperatures when the probabilities of the processes, which 
are calculated by means of ideal spin waves, are equal to the probabilities 
of the processes of the real system. Under these considerations, we can obtain 
the Dyson - Maleev spin to Bose operator transformation, Tyablikov 

%- /*5 (i-éa&fa (3.29) 

(3 . 30) 

The creation and annihilation operators for Dysons ideal spin waves 
obey Bose commutation relationships. But now the transformation i s no 
longer a Hermitian transformation as J* and J~ are not adjoint. Consider i 
a check the [ J} , J~] 

commutator 

m 2«7( (3.31) 

Later Oguchi'8' has shown that the Dyson - Maleev transformation i, 
equivalent with the Holstein - Primakoff transformation. 
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3 .3 . Racah Operator Equivalents Expanded in Bose Operators 

To calculate a vei l ordered Bose operator expansion of the Racah oper
ators we formally expand the Racah operators in a well ordered series of 
Bose operators and require the matrix elements between corresponding states 
to be identical. In low temperature calculations we require correct matrix 
elements between the ground state and the first excited state. It turns out that 
it is only possible to match the matrix elements between two states exactly 
so in perturbation theories for higher temperatures an approximate matching 
of the matrix elements between the ground state and the excited states will 
be more appropriate. The well ordered expansion of the Racah operators is 
given by 

0*.% " ( **• * *%i *& * Avdfoa + —)& #• »« 
The coefficients are real and determined by matching the matrix elements 

in the following way 

(3.33) 
Using formula (2.11) for the matrix element of a Racah operator and the 
formula for creation and annihilation operators acting on deviation eigenstates 
(3.18) and (3.19) we find. 

(-»"(-In J >L%)) <?»**»> = 

(3.34) 

From this formula we find the expansion coefficients 

(3.35) 
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in appendix 3 it has been shown that for n = 0, n - I and n = 2 the coefficients , 

turn out: : 

M* 4 ~ / ? * ? \ I 

Alt'-ffiOil0KM>(-j%w) J n-o (3.36, j 

I-J * >* / I 

/j = 1 (3.37) ] 
i 

IJK 0 \ j 

I'-7 « -3-%) 

n-Z (3.38) 

Instead of these cumbersome expressions for the expansion coefficients 
the following have been calculated in appendix 3 

1 " f (3.40) 
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(3.411 

where the function S— is also defined 

' • (3.42) 
By means of these coefficient expressions and the general Bose operator 

expansion of the Racah operators they are calculated for odd values uf K as 
well as even values of K up to K = 8, table (4). I t should be not iced that 
a l l Racah operators ar i ' " " ' ' * ' •""--»nsions i n Boseoperators 
included the o p e r a t o r Oj n 0 2 n . . . Og^ The negativt valued operators 

are found by means of (2. lu,. ki. .... upermur expansions only terms with up 
to five Bose operators are written out because of the limited validity of the 
spin deviation representation. Further the Stevens operators expanded in 
Bose operators are calculated for all even values of K up to K = 8, table (S). 

Finally in this section a comparison of the result of the two methods of 
expanding the angular momenta in Bose operators will be carried out. From 
table 1 and table 4 we find 

Therefore we find for J , when we use 

S, * J J Sx« 7(J- Vi) . 5, - 3(J-Vz)(> 1) 

This expression calculated by matching matrix elements is exactly the 

same result as the Holstein - Primakoff method gives 
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4 . THE TEMPERATLRE DEPENDENCE OF THE SINGLE ION 

ANISOTROPY AND THK SINGLE ION MAGNETOSTRICTION 

4 . 1 . Single Ion Anisotropy unti Singie Ion Magnetostriction of a F e r r o m a g 

net ic Crystal with Hexagonal Symmetry 

The crys ta l field i c t ing t»n a jvirtioukt: ion depends on the an i so trop ic 

distribution of the other ions in the hit'ice :md on .he conduction e l e c t r o n s . 

An additional contribution to the magneto crj'stal l ine aniwotropy is c a u s e d 

by the magnetos tr ic t ive counting between ihe magnetic moments of the i o n s 

and the crys ta l lat t ice . This magnetoelast ic coupling accompanies the m a g 

net ic ordering in the crys ta l . In this sect ion we want to calculate the t e m p e r a 

ture dependence of the s ingle ion magneto crysta l l ine anisotropy and the 

s ing le ion magnetostr ict ion of a ferromagnetic Bravais latt ice with hexagonal 

s y m m e t r y . The magneto crystal l ine anisotropy of an unstrained hexagonal 

Bravais tattice in a c - a x i s representation i s given by. Cooper . El l iot t Nettel 
19) •>*)) 

and Suhl and Goodings and Southern . 

The 0„ ( c ) - operators a r e Stevens operators defined in (2 .23 ) - ( 2 . 2 5 ) and 
t h e V f » e « « S « > ' s are the cryst.,1 field parameters after Elliott and 

Stevens'* '. 

For temperatures lower than the ordering temperature T , the single 

ion magneto elastic Hamilton,.™ of a hexagonal Bravais lattice" is. Callen and 

Callen and Danielsen '. 

•4E Wot** tfta)tBl (ttøo-ttøj 
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+ bi (i?o*(o+ttøv)* titfol«)* *«#») 

•*» (tf #<&-**#*>)}. w.2) 
'-* 

The magnetostriction has b,en expanded after the irreducible strains of 
the hep-lattice. Call en and Callen ' 

r« 
e * * -

tf-
tf-

tf-

fc«« + tjM + t j l 

?(f»-ie*,i 

*(£*«-£#) 

£«> 

CjZ 

H.3) 

tf - £« 
oS(c) are the Stevens operators and the B1 are magnetoelastic coupling 

constants. The elastic energy associated with the homogeneous strains i s . 

Callen and Callen' 22) 

*Uri(tf)»+«f)«j + icH«*)1* aif) (4.« 
Omitting the non-homogeneous strains or phonon modes causes the elastic 

energy to be pure classical. The C'8 are the elastic constants of the group 
of the irreducible strains. They are related to the five independent Cartesian 

22) 
elastic constants by, Callen and Callen 



Cr « Z(c»-Cfz) 

(4.5) 

\ ollowmg Turov and Sliavrov" ' and Cooper we think of the magnetic 

moments of the spin wave preceding sufficiently fast that the magnetoelastic 

strains tire unable to follow the precession. This is the frozen lattice mode! 

which implies a substitution of the equilibrium values for the irreducible 

strains. 
p 

bet e be a shorthand notation for the irreducible strains of the hexagonal 

magnetic lattice. We separate the Hamiltonian in a strain dependent part 

) and a strain independent part HQ . We set up an expression for the free 

energy of the system and minimize the free energy with respect to the i r r e -
r r 

ducible strains e to find explicitly the irreducible equilibrium s t ra ins? 

The free energy is given by 

/ .*,_*.!, ^ ^ 

The equilibrium strains ;ire found by minimizing the free energy: 

UI')-*>TJUTA.{ £<*>+*«*»] 

Bt 

Man <-^F>-° as 
(4.7) | 
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It is not a simple task to differentiate inside a Tr-operation. The permissi
bility of doing so involves a knowledge of how the wave functions in the Tr 
-operation are influenced by the differentiation procedure. 

The actual calculation of the equilibrium strains is performed by means 
of (4.2) and (4.4). Expressed by the elastic constants, the magnetoelastic 
coupling constants and thermal mean values of the Stevens operators wt* have 
for the equilibrium strains (remember: a c-axis representation) 

(4.8) 

* (4.91 

v i i l 

+ £Z«>1rt>i+*ZZ«tvi>i} ,4,0, 
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t t 

$l- i {fil I «£«:>• * t I<°H * Æ<°H-
' <• l * * «• 

*4Z< 0 f^> i ] (4-,3) 

a 
From the point of view that the magnetoelastic effect for T ( T causes a 
modification of the magnetocrystalline anisotropy we calculate the temperature 
dependence of the anisotropy. We see that the magneto striction causes a 
modification of the "unstrained" anisotropy terms as well as a generation of 
extra anisotropy terms. The temperature dependence of the unstrained 
anisotropy turns out to be, T ^ T 

( 4 . 17 , • 
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or, in a shorthand notation defining effective temperature dependent crysta! 
field parameters, jjjj vf.T). The transition temperature T is used as a refer
ence temperature. 

7" tao.-. / * o . v 
(4.13) 

•i 

<«4'>-ZH«<^>* 

(4 .19) 

(4.20) 

(4.21) 

from where we find for the effective temperature dependent crystal field 

parameters, 

%tr>- dtCJ-gcnffr)- B^LT)1"'\T) (4-23, 

#ffV * di(Tc)-$m I"''CT) - siftn^cr) (4.25, 
The extra anisotropy terms are generated by the ^T , e* . e' and e* 

strains. The temperature dependence of the anisotropy caused by these 

irreducible strains is 

+ ^ ^ O f f C ) ^ I (4.26, 



o4«) f r> = - 2 1 ?[CT) { &cr) < 0 » • + dier) < 0 ^ -
* * 1 

+ *S,U)<dllto\\ (4-2') j 

(4.28) 
3 

The temperature dependence of the irreducible equilibrium strains is given ?• 

by the formulae (4.8) - (4.13). At the critical transition temperature T c we 

find for the temperature dependence of the anisotropy i 

<QM;>Ts - Z. dial) <(%»>. TmTe ,4.30) j 

<^);>r.rc=Z5/cr,)<o;a)>^rt 

(4.31) 

(4. 32) 

(4.33) 

The last expressions show explicitly the disappearence of the magnetoelagtic 
coupling at T - T . 
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In the temperature region T ) T the magnetoelastic coupling is not 
effective as the magnetic moments are no longer ordered. On the other hand 
the normal thermal expansion is present. The temperature dependence of the 
anisotropy is therefore in this region determined by the temperature laws of 
the Stevens operators as as well the temperature variation of the crystal 
field parameters Bj . They depend on the lattice constants of the hCNagonal 
lattice. In a point charge model calculation after Hutchings we find this de
pendence to 

BT(^f) ** -. (4.34) 

Taking the value of the lattice parameter r at T = T c as reference temperature 
we can expand the crystal field parameters from this value of the lattice 
parameter. For T ) T and to first order in the lattice parameter 

but 

5 f / f ) •** 1. , for which reason 

so 

52m * 32iTt)(i-u>i)$f) (4-35) 

where Ar means the change in lattice parameter measured out from the 
lattice parameter value at T = T ; 

The temperature dependence of the anisotropy in the region T ) T 
therefore becomes: 

(4.36) 

(4.37) 

•C 

(4.39) 
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4. 2. Temperature Dependence of the Stevens Operators 

To find the temperature laws of the single ion anisotropy and the single 
ion magnetostriction we must calculate the temperature dependence of the 
Stevens operators. This might be carried out by means of either a molecular 

field or a spin wave calculation. Using the Boseoperator expansions of the 
Stevens operators we here perform a low temperature spin wave calculation. 

In appendix 5 it is shown that the Hamiltonian of the magnetic system turns 
out to be 

(4.40) 

A s a consequence of including up to four Rose operators in the calculations 

(two-magnon interactions) the characteristic coefficients of the Hamiltonian 

are 

fy = B%+ &\ <4-41> 

Here the A EQ, A Aq and A B terms come from a treatment of these higher ! 

order terms in the Hartree-Fock approximation, which is a second order i 

perturbation theory, while the EQ, A and B come from the non-interacting ' 

part of the Hamiltonian . In appendix 4 it is shown, using a method by 

Kowalska and Lindgård261, how this Hamiltonian is diagonalized and brought \ 
to the form 

{ 
M- U+Z^^i^+z) H.42) | 

the familiar harmonic oscillator form 
where 



- 37 -

=̂ JcAf-iy* (4.43) 

is the dispersion relation of the interacting magnons and n is the number 
operator, n ~ F F . F and F are creation operator and annihilation 
operator of the diagonal representation that are described by the eigen-
functions |n ) . The diagonal representation operators F and V art- con
nected with the Bose operators a , a through the relations 

(4. 44) 

F F+ F and K obey the Bose commutation relations 
q' q -q -q 

(4. 45) 

all other commutators being zero. 

