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Calculations of Propagation of Density
Perturbations in Collisionless Plasmas

by

L.W. Jgrgensen and H, L, Pécseli
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Exact analytical solutions were obtained to thelinearized, two-species
Maxwell-Vlasov equations for the evolution of an initial density pertur-
bation in an initially stable, neutral plasma., Two initial perturbations are
considered: a step-like and a pulse-like discontinuity.
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1. INTRODUCTION

We assume that the plasma dynamics are governed by the linearized
Vlasov equations for both electrons and singly charged ions coupled through
Poisson's equation. The equations are solved with two different initial
conditions:

) (x v,t=0) = n ofox e(v) + an(! -€(x))gi. e(v)

€ (x) is Heaviside's step function

IL. (x v, t=0) = n, 01 e

(v) + dng; (V)b(x).

!oi, e(v) and gi. e(w) are assumed to be normalized Maxwellians. In our
calculations we allow different drift velocities, but we neglect the B-field
due to the resulting current. This approximation is necessary since we
consider the problem in one dimension.

The equations are solved analytically for initial condition I using
Fourier transformation in space and Laplace transformation in time. The
calculations are very similar to those of Mason in ref. 1. Analytical ex-
pressions for the densities, n, ; e the distributions, f, i, & the fluxes,
F' i, e the electric field, E', and the potential, »,, are ‘obtained. The
s6lutions to the equations with initial condition II can be found simply by
differentiating the expressions above with respect to x, since initial con-
dition II is found by differentiation of initial condition I. The solutions of
the equations with an arbitrary initial perturbation

fl. e(x, v, t=0) = nof

oi, e + ‘ngi. e(V)F(x)

can be found by superposition of these solutions by using
fF(x, v,t) = f F(Y) tb(x-Y, v, t)dy .

Assuming Boltzmann distributed electrons at all times and quasi-neutrality
(n;= n,) we can simplify our solutions considerably. These simplified
calculations are found in chapter 4.
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9. ANALYTIC SOLUTIONS WITH A STEP-LIKE INITIAL CONDITION

We use the linearized Vlasov equations for both electrons and ions

coupled through Poisson's equation:

of. . af, . en %9, of
11

e li,e _ + o . . o1, € (1)

5t tVIx T T om . % W

2 o ®

°" e(ffdv jfdv)- S (n n, ) (2)
= - i " =TT Vi e

axﬁ <, -“h -mle o

where

(- -]

ffoi,edv=]'

-0

These equations are to be solved with the initial condition
fl i, e(x; v, t=0) = An(' = €(x))gi. e(v)

where

J‘;i dv =1 and A4n ((no . €(x) is Heaviside's step function.

2.1. The density, n, e(x, t)

We use Fourier transformation in space and Laplace transformation in
time omitting for convenience the indes ''1" on the perturbed quantities and

get
e ~ . ~ + ienok »
Sfi,e - fi, e(k, v, 1=0) + ﬂwfi,e = - L ’f'oi, e(v) (3)
2 = e ¥ 2
k E -
" e (n; - n). (4)

fi e(k, v, t=0) must be taken as an Abel's limit, i.e.

AR AR A B R AR s s Sl Tl el

e 7, 0

4]

i,

Q-0 A

Inserting (4) in (3) we get

~ - . 2 e ~
; Ti e(k,v,t--O) + ie . n.-n

- plle 1 e f'
i, e 8 + 1kv k 8 + 1kv oi, e

where 2
ne

- *‘ m-
pi, € o i, e

Integrating with respect to v we find

B o0,8) = S (k8) T @ - n)e; (k8)

where
f. _(k,v,t=0) g: _(v)
’ L V-ip k eV -ig
02 it
- i, e oi, e
‘i, e(k,s) ———le—- f—-—-f—-s-—dv.

This notation follows closely that of Mason')

~y

"

Equation 7 is solved with respect to ﬁi and n_ .

+ Mi e(k: )

31. kes) =5 (ks) T

where

M; (k8) = ¢ (K, 8) (S(K,5) - Sy(k,6))

D(k,8) = 1 - ci(k,s) - ce(k, 8) .

1, e(k' v, t=0) = lim f An gi. e(v) e'lkx e'“'x'dx = i_AE{‘.g

(5)

(6)

(7)

(8a)

(8b)

(9)
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D(k, s) is the dielectric function for the plasma, and Si, e(k' s) are source
functions derived from the initial conditions. If the particles are assumed
to be chargeless or fi(x, v, 1=0) = fe(x, v, t=0), the density depends only on
the source functions corresponding to freely streaming particles. In order
to perform the inverse transformations of (9) we follow the procedure of
M:;tson1 ). We temporarily consider s fixed with Re(s) ) 0. The functions
S(k, s), €(k, s), M(k, s), and D(k, s) are analytic in the full complex k-plane
except for a branch cut along the line k = i-g-, v real. The functional
branches on each side of this line are denoted Sj' cj, Mj’ and Dj with j =1
(or 2) for k in the half-plane corresponding to Im (v) )0 (or { 0). For
Re(s) ) 0 thi< is equivalent to j=1 (2) for k right (left) of the cut. (See fig.1).