To calculate the temperature dependence of the single-ion ani sot ropy 
and the single-ion magnetostriction we set up a calculation of the temperature 
dependence of the Stevens operators summed over a Bravais lattice, so 

,' %*o (4.46) 

Mi*1"! ' 
As a basis of these calculations we have performed the necessary Fourier 
transformations of the Bose operators in table 8. The non-interacting part 
of the Hamiltonian involves the following transformations 

(4.47) 



,*/jt (4.4B) 

l¥^^^ 
The interacting part of thfe hamiltonian contains the four Bose operator 

expressions: 

»3*4 

M * 

LAW*- y^VnkSS^Wj 

The thermal mean values of these two magnon interaction terms are decoupl* 
by use of the Hartree-Fock approximation giving: 
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£Z/«,-v^<<<VV-
w» 

(4 . 50) 

»»*» 

(4 .51) 

(4 .52 ) 

We have only written out an even number of Bose operators as matrix elements 

of an odd number of Rose operators are zero. This means that the thermal 

mean values of Stevens operators o5 ( ), summed over a Bravais lattice, for 

q odd are zero. In a Bravais lattice the dispersion relation constant B is 
I 

real fsee app(4)), which implies the mean values of the Stevens operators 

Ojt (s) with q even to be zero. Therefore the only mean values being different 

from zero are the following 

<( "Z. Of(C ) y ± 0 <1 even and q 0 

I rit temperature dependences a re of course different whether we do a non 

-interacting or a magnon-magnon interacting calculation. Below we distinguish 

between these two possibilities. 

By means of the Bose operator expansions of the Stevens operators, 

given in table 5, a Fourier transformation and a Hartree-Fock approximation, 

we find, taking magnon-magnon interactions into account, the temperature 

dependence of the Stevens operators summed over a Bravais lattice. 



- 4U - 1 

«« 1 



(4.5'J) 

Two characteristic functions A M(T) and b(T) are defined to bring the tem

perature laws of the Steven operators summed over a Bravais lattice on a 

more closed form. A M(T) is connected with the relative magnetization m(T) 

through the relation 

mir)- — • — = / - AMIT) (4.54) 

flto) 
where M(T) is the magnetization at temperature T and Mfo) the magnetization 

at T - 0. The b{T) function accounts for the ellipticity or the non-circular 

spin pressesion about the direction of magnetization, therefore it is a result 

of the non-cylindrical anisotropy. A M(T) and b(T) are defined through the 

relations 

(4.55) 

As already mentioned the B -coefficient of the diagonal energy expression 

is real for a Bravais lattice. This means that we have as well for a Bravais 
lattice 

<fø-££<«W > (4.55a) 
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Substituting the characteristic functions A M(T) .nd b(T) we find: 

<I^>-2^v{f-ji«m+|^(«*»»«*+> l o»*)) 

<7(fw >-«3»V {1-2l6MW + &S*(2éhiT)?+i(»*)} 

<£($«»• flP^S arier;* 

KZPfry-HO^NÅLT? (456) 

Stevens operators with q ) 4 do not get contributions in a theory involving 
only two-magnon interactions treated in the Hartree-Fock approximation. 
These rather complicate:! expressions might be analysed in different ways 
making it possible to compare with simpler, but well-known theories. 
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lu the infinite spin limit .1—•• the different .1-dependent coefficients are 

examined. 

»fri-1 

3, &* J.Æ" - 1 

and the temperature laws then heeome 

< L 0/<c>>* ZS, fH Nkr) ( 1 -f AM(T) ) 

<Z$tc»S b%N{i- nåh«) *45*hm\ SfAr)*} 

<£<#«>£ natter} d-1£AMij>) 

<Zo*i»ysizs^^AT)z 

<ZOl«.)>Si 16$ihf{ 1-2låMCn+2ti)AMi.Tf+ 10S4CT)ZJ 

<Z<t«»2 3l&«Aai( 1-$AM(r>) 

(4.57) 



To proceed we set up a Tayior series with 

x = 4M(T) and use thot m(T) - 1 - & M(T, 

OL-1 : (i-&mn)i= I-3/IM(T) + 3AM(T)2— - ma) 

<*afo: (l-AMLr)f°= 1-1OIM<.T)++5AMLT)1---- = mur) 

«.s21: (l-t,Mir)f- 1- 2UMCT)+210AMlT)*--" »mir)" 

*=J6: li-tMir))M= 1-36iMiT)+6WAMa)i-.~m<T?6 

(4.58) 

The temperature laws of the infinite spin limit are therefore only to second 
order in A M(T) and b(T) by use of the Taylor expansions written as : 

3»o 
*M Jf/*.«!/, , K(K+1)tKCK*1i-2l/1i 

< D # c » S €*5« mirf'^.d+Acrf) 

(4.59) 
explicitly for K 2, 4, 6 and 8 

<Z0;(u>3ttf«»VWCT>*. l f^
4fe 

1,10s 

1 



- 45 -

hi 

H 

explicitly for K = 2, 4, 6 and 8 

69 

^ ' /si 

explicitly for K - 4,6 and 8 

< E q*w> S 110 ^ v^r;* 
* 

A, fSjf 

(4.60) 

(4.61) 

The b(T) = 0 limit 

If we put the parameter b(T) = 0 corresponding to circular spin precession 

or cylindrical anisotropy alone we find the temperature lyw of the Stevens 

operators with only q = 0 operators left. 
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<Zqt
,ftJ>sC**^T> K(K*1)/l (4.62) 

27) 

This is nothing else than the well-known low temperature K(K + l ) /2 law, 

which has been calculated by many authors as the temperature law of the 

magneto crystalline anisotropy. This power law has been calculated by 

classical as well as quantum mechanical methods; see Callen and Callen' 

for a review. What the actual calculation in the infinite spin limit really 

does is to show that the second order .term in this series comes exactly out. 

The non-interacting limit 

For finite spin values the calculation based on interacting magnons in a 

Hartree-Fock approximation explicitly sets up the different temperature laws 

of the Stevens operators oS(c) for q = 0, q = 2 and q = 4. But even a non-inter

acting calculation gives different temperature laws of the Stevens operators 

with q = 0, q - 2. For this non-interacting limit we find for finite spin values 

(4.63) <Io;rc>= CSKMT>«™»' 

%'Z 

<£<*«>-C*élM (4.64) 

explicitly written out: 

%*o 
<£<£«>) = 2SzN^m(T)3 
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<?>*«>>.» ZS,/ZVMT) 

the q = 4 operators are zero in the non-interacting limit as they depend on 

b{T) to the second order. 

On the basis of the calculated temperature laws of the Stevens operators we 

wc conclude that the i\ , the € t , and the e 3 contributions to the magneto 

crystalline anisotropy are zero. Actually besides the unstrained anisotropy 
ct l a * Y 

only the I ' , c ' and * i strains contribute to the magneto crystalline 

anisotropy. In the approximate infinite spin limit we find for the anisotropy 

and the magnetostriction, remembering the magnon-magnon interaction theory 

developed only holds for low temperatures (T( T ] 

3/Z 

(4. 65) 

<(4.)' >£ %m IW»».TA (ufo)2) 

The temperature dependence of the effective crystal field parameters 

given by (4.22) - (4.25) is expressed through the temperature variation of 

the strains t" '1 ,*««« and l \ 



1 

(4.66) ' 

j 

(4.67) 

* s 
The only extra anisotropy term different from zero-generated by the éT | 

-strain is according to (4.26) j 

< t ø U f r > a - Ifm {B^IT) 2 5 , ^ vitWflwcr)' 

The [emperature dependence of i,* is/jiven by (4 . 6f». ( 4 > 6 9 ) i 
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5. THE SPIN WAVE SPECTRUM OF THE HEAVY 

RARE EARTH METALS 

5.1. Introduction 

The spin wave excitations of the heavy ra re earth metals are treated in 

this section. We want to calculate the temperature dependence of the spin 

wave dispersion relations. The temperature dependence of the spin wave 

energy gap is also treated in this section. 

5. 2. The HamiUonian of the Heavy Rare Earth Metals 

The crystal structure of the heavy rare earth metals is the hexagonal 

closed packed structure (h c pXof course with the c/a-ratio different from 

the ideal c /a-ra t io o f¥8 /3 . The calculations are performed in a ferromagnetic 

structure and spin wave interactions are included to give renormalized ex

pressions of the temperature dependence of the spin wave spectrum. The 

HamiUonian consists of the isotopic exchange, the single-ion anisotropy, the 

single-ion magnetostriction, a term describing the effect of an externally 

applied magnetic field, and the elastic energy is also included. 

The Hamiltonian therefore consists of the following terms 

« = 3lJU *XW*+ Xm* +Jt&t + <ZZ( (5.1) 

The exchange interaction between the magnetic ions of the heavy ra re 

earth metals is indirect. The direct overlap between the 4f-electrons, which 

carry the ionic moments, is negligible, but the 4f-electrons are coupled 

together quite strongly through the conduction electrons. It can be shown, 

see e.g. Mackintosh and Bjerrum Møller that the indirect exchange inter

action takes the isotropic Heisenberg form 

(5.2) 

M 
XM * «% » -I,$<&-£» h-fjc 

when S, is the localized spin on the site Rjand jfR1-'R1')the exchange function 

that depends on the susceptibility of the conduction electrons. But the strong 

spin-orbit coupling in the 4f-shell of the rare earth metals causes S not to be 

a constant of motion. Projecting S on the total angular momentum .1, H pis the 

Bohr Magneton and g is the Lande factor 
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2-4** } => (A-0Z-5 < 5 - 3 > 

we find 

» - E M - S O JA- (5-4) 

where the exchange function now is 

ffi-fy* (fty**-**') (5-5) 
It should be mentoned that the isotropic Heisenberg form (5. 5) only 

provides as a first approximation to the exchange in the heavy ra re earths a: 
29) 

it has been shown by H. B. Møller et al ' that anisotropic exchange is im
portant. 

As the hexagonal closed packed structure consists of two interpenetratin 

sublattices the isotrop exchange takes the form 

#*= -E J(Gr) 7rl-L l(fm») 3Æ-

(5.6) -E 1'(%J tt 
where the two first terms are intra sublattice exchange characterised by the 
exchange functions ^fR, , , ) , J - (Rm m ,> . 1 anil m being lattice sites in the two 
sublattices indexed 1 and m. The third term of the isotrop exchange is the 
inter sublattice exchange characterized by the inter sublattice exchange func
tion J (Biffi). 

Tor a hexagonal lattice, we may write the Hamiltonian for the crystal 
field anipntrony in the c-representation in the for.^i 

£* = E(^o>)^;o;to+4'o>^/0«(0j. (5.1) 



- 51 -

The crystal field acting on a particular ion, which is a result of the anisotropic 

distribution of the other ions and conduction electrons, produces a splitting 

of the 4f-levels. The minimization of this crystal field energy causes a pref

erential orientation of the magnetic moments, which may be viewed classi

cally as resulting from the action of the crystalline electric field on the 

anisotropic 4f-charge distribution. The large spin-orbit coupling then ensures 

that the spin, as well as tht orbital moment, follow the charge distribution. 

The & ^-coefficients are the crystal field parameters defined by Elliott and 

Stevens . 'A point charge calculation of the crystai field parameters has been 
23) 

done by Danielsen . From group theory it can be shown that in the hep 

-structure only B 9 , B . , Bfi and Bfi a re non-zero. (In an ideal hep-structure, 

c/a^VB'3 the Bg-parameter is zero). The OJUc) operators are the Stevens 

operators, defined in (2. 23) - d. 25). In some of the heavy ra re earths the 

axis of magnetization lies in the hexagonal or basal plan. This involves no 

problems of the isotropic exchange but for the anisotropy such a change in 

orientation of the quantization axis might be treated by a rotation through the 

specific Euler angles («,P,T) that transforms the axis of quantization (the 

c-axis) to the direction of magnetization. This rotation of the Stevens operators 

are done by use of the rotation of Racah operators (2.1) and the fact that the 

Stevens operators are linear combinations of Racah operators (2. 23)-(2.25). 

Such rotations of Stevens operators have been treated in details by Danielsen 
n 8) and Lindgard . 

On the basis of this work the general rotations of the Stevens operators 

have been calculated and written out in table 6. We shall hereafter refer to 

this tanle for all Stevens operator rotation problems. 

Tvlagnetic ordering may be accompanied by a magnetostrictive strain, 

which reduces the energy of the system by modifying the crystal fields. Such 

a magnetoelastic effect makes an additional contribution to the magnetic 

anisotropy. Thinking of the spin waves in the classical picture the precession 

of the moments in a spin wave is sufficiently fast for the magneto elastic strain 

to be unable to follow itj it therelore remains static. This is the frozen lattice 

model proposed by Turov and Sharov2 4 ' . 