Then ;'1'1 e(k, s) are analytic in the full k-plane except at the branch cut and
Dj(k, 8) zeroes in the respective half-planes. The denominator in the
integrands at S,

i, e Mi, e’
x + iy, x ) 0) as shown in fig. 2 for the case where y € 0.

and, D have zeroes for Y = iE s - %-l- ié (s =

R L e T B

Performing the Fourier inversion of (9) we get

o (0]
= _ 1 x ikx 21 = ikx
n; (%, 8) = ’2‘7,[ D; g€ dk= ﬁf"i,e,ze
-QD (- )

1 = ikx
dk+. L j;ni,e.le dk
(10)
where the index 1" ("2") indicates an integral contour below (above) the

pole. See fig. 2,
We assume foi e(v) and g; e(v) to be drifting Maxwellians:

V-v. 2
o I“oi . (-(V'é A::.: ) )

V-V, 2
g ) = exp (-( =2t )) 1)
i, e V2% A, V2 A,
where
T 1T
Agi e ® moi - and Af e ® mi ’
’ i, e ’ i, e
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.2 .
Introducing the plasma dispersion function ) we rewrite (8):

;1 - V.
aAn k 1, € ('2)
i, e I
VZA; k V2 A o
/ i -V
1 K 01 e ('3)
€, k,s) = ———— Z )
i el V(kd, ) \V'EA
where
€ «T . 1/2 A .
d =< o me) __oie
l, € n ez “pi,e

The function Mi e(k, s) introduced in (9) is then given by:

- _An 14

My e, 105) =~ Py (s) 04
i
where

. S . S . S
P ) Z,(‘IE‘ Voi, e )[ 1 Z<1E’Vi> 1 Z(‘E"’e)]
i, e,

'] Ao e ﬁAi ﬁAi V§Ae V'é'Ae

and the function D(k, s) is given by:

is-v . is-v =
1 kK Voi 1 k ‘oe
D, (k,s) =1 - [z-( )+ z'< )_] (15)
1 2 -] )
2(kd,) V2 A ') A .
where 9
d T
o= ( e) . _oe
EIi Ioi

We shall now find the zeroes for the function D (k, s). Substituting

k=i 7 and assuming j =1 (2 Im(Y) 0), we find that D (k=i 7’8) = 0 for
-V _. Y-v
52(1 5(¥)) --——-[z' °1) +,‘,z-(_...°.9)]
V2 A V2 A
d; oe

when Y is real. For k running along the linek =i %, Y is running along the

positive real axis. 8, (Y) and $2(Y) are shown in fig. 3. See also ref, 1.

i 5 G NS . kg

S R P AT, e s SRR Wi b
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Similar results are obtained when j=2, The roots of D2(Y, 8) are denoted
Sg. 4(Y) and s2 4= s‘ 3+ When Re(s) = o (seefig. 3)and j =1,

Similarly when j = 2 (Im(Y) € 0).

This point is essential. We assume that s lies fully to the right of the ¥

figures; non-analyticity is confined to the branch cut.

Im(Y) ) 0 maps inside the closed Y ﬁgures

The Fourier in-
version contour is wrapped around the cut as indicated in fig. 4.

The integral along paths III and V (see fig. 4) tends to zero as R - ® , in
accordance with (12), (14), and (15). We make the substitution k = i%

and find

~ _8Xx w:, _8x
ﬁi, o(x,8) = -2-];{- (f B o 5(Y, 8) sz e Y dy - fni, el (v, 8) sze Y dy

o o

Inserting (9) we get

| ¥
1 8
e‘x-’)’m'(f‘si,e,z'si,e,ﬂ;z‘-‘ o
o
[ ' _8X
(St ) ) 1o
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where
2
e,2(Y' s) - '(Y s) = Q%Y—ZH g ety )
and
(s - S, Z(Y” (s - Sq 4(Y))
D,.2(Y. s) = 2 5 (17)
s
Thus
(Y) -sg
(x,s) = &n --11-?—— e v dy
1,e s
o
+ On fz 1 e, 2(¥) 1 e, I(Y)) S
- 4lid2. (s- sz)(s -s ) - s-s )(s 53)
i,e o (18)
where
Y,s) = any* P (¥)
M ¢,1,2(%.9) Zd—zi;z‘ i, e 1,2

Performing the inverse Laplace transformation we interchange the order
of the Y and s integrations. We continue (I8) analytically to the full s-
plane and consider the two integral terms separately.