In addition to single-ion contributions to the magnetoelastic coupling a 

two-ion coupling may also be active. This effect has not together with tne 

anisotropic exchange been treated in the actual case, as it requires a more 

elaborate theory of tensor operators including rotations of tensor operator 

products-. The single-ion magnetoelastic Hamiltonian is here set up on the 

basis of the irreducible strains of the hep-lattice and a group theoretical 

consideration of the symmetry of the hexagonal lattice done by Danielsen ' \ 

The irreducible strains of the hep-lattice are given in (4. 3). 
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i 

tfl&V'V Ct"a) Olconl£f1+ø2c<'>) Ofr 

+/£(({ofr- i'cfa)* bl (£,'o> +£?0>J 

The B , s are phenomenological magnetoeiastic coupling constants and the 

irreducible strains are taken as their equilibrium values because of the frozen 

lattice approximation. They have been calculated in section (4) while the 

coupling constants within the limitations of the point charge model of the 

crystal field have been calculated by Danielsen" ' . The effect of an external 

applied magnetic field H contributes with a term in the Hamiltonian 

where g is the Lande factor and n p the Hohr magneton. The elastic energy 

associated with the homogeneous strains is, Call en and Callen 

The c' are the elastic constants which are related to the five independent 
Cartesian elastic constants given in (4.r») 

dime-
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5, 3. The Temperature Dependence of the Spin Wave Spectrum of the Heavy 
Rare Earth Metals 

The contribution from the different terms of the Hamiltonian to the spin 
wave rtipnerKTon relation has been treated in details in appendix 7. Takint* 
into account tnagnon-magnon interactions the complete Hamiltonian is brought 
into the t'&rm 

Jt- Jto+Jti " HMK +*h* +&»€ Y"°*4e (5.11) 

with 

+CKaKbii-c:bK^) (5.12) 

or in a closed form #5_ \%\ 

(5.1 4) 
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ajj. a^ are mafnon operators of one sublattice indexed "a" and bg, bgar« 
magnon operators of the other sublattice indexed "b". Tha dispersion eona 
take up contributions from all terms of the Hamiltonian. They are •jiven 
through the relations 

&• £,+*£. » IjLm) *• A AH) + i.C'-th U9ui (5. i! 

ctf"&**/£» 4KM +&Um)+c/kci**i +£(1**) (5.i 

$ « Bk+éBt' 3*(*t)* 2£<**J +&*>*) (5.1< 

(S.19 

^ é * fc* «5 — 6 * — a * —.fc* 

#;-«<+*£ -3;<*f)^^4H»t3«^«j (5.21 

& » £«+*Cr * &(.«*; (5 2J 

G-&*(2'G(JU) (5.23 

4 3 c - -2WC-*) ( 5 2 , 

The following relations hold for the dispersion constants, as the hcp-lattic« 
built up from two interpenetrating Bravals sublattioeg. 
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a ; . * « f c 

c K . C (5-28) 

The complete expressions of the dispersion constants are set nn helow. Thp 
renormalixation has been treated in the Hartree Fock approximation by means 
of table 9. The structure is ferromagnetic with the moments lying in the 
hexagonal or basal plane. This is the structure of Tb and Dy. 

The dispersion constants of the exchange 

E.CM) - -V(f(Q)*f'(0}) S,(S,*1) (5.30) 

*f 
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V 
•vi 
2>v^)f^)^<<^K'(v+<a^V<a*.a-«i>J 
•Vi 

V i 

-*Z?w<<v*<^*>) 

(5.31) 

< ( * ) - S,(jM-JCs)+fM) < 5 < 3 2 ' 

7 *2 

*-?'W<4^a>J (5.33) 



ST-

(5. 35) 

+ 2tt-/S) f tøj*<^ 4^> j (5.36) 

+lfr-^) £'(*J <4 r ,^> J (S- 37) 

+24->5J f%f<k^,>i <5-39> 
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f'f*i*S ( 5 - 4 0 ) 

tf f«> - - f V*)5, «5«> 

+ fV*i-jra)*<ft«,fe^>J (5.45) 

The dispersion constants of the anisotropy [two sublattices, a and b) 

-(58l-tfcoi6«.)St(1*&)} (5.46) 
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+ ¥(*&Blms*U6+fHt-%)y 

{ - j Z ( < « * « > + <44,>«V-b> 

(5.47) 

4*f-Mi)» j ^ - j » a ; f * ^ s B i r - ^ » 8 é i t ; ^ (5.4B) 

4jfdH) > 3^3*-*»<^ +21(5$'4 ***}% (5.50) 



(5.51) 

52) 

' (5.53) 

H (ri ti* Wfc- »tf^ftWj£)2£< W 

* > 
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di(0k> - - J H f e + » < J£-*rø*4'43*<)£ (5.55) 

(5. 56) 

" i 

(5.57) 

The dl«pergion conatant« of the magnetoatriction (two sublattice«, a and b) 

(5. 58) 
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(5.59) 



(5.63) 

(5.65) 

' (5.66) 



é£fet> - iWK+xt'fc +tf*k) <5-67) 

+* U;**/* •*##>j |)« Z.< ^fc*> 

(5.68) 

(5.69) 

(5.70) 
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(5. 72) 

*iB^,( iføs 4< + £[Un +*) (5.74) 

- i all (llt+A*t*. + tiiU *«.; (5. 75) 

(5.76) 

(5.77) 

The dispersion constants of the Zeeroan term 

£t(Ut)»'Zf/i»HNS^(cL*S)(S1t^) (5.78) 

Alttuh flbHUn(**f) (5-79) 
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The renormalUed Hamiltonian is diagonalUed using the method by Lind- j 

gird and Kowalska26) giving a dispersion relation with two branches - an j 

acoustical and an optical branch j 

^ K (5.81) 

E being the ground state energy, b . j * the optical excitation energies and | 

h - ~ the acoustical excitation energies. F + F R and GRGK are the delation 

or number operators of the optical and acoustical excitation modes. E x p r e s s ^ 

through the dispersion constants the excitation energies are ^ 

To proceed in finding the temperature dependence of the dispersion re

lation the following thermal mean values appearing in the renormalized dis

persion constants are to be calculated 

As an example 

y £<"**'<*» <?**> ^ 
?* X 4-W**T &£T (5.84) 
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n£G ) are the elgenfunctions of the optical modes and the accoustical modes 
and E £ ' the corresponding eigenvalues. 

In appendix (8) all the thermal mean values have been calculated to: 

<«K.«H> = —^|T—<*<>+—YiT~ > 

Hi • «? ~* (5-85) 

(5. 

«A> ~(&<>'$><<>+?(£ui)) 
£ 0+ (5-88) 

(5.87) 

(5.90) 
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<***>-&/-$<**&** **-4>J 
(5.93) 

«&<>• hi- &<**«%<<>*?**•*) 
(5.94) 

<**> = 4%/V-i ,5-95) 

<<> = tf/far . (5-96' ^vT7 
are the Bose statistic factors, that must be calculated self consistent by 
means of the renormalized energies E„* of the optical and acoustical 
branches. 

As a check of the thermal mean values we symbolically compute them in 
"the Bravais lattice" limit which means C„ = 0 (no interlattice exchange) 
a n d E £ * E £ = E K => < n £ > = < n ° ) 
In this limit we find 

<*>*«*>» <«*£«> = <*£«£> - 0 (5.97) 

and 

< < 4 > » - ^ « ^ > f | ) (5.9.) 

<««*.«>=- i j ^ V i j (5.100. 
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A comparison with the formulae (A4.16) - (A4.18) shows the correspondence 
between the two set of calculations: In section 4 two characteristic functions 
were enough to describe the temperature variation of the single-ion anisotropy. 
A natural extension in connexion with the temperature dependence of the spin-
wave spectrum is the following set of characteristic functions. 

«M(n» » & !!«£«*> ».ion 

AHcr)b - r ^ J E . <***>*> (5.102) 

Ww 

4trU «j£Z.<^<U> <5•,03, 

*<& -sJ^Ll^^) , 5 - , o 5 » 

In proportion to sectior 4 we have here because the hep-lattice is non Bravais 
that 

(5.107) 

Besides these characteristic lunctions we define some intra sublattice functions, 
namely 

ctn* -sfrZ. <**<£> (5-109' 
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dir) - ijZ.<«<fc-K> 

dm • £?<£<> 
By means of these characteristic functions we express the temperature 

variation of the renormalized dispersion constants. Putting those into the 

formulae (5.82) and (5.83) we have calculated the temperature dependence of 

the spin wave spectrum. 

5.4. The Temperature Dependence of the Spir Wave Energy Gap of the Heavy 

Rare Earth Metals 

The anisotropy forces of the heavy rare earth metals cause the acoustic 
dispersion relation not to approach zero in the limit q -» 0, the long wave
length limit. From the expression of the acoustic excitation energies (5.83) 
we find the energy gap 

å(T)Z = rJle(T)1- \Cr)Z (5.112) 

As the dispersion constants have been calculated under influenze of 
magnon magnon interactions in appendix 7 the energy gap is temperature 
dependent. Based on the detailed formulae in appendix 7 we set up the follow
ing relations for the dispersion constants 

A, cr) + %cr) - <&(<>) + %co) 

+&(&;,%?,Struer) 

and 

(5.110) 

(5.111) 
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+ &(å*»*£li SM)~AMCr) 

Here a M(T) and b(T) are characteristic functions defined as in section 4. 
The functions f „ and I. contain contributions from single ion anisotropy as 
well as from single ion magnetostriction. Explicitely written we find for 

(5.115) 

and for f J 
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(5.116) 

TheJfj" coefficients are defined in the equations (5.70) - (5. 77). We 

find by means of (5.113), (5.114). (5.115) and (5.116) the temperature de

pendent energy gap 

Air)1 = <0oW I Mo) t(#t£ )*MLT) J 

-t,lt>)[ #0u>)- (£-{+) AMLTJ] 
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Below we set up the energy gap of the heavy rare earths which means for low 

temperatures the energy gap of a ferromagnetic structure with the moments 

lying in the hexagonal planes. We find in the infinite spin limit 

+360(15) W [ W'-"«r;0J 

* 1764 (%fl9tMU[<mw * - g "»cr) * ] 

^oot^itfifl "»»«•>*-& "**"] ***** 

•*w ($f(*£)*[ ^ « " - k / m r i ' J <*?*+ 

- /*• (&fi£f["*»*- (£) W*J *sW 

f 

-&&<)*$%% [mm3*- WLT)*] 
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-JIM i ZfiWusul'mm'lf *»<r>"] 

-no 4* «; jjTf ^ L f J « + j ^ > o j ^ ^ 
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+*400 ^ 91«£ [mm*+1/mcTj »J C#4 4 * 

•«'**>(g/# tf [ W - J£ **cr>WJ a**rf 

-<H4o(£)*Æ£$£[/*aO* /»^ww"] *44* 

* W (£)\*tf [ «.r,*r {* «w>*] uiw* 

«-2«0 *Ĵ  tf tf [ *»~"+j *,o7*]AM««*!* 

*5M *£ tf tf [ W V g w ; * ] A4*2PC 

-5** % tf tf [ "HrP+åmcrS' J*S2*«* 

-«W> (£)*tf tf [ * w A £ /»,tr;f? ]&**,**. 

-MD ^fc«£ tf [ > W - g **rt * ] A«'** 



Jj Ti. 

-tf?o ̂  »J «£ [ W W "»in *J*>Z4* 

-352?(f J^flJ [ W - | £ "»tf*"] <**•"**) 

**>$ # * (1* "MW^e^t**« J iLltomu) *J«H 

(5.118) 

We have only worked out in details the terms linear in A M(T) and have by 
means of those terms deduced the power law dependences of the energy gap 
on the relative magnetization. To calculate the coefficient of the term linear 
in b(T) in the infinite spin limit the following expressingg are necessary 
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ofl.fO) = { 6 g %-60 % 9t+2t0 ̂  ^"-42 ^ $J CnbcL 

+6 ^ «&<i»J.t-2o fj g£ CK2cL +20 % *£(#>*<*. 