1st part = An f g; e(Y) €(t - ;)dY
vo L
= An . (Y)dY
f . g V)
3
T-V
= aAn ie
—2- erfc( ﬁ.A ) . (l 9&)

We used (11) to obtain the last expression,

: - »
Using 8, , = -31'2, 82.4-81'3 and

P,(Y) = P}(Y)

R e, St

e ik M&m* ﬁ'“gmﬁm ‘V&ﬂkz%tkh‘é‘w it Reardhid ﬂfi LT e B wv;;uﬂii‘ﬁw -

-13 -

we find
"S +1“ { X
Y . P. s(t- g)
1 i el Y
2nd part = - ——T- f f 2 e, - —yiy—)e dsdy
'1 4'1d1,e o B -i* (s(s -sI ) s(s -sl) )

- Imj.Y ‘e'( h (s, (t- )] -1)dy. 19b
e cosh [s, (t- )] -1) (19b)

Equation 19a corresponds to freely streaming particles, while eauation 19b
accounts for the collective interaction.
This result is not suitable for numerical evaluation. Following Mason”

we therefore rewrite (19) as

) s -
fgl (Y)Y —z—Im{-LY —-ﬁ-——(z-e )av
3

n, e(x t)
s, (Y)

L Jay ¥ -;-d-z-— m{rn}
T

We consider first the last integral, II:

X
2 X
N s =) jl' YOP, (V) - s (Nt )
I = Yy - | ——gt—c dy .
! m 5 5 ()

Substituting ¥ = - ¥ in the first integral we find
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é 2.2, The Distribution Function, fi e(x, v, t)
£ L.
x ,
Q) s -y Py W) s (YN § Inserting (9) in (6) we find
(.1 = J (_,2,__ 2-¢ ) + e ]
x s s(-Y) ~ ) -5, . (V)
EEATE Cpelite fa l)
T P. (¥) -s,(0(t-3 P, (-Y) -5 (-V)t+g) ?
+ f Y2( i! e . 1 Y + —15'?__ e ] Y ) day . : Performing the inverse transformations of (20) we find fi e(x, v,t). The
sp(¥) s;(-Y) i calculations are similar to those in section 2.1 except for contribution due
5 to the pole for s + ikv = 0. We therefore only consider this contribution in
Introducing the dimensionless variables % detail,
§ - ian g (v)
o | e 2O e [ «)
¢= 2 "=KXT’ T =w.t and l ~ 5,() | i, e k(s+ikﬂ
V2A, i pi
we get , .
t phe e ( [ 1 Si2 ~Sez ikx g
n. _(x,1) 3 . V3 ! /. KBTI 2
_1._%3__ = ﬁAif g (€)Ml - 27lA CIm i
n td
Y2
o S.. -S .
1 il e2 _ikx
*f k(s ¥ 1kv) b, ° dk) . @)
o
oo - s. (- . N
2 , € ) Pi! el-¢) LA )(ﬂﬁc )t—: w the path of int tion in the k-plane as indicated in fig. 6
J'c [ A + o 'ij§ e change the path of integra P g.
o (C) s] ("C)
where
1 for the ions
c =
8- for the eléctrons
and .
-sl (C)(l -ﬁc).‘
e 06 s -1
A = 5, (00 - 2-) rz
VK
2 -e A
vz ¢t

Numerical results are shown in fig, 5,




-16 -

We make the substitution k = i 3 and find

-8 X -8 :
- lAng (V) 4 e 7 dy
= . +
fi,e ‘:F W V) ay f s(Y-V)
. 2 o e X
- 1"'pi,ef'oi,e(")< 1 5,25, 2 eSTdY
+ 2n s(Y-v) D2
o

O X
. 1 Si1 75 e‘svdy)
STV—V) D,

(]

where :}: andf imply that the pole is above and below the integration path

respectively. We consider the two terms separately:
idn g1 e( v)
1st term = - 5 2ni Res(Y =v)
-S =
e V
- e(v) s °
2 L
1Anw S. ,-S LS
= - i, e 1 i,2 e, 2 i
o
S. ,-S S. ,-S -s =
+m< i,27e2 o Ti,1 1 )_e v }
D2 Dl S
where P denotes principal value,
Using (12) we get
Y2
1'1'2(Y 8) Se"'z(Y,S) = 'An? Q],z(y)
where ] y - v, : y - v,
Q) ==t z(—2) - 2(—=)
Y2 A, V2 A, VZa, VZA,
.
Q) = ).

- 117 -
Using these equations and (17) we find

+ iAm»2

2nd term = - —E;El—e

(v)

oi, e

o 2 Y
{P Y / Qz()

Q, (Y) -sg
s \ @, )
o

55, VI(5-551V)) N

g2 Q,(v)
i ( (5-8,(VI(E-5,(V])

Q] (V) -S ?x"
(5-5, (VIN5-5 (V) ) ¢ }

Performing the inverse Laplace transformation in analogy with section
2.1 we find

elx V1) = dng; (V) €(t- = ——Blr-e— foi, el
<t Y2 Q, (Y)
X 8 (Y)
T
- Re (uvz Q ) (cosh| s, (v)(t- ] ) - l)) €(t - 5) } (22)
sz(v) 1 \ v

where € ({) is Heaviside's step function.
For v (% f, (x,v,t) reduces to

o2
2 Q)
X v, ) = 2 ___P_l.:_e_ n 'e(v) Im j: Yv ;-2( - (cosh s (Y)(t-v)] -1)dY,

This contribution is solely due to collective interaction since vt ( x,
i. e, the freely streaming particles have not yet arrived at the observation
point x,

For v)ix-weget
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Anoz.
L el v t) = g (V) ¥ s f‘oi, )
x
Im jr m ;‘2 C:‘_'((:)) (cosh [s, (¥)(t- )] - 1) dV.

The first term corresponds to freely streaming particles, and the

second term is due to collective interaction. To obtain this expression we

used the identity

Q, (v)
Re [x v° T—(cosh s, vt- PI-1)] =

s (v)

Im P v 5
s1(Y)

(cosh[s, (¥)(t - %)] - 1) dy

(Hilbert transformation).
(x v, t) is not defined for v = %. This does not mean that our result

(x v, t) is a distribution function, it is sufficient

is unphys1ca1 Since f

to know how to use it fo.r calculating averages, i.e. how to integrate it after
multiplication by other functions. This amounts to saying that f1, e(x, v, t)
must be a "distribution” in the sense of L. Schwartz. For more realistic

initial perturbations than the present one fi e(x, v, t) may very well be

defined for all x,v,t. We shall revert to th.is question later on.

2.3, The Flux, Fil e(x, t)

The flux is defined as

aB
Fl' e(x, t) = f Vfi, e(x, v, t)dv.

Since the density, n, e(x, t), is known explicitly (19), the easiest way

of calculating F, e(x, t) is to use the equation of continuity

-

anie aF

—t T oax i

(x, t) = 0.

Inserting the expression for the density we find

W bmvw i

ol

R
I i i . i i NS N SRS D s 0 3

Shire iy, el
T o 0, i "

-19 .

o
x Fi, elx-t) = - an fz 8, e(_tx_)

f 1 e 1“)
“mdl, YY =g — sinh[s, (N)(t- ) ] av .

x | (Y)

Integrating from x to infinity we get

Fi elxt) =an f 'fg' g o(})dc
X

- An o pi,e,l(y) :
; z_Jzi_elm jx fv ) smh[s‘(Y)(t-%-)]deC.

0 forallt. We

The integratior constant is zero since F, (x-w t) =
) i,e ’
consider the two terms separately. Using the tranformation

~Ob
we get the 1st part =Anj Yg. (Y)dy.
 ie

T

Calculating the expression for the 2nd part we first consider the double
integral

ab b ty
f {F(C,Y)d‘ldc = L f F(C,v)Mdgdy, b==2
b ¢ {- {- X
where we changed the order of integration. Letting a,b «» we get
o oo 1Y
f f F(C,Y)dYd¢ = I f F(C,Y)dgcdy . (23)
b ¢ 1- T X '

Using this identity we find
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Fy ox, 1) = An( fx Ve, (V)Y
13
N —-2—' Im fv3 _%2_6_(1)- (cosh [s, (¥)(t- §) ]-t)dv). (24)
' 2'di e X Sl(Y)
’ t

Using (11) we can simplify the first term

2
(T i, e ) X
oo \mq V. - V.
ng- (Y)dY - 1!ee 1 e +_]§'_e. erfc(i.—l’..g) .
% i, e Vo= V'Z'Aie

The first term in (24) is due to freely streaming particles, the second

term is due to collective interaction.
Following the procedure shown in section 2.1 we put (24) on a form

suitable for numerical evaluation:

2
F. t)=An§2A2fv (Y)dY-'l'-CAOiI g
i, e ", i N gi,e | T m
V2
n :
= p. () S1(Q0-—==)7 7 P, (£) -5, (-E)(1+ )T, ]
cs[ el o+ ke . - V3c ]dc‘
L" sy(c) [ J s;(-C)
v ,
-8y (O - =L - LR
fv'lg c3[ P @) O LT b (o) m00r o
-5 € - —gt——e
o S](C) Sl (-C)
where
1 for the ions
c - {
o' for the electrons