(5.119) 

2.10) * {-i% 3>60 g SJ -2W * < - JO ff tf** 6* 

~tåx*$2* -60% »a*S2cC-60^3„OH* 

(5.121) 

r6»i*4 2*-4SJ* Kami* +$6J£ $LtltoL 

+510^ «&«2* - # £ $ £ « # * * / 
(5.122) 
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The short hand notation of » ° . * ° , B°e a n d « « is that of (4.22) - (4. 25) 

whereas we besides have introduced 

BT - 3£.tr t5-
To bring the expression of the energy gap on a shorter form we consider 

the following schemes 
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From the numbers of the two schemes we deduce the temperature dependence 
of the energy gap as a power law of the relative magnetization plus the term 
linear in b(T) 
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Tlus formula is in a very short hand notation to be able to express the 
dependences of the energy gap of the relative magnetization. 

We finish this section by setting up the energy gap when only the anisotropy 
parameters B? and B» are left. This is the shortest way to give a formula 
that is still realistic of the heavy rare earths. From (5.118) we find 

•«*•($i\*V[ **»*-jf**»*]*rt< 

(5.125) 

6. THEORY OK FERKOMAGNET1C RESONANS 

A phenomenological macroscopic theory of ferromagnetic resonance has 
301 

been developed by Smit and Betjers . The ferromagnetic resonance fre
quency is the frequency of the q - 0 spin wave mode of the magnetized crystal. 
The magnetic free energy>(T,H) for constant T and H is a function of the 
orientation of the magnetization vector, > ( » , » ) . Let the equilibrium direction 
of the magnetization vector be the C -direction, and the small angles of 
deviation in two perpendicular directions 8 and f . Then the equations of 
motion of the magnetization vector M are 
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fis the gyromagnetic ratio, e<tual to Y— *tM*/% 

g is the Lande , s splitting factor, nfl the Bohr magneton and h the Planck con

stant, 

(The equations of motion are in reality nothing else than the classical 

Hamilton equations of motion for the set of conjugate variables ( » , — 9 ) ) . For 

small deviations from the equilibrium position we may use for the free energy 

the first terms of a Taylor Series 

In the equilibrium position we have T^ 0; T = 0. The symbols used mean 

f* = -tf- i Tr= -if— (6-4) 

for which reason 

(6.5) 

(6.6) 

(6.7) 

-Me 'r(%fBtTnf) (6.8) 

(6.9) 
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Suppose the solutions of these equations vary harmonically in time with the 

angular frequency • , that is 

0 = 0 0 * 

f -1. -t 

•iut 

•iut 

(6.10) 

X iøftitoH rfr e 
= o 

from where we immediately find the frequency 

From statistical mechanics we have for the free energy 

(6.11) 

(6.12) 

£ ( e , » ) is the Hamiltonian of the system and (e.e)the direction of the magnet
ization with respect to crystal axes. We find after differentiating the free 
energy: 

(6.13) 

(6.14) 
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v < i^>^ r i ;<^.V-<( i^>j 
(6.15) 

(6.16) I 

Using these formulae for a system with a specified HamiltonianJnd.f) . 

(6.11) gives the q = 0 frequency. 

Without taking into account magnetostriction we consider the single ion 

anisotropy of a hexagonal lattice, given by (5. 7) and calculate on this basis 

the temperature dependent resonans frequency. In the c-representation the 

anisotropy is given by 

4 * 
(6.17) 

However, we want to treat the case with the magnetization lying in the 

basal plane for which reason a rota.tion of the anisotropy must be performed. 

By means of table 6 of Rotated Stevens Operators we set up a rotation of the 

anisotropy through the angles 9 and f . We find 
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- *g u*tb Ot(c>+$(Hctf>-0&BO:«) 

- *gl3)t«i9-/fetfri-t)JiH'»0t«) 

t%intof9-i&ie?9+P*s9)Xi'9 °6">] 

+ K[i^90lU)-i(U#Lrf9+l5*t1oti#''B)(Z«) 

*•* siiS9(lr<i cttoi-ie&d) Ol cg 

r&l[ fr,3CriOt1t>*08 +3aos9) 0*<» 

(6.18) 

i 
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On the basis of this cumbersome expression the quantities (6.14) - (6.161, 
to be put into the frequency formula (6.11). have been calculated for • • #, 
which gives 

-&-T{tok0l«>0]&> + &l[ 75<C0j(s) 0}<S)> 

- (4>fa ofu)> i-<0frs>0fo>)]uftf 
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+ 

.éGéfttUéfl 

(6.19) 



- # ( <0l(o OfiQ> i- <OfCc) 03
6(0>) 

<>+ 
« 

'i 

(6.20) 

« ^ 2 6 < f 

"d lOfc0fa» t %«$(c)0l<s>> 
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- g <<&> 0*es»+ $ <Olco qjto) 

(6.21) 



These second derivatives of the tree energy are put into the frequency 

formula with the two cases, f= 0 and <p - 30 . Omitting the summation signs 

we find, keeping the correlation functions on closed form in the frequency 

expression. 
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H225efef<0fa)0l(:>)>+(ffe!ldt<C<&s4i)> 

+ &2! 4%* (<Ol($)Q*f&«C(%<s)($(»>) 
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+(ér)l[u[ié<0lco0;(o>^<0i'o0i<c)> 

+fz(tOfoOlca^OlMOéCO) 

**$rW(«$<iX&s»*<of/a oho)) 
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-5<%(c)ø>(i)> *- 5 X ^ 0 Ofr) > 

(6.22) 

The correlation functions of the Racah Operators are calculated by means of 
the expression of the product of two non-commuting Racah Operators given 
in (A2.8), namely the following 

(6.23) 

All the necessary correlation functions are gathered in table 10 to which we 

refer for numerical calculations. 

7. TEMPERATURE DEPENDENTE OF MAOtOSCOPir /WTSOTRnPY 

CONSTANTS OF HEXAGONAL FERROMAGNETIC CRYSTALS 

When the magnetization of a ferromagnetic single crystal Is measured 
as a function of an external, applied magnetic field it is found that in some 
special directions - the easy directions - much smaller magnetic fields are 
needed to magnetize the crystal than in other directions. So the energy of the 
crystal depends on the direction of the magnetization relative to the crystal-
axes. The free energy of the crystal accordingly contains a component, which 
depends on the direction of the spontaneaus magnetization and which is mini
mum when the magnetization is parallel or antiparallel to the easy direction. 



This part of the free energy is the macroscopic magneto crystalline anisotropy. 

When it is expanded after the direction cosines « ; of the magnetization Birss ' 

has shown that for a ferromagnetic hexagonal crystal to the 6th order in «. 

the magneto crystalline anisotropy might be written 

T f ^ ^ ^ ) =* Kin * ktir) H?+*i) t Jim (cit
z^)z 

K (T). K (T), K9(T), K3(T) and K.(T) are the temperature dependent ani-

sotropy constants. 

The direction cosines are expressible in spherical coordinates (6,») allowing 

a transformation of the free energy from dependence on the direction cosines 

to a dependence on spherical coordinates. In appendix (9) it is shown that 

this transformation gives the following expression of the free energy 

TlOtf) - k0(r) + K, C T) tin 2& + ki CT) U^ tø +AjCn tu^B 

+kltir)i^,6&c<n6f + --- < 7 - 2 ' 
In the section of magnetic resonance we established different connections 

between the free energy of a magnetic crystal and the Hamiltonian of the 

crystal. Through these relations we connect the macroscopic anisotropy 

constants with the microscopic Hamiltonian of the magnetic crystal opening 

the possibility to calculate the macroscopic constants from microscopic quan

tities. From {6.13) we find 

97<8.f) _ y dMØ.f) v „ „ 
~Jg <—T3~> (7>3) 
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i ;•>!!! (".2) we immediately find. 

lt,lT) li*t26 + 2KzCT)*U4*8&ui0 

(7.5) 

-6 K^LT) S+Vt'Btiuéf (7.6, 

We want to calculate the macroscopic anisotropy constants for some heavy 
rare earth metals. They have a hep-lattice, built up from two interpenetrat
ing hexagonal sublattices. In section (5) on spin waves in the heavy rare earths 
we took the Hamiltonian to consists of isotrop exchange, single-ion anisotropy 
and single ion magnetostriction besides a term coming from an externally 
applied magnetic field. The isotrop exchange is independent of the direction 
of magnetization, whereas the single ion anisotropy and the single ion mag
netostriction are direction dependent. The easy directions of the heavy rare 
earths are in the basal plane, which requires a rotation of the Stevens ope
rators in the anisotropy - and magnetostriction parts of the Hamiltonian. Such 
rotations of Stevens operators and the necessary differentiations are performed 
in table 6 and table 7. 

Taking into account the anisotropy part of the Hamiltonian alone we find 

KitTI = %.{-!£ (<Olv)+«%i») 

(7.8) 

39 

dT(0,f) 



(7.9) 

(7.10) 

In the magnetically ordered phase the magnetoelastic coupling 

causes a distortion of the hexagonal closed packed structure 

and other terms than those originating from the anisotropy 

occur according to the appropriate symmetry. In the frozen 

lattice model we find the following macroscopic anisotropy 

constants. 
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+*offt>>[- se;+s(6? ?<+*£?•*) 

<0*(o>[-* 6HiClfunzf1-e[iUl2<f) 

<0iM)[ieU6<?-l(l&'?,±<&?*)<*" 

(7.11) 
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+§dZi(i?<*32fr 6?ti»2.f) 

<t>}<ø) [%: ¥<£''£* Vag W 

*| ̂  / Sfa2f+ Il fin if) 

-{d!v (tf wr+% *****?)]+ 

+ 3J&ÉÉfaj2ft li^iuHf) 

-§ fø &f <Æ>4?+£[i^.4«[j] + 

*§&l *,W>?-*- Ufc,*f) 

- ? <5& (ifa49 *SuU i 9)] + 



- 97 

+$Bu(€!mzf+ H^nZf) 

(7. )2) 

- % 4a #7*$* ? + il&" if) 



- 98 • 

(7.13) 

<a>> Uftf-g ((&?'+&?*)]+ 

(7.14) 

A'l l f -dependent terms of K , ( T \ K^C?) an^ K,(T) are excluded 

i f onX:/ the hex'igonal terms --re cons ide red . 

The temperature dependence Is expressed through the thermal mean values 

of the Stevens operators that have been calculated in section 4. Besides the 

equilibrium strains are given as function of temperature through the Stevent 

operator thermal mean values, also calculated in section 4. 

In appendix 9 it is shown that the anisotropy constants defined in equation 

(7. 2) are related to the anisotropy coefficients defined by the equation 

+Jb(nPfto»)+ ft* cv sUc69 cøtéf 
+ ... v-w 
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through the relations 

Ho,* M * jos (ttfyT) i-ZiKtLn+z/tKjiTi) a. is) 

(7. 18) 
g 

(7.20) 

A review of the status of temperature dependence of the magneto crystal
line anisotropy has been given by Callen and Callen in 1966. Since then a 
number of authors have dealt with the object Brooks. Goodings and Ralph 
Brooks33', Brooks3 4' , Egami3 5 ' , Brooks and Egami36'. They have extended 
the simple K(K+1)/2 law taking into account the non-cylindrical anisotropy 
by introducing a single ellipticity parameter describing the non- circular spin 
precession. They have found that the axial anisotropy (q=0) is corrected 
linear by the ellipticity parameter in contrast to the result of equation (4. 59) 
where we have shown that the axial anisotropy is corrected by the ellipticity 
parameter squared. Besides they have not been able to set up relations for 
the different non-axial anisotropy (q=2, q=4) as carried out in the equations 
(4. 60) and (4. 61). Finally they have not taken into account that the anisotropy 
constants are linear conbinations of axial anisotropy terms as well as non-
-axial anisotropy terms as has been included in the relations (7. 7)-(7.10) 
and (7.11)-(7.14). 
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8. A NUMERICAL CALCULATION OF THE TEMPERATURE 

DEPEKDENCE OF THE MACROSCOPIC ANISOTROPY 

CONSTANTS OF TERBIUM 

8 .1 . Introduction 

In this section we carry out a numerical calculation of the temperature 

dependence of the macroscopic anisotropy constants of terbium based on the 

formulae set up in section 4 and section 7 and inelastic neutron scattering 
371 

experiments done by Bjerri..n-Møller, Houmann, Nielsen and Mackintosh '. 