Numerical results are shown in fig. 7.

vt
4
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2.4. The Electric Field, E(x,t)

We integrate Poisson's equation from x to infinity;

E(x, t) =-:_o f [n(e,t) - n (g, v) Jdx.
X

The integration constant is zero since E(x ~o t) = 0, Inserting (19)

and using formula 23 we find

-An
E(x1) = Lv (t- Be, ) - g (1)
0
T
1 YIR(Y)
- I Y -4
ma ™, +Ls‘ qy e - P - s 6 ay - @s)
where
R(Y) = P, () + g P_,(Y),

Using (11) we find

= X
fxv(t - Plgy(v) - g M) Ay -
x

V:: A, exp( (--v

)) -aeen( (E2))]

+ %((tvi-x) erfc(vi:i) - (tve-x) erfc(vi.Ave> ) .
i e

2.5. The Potential, ¢(x, t)

0
We integrate E(x,t) = - = *(x, t) from x to infinity, inserting (25) and
using formula 23, and find
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oix, ) = - 2o ly [ Vi P - g MY

(cosh s, (V)(t- )] - L2 - PE-nay .

e e R e e e

Using (11) we get

[ V-3 g - gmav -
T

x . 2 L
i b () finh )

X X
2 2 TV 2 x T Ve
+ (A + (v.-%‘) ) erfc - (AT + (v _- T)Z)erfc .
1 1 <v—2 A? e e (ﬁAe)

3. ANALYTIC SOLUTIONS WITH A PULSE-LIKE INITIAL CONDITION

Equations 1 and 2 are solved for the case where the initial condition
is given by
f1, e(x, v,t=0) =

An 8, e(v) d(x)

and

e(x,t = 0) = And(x).

As mentioned earlier these solutions can be found simply by differen-
tiating those obtained in chapter 2, but the following procedure may give
a better physical insight,

-23 -

3.1. The Density, n. (x,t)
i, e

We first consider the following two initial value problems:

—
iy

L
"

0) anh[1 - €(x)]

(x,t =0) = anh[1- €x-p ].

Notice that [h] = L™ and [an ] = particles - L2

section 2.1 we find (omitting the indices "1" on P, )

Referring to

a1 e(x t) -Anh{f g1 e(Y)dY ¥ ——-2-— Imj Y (cosh[s (Y)(t-v)] !)d\i

T S(V)
and
_ (x,t) = Anh . (Y)aY
nbl’e(x ) n §L+l hgl’e()
it m [ (cosh[s, (V)(t- LBy _1)av { .
T Ly ™ iy ot 24

The solution to (1) and (2) for the case of a pulse-like initial condition
n, (x,t) ]. We find

x+l{h

= - 1
nai' e - nbi' e = Anh § ‘L gi, e(Y)dY + —2—”—d—2-— Im
T i, e

is now found by lim [n %1 -
h-o“

x + IZh
—-é—— (cosh[s,‘ (Y)(t - %) ]1-1] dy

x 8’ (Y)

o
|
x+1

-2‘—' (cosh[s, (Y)(t - é)] - cosh [s] (Y)(t --"Iv'ﬂ‘-)])dv f .

s (Y)
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The three integral terms are denoted I', 12, and l3 respectively. We

consider each term separately.

_ 1
I = T 8,eM)
p. (*,)
I, = % = (cosh(s(a,)(t - 3=)-1)
s;(n,) 2
where "
115‘ t < x+tl[h .
"2

We used the mean-value theorem. Evidently h I, 0 when h ) 1 since

X ~ ~ X
cosh(s](wz)(t - i-;)) =1 when %, - ¢ SO

lim (hl) = 0  and

h ~e h —e% *

In order to evaluate the last term we consider

lim { h(cosh [s] (Y)(t - %)] - cosh[s](Y)(t - i;_l/_h)]) } =

- 0

5 s -3 B0 s - P
Lim 800 - ¢ B e ra-e D e -
8,(¥Y) X
-~ smh[sI(Y)(t - 7)] . (26)

The final result is then

) “ P (V)
n (%1 = n ({- g o(f) ¥ 5;—;2— m | ¥ s—l‘-ﬁ")— sinh s, (v)(t- ) Jav
i, e T
' t

. @ T

R AR

e o L, e T S SN i
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We want to show that this result satisfies the initial condition:

. - . 1 X
im n, (x,t) Anl:.r.no-t-gi.e(.t.)

= An lim {-f gi. e(v)b(v- édv

t-o
a0
= 4n lim 8; (V) (vt-x)dv
t - o »

An f gi. e(v) 5(-x)dv

A nbd (x)

since f g; e(v)dv = 1.

=00

3.2. The Distribution Function, fi e(x, v, t)
2

Using

1. = 1i -
1. e(xn v, t) :'112 (fa i. e(xo V, t) fb i. e(xp v, t))

together with (22) we find (omitting the indices "1" on Q(Y))

e " thie ™ bnhg; (v) (€(t- P - ”"'%”
Anhu?
+ ® =Z p (v)
oi, e
x+1/h
2
ixm Pf 7-1\7 y (coshl s, (Y)(t-5) ] - 1)
115 8,(Y)
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- RV ReL-%s— ((cosh[s, (v)(t- —)] €(t - —)

s(v

_ (cosh(s, (vat - 2ELLE) - 1) €t - LATLINIY

Using
lim h(€(t - %) -€(t - -x—%-'-ﬂ]—)) = p(vt - x) (see App.)
h -

we find for the first term: An g, e(v) (vt - x).

We consider the three terms III, 112, 113 within the brackets { i

separately.

1st term

Lim (hll)‘O

ho'

2nd term

Using (26) we get

3 “yoQ
13

h -~ s

3rd term

We consider

M = cosh [«_:,l (v)(t - %)] €(t - %) - cosh[sl(v)(t --ET':'—'-LE)] ((t-z%&)-

Expressing Heaviside's step function as a Fourier integral (see Appendix)

we get

. g ‘h‘
v s G ke SR

]

A

- 27 -

i s, (v)
M= 5 f [(l-up(-(ip+ 'v ) 1';)) exp(s, (v)(t - 3))

v [ - explotip - 5, (V)) 1)] expi - _x, . exp(ip(vt-x))
e B~ p(-8,(V)(t - ) = dp
and
_ - 5, (v)
}l:?.(.h M) = -2; f (cosh[s (v)(t - -) ]+ 1pv ~——sinh[ s (v)(t--)])exp(lp(vt-x))dp

= ‘VCOS'.I [s, (v)(t - %)] b(t - _‘x’_)

5,(v)

sinh [s, (V)(t - T J€(t - 3)

using the Appendix,
Thus

Lim(h 113) = - gV Re[gé—L (-cosh[s (v)(t - —)] ) o(t - -)

h-o-

5, (v)

+ sinh [s, (v)(t - H)) €t - 5 - Lot - 5 ].

The last term is found using the Appendix. Using F(x) ¥x) =
we get

F(o) 8(x),

lim (hII;) = -=v Re| sQ,"(‘% sinh [s'(v)(t - %—)] €(t - -é)] .

h-oﬂ

The final result is then
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1 x, + An";z)i e
f . el Vs t)=an v Ei, e(v) b(t- V) - ﬂoi, e(v)

% Im P I = .891%)) sinh s, (¥) (t - ) ]d¥
T

- xv Re (%%’, sinh s, (v)(t - %/‘-) 1)€(t - %)% (27)

or
( i, e
) (v) (t - —) - ———E-’-— I (v)

An— oi, e

T

fi, XV, 1) = < not defined

An— (v)b(t--)+ ——-El-tf-f' o)

X
T
g Imf L -SQ]%% sinh{ 8, (Y)(t-EYE)]dY%

L Y-v
-0C

For t -0 we find, using (27)

lim fi, e(x, v, t)

1 X
n 5 & (VIO(-3)
t--o

ng; (VB (x).

The result satisfies the initial condition.

i A AN SR+

{Imf 'YYTV' %‘-}% sinh[s‘(v)(t-%l‘-)]dv} v{¥
X

el

il
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3.3. The Flux, Fi, e(x, t)

We have o(%,t) = lim [F (x, t) -

h-.m Fbl, e(xo t) ] .

Using (24) and following the method in the previous section we find

-

F. (x,t) = Ang X (F)F L -£Y ——(v-)-—1 (Y)smh[s (Y)(t-—)]dY}
i, e £ LT gl 3

(29)

3.4. The Electric Field, E(x,t)

We find

Bt = - 2284 [ (g - g v)ay
X
T

1 2 R(Y
- _é_L h( s, (Y)(t - -1)dy}. 30
_—_2-21;(11 fx 2 (coshl s, (Y)( 7)] ) § (30)

Using (11)

f; (g;(Y) - go(¥))dY = Jz( erfc(vi_-:z) - erfc(vi::))

3.5. The Potential, ¢(x,t)

rin) = - RS vt gy - g ey
3

(]

1 3 R(Y
-y 1 B (sinn[s, (1)(t - )] - 5, (V)¢ - »dvl
v -[; 85 (Y) ) v ¥
(31)
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where