8.2. The Temperature Dependence of the Stevens Operators 

The temperature dependence of the Stevens operators has in section 4 

been expressed by the two characteristic functions A M(T) and b(T). The 

relative magnetization m(T) is connected with A M(T) through the relation 

where M(T) is the magnetization at temperature T and M(0) the magnetization 

at T = 0 K. However as is seen from the calculations in appendix 6 zero 

point motion is explicitely taken into account. Therefore we find the zero 

point corrected, relative magnetization to 

where m(0) = 1 - A M(0) is the relative magnetization at T = 0°K and &M(0| = 

0. 00208 for Tb. For terbium it is found that model no. 2 gives the best fit 

to the experimental obtained spin wave dispersion relations at T = 4. 2°K. 

The relative magnetization of Tb is found to agree with the measured 

magnetization curve obtained by Hegland, Legvold and Spedding '. The 

calculated and measured curves are compared in fig. 1. The calculation of 

the ellipticity parameter b(T) as a function of temperature also include zero 

point motion. The temperature dependence is shown in fig. 2. The zero point 

value of b(T) is b(0) = - 0. 00484. 

By means of the two characteristic functions AM(T) and b(T) the tem

perature dependence of the Stevens operators has been calculated. The result« 

that are shown in fig. 3, fig. 4 and fig. 5 are normalized in the following way 

<0i<t,>T/<t$(t')r.o (B-3) 

where the zero temperature values are 
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<°4ft»>r.o"5Mf iøi } <°^\m0'~
4A10 '°' 

<06°co>r-0= 4.S96 fo5' ; < 0 j ( o ) n o * -/.6M yo3 

<Oj(cJ>T=o= 2.756 /o''j <06V)>r,0» J.*5* V 

As <of (c) ) is proportional to b(T) squared the normalised curve is the same 
for<o| (c)> and < Og (c)> . 

8. 3. The Crystal Field Parameters of Terbium 

The crystal field parameters of terbium have been calculated by means 
i point charge model, Danielsen '. 

crystal field parameters are given by 

23) *9) 
of a point charge model, Danielsen '. In a notation after Hutchings the 

5?~ K</r'y B* (8.4) 

Here the S , are the Stevens coefficients which are the proportionality coef
ficients of the Stevens operator equivalents transformation. For terbium they 

Qt a - 1.010 40~l 

0J= -1.12 IQ'6 

(r } denotes the mean value of the n power of the radial distance of the 
4f wave functions. Thej 
they found for terbium 

40) 
4f wave functions. They have been calculated by Freeman and Watson and 
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</f*;> = 0756 a.u. - 0.2t16 <o~16 cmz 

^/f4>= /.42 a.u.. = Ø.m2 10~31 cm* 

</f*>= £69 « « • « 0.0349 10'**cm6 

(1 a .u . = 0.529 10 cm). 

The A™ are here found by summing over nearest and next nearest neighbours. 

The crystal field parameters are therefore dependent of the lattice parameters. 

By means of measurements of the magnetostriction by Rhyne and Legvold 
42) and of the lattice parameters by Darnell the temperature dependence of the 

crystal field parameters has been calculated. These calculations are shown 

in fig. 6. fig. 7, fig. 8 and fig. 9. In an ideal hexagonal closed packed struc

ture B? B2 and B^ are the only finite parameters. In a hep lattice with c/a 

different from the ideal value Y8/3 the B, is also present. However, in ter

bium magnetostriction is effective in the ordered region, which means for 

temperature lower than 228°K. Elliott '. The magnetostrictive coupling 
2 2 4 2 4 

causes the crystal field parameters B„, B-, B-, Bfi and Bfi to be finite. This 

has been shown theoretically by Danielsen . Besides the magnetostriction 

modify the unstrained crystal field parameter B«, B , , B~ and B g . At the 

figures, showing the temperature dependence of the crystal field parameters, 

it is seen that the magnetostriction dependent crystal field parameters vanish 

at T = 228 K. whereas the unstrained parameters B„, B-, Bfi and Bfi are 

finite in the paramegnetic region. The crystal field parameters are given in 

milli electron volts. 

8. 4. The Macroscopic Anisotropy Coefficients of Terbium 

The temperature dependent macroscopic anisotropy constants are found 

from the formulae (7.11) - (7.14). The formulae (7.1 7) - (7. 20) connect the 

anisotropy constants and the anisotr.?py coefficients. In fig. 10, fig, 11, fig. 12 

and fig. 13 the temperature dependence of themacroscopicanisotropy coefficients 

are calculated by means of crystal field parameters calculated in the point 

charge approximation The coefficients are given in milli electron volte or 

in ergs/cm' . For terbium we have at T * 0°K 
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7 3 
1 mev/alom = 5.06642 10 ergs/cm 

The calculated macroscopic anisotropy coefficients are at T : 0°K 

«2 „(0) * 3.5461 mev/atom = 1.7966 108 e rgs / cm 3 

* .(0) = -0 . 5989 mev/atom = -0.3034 108 e rgs /cm 3 

, 6 0(0) = -9.2434 10"3 mev/atom = - 4.6831 105 e rgs /cm 3 

x g 6(0) = 5.1263 10"3 mev/atom = 2.5972 105 e rgs /cm 3 

The macroscopic anisotropy coefficients have been measured by different 

niethods. In the following scheme we have gathered these experimental values 

of the anisotropy coefficients for terbium. 
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It is seen that the theoretical calculated values of ^ . and JL ^ are 

of right order, but the sign of * , n disagree with the theoretical prediction 

from the point charge calculation. The theoretical values of %„ nan(^ *K 6 a r e 

of lower order than the experimental obtained values of the anisotropy coef

ficients and the sign of *fi Q disagree with the theoretical prediction. 

However, the point charge model calculation only gives an estimate of 

the crystal field parameters as this theory neglects the contribution of the con

duction electrons to the crystalline electric fifild. Therefore to make a comparison 

of the theoretical calculated temperature dependence of the anisotropy coefficients 

with experiments we might take the crystal field parameters as adjustable 
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parameters. In fig. 14, fig. 1 5 and fig. 16 we have, however, only scaled the 

theoretical zero temperature values of the anisotropy coefficients with the 

experiment.! values obtained by Feron et. al. '. We find a good agreement 

between experimental and theoretical values of x , 0 and « 4 „ but less good 

agreement between the x6 ^ values. 

SUMMARY 

By means of the operator equivalents method we have in chapter 2 cal

culated an expression of the Racah operator, Oj, with maximum q-value, 

namely q=K. From this relation the complete set of Racah operators has been 

generated for all values of K up to K=8. Further has the commutator relation 

of two non-commuting Racah operators been established. Finally in this 

section the connection between the Stevens operators and the Racah operators 

has been set up. Requiring the matrix elements between corresponding states 

to be identical we have in chapter 3 calculated well ordered Rose operator 

expansions of the Racah operators and of the Stevens operators. It has been 

shown for tensor operators of rank one that this method of matching matrix 

elements corresponds with the Holstein-Primakoff method of transforming 

angular momentum operators to Rose operators. Introducing an ellipticity 

parameter, b(T) that accounts for the non-circular spin precession about 

the direction of magnetization the well known K(K+l)/2 low temperature law 

of the magnetic anisotropy coefficients has in chapter 4 been extended by set

ting up explicit expressions of the temperature dependence of the non-axial 

anisotropy coefficientd. The correspondence with the K(K+1 )/2 law in the limit 

b(T) = 0 has been shown. The temperature dependence of the magnon energy 

gap has been established by means of a spin wave calculation in chapter 5 as 

well as by a calculation based on ferromagnetic resonance theory in chapter 

6. The result of the spin wave calculation has been expressed as a power law 

in the relative magnetization, rn(T) and a term containing the ellipticity para

meter, b(T). The m(T)-dependence has been written out explicitely taking 

into account all single ion anisotropy terms as well as all single ion magneto

striction terms of the Hamiltonian of the heavy rare earths that have hexagonal 

crystal symmetry. Using the results from chapter 4 of the temperature de

pendence of the Stevens operators the resonans theory calculation of the tem

perature dependence of the energy gap gives the same dependence of the re

lative magnetization as do the spin wave calculation in chapter 5. By means 

of the spin wave dispersion relation of terbium measured at 4. 2°K by in-
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t 'astic neutron scattering experiments vre have calculated the magnetization 

curve of terbium and have fc-und good agreement with the experimental ob

tained magnetization curve. Besides the relative magnetization the ellipticity 

parameter of terbium has been calculated making it possible together with a 

point charge model calculation of the crystal field parameters to calculate the 

tpmperature dependence of the macroscopic anisotropy coefficients. We have 

found, taking into account the limitations of the point charge model, a fairly 

good agreement with experiments. 
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APPENDICES 

Appendix 1: The Reduced Matrix Element of a Racah Operator 

The matrix element of a Racah operator within a manifold of given angular 

momentum J is 

(A 1.1) 

From this equation we find for the reduced matrix element ( j | | O K | | J ) : 

QildKin>~ < J / " ' g ^ ' J ^ ' > (A i.2) 

To calculate the reduced matrix element we choose special values of m, q 

and m', namely 

m = J 

q = k 

m' = ,1 - K 

From (2. 9) we know that 

using J + | .1 m) - / ( j - m ) ( J + m + l ) |.) n , + fc Edmonds3' 
we find 
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12) 
The 3j-symbol is defined by, Rothenberg et al 

(i i: i\yi-'>'rh'm'f= ( M ^ I ^ H 
(A 1.4) 

Here we put: 

| r ^ a J i ***** 

The Vector coupling coefficient (the Clebsh-Gordan coefficient) is calculated 

by the formula, Edmonds . 

føHtw-fiij^i«)" 

I 
Mow putting 

(IV! 
JJ Y K! K>. (2Jt-Ktl)! (Z3-K)! 
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so the 3-j symbol becomes 

(1 K 1 \ C-1)K I (21+1) (2D! MO! 
\-3 K 7-KJ- /25T7 ]/ K! (n+K+Oi 

_ , . , , * / / ("" l2l<>! 
" ' V k! (2J+k+i)! 

Now we find for the reduced matrix element: 

C3 K 7 i 
t "J K J-K) 

(A 1.5] 

i-u* .no. 
1"K! V 

(IK)! (21)1 
(27-K)/ 

V K! (27+K+i)l 

O'l0Kiu> -ieF- 2j+k+D! 
(ll-K)f 

(A 1.6) 
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Appendix 2: The commutator of two non-commuting Racah operators 

Two Racah operators acting on the same dynamic variable, i. within a 

manifold of given angular momentum J do not commute. From the matrix 

formulation of quantum mechanics we have for an operator acting on an 

eigenfunction: A | s ) = j | i ){ i | S | s ) . For the non-commuting Racah 
operators 0 „ (i) and 6 „ (i) we set up the following relations: 

"Mql R 2 q 2 

(A 2.1) 

(A 2.2) 

using (2.11) for the matrix element of a Racah operator. As the operators 

are both acting on the same dynamic variable we find 

m'm' 

'OHOKfliinXMk,«)P> Urn'? 
(A 2.3) 



- 110 -

The following formula combining 3J -and Sj-symbolg are now u«ed. 
12) Rothenberg 

y (it Hti\{1' A1 AA~ 

(A 2.4) 

with the symbols 

(A 2.5) 

with 4= J+*3-m"+12-r (k.+fokjlt (27tAi) 

using the odd-permutation rule for 3j-symbole 

( i l / ? n V ) * <_1^1+32+J3(nf3}n3Tn ) a n d t h e f a c t t h a l a 6--Bym b o 1 r^naiiw an " 1 2 ™ * 2 I 3 ' 
invariant under interchange of columns and at interchange of any two number« 
in the bottom row with the corresponding two numbers in the top row. 

Now the total exponent is considered, namely 
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(-1) - t for J integer and J half integer 

(-1) ^ = 1 for K3 integer, and Kg really is integer for a Racah operator 

'romthe 3j-symbol to the left in (A 2.5) we find m" = q. + m' and from the 

j-synibol 

/ IC. K„ K„\ 
I J we have q. *• q, + q, = 0 for which reason 

( - l ) V r o ' - r o " = ( . 1 ) l2 - n , "- , m "- < ' ! ) = (-l)'>l+<>2(-t)-2m" 

= (-l)*q3 M - D q 3 

, 8 ( - i r 2 m " = ( - D 2 m " - i 
or m" integer, and m" is really an integer for the Racah operators. 

The resulting exponent: 

f . # j « - * - * « . {_„*<«*« (.O7"*'<•<>'> (A 2 . 6 ) 

ind for the two Racah operators acting on | Jm ) we therefore find 

(A 2. 7) 
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o*«/«) &*«> - ^ <-»> ^**> [ J J J ](f,f,»;| 

* : s Mr»f.f" 
<J»ftr,KHIJ> ^ 

(A 2 .8-

~+ q "i~ 
where we have used that O,, „ = ( - ' ) 0„ . When forming the product 

K 3 , q 3 K 3 q3 
& , <5„ evervthing is unchanged except the 3j-symbol where we 
^ 2 q 2 { i ) K1qHi) 

V q2 q, q, / \ 12 % •* 
2fK +K +-K From this we immediately find the commutator relation as (-1) 1 2 3 • 

for the K , s integer?, which they infact are for Racah operators. 

re**,**«] - ̂ u-'^-l < * • « £ 
<.nSc,ioHJX^,OK1u)iij> X+ ... 

(A 2. B) 

where the reduced matrix element is given by 

(appendix,,: ( , | | 5 R ,, J > - ^ ( % £ $ 

As a check of the commutator relation calculted we now demonstrate tha: 
it is consistent with the definition equations of the Racah operators, 

r ^ & a l - * G*,% (<2-5)i 
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Case 1 

From the commutator relation we lind 

&ÅJ -£<«»**%j nvo/,Wif itt)« 
a <3UO,il?<JlO^0j> fit 

(A 2.10) 

(-1 ) ' • * » * » - I f 0 => H K J + K J odd => K 2 « s even 

The 3j-symbol gives the triangle conditions: 

Elavil. v» a110 s<ven ar» iv- - u, n . 
one of these, namely 1 - Kg-Ks gives as an example 

a) K,*K, * 1 * ' o"' even and the other odd 
b) Kj-K3 - 0 - both even or both odd 

Further from the 3]-symbol: 
0 + «J2+q3 = 0 - > q2 = -q 3 • q 

so we find for the commutator 

[*,cy«<*>«*«o (o\% H J $?]<**"> &,-> 
(A 2.11) 

From Edmonds we have for the 3j-aymbol 

/ * * * I / * « | l f j J « - * > (A2.12) 

From appendix 1 the reduced matrix element 

, ^ i t i É ..<&*>&.•.. aJJk.-J-^i-„ ^jft^,r^yaa^'^^ liifai l l'"
(fflTtthi' "•trft-itiMl iTiXffl^lÉÉiil 
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<»%»»-i fg$[ <A2") 

From (1.10) we have 

*v,-™*o«, 
12) 

for the 6j-symbol we find from Rothenberg : 

(A 2.15) 
The commutator now becomes 

*5, *,% (A2.16) 

which is one the definition equations of the Racah operators. 

Case 2 „ „ . 

Using these values we find for the commutator: 

T - - r C/«#, 

(A 2.17) 
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from ca»« I we have: Kj - Kj • K 
from the Sj-aynbol: 

i + q , ^ * " * q j 1 - ( q j + ' J q j ' q 
for which m e a n 

(A 2.1«) 

From Edmonds" we lind the 3j-eymboI 

I t t-(9*1)1 ' " r (f»rfi>««t»t3JK l 

and from equation (2.10) we find 

~ + (rf -» 

The 6j-aymbol and the reduced matriic element have been calculated under 
case 1. Therefore the commutator become*: 

, "if**') . M*-* J **W+~2BL 

* I-I)*' d*ti„ 

which i s the definition equation of a Racah operator commutated by J . An 
analogue and straightforward calculation can be performed for the [ J", 5 ^ J 

commutator. 
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APPENDIX 3 

The Coefficients of the Well-ordered Bose Operator Expansions of the Hacat 
Operators 

The Racah operators are expanded in Bose operators as given by formula 

(3.32) 

0*1 " (A J* +* %, * ' * *At,Z 4*Wt * + •••)&* (A 3.1) 

Using the idea of requiring the correct matrix elements between the ground 
state and the first excited state we found in section (3.3) for the expansion 
coefficients 

(A 3.2) 

for n -Owe find 

the n = l coefficient turns out: 

BO 



i n • 

(A 3. 4) 

the n = 2 coefficient shall finally be calculated: 

n * o i /> * j \ 

(A 3.5) 

As a starting point we caiculate the coefficient 

4 * ^ * ? > ( . J O J) 

here 

3) and from Edmonds 



- 1 1 8 -

we find: 

A* - -L to*' - S ,A3-7' 

From this the SR- function is defined, namely 

12) 
Using the following recursion formula for 3j-symbol$ Rothenberg 

w.-...x^) (4:, £ 4 ) 

(A 3.9) 

» "»1 Wj. "?j / I -W* -»7a. -"Jj / 
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(-3 * V\ ,/«*->tf)«H)/j * 3 \ 

(*. 10) 

If 
From this we find for the A _ coefficient: 

1»° 

now 

why 

*W ~ i f VJ-ftil nH* 
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further we find 

tK i I M-Mik4*»)(Ht1-vt**$ ~AK 

on closed form 

A%o - jr i. 

K. K 
Now we want to calculate the coefficients A„ , and A. „ and to that end we 
again take the 3j-recursion formula from Rotenberg(A3. 9) and now put in: 

(A3.12) I 
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using 

we find for /I 4 . 1 

(A3.13) 

for n j j we iiad t h e A £ 1 c o e f f l c i e n t : 

{A3.14) 
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Forn * 2 we find the Af 2 coefficient 

(A3.15) 

APPENDIX 4 

DiagonaUzation of the One Sublattice Hamiltonian 

The diagonalization of a Hamiltonian bilinear in Fourier transformed Boa 

operators might be carried out by the Bogoliubov equation-of-motion-method. 
26) Here an equivalent method by Kowalska and Lindgård ' based upon the 

theory of matrix calculus are used. The one sublattice Hamiltonian from 

(4.40) is 

X* i 1. (A^Ytyfil *%%% * 6f^$) (A4.1) 

Written on matrix form we find an equivalent expression of the Hamiltonian 

(A4.2) 
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where 

M?I - t-{\\\ 
Now we define the transformation 

"WStøl-n 
(A4. 3) 

• • { ^ ) I-ft>l 
The opposite transformation is 

C ufa.- • -T 
V^-!•»*» 

(A4.4) 

The fact that a and a obey me Bose commution relations, (BCR) gives the 

following relations of the transformation constants « . , s „, p. and P2 
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[ YJ J - [<& W * «^r»> J - ijv-'jy - « 

(A4.5) 

The transformation matrix T fulfill according to the Bose commutator r e -

lations the relation 

Because of the Bose commutator relations the transformation that diagonaliz« 

the Hermitian Hamiltonian is non-unitar. To show this we calculate *J* and 

see that it is different from T~ 

(A4.6) 

The eigenvalues of the Hamlltonian 

lt-t. t- nVi- Ufa) rxTjr't)' ifn 
<A4.7) 
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£ - f*J?T 
= «> & 4 i* diagonal 

J * _£ JV and the opposite 2L ™ » A 

Written out we have 

(A4. 8) 

We introduce a matrix B and have for the two coloum vectors u,, u.,: 

which gives the following eigenvalue determinant equation 

H M l 
The energy is an even function of q, as it is impossible to see any difference 
in the +q and -q directions. 
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=> 4f - *% 

The eigen vectors belonging to the eigenvalue E + q (Bq real) 

(A4. 9) 

n 1 * * * v i f f - i^ J 

The "old" Bose operators in the diagonal representation: 

(A4.10) 

(A4.1I) 
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The HamUtonian eipreaaed In the "new" Bo»e operators: 



- 128 -

V ft 
(A4.15) 

in which way the Hamiltonian has been brought to the well-known "oscillator-

lorm". A similar expression can be obtained with the other eigenvalue. 

Some selected matrix elements: 

(&4.1 6) 

(A4.1 7) 

(A4.I8) 

APPENDIX 5 

The Spinwave Dispersion Constants of a Hexagonal Bravais Lattice in the 

c-axjs Representation 

With the intention of doing an explicit calculation of the temperature 

dependence of the magneto crystalline anisotropy, the interactions of the 

magnetic Bravais lattice is specified. We include in the Hamiltonian an isotop 

exchange interaction, single-ion magneto crystalline anisotropy, single-ion 

magnetostriction and the effect of an external, applied magnetic field. Then 

in an interacting magnon-magnon calculation we compute the contribution 

from the different parts of the Hamiltonian to the magnon dispersion constant« 
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Isotop exchange of a Bravals lattice 

An intra lattice isotrop exchange interaction might be described by 

here 1 and l1 mean lattice sites of the magnetic crystal, J, and J the total 

spins of the respective lattice sites and the exchange function I ( R , l t ) depends 

on the lattice distance R,,, • R,-R„. Doing a Bose operator expansion of the 

spins we find lor flex, table 1 

+<ws*>[ 44«*<L>+44<u«t' 

-flfM^'j (A5.2) 

Making a fourier transformation, following table 8, we find for the non-inter

acting part: 

(Wo - - iNfo) J(»» +2. is, (fi» -flk))^ , 4*4) 

(AS. 3) 

giving the contributions to the dispersion constants 

E,(4K)» -£fi/ft0)3Cj*l) (A5.4) 

4*t*)» Sf(lflO)-$US)) (A5.5) 
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The interacting part of the exchange Hamiltonian becomes, 

(A 5.6} 

By use of table 9 we do a Hartree-Fock decoupling of the interacting part of 

the exchange Hamiltonian and we find for the contributions to the dispersion 

constants: 

>&I{ 1<0}+}(K, +) -VWJPW&JI <<̂ > in 
H, 

(A 5. 7) 

(A 5.8) 

thi*)- iZiw-fZHflfafdii)- fl&'-*)\ <4ti> 
Ml I 

(A5.9) 

(A5.10) 
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Magneto Crystalline Anisotropy 

In a c-axis representation the single-ion anisotropy of a hexagonal lattice 

& , - Z.{*&<)+*;O;(C,H%O;«>+4O;(ØI, (A5 . l l ) 

B 5 being the crystal field parameters and O 51(c) the Stevens operators. 

Doing a Bose operator expansion of the single-ion anisotropy we find, table 5 

(A5.12) 

Making a Fourier transformation of the Mamiltonian we find for the non-inter

acting part of the anisotropy Hamiltonian, table 8 

"i (6S,6;+S0Siti°+#6SX)Zifct**r4<t4) 

<A5.t3) 

giving the following contributions to the dispersion constants 

http://A5.ll
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(A5.74) 

The interacting part of single-ion anisoti'opy Hamiltonian becomes, table 8 

K,Ki. ' 

(A5.1 6) 

from where we, through a Hartree-Fock decoupling, find the contributions 

to the dispersion constants, table 9: 

(A5.1 7) 

' (A5.18) 

A 6K<a*)'*éx(6sxB£+3U)StB$+x60StBt)% X<<<£> 

(A5.1 9) 

(A5.20) 
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Magnetostriction 

In a c-axis representation the single-ion magnetostriction of a hexagonal 

lattice i s : 

tm* -. -Zl{ (#;' ?*v air«') o;u»(oz?iepn o^ 

In the further transformation to Bose operators only even-valued c-Stevens 

operators a re included, as odd-valued Stevens operators do not contribute in 

a temperature calculation. In this way the c^ , c t , and c? s t rains are 

excluded from the further calculations. 
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•tete ÆF (Fg-tLHt%&(*Æ$ 

(A5. 22) 

Making a Fourier transformation and a Haitree-Fock decouling we find the 

contributions from the magnetostriction to the dispersion constants, namely 



1 3 5 • 

^rf^vs-yj^zK<>KWj 
+£Z<<^<<<wVUa>)j 

(A5. 2G) 

(A5. 27) 

*& fru)- Mrtrtw)$2Ls<tf£> 

4)bZ<4*sA> 
(A5. 28) 
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Applied Magnetic Field 

A magnetic field applied in the c-direction gives the following Zeemani.-

contribution to the Hamiitonian of the hexagonal Bravais lattice 

= -f/kHDM-ftjtoH'Ztiik 

Doing a Fourier transformation we find the contributions to the dispersion-

constants 

Ep(ZU)= -jføHVLJ-i) (A5.30) 

Qui**)" -jJ^H <A5-3'> 

APPENDIX 6 

A Model Calculation of the Characteristic Functions a M(T) and b(T) 

The temperature dependence of the Stevens operators has been expressed 

through the two characteristic functions A M(T) and b(T). 4 M(T) is connected 

with the relative magnetization and b(T) takes into account the noncircular 

spin precession about the direction of magnetization. They are according to 

(4. 55) and appendix 4 given by 



icrj.^Z^V-^ft^^ (A6.2) 

Here ( n ) i s the Bose factor, E the energy, A and B the dispersion 

relation constants. 