.LYU-%N%W)-gJﬂkW -
x
2

X 4 2 X _
(ke (229 am (B

/ L)ty o et L ve
+ (tv.-x erfc( ) - (tv_-x) er c( )) .
\ vit¥) V2 A, © V2 A,

4. APPROXIMATE SOLUTIONS

In this chapter we want to give a simplified description of the problem

treated in the previous chapters. For this purpose we assume the electrons

to be Boltzmann distributed at all times so the linearized Vlasov equation

for the electrons is replaced by

e e e
ne=n0e'/"Te or E =- —_—

E = - :_Tf anl + d2 aZE
en X e 2
o 9 x
where
2  _ co“Te
Ay, = .
e” n,

If we further assume quasi-neutrality (ne: ni), the original set of

equations ((1), (2)) reduces to

R s AR il A

SR S R W el e

i R N el W sl 1 e R
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i i 2 i
—— = e—
at ¥ x Ce 3x To,iV) (32)
where
Cz i uTe
e m *

The assumption of quasi-neutrality implies dze < 0. This assumption

will be justifiabie fgr low electron temperatures, T

as °E
densities, n o’ if by 3 is not too large, but also if the initial condition is

and high background

such that the E- ﬁelﬁ varies smoothly % : -—27 {{ 1. The assumpuon of
Boltzmann distributed elecirons implies the assumption m, - = 0. This
assumption is justified if the initial condition involves a perturbauon of the
ions., This is verified numerically in ref. 1 for the special case considered
there. We shall now consider (32) in detail. The solution to this equation
with the initial conditions of interes: here is given in refs. 3, 4, and 5. We
only show the results: '

For | fi(x, v,t=0) = ang(v) (1 - €x))

the solution to (32) is

f(x,v,t)=C bnf'(v)Pf—-(—ldY+§Ang(v) C Anf'()Pr dY}(( I')
{. 00
(33)
n(x,t) = an Lh(Y) dy (34)
t
Fi(x,t) = 8n I Y h(y)dy (35)
t
uT
E(x,t) = 9t-“- —= n(P (36)
s T b
o(x,t) = Ane-n—o-e L h(Y)dy . (37)
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. ion for the case | f (v) and g(v) since otherwise the fi i : S v —
By differentiation with respect to x we find the solution 0( ) g(v) e the figures would show misleading symmetries,

We notice that the E-field is positive for all (x, t) unless we chocse distribu-

where tions g(v) and f o(V) which have a difference in drift velocities which is great
fi(x, v,t20) = ang(v)d(x) compared to their thermal velocities, The main effect of collective inter-
action will therefore be an acceleration of all ions, so fi(%f, v) is negative
to be x for v( VDrif and positive for v ) VDriftr S shown in fig. 8e. We notice
1 % 4 Cz £ (v) h('f) (38) : again that fi(T' v) is not defined for v = %5 . Close to %-the dependence on
= - n Vi - X
f(x,v,t) = &n fg(")b(v t e o vi-x v is roughly given by In(]v - %I) so f, is integrable with respect to v, and
this is all that is needed as mentioned in section 2.2, What is worse: for
an o x (39) v %, f - so the assumption of linearization (anf, (( n f) breaks down
ni(x. t) = T h(T ) in this region. We shall show that this is due to our unphysical initial
condition which implies an infinite electric field for t = 0.
An . x X (40) : We consider a 1nore realistic initial condition, namely
Fi(x, t) = T (1._') h (¢)
&n g(v)
X : f(x,v,t=0) =
_ an *Te 20y (41) - ! exp(3) + 1
E(x,t) = -+ en, Ox
, where d may represent the physical dimension of the exiter, e.g. a grid,
xT L - . . .
e 1,.X (42) A detailed calculation gives
’(xot) = An eno t—h(t) '
o 4
In (33)-(42) € (x) denotes Heaviside's step function, f glvjdv =1 and | -
- fi nxt) = [ 2O )
s —SXP(y—) + 1
B ao T
P [ Elav + ixg
L = E filx, v, 1) = —ZLEN) +
h(Y) = < Im ] ot _(v) ) ;? exp(—y—) + 1
- i fr (Y 4
]-Cepf-‘:v—dv llce 0() § 5 (v)
£ 1 oo
L - - 8 2 “h(y dY C eA nf 0 h(Y
C_anf (v) P - P dy .
# e o v- X-tY, X-tv v-
3 _ exp(T) + 1 exp(--a- )+ 1 )
We notice that the solutions are self-similar, i. e. of the form % bt 0 1)
< H(F). i |
t ; The solution for the initial condition

It should be mentioned that the free-streaming contribution in these
cases is always self-similar, In the following we shall only consider (33)-
| . X X