The energy is 

k-f^ (A6.3) 

We are now going to set up a model calculation of the two characteristic 
functions a M(T) and b(T) taking into account the fact that the dispersion 
relations are not equal in different high symmetry directions in t) . q-space. 
We calculate t M(T) and b(T) on the basis of two models, one with quadratic 
q-dependence of the dispersion relations in both the c-direction ( H direction) 
and in the basal plane direction (X-direction) and another model with quad
ratic q-dependence of the dispersion relation in the c-direction and with 
linear q-dependence of the dispersion relation in the basal plane direction. 

Model no. 1: Quadratic q-Dependence of the Dispersion Relations in both 

c-Direction and Basal Plane Direction 

The two characteristic functions are 

(A6.4) 

(A6.5) 
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We have used the standard transformation from summation to integration 

(A6.6) 

where V = V N is the volume of the crvstal. V the volume of a unit cell and c c 
N the number of unit cells. Further we have for the volume element 

d$ = d.% 499 <L%t = 5a 4%JL d% df (A6.7) 

The dispersion relation constants are 

C^-<H-M>M.* (A6.8, 

2u = T (A6-9) 

and the energy 

l%= A + ̂ ti + jf'tf+j!"?* ,B. ,O) 

From (A6. 3) and (A6.10) we find the connexions between the dispersion 

relation parameters a, pA , p„ and y and the energy parameters A , JA , j i 

and jP>. 

From (A6.8) we have 

4}* *+M 

\ - r 
id therefore f: 

(iff- ^ r -V - / M V ^ t f ^ v <A6-n) 
and therefore from (A6. 3) 
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From (A6.10) we find 

and therefore 

We therefore have the following relations for the parameters 

jjjai a?)%+ii!*A (As.,3) 

*.&& ~J» A (A6.14) 

A - / . i * - | * IA..I« 

For the basal plane direction we find from (A6.8) 

and therefore from (A6.3) 

Prom (A6.10) we find 

for which reason 

(fjf* 2 7X4^+41
 (A6.I7) 
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Cnnibining (A6.16) and (A6.17) we find the connexions 

4 « /<**f* fA«-'9) 

By means of the expressions of the dispersion relation constants and the 
energy we are able to carry out analytically the basal plane direction part 
of the integration of A M(T) and b(T). The c-direction part of the integration 
is carried out numerically on a computer. We find for & M(T); 

AMlT)= MM 

-ilium* 
(A6.20) 

Now we introduce the following short hand notation 

I 2-

C*A)= A+3l?tf+7?'ff (A6.22) 
and find 

r r 
.«mar 

.-»«. • 

*9) 4t%H3it.)d%+tlfinJt,(%) *%A 

(A6.23) 
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The integrals I ,{q,) . I2(qB). ^ ( q , ) and l 4 (q . ) a re 

T<lW • J <k<t)*:titf *1</3* (A6-24) 

26) 

— ! • J * 

(A6.27) 

They are found to t e rms linear in temperature 

2 V " * 1 " C,«.J 

.««.», 

(A6. 29) (A 

(A 6. 30) 

J^i.%,)^. 0 (A6.31) 
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The other characteristic function b(T) is found to 

( I 1 

(A6.32) 

Model no. 2: Quadratic q-Dependence of the Dispersion Relation in the 

c-Direction and Linear q-Dependence of the Dispersion Relation 

in the Basal Plane Direction 

In this model we take in the basal plane direction 

c^, = °c+/ix%x (A6 33) 

% - r % — i (A6.34) 

• A + 3uA 4. 
(A6.35) 

In the c-direction we take the same expressions as in the first model. 

Therefore A M(T) is still expressable through (A6. 23) but the integrals are 

replaced by 

r i 
i;(%) - J cxl%,)+3^ **+ ** 'A6-36 ' 

D 
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<A6. 38) 

(A6.39) 

These sets of integrals are found to 

(A6.41) 

(A6. 43) 

b(T) is found to 

(A6.44) 

The purpose of setting up two alternative models 1B to be able to fit the 

measured dispersion relations as accurate as possible in a concrete calcu

lation. 
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APPENDIX 7 

The Spin W'a-'c Dispersion Constants of a Hexagonal Closed Packed Lattice 

in a Basal Plane Representation 

In section (5) we have set up a Hamiltonian of the heavy r a r e earth metals 

consisting of isotrope exchange, magneto crystalline anisotropy, magneto

striction and a term coming from an applied external magnetic field. Here we 

want to calculate the individual contributions from the total Hamiltonian to the 

spin wave dispersion relations that have two branches: An optical and an 

acoustical branch. From (5.82) and (5.83) we have for the dispersion r e 

lations: 

WK
P= {(A+i^i)+niKifi{(dKi-i«Ki)-niK\)Vt 

(A7.1) 

(A7.2) 

The constants A IV and C R defined through the relation (5.14) are the 

dispersion constants. All terms of the Hamiltonian contribute to these charac

ter is t ic constants of the spin wave energies. 



The JBotrop exchange 

As mentioned in eq. (5.6i, the isotrop exchange interaction of the hexagonal closed packed structure - built up 
from two Interpenetrating hexagonal sublatticee is 

Ĵ > i and Jtf i are equal and describe the intra aublattice exchange of the two sublattices constituting the hcp-lat-
tice, whereas jf l_ 3 describes the intersublattice exchange,^f f and/f „ are characterized by the exchange 
functions ^ (H^, ) Bnå}(^mm^ respectively and ft'ff^™) Is the Inter exchange function different from the intra 
exchange functions; Using table (1) we transform the exchange interactions to Bose operator expressions. We find 

X«s = Z ?<*«.) [s'*s,(apt«<<v-£at,-<?,<.;-<«< <£<?*. 

(AT.4| 



l&-K2)fåbt,l>ml^+QfrZ*<l^i-a4b%fmb^ + afr<4<bl1)\ (AT.«I 

By use cf the general formulae for Four ier transformation of Bos,e operators in table 8 we find for the non-interacting 
part of the exchange 

- J, fan) aHbK - 5, fu&)*nK y \ J 

(A 7. 7) 

and hence the contributions of the dispersion constants a r e 



etc**.) - -s, fint 
A Fourier transformation of the interacting part gives, table 8: 

+ 

( A 7 . l t ) 

(A7. 12) 

The Hartree-Pock decoupling of the terms of the interacting exchange part has been carried out to give for the dis
persion constants: 

http://A7.lt
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The single-ion anisotropy 

In section (4) we have treated the single-ion anisotropy of a Rravais lat t ice. The hep-latt ice is built up from two 
hexagonal Bravais la t t ices , for which reason the single ion magneto crystal l ine anisotropy is equal in the two sub-
la t t icos . Resides we want to deal with a hep-latt ice where the magnetization is lying in the basal plane. This requi res 
a rotation of the anisotropy from a c-axis representat ion to a representat ion of the direction of magnetization. This 
operation is done by using the general rotation expressions of the Stevens operators set up in table 6 and putting the 
angle ji = § J 

li. ilie c_ a xis representation the sublattice single-ion anisotropy is 

&H - Z {KolcQ r efofa + eiota> + efo£co }+ <A 7.20) 

After rotating the Stevens operators the sublattice aniaotropy has become: 



As shown in section (4) Stevens operators o S O w i t h a n ot*d q number do not contribute in a temperature calculation, 
therefore we only take terms consisting of an even number of Bose operators. 

Again a Fourier transformation is carried out to give for the non-intéracting part, by means of table 8 

from which the contributions to the dispersion constant« are immidiately read as 

As the two sublattiees are equal, the other one contributes with dispersion constants that are the same. Therefore 
E0(an) must be taken once more and A* (an) = A^fan) and B^(an) • BJ^an) where "b" means the other sublattice. A 
Fourier transformation of the interacting part of the sublattice anisotropy gives 



i 

Doing a Har t ree -Fock decoupling of the interacting anisotropy part we find the following contributions to the diepersion 
constants , by means of table 9 

+ 2X (<^A,>K\>^<^A>><^M>)1 
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(A7.31) 

Single-ion magnetostriction 

In the thesis by Danielsen it has been shown in appendix 3 that the single-ion magnetostriction Hamiltonian 
for a hexagonal Bravais lattice in the c-axis representation might be expanded after the irreducible strains of the 
hexagonal point group. 
This Hamiltonian expressed in Hacah operators might be transformed into Stevens operators by use of the formulae 
(2. 23) - (2 . 25) to give 

Mg?1 •* &!??•') ofr)* c$ e* v a,??**; o;<y 



8& (l?0£co+Z*Olis)) * 8$ (tfojjio+llollii)) 

The B ' s a r e phefloznenological magnetoelastic coupling constants, fhe irreducible s t ra ins a r e defined and explained 

in section (4), As we a re dealing with a ferromagnetic s t ruc ture with the magnetic moments in the hexagonal basal 

planes we again, a s with the anisotropy, do a rotation operation on the Stevens operators to a representation of the 

direction of magnetization. By use of table 6 with the angle p s J we find 
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Here the following res t r ic t ions have been introduced: 
1) odd-valued Stevens operators have been skipped, as they do not contribute in a temperature calculation. 

This means that the c * ana e* -strains a r e now excluded in that way. 

2) even-valued s-Stevens operators a re not included. It has been shown in section (4), that in a non-interacting 

tempera ture calculation they do not contribute. They a r e therefore ever: in an interacting theory of 

higher order than the even valueJ Stevens operators that a re left in the rotated single-ion magnetoelastic 

Hamiltonian. Expressing the Stevens operators by their Bose expansions we find for the magneto striction 

HarM-tonian: 
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(A7.42) 

Proceeding in the same way as with the isotrop exchange and the single-ion anisotropy we <lt> a Fourier t r ans 

formation of the magnetostriction t e rms finding a non-interacting - and an interacting pari; 

Ag&in it shall be i 'emembered that the hep-lattice is built up From two interpenetrating sublultices, for which 

reason the non-interacting contributions to the dispersion constants become: 

(A 7. 43) 

(A 7. 44 

reiT*i ' ° n s : ; v« <A7'4r>) 

Doing a Har t ree-Fock decoupling of the interacting part by means of table fl we find the contributions to the dispersion 
constants-. 
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Applied magnetic field 

Applying an external magnetic field In the basal plane we have the following Zeemann contributions to the 

Hamiitonian of the hep-lat t ice, built up from two interpenetrating sublattices 

*ZU » -fU6 J *2* -fJkZ&S*, (A 7. 51) 

H= (Hf Hj,Hf)= ( HC^(^t<T)t H&ntcll-f)^ 0 ) (A7.S2) 



giving for the products 

(A7. 53) 

From the theory of rotation ofRacah opera tors by T/nnielsen and Lindgård ' we find the expressions for the angular 

momenta In the ((.>)•{) coordinate system expressed by the angular momenta in the (x,y, z) coordinate system. 

3y ss - J*not 7 , +£*<* 7y * P»i*oc ^ ( 5„ -0,,., ) +CC3CL j£ ( ^ , * 8 t - J 

J " | - ^ 2 ** @10 (A7. 54) 

and we end up with, when doing a Bose operator transformation and taking only into account an even number of Boae 

ooera tors , 

#.Jk= H-^flXl-f)?/* dUti^ré') (Sl-ttfoe) (A7.55) 



therefore 

Doing a Fourier transformation we find the following contributions to the dispersion constants of the spin waves of 

the hcp-lat t lce 

4££2M)= £#< H&**(*+f) - 4£(*u) <A 7 - 5 8> 
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APPENDIX 8 

The Characteristic Thermal Mean Values of the hep-lattice 

The renormalization calculation of the spin waves of the hexagonal closed 

packed structure of the heavy r a r e earth metals sets up some characteristic 

thermal mean values (appendix 7) through which the renormalized dispersion 

constants a re expressed as a function of temperature. Therefore the following 

thermal mean values are calculated 

<#4t>, <'fcf4r>, <**&>, <4&«>, 

The Boseoperators "a" describe the one sublattice of the hep-lattice 

and the Boseoperators "b" describe the other sublattice. "Mixed" thermal 

mean values containing both an "a" and a ' V - Bose operators come from the 

inter sublattice exchange part of the Hamiltonian of the system. 