(37). Figs. 8a-e show numerical calculations of h(Y), n,(¥), Fy(¥), and
f(,"f, v). In the calculations we assumed drifting Maxwellians for { 0(v) and
g(v). We chose slightly different drift velocities and temperatures for

t(x,v,t=0) = J Ang(v)exp(x/d
(exp(x/d) + 1)
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may be found by differentiation (remember the "minus"-sign). f(x,v,t) is
limited and continuous for all (x, v, t) so if An is small enough, the lineariz-
ation is justified. If we insert d = ]H and let n take the valueg 1,2,3,....,
we get a sequence of functions which converge to the solution given in (33)
since lim (exp(x/d) + l)'] = (1 -€(x)) = €(-x). Consideration of the charac-
teristic; ?n the v, x/t plane offers a convenient way of comparing the linear
results with the non-linear numerical results shown in ref. 6. The linear
calculations give a separatrix v = x/t which divides the v, x/t plane into
two halves. Such a separatrix v = S;(-x/ t) is recovered in the non-linear
calculations. v = $(x/t) lies entirely above v = x/t, but has v = x/t as an
asymptote for large v. S(x/t) - x/t will be small as long as Te“i T;.

There is overall agreement between the linear and non-linear calculations
of the distribution function, density, and E-field. We therefore conclude
that the results obtained from a linear calculation are sufficient also in the
non-linear region as long as Te = T,. This is confirmed in the experiments
. reported in ref. 3. For high temperature ratios, Te/ Ti’ the calculations

break down since we expect collisionless shock formation in this region.
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APPENDIX

X x
Fourier transformation of Heaviside's step function €(t - V)

vt : t

% ipx _ t':"pV

f(p) = felpxﬂt-%-)dx= f eP¥ax = TR
- 0D 00

and

- %) _ 2]_; j exp(%g(vt - x)) dp .

For x- x+ 1/h

1p

€(t - x-l;l[h ) = _217 f“exp(ip(vt'- X - I[h)Ldp

" thus

€(t-3) - (t- ]%lﬂ') . L [T0 - explip/h) oypgip(vt - x))dp -

Zx

For h - we find

lim h(€(t- %) - g - 2R -
h <o

1p

=

exp(ip(vt - x))dp = d(vt - x) .
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Fig. 3a. The function s,(Y).

Pe
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Fig. 3b. Enlarged reproduction »f the region close tu the origin. The

scale on the axis is indicated by the plasma frequency.

0T
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| -

0 3

Fig. 5a. The perturbed density as a function of § and with Tt as a param-
eter. The drift velocities in the background plasma, described by foi e(v)'
are v, = 1200 m/s, v__ =0 m/s and in the perturbation, g Vi Vit
1200 m/s, Ve 0 m/s. The temperatures are T . = 2200 K and T; = 2000 K.
T,o/To = & The background density is n_ = 10' ' m™>, the ion mass
2.21-1072% kg (Cs). Notice the self similsrity for 1 » 15,

n

Fig. 5b. The perturbed density as a function of » for various ® with v =5,
Plasma parameters as in fig. 5a. Related (nonlinear) numerical calculations
are shown in ref, 7. We notice that the linear results seem to be a fairly
good approximation, way into the nonlinear regime provided that T el T, is
not too large.
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ﬁ_.(.‘.‘.'.‘l * =10
An
wl'_“_ .
o } h() I: T, =1000°K
O : T, =4000°K
X: T,

10

.
Vo X
t
Fig. 8a. The function h(x/t) for different electron temperatures, T The
L e'
| plasma parameters are: Voi Vo © 1340 m/s, v ® 1400 m/s,
| Tio = 'I‘i = 2000 K. The values are taken from the experiment reported in
rig. Te. The perturbed flux s a function of » and with T as a parameter. ref, 5. The background density, n.. does not appear in this approximation,
The plasma parameters are the same as in fig. 5.
N
nyy)
AN
1 T, =1000°K
1
. Il T, = 4000°K
m m 7.z 6000°K
1
X
VD T
] Fig. 8b. The perturbed density, n(x/t), for three values of T e

5 LY L)

Fig. 7b. The perturbed flux as a function of » for various ® with ¥ = 5,

Measurements related to figs. 7a, 7b are reported by V. Vanek and T. C.

Marshall®),
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Vredy

T, 4000°K T, = 200°K

1
1,

"‘

Fig. 8c. The perturbed flux, F(t/x). (The t/x dependence allows direct

comparison with measurements. (See refs. 5 and 9).

t(1v)

© V=1930 M/S
- ¥z 1780 MIS
- V21590 M/S
V=120 M/S
V=1230 M/S

- 3R R -

T, = 2200°K

- —
—
— v —-
T S e - — - — ——a

Y

Fig. 8d. The perturbed ion distribution function, {(t/x, v), as a function of

t/x and with v as a parameter,

IR R R N ROt e
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} £1(5.V)

\_/VD

Fig. 8e. The perturbed ion distribution function, f(
v and with x/t as 3 parameter.

<!

x/t, v), as a function of