Following Kowalska and Lindgård we transform the thermal mean 

values into Bose operators that are in the diagonal representation of the s / s 

tem. We find immediately the transformations from "old" to "new" Bose 

operators 

(A8.2) 

(A8.3) 

(A8.4) 

(A8.5) 
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F „ F ^ GJJ G* are defined in connection with the diagonal Hamiltonian 

H. , in equation (5.81). They obey the Bose commutation relations. The 
QlltK 2 f I 

expansion coefficients of the transformations are, Kowalaka and Lindg&rd 

1 4 its J 
(A8. 7) 

C = — (A8.8) 

iftri 
s * (o. a) (o: optic; a: acoustic) 

Forming the thermal mean values of (A8.1) by means of the transform
ations (A8.2) - (A8.5), we find 

•+ (lIHol *+ //»,»*) j (A8.9) 

•+• *»»»p,+"*aP, j (Åen) 

+ *t f#*-f l?f t} (AS. 12) 
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+"C l / £ - & * ) (A8.15) 

+ f ( W U * - / * ! , / * ) (A8.16) 

•{•rVA-V/W (AB.1T> 

-*-£Y**tÆl--/B»/*) (A8.H) 

The Bose factors <i£>and <nE> are given by 

<**>" Jk*mr_ 1
 <A8;20) 

where the renonnalixed energy expressions ol the optical- and acoustical 
branches are from (5.82) and (5.83) 

http://AB.1T
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^„^MK-HCC/) 2 - / ** ! 2 ] * 1 1 (A8.21) 

1/2. 
£ ^ » {(cU~ltkl)

1- /3*/1} (A8.22) 

Aj. , Bj . and C K a re the dispersion constants of the hep-lattice spin waves 

calculated in appendix 7. By means of (A8. 6), (AS. 7) and (A3. 8) we find the 

combinations of the expansion coefficients necessary to calculate the thermal 

mean values in (A8.9) - (A8.18) 

Tk + "**l « —TTf 

A V - imKr » • — • — - — — 
4**io Ur/, 

(A8. 23) 

(A8.24) 

mt+irtu - —J + — J (A8.25) 

(A8.26) 

Zn^fam -2*. • 2/nff>H* -£*— (A8.27) 

«*A±n* = £(£*fc) (A8-28' 
</U *//>,« $(£.*-& .(A8-29' 

(A8.30) 

(A8.31) 
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Therefore we finelly find the characteristic thermal mean values 

(AB. 32) 

/fir" 

(A8.35) 

/Kt/* 

<4r 4 > - jgf / *&&•«*> •!)- *dkl(<*rt)\ 

(A8.38) 

^ ' (A8.39) 

" * **l l *k* 2K4. J(A8.4I) 
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APPENDIX 9 

The Macroscopic Anisotropy Energy of a Hexagonal Ferromagnetic Crystal 

In (7.1) it i s shown that the free energy of a hexagonal crystal contains 

an anisotropy part determined by 

• * " • • (A9.1) 

to the 6 t h order in the direction cosines of the magnetization. The direction 

cosines are characterized by the equation 

d,X+d± + <A$ ** ' (A9.2) 

Now we want to transform the anisotropy energy from a dependence on the 

direction cosines to a dependence on the spherical angles (8. • ) . 

They are connected through the relations: 

*| - Mid* yVH6C4Q<f (A9.3) 

O«!« £05,3= $*«0*»Mf (A9.4) 

OtySl C#Sf= COiB (A9.5) 

we immediately find 

s/,***/*"^ - &H*9(t*3lf+£Haf)+fri*e~1 (A9.6) 

Now look at the direction cosines expressions of the magneto crystalline 
energy: 

< W - I'*?' 1' ***& - iitiZ6 (A 9. 7) 
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(A9.8) 

therefore we find ' A 9 ' 9 ) 

This expression defines the anisotropy constants. However, instead of expand
ing the anisotropic free energy as in (A9.10) it might be given as an expansion 
after general surface harmonics ^ „ ( • • f ) . Birss '. 

**• (A9.ll) 

for which reason 

(A 9.12) 

t are the zonal harmonics andTr* _ are the tesseral harmonics. Har-
ionics of odd degree are absent because 7 (».f) - *? (T-f.* -»f). 

Now 

http://A9.ll
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(A9.15) 

(A9.16) 

(A9.17) 

where PJ" (cos#) are the Legendre function. 
The expansion coefficients V are known as the anisotropy coefficients 

in the expansion 

We now calculate the connexion between the anisotropy constants and the 
anisotropy coefficients, using the formulae 

(A9.20) 

AS<I9 « i-sfrJe+s&utie-zutB (A9.2D 
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From (A9.14). (A9.15) and (A9.16) we find 

a*e » f {*-&*(&*)) ( A 9 - 2 2 > 

Wé>» fs( %((*&) - JF #<*«)•! J <A 9-2 3> 

(A9.24) 

Putting these values into equation (A 9.10) we find 

Tie,*) * K,tr)l f - f £Y«*«J 

tlC, it) toitf titty (A925) 

Comparing with equation (A 9.18) we find the connexion 

K>o CTt - ^ (&«tlT)+28 Aiir> +24#}in) < A 9 - 2 6 > 

^,m- - $ Ayr) (A9-29) 

^ . ( T ) - ^ c r ; fA9M) 



- 174 -

REFERENCES 

1) K.W.H. Stevens, Proc. Phys. Soc. A65 (1852) 209-215. 

2) G. Racah, Phys. Rev. 62 (1942)438-462, 

3) A.R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton 

University Press , Princeton, 19571146 pp. 

4) E. Jahnke and F. Emde, Tables of Functions with Formulae and Curves 
(Dover, New York, 1945). 380 pp. 

5) H.A. Buckmaster, Can. J. Phys. 40(1962) 1670-1677. 

6) D. Smith and J. H. M. Thornley, Proc. Phys. Soc. 89(1966) 779-781. 

7) H.A. Buckmaster, R. Chatterjee and Y.H. Shing. Phys. Stat. Sol. (a) 
_U, (1972) 9-50. 

8) O. Danielsen and P. A. Lindgård, Riso Report No. 259 (1972) (Danish 
Atomic Energy Commission, Ris6, DK 4000 Roskilde, Denmark). 93 pp. 

9) M.T. Hutchings, Sol. State Phys. 1£ (1964) 227-273. 

10) R.J. Birgeneau, Can. J. Phys. 45_(1967) 3761-3771. 

11) B. R. Judd, Operator Techniques in Atomic Spectroscopy (Mc-Graw-Hill, 

New York, 1963). 242 pp. 

12) M. Rothenberg, R. Bivins, N. Metropolis and J.K. Wooten, The 3j-

and 6j-symbols (Massachusetts Institute of Technology, Cambridge, 

Mast,., . . . 498 pp. 

13) H.C. Fogedby, Lecture Notes in Advanced Statistical Mechanics (1972) 

(Kølienhavns Universitet, H. C. Ørsted Instituttet, Universitetsparken 

2200 København N, Denmark) 137 pp. 

14) T. Holstein and H. Primakoff, Phys. Rev. 58(1940)1098-1113. 

15) S. V. Tyablikov, Methods in the Quantum Theory of Magnetism (Plenum 

Press , New York, 1967). 354 pp. 

16) W. Marshall and S. W. Lovesey, Theory of Thermal Neutron Scattering 

(Claredon Press , Oxford. 1971). 599 pp. 

17) F .J . Dyson, Phys. Rev. 102, (1956) 1217-122«. 

F .J . Dyson, Phys. Rev. 102, (1956)1230-1244. 

18) T. Oguchi, Progr. Theoret. Phys. (Kyoto) 25 (1961) 721-722. 

19) B.R. Cooper, R.J. Elliott, S.J. Nettel and H. Suhl, Phys. Rev. 127 

(1962) 57-68. 



- 175-

20) D.A. Goodings and B. W. Southern, Can J. Phys 49(1971) 1139-1161. 

21) R.J. BIUottandK.W.H. Stevens, Proc. Roy. Soc. A219 (1953) 387-404. 

22) E. CaUenandH. Cailen, Phys. Rev. 139 (1965) A455-A471. 

23) O. Danielsen, Thesis , Technical University of Denmark (1970). 

24) E.A. Turov and V.G. Shavrov, Sovjet Phys. - Solid State 7 (1965) 
166-172. 

25) B.R. Cooper, Phys. Rev. 169(1968)281-294. 

26) A. KowalskaandP.A. Lindgård. RisO Report No. 127 (1966)(Danish 

Atomic Energy Commission, RisO, DK 4000 Roskilde, Denmark). 30 pp. 

27) H.B. CallenandE. Callen, J. Phys. Chem. Sol. 27(1966)1271-1285. 

28) A. R. Mackintosh and H. B. Møller, Magnetic Properties of Rare Earth 
Metals (Plenum Pres s , London and New York, 1972). 5_, 187-244. 

425 pp. 

29) H.B. Møller, J .C.G. Houmann, J. Jensen and A.R. Mackintosh, 
Neutron Inelastic Scattering 1972 

Proceedings of a Symposium Grenoble 6-10 March 1972, IAEA, Vienna, 
1972. 603-610. 

30) J. SmittandH.G. Beljers. Philips Res. Rept. 10(1955)113-130. 

31) R. R. Birss, Symmetry and Magnetism (North-Holland Publishing 

Company, Amsterdam, 1964) pj. 

32) M.S.S. Brooks. D.A. Goodings and H.I. Ralph. J. Phys. C Ml968) 

132-145. 

33) M.S.S. Brooks, J. Phys. C 2 (1969) 1016-1022. 

34) M.S.S. Brooks, Phys. Rev. B1, (1970)2257-2264. 

35) T. Egami. J. Phys. C 5 (1972) L85-L88. 

36) M.S.S. Brooks and T. Egami, J. Phys. C 6 (1973) 513-531. 

37) H.B. Møller, J .C.G. Houmann, M. Nielsen and A.R. Mackintosh, 

Magnetic Properties of Rare Earth Metals (Plenum Press , London and 

New York, 1972), 425 pp. 5 187-244. 

38) D . E . Hegland, S. Legvold and F.H. Spedding, Phys. Rev. ]3t_. (1963) 

158-162. 

39) R.J, Elliott and K.W.H. Stevens, Proc. Roy. Soc. A218 (1953) 553-566. 

40) A.J. Freeman and R.E. Watson, Phys. Rev. 127(1962)2058-2079. 



- 1 7 6 -

41) J.J. Rhyne and S. Legvold, Phys. Rev. 138. (1965) A507-A514. 

43) F.I . Darnell, Phys. Rev. 132, (1963) 1098-1100. 

43) R.J. Elliott, Phys. Rev. 124, (1961)346-353. 

44) J. L. Feron, G. Huy and R. Panthenet, Lea Elements dee Terres Rares II 

17 (Coloques Inter, du C.R.N.S. N° 180. 1970). 

45) J .J . Rhyne, S. Foner, E.J. McNiff and R. J. Doclo, J. Appl. Phys 39 
(1968)892-893. 

46) J.J. Rhyne andA.E. Clark, J. Appl. Phys. 38 (1967) 1379-1380. 

47) J. L. Stanford and R. C. Young, Phys. Rev. 157(1967) 245-251. 

48) K. TajimaanuS. Chikazumi, J. Phys. Soc. Japan, 23 (1967) 1175. 

49) R. Z. Levitin and B. K. Peromarev, Sovjet Phys.-JETP. 26(1968) 
1121-1122. 

50) P.H. Bly, W.D. Corner and K.N.R. Raylor, J. Appl. Phys. 39(1968) 
1336-1338. 

51) P. DeV. DuPles s i s , Physics, 4U1969) 379-388. 



TABLES 



- 178-

Tablel 
Racah operator equivalents 
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Table 2 
Stevens operator equivalents 
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Table 3 
Coefficients relating Stevens operators to Raeah operators 
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Table 4 
Hacah operator equivalents expanded in Bose operators 
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Tables 
Stevens operator equivalents expanded in Bose operators 
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Table 6 
Rotated Stevens operators 
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Table 7 
Differentiated, rotated Stevens operators 
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Table 8 
Fourier transforms of Bose operatorexpressione 
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Table 9 

Two magnon Interactions treated 

in the llartree-Fock approximation 
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Table 10 
Correlation functions of Racah operators 
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Figl. THE zero point corrected relative magnetization 
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Fig 2. The ellipticity parameter of Terbium 
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Fig 4. The Stevens Operators 
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FiglO. Anisotropy Coefficients of Terbium 
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Fig 12. Anlsptropy Coefficients o* Terbium 
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